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SYNTHETIC MODELS OF DISTRIBUTED 
MEMORY PARALLEL PROGRAMS 

David A. Poplawski 

Abstract 

This paper deals with the construction and use of simple synthetic pro- 
grams that model the behavior of more complex, real parallel programs. 
Synthetic programs can be used in many ways: to construct an easily ported 
suite of benchmark programs, to experiment with alternate pardlel imple- 
mentations of a program without actually writing them, and to predict 
the behavior and performance of an algorithm on a new or hypothetical 
machine. Synthetic programs are constructed easily from scratch, from ex- 
isting programs, and can even be constructed using nothing but information 
obtained from traces of the real program’s execution. 

V 





1. Introduction 

A synthetic benchmark is a program that simulates the behavior of some typical pro- 

grams but is not itself one of those programs. Many examples exist, including the 

Whetstone [Cur761 and Dhrystone [Wei84] benchmarks for scalar machines, Reed’s 

communication benchmark for distributed-memory multiprocessors [Gru87], etc. The 

key attribute of these benchmarks is that they are programs that do not do any useful 

computing. They only exercise the machine in some “typical” way and report on its 

performance under such a workload. 

In this paper we describe a method for constructing synthetic benchmarks for dis- 

tributed memory multiprocessors. Each benchmark closely models the communication 

behavior of a real program. Each message has the same length and type and is sent 

from and to  the same nodes. However, all Computation unrelated to communication is 

replaced with delay loops that account for the time required to do the computation. 

Synthetic benchmarks have many uses. A large collection of them can be used for 

quantifying the performance of existing, new, or experimentd architectures. Porting 

the synthetic benchmarks described in this paper is particularly simple because all 

interprocessor communication uses PICL [GeiSO], a portable, instrumented communi- 

cation library. Thus, since all computation is replaced by delays, there is no porting 

effort required other than to  adjust the delay times to reflect the computational speed 

of the new processor. 

Since a synthetic benchmark is easy to construct, it can be used to experiment 

with alternate implementations or algorithms. In a sense, a simple prototype of the 

application can be constructed. For example, one can develop communication and 

computation structures, using simple delays to model the complex calculations and 

data structure manipulations. No input or output of data need be done, except for a 

few parameters such as problem size. Once the benchmark is run and its behavior and 

performance determined, modifications and improvements to  the communication and 

computation structure can be made easily and simply. 

A third application of synthetic benchmarks is to  predict the behavior and perfor- 

mance of programs on new or hypothetical architectures. Since synthetic benchmarks 

are simple, porting them to  new architectures can be done quickly, and the behavior 

and performance of the application determined with considerably less effort than port- 

ing the entire code. With hypothetical architectures, a simple simulation of the new 

architecture running the benchmark can predict the behavior and performance of both 

the machine and the application. 

This paper reports on initial investigations into the construction and use of synthetic 

benchmarks done by the author while visiting at Oak Ridge National Laboratory. 
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2. Definitions 

A synthetic benchmark is a program that models the communication and computation 

structum of a real program. It has the control structure of a real program, but does 

not do any actual computation. Instead each computation is replaced with an empty 

for loop that goes through enough iterations to consume the same amount of time 

necessary to do the computation it replaces. 

All communication code remains, except that no r e d  data is sent. Messages of the 

correct length and type are communicated, but the content of the messages is ignored. 

Computation that determines the length and type of messages remains in the code, as 

long as it is not data-dependent. (See below for a relaxation of this condition.) 

No data input or outpiit i s  done as the current focus of synthetic benchmarks is on 

the parallel, computational part. However a benchmark is usually parameterized by 

the problem size, which can be, for convenience, read as input. For example, programs 

doing matrix calculations would be parameterized by the size of the matrix. Other 

simple parameters that have an effect on the amount of computation or communication, 

other than actual data, can also he provided. 

This approach works fine for programs that are not data-dependent. However, many 

programs are. In such cases, whenever the flow of the program is decided based upon 

a data dependent condition, the condition i s  replaced by a "well chosen" probability. 

For example, in an iterative algorithm that terminates when convergence occurs, the 

test for convergence can be replaced by a test whether a random variable is within an 

appropriate range (e.g., if the probability of convergence on a given iteration is 0.01, 

then the test would be whether a uniform random variable in the range 0 to 1 was less 

than 0.01). Another example might he the probability of the pivot element being on 

the diagonal in Gaussian elimination with partial pivoting. 

3. Creating synthetic benchmarks 

We describe three methods for creating synthetic benchmarks in this section. In all 

cases, the general method is to model the communication behavior exactly (subject 

to the constraints discussed below), and then to replace the computation taking place 

between explicit communications by delay. 

In our examples, only the node program will be shown. A corresponding host pro- 

gram need only determine the problem size and machine size, start the node programs, 

send the problem size to the nodes, wait for completion, and terminate. No data 

need be read, distributed, collected and/or written. Consequently a very simple host 

program suffices. 
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Delay is added by inserting an empty for loop at the appropriate place. The 

number of iterations the loop must go though is determined in several ways. In all 
cases, however, it  is necessary to know how many iterations are required tqo delay 

for a given length of time - say one millisecond. Since the resolution of the clock is 

one millisecond on the Intel iPSC/2, the multiprocessor used for our experiments, the 

loop was run for one million iterations in order to get an estimate for the time per 

iteration accurate to three decimal places. That many iterations took 0.761 seconds, 

resulting in 761 iterations per millisecond (0.761 iterations per microsecond). There 

was approximately a one microsecond startup time for the loop, but for simplicity and 

because delays are usually much longer than a microsecond, this overhead was ignored. 

3.1. From scratch 

One method for creating a synthetic benchmark program is to  write one from scratch. 

This approach would be appropriate not only for creating a benchmark, but also for 

experimenting with trial implementations, or as a step in the development of an appli- 

cation. 

The procedure is similar to writing a real application, except that none of the actual 

computing and input or output of data would have to be done, thus simplifying the 

task. In particular, complex data structures and/or intricate indexing are eliminated. 

All computing is simply replaced by delay loops whose delay time can be estimated 

from the complexity of the operations being replaced. 

As an example, the synthetic benchmark below comes from the Fan-Out algorithm 

for solving triangular systems [Kuc76]. Pseudo code for the algorithm is given in Fig. 1. 

for j := 1 to n do 
if j E myrows then 

endif; 
fan-out(sj, m a d j ) ) ;  
for i := j -+ 1 to n do 

xj := b j / L j j ;  

if i E myrows then 

endif; 
b, := b; - x . L . . .  J '39 

end for; 
end for 

Figure 1: Pseudo code for the Fan-Out algorithm. 

Rows of the matrix are distributed among the processors. rnap(j)  is a function that 

returns the processor containing row j .  The result of the operation fan-out(t, root) is 
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# define COHPUTE(x) {int q i ,qj ;  qj=x;  for(qi=o; qi<qj; q i t t ) ; }  
# define USEC e0.761 
# define C (18.6 USSC) 

int  nodes, ae, host ,  n; 
in t  bufaize; 
char buf C056361; 

main() { 
ins; i ,  j ;  

for (j=O; j<n; j t t )  { 
i f  (jYaodas == m e )  

COMPUTE (C);  
fanout(j,  j%odes); 
for ( i = j t i ;  i<n; i t + )  

C01(PUTE(2*6) ; 
i f  ( i k o d e s  == me) 

1 
ssndO(bui, s i zeo f ( in t ) ,  0 ,  host);  
cloaeO() ; 
1 

iarnout (j , root) 
int j, root; 

{ 
int  i; 

Figure 2: Synthetic program for Fan-Out algorithm. 
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that processor mot sends t, and d other processors receive t. Figure 2 contains the 

code for the synthetic benchmark. 

The first three define statements implement the COWUTE construct. The initial 

open0 and recvO statements get the parameters for the problem, and the send0 and 

C l O S e O  inform the host that the node is done and terminate the node. 

The fan-out function is implemented as a ring dgorithm, although many other 

algorithms could have been chosen (e.g., recursive doubling). The root node sends the 

data to the next node in the ring. Each of the other nodes receives the data, and sends 

it to the next node in the ring, except for the node preceeding the root node in the 

ring, which simply receives the data. 

Note that the algorithm is simple, and 60 is the code. In fact, compared to  a “real” 

program for this algorithm, the synthetic code is much simpler, not having to  deal with 

the input and output of data and results, calculations, and the sending and receiving 

of actual data. 

3.2. From an existing program 

Another approach is to  create a benchmark from an existing program for which the 

source code is available. One would use this method for adding a program from a new 

type of application to a benchmark suite, or for constructing a simulation for predicting 

the performance of the program on a hypothetical machine. 

Appendix A is a listing of an existing, complete program for solving a dense system 

of linear equations using Gaussian elimination with partial pivoting. Figure 3 contains 

a synthetic benchmark for the same program, where CONPUTE, USEC, and C are defined 

as in Fig. 2. 

Note the following points: 

(1) The subroutine structure has been eliminated to  produce a small example for this 

paper. Typically the original structure of the program would be preserved. 

(2) Pivoting is data-dependent. However the synthetic program is not (and cannot 

be) and therefore does not simulate precisely the behavior of a real program. 

Instead, whether to  swap rows or not is contingent on the value returned from 

a random number generator (called uniform) that returns a real value in the 

range 0 to  1. In this example, the assumption was made that the probability 

that the pivot element is on the diagonal is 0.05, thereby causing the program 

to consume time associated with the swapping of rows 95 percent of the time, 

Another possibility would have been to choose the row in which the pivot was 

found randomly, but in this implementation it makes no difference to  the behavior 

or performance of the program. 



int nodes, me, host, i, j ,  Its n; 

main() { 
openo(hodes, h e ,  &host); 
recvO(h, sizeai(int1 , 0 ) ;  

/* initialize */ 

for (i=O; i<n; i++) { 
if (iyaodes == 

/* find pivot */ 
for (to=me+l; to<pae+nades; to++) 

sendO(buui ~ n*sizeof(double) , 
esdO(bu2, sizeof(int), i, to 

1 
1 

e l se  { 
recvO(bui, sizeab(int), i); 
recvO(bni n*sizeof (double) , i) ; 
1 

if (unifom(O.0,l.O) > 0 . 0 6 )  
for (bi; h<n+l; k++) /* swap rows */ 

if (kyaodaa == me) 
COHPWTE(C) ; 

for (k=n; k>=i; k--) /* elimination */ 
if (kyaodee == me> 

/* back aubatitution */ I 
if (nyaodas == me> { 

fox (j=n-1; j>=Q; j--) 
if (jyaodee == me> 

else 
conPuTE(c*j); 

i f  ( j  != O >  { 
retvO(col, sa*sizeoi(dauble) xn+j); 
COXPUTE(C*j) ; 
1 

else 
for (j=me; j'n; j+=aades) 

if ( j  !=  0 )  { 
conPuTE(C*j); 
sendO(co1 ,n*sizeoi(double) ,n+j  ,ny.nodes) ; 
1 

sendQ(buf , sizeof(int) , 0 ,  hast); /* terminate */ 
close00 ; 
I 

Figure 3: Synthetic program for Gaussian elimination with partial pivoting. 
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(3) All messages are sent and received from the same dummy buffer (except n, the 

size of the problem). 

(4) All computation is compressed into COMPUTE statements, using C = 18.5 nnicrosec- 

onds as the average time for a single floating point operation, including memory 

access, indexing, etc. A more accurate function could have accounted for each 

operation separately. 

5.3. From observed behavior 

The third approach is to create a benchmark by modeling the observed behavior of an 

existing program. One might consider doing this if the source code for the application 

were not available (e.g., proprietary), or if the source code were extremely difficult 

to understand (e.g., poorly written). While no technique for constructing a program 

purely from observed behavior can be guaranteed to work, for matrix-oriented data- 

independent algorithms, the following steps can be followed: 

First, model the communication behavior of the program: 

(1) Pick values of p (the number of processors) and n (the size of the problem) such 

that all of the following values are distinct: p,n,n/p,log,p (e-g., p = 8, 7t = 32). 

(2) Run the program for these p and n, get trace files, and produce graphs of the 

communication behavior. A visual representation of the communication helps 

tremendously, and examples of graphs produced for a particular application are 

shown in Appendix C. 

(3) Hypothesize the structure of the communication and write code that will produce 

it. 

(4) Verify that the code produces the correct behavior for the p and n chosen, and 

if so, also for other p and n satisfying the relationship above. If not, modify the 

code until it works for many combinations of p and n by repeating steps (2) and 

(3)- 

Once the communication behavior is modeled, the computation times can be sim- 

ulated with delay loops. The following steps can be followed: 

(1) Get patterns of computation times between each send/recv for a few different n 

and p. 

(2) Hypothesize general structure of a function for compute time, usually a function 

of n,  p, or both. Use some statistical method (e.g., least squares) to determine 

constants. 
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(3) Verify for several a and p as done for communication structure. 

We now show the procedure used to  create a synthetic code for a particular, un- 

known algorithm. It  turned out that the unknown algorithm i s  a triangular-system 

solver using a column-oriented wavefront vector-sum algorithm described in [Kea881 

(the original. code for this program is shown in Appendix B). However, neither the 

problem nor the algorithm nor the code were known at the time the synthetic code was 

being produced. Only an execut le version of the progrm was available. Figure 5 

contains the final synthetic code for this al 
The table below shows the results of running the real program and the synthetic 

program for the various numbers of processors and sizes of problem. 

Nodes 
4 
8 
16 

Problem Size 
64 128 -- - 256 

Figure 4: Execution times in milliseconds for original program/synthetic program for 
wavefront algori t hin. 

Processor utilization curves for the red  program and the synthetic program are dis- 

played in Fig. 6 and Fig. 7, respectively. As can be seen, the curves do not differ 

significantly. 

The procedure used for constriacting this benchmark was as follows: 

(1) Ran the program for p = 8 and n = 64 and collected a communication trace. 

(2) Determined by examining the trace file that nodes were communicating in a ring 

topology with their neighbors in gray-code order (i.e., 0 --+ 1 -+ 3 -+ 2 -+ 6 --3 

7 --z 5 -+ 4 -+ S). Verified this by running the program for p = 4 and p = 16. 

(3) Constructed message type and length graphs as shown in Appendix C. Each 

graph shows, for each node, the order in which messages were sent and received, 

and either length or type. Messages sent are indicated by lines starting at 0 and 

going positive; messages received are indicated by lines starting at  0 and going 

negative. The length of the line indicates the type (type graphs) or length (length 

graphs). The left to right order of the bines is the order in which messages 
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# define COXPUTg(x) {int qi,qj; qj=(x); for(qi=O; qicqj; qi++);} 
# define HSEC *761.267 

int p, m e ,  host, n, bufsize; 
char buf [66636] ; 

main0 { 
int i, msgs, junk; 
int rnext, oldtype, imsgs. len, type, node; 

openO(&p, h e ,  thost); 
recvO(&n, sizeof (int) , 999999) ; 

rnext = grayO( (ginvO(me)+i >%p) ; 
msgs = (n*n+n*p)/(8*p) - (n/p)*(ginvO(me)/41; 
oldtype = 0; 
imsgs = 0; 

if (me == 0) { 
COHPUTE(O.01220 HSEC); 
sendO(buf, 12, I, mext); 
for (i=i; id(; it+) { 

COMPUTE(0.01220 MSEC) ; 
sendO(buf, 16, I, rnext); 
1 

imsgs = n/4; 

for (i=imsgs; i<msgs; it+) { 

recvO(buf, 16. AMY); 
recvinfoO(tlen, &type, &node) ; 
if (type != oldtype) { 

l en  -= 4; 
oldtype = type; 

COHPUTE(O. 13664 HSEC) ; 

1 
if (len != 0 )  { 

COHPUTE(O.01220 HSEC) ; 
sendO(buf, len, type+l, rnext) ; 
1 

1 

sendO(&junk, sizeof(int), 0, host); 
closeO() ; 
1 

Figure 5: Synthetic program for wavefront algorithm. 
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Figure 6: Processor utilization curve for the wavefront algorithm. 
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Figiire 7:  Processor utilization curve for synthetic model of wavefront algorithm. 
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were sent/received. The distance between lines is constant; it does not reflect the 

actual time between sends and/or receives. Graphs were drawn for each node for 

several values of p and n and were used in many of the following steps. 

(4) Ran for several values of p and n and found that the message lengths were always 

4, 8, 12 or 16, and were independent of both p and n. 

(5 )  Noticed that node 0 started by sending n/4 messages. The first message was 

always length 12, the remaining always length 16. Following that, each node 

(including 0) received a message from its predecessor in the ring and then imme- 

diately sent a message to its successor. 

(6) The type of the message sent was always one more than the type of the message 

received. 

(7) If a node received a message of a new type, it would send a message that was 4 
bytes shorter than the one it received, otherwise it would send a 16-byte message. 

If the message to  be sent would have 0 length, it was not sent. 

( 8 )  From this information, wrote an initial synthetic program to mimic this behavior. 

The initial program worked fine except for termination. To fix it, the total number 

of messages received by each node was determined to be 

except for node 0 which received n/4 fewer, where me is the node number of a 

gjven node and pos( me) is the position in the gray-code ring (node 0 is at  position 

0)- 

(9) The program was modified and run for several values of p and n, and the mes- 

sage traces compared with the real program (Le., the order, types and lengths 

were compared for every node). Since they agreed in all cases, the program was 

assumed to have the correct communication structure. 

(10) Next, trace files were examined for the computational times between sends and 

receives. I t  appeared that the times between the send and receive and between 

the receive and send were both (different) constants, independent of both p and 

n. 

(11) From the trace files, the average delays were computed and inserted into the 

synthetic program. The program was run for several p and n and the overal run 
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times compared with the real program. After some fiddling with the times (they 

were too long initially), the find values shown in the program in Fig. 5 were 

determined. 

The experience of constructing this and other synthetic benchinarks in this way 

pointed out the following things. First, the communication graphs were of immense 

help in finding patterns. It woiild have been difficult, if not impossible, to determine 

what was happening otherwise. Pictures are essential for discovering patterns. 

Second, determining the delay times was a difficult task, mostly due to the low 

resolution of the clock on the iPSC/2 (1 millisecond). The eventual values for the 

delays were considerably less than a millisecond, which is much less than the clock 

resolution. To get the run times of the synthetic program to match those of the red 

program, much fiddling had to be done. To be more accurate, a clock with resohition 

on the order of a rnicrosecoIid would be necessary. 

Despite this difficulty, the synthetic benchmarks constructed did match real pro- 

grams’ run times to within five percent. As a further verification of the validity of this 

method, the programs were moved to  an Ncube/3200. After a small adjustment of the 

computation delay times (almost in exact proportion to the relative computation rates 

of the iPSC/2 and the Ncube/3200), the synthetic programs had run times very close 

to the the real programs on the Ncube/3200 for a large range ofp and n. 

4. Performance prediction using synthetic benchmarks 

Performance prediction of new and hypothetical architectures is another use for syn- 

thetic benchmarks. Constructing a benchmark suite, and using synthetic benchmarks 

for implementation prototyping are fairly straightforward and will not be discussed 

further. 

Predicting the performance of an algorithm represented as a synthetic benchmark 

on a new architectlire requires two things. First, the communication function calls must 

be translated into the proper form for the new architecture, unless the new architecture 

is compatible with the old, or unless a compatiblie library, such as PICL, was used in 

the synthetic benchmark. Second, the compute times must be determined for the new 

architecture. This may be as easy as simply scaling the delay constants by the ratio 

of the speed of an existing architecture, on which the benchmark already matches a 

real program, to the speed of the new architecture, measured by some simple unit 

such as megaflops. This will probably suffice fop. node processors that do not pipeline, 

do not have cache, etc., or as a first-order approximation for those that do. More 

accurate models of computation that take into account many aspects of the architecture 

of the node are necessary for more accurate compute times and, as a result, more 
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accurate performance prediction. We do not consider this here, except to say that as 

node architectures get more complex, more accurate models of compute times will be 

necessary. However, since the performance of distributed-memory machines is typically 

so much more dependent on communication performance than computation, the use 

of simple scaling should suffice for accurate predictions in most cases. The experience 

in running the benchmarks constructed for the iPSC/2 on the Ncube/3200 haa shown 

that simple scaling works. 

Predicting the performance of a hypothetical architecture requires the use of a simu- 

lator. The simulator can be simple if the architecture is simple or if high accuracy is not 

necessary. In particular, given the nature of the synthetic program, the simulator can 

be event driven, where an event is either the reception of a message or the termination 

of a COMPUTE statement. In this case the execution time of the simulation is propor- 

tional to  the number of events. This often eliminates one of the common drawbacks of 

simulation, long execution times. Using an event driven simulator, a communication 

taking hundreds of microseconds on a red  machine can be simulated in less time, and 

a computation taking milliseconds, seconds or even minutes or hours can be simulated 

in a few microseconds ~ the time it takes to evaluate the expression in the COMPUTE 
statement and post an event in the event queue of the simulator. 

The fortunate result of fast performance predictions with simulators using synthetic 

benchmarks is that many simulations, with varying parameters, can be done i n  a rea- 

sonable time. Instead of just getting a performance prediction of a single program on 

one data set and one set of architectural parameters, many programs, with different 

problem-dependent parameters (like problem size), and varying architectural parame- 

ters (like communication or computation speed), can be simulated in a reasonable time. 

This produces more insight, not only into performance, but into relationships between 

program, problem parameters, and architectural characteristics. 

Using synthetic benchmarks for performance prediction produces more than simply 

a measure of the execution time of the algorithm on the new or hypothetical archi- 

tecture. It also produces the lower level, detailed behavior of the algorithm. This 

can be useful in determining heretofore unseen bottlenecks in the algorithm, processor 

utilization as a function of time, interconnect congestion, etc. 

5. Summary 

In this paper we have shown that simple programs can emulate the behavior of more 

complex programs to  a high degree of accuracy. This means that constructing a suite 

of small, easily ported benchmark programs would be quite easy using at least two of 

the methods shown herein. A large suite, encompassing a wide variety of applications, 
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would be of immense utility in characterizing the performance of parallel architectures. 

The simplicity of construction of synthetic codes also makes them ideal for quick 

prototyping of large, complex real applications. One can focus on the larger issues 

of data partitioning and computation and communication algorithm choice without 

getting bogged down in the details of implementing complex computations and data 

structures. 

Finally, predicting the behavior and performance of an application on new or hy- 

pothetical architectures through the use of a synthetic benchmark of the application 

makes flexible and eficient performance prediction possible. 

6.1. Further work 

More work remains to further refine the techniques for creating synthetic benchmarks. 

In particular, the conversion of programs that are data-dependent into synthetic codes 

using statistical or probabilistic methods needs to be further investigated. Another 

interesting question is how one would incorporate caching, vectorization, and pipelining 

of the computational aspect of programs. 

A major goal is to construct a large suite of synthetic benchmarks covering a wide 

variety of areas of study and many diverse algorithms. Work to date has focused on 

matrix algorithms, but algorithms for other numerical applications as well as noa- 

numerical algorithms are necessary as well. 

The follow-on to the construction of the benchmark suite is using it in the char- 

acterization of the performance of various distributed-memory parallel architectures. 

Because synthetic benchmarks are naturally parameterized for problem size, machine 

size, alternate communication implementations, and statistical properties, much would 

be gained by quantifying the impact of variation in these parameters on various archi- 

tectiires and algorithms. 
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A. Source code for Gaussian elimination with pivoting 

Solve dense set of simultaneous equations using 
Gaussian elimination with partial pivot- 

# define fl  612 /* maximum number of equations */ 

# define ITYFE 1 
# define GOLMPODE 2 
# define GOLMHOST 3 
# define PIVOT 4 
# define SUBST 5 

double *a [Zr+ 11 ; 
double eo1 [MI ; 
in t  n = 0 ;  
int  me,nodes,hoat; 
int  bufsiz0; 

/* message types */ 

/* vaxiables */ 

# define COL(x) ((x-me)/nodes) 
# define A(x,y) (acyl CxI> 

main driver - gat miac. info and data, solve,  return resul ts  

main() { 

/* get tha data */ 

/* solve the equations */ 
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/* send back resul ts  */ 

receive the  colurane of the matrix for t h i s  node 

/* get the  columns for t h i s  node */ 

f o r  (j=me; j<n+ l ;  j+=nodes) { 
c j  = COL(j); 
a[cj] = (double *> malloc(buf6iZ%) i 
recvo(a[cj], bufsize,  COLTONODE); 

1 
I 

dr iver  loop f o r  solving equations 

solve() { 

i n t  i , j , k ;  

/* for each column of the  mat r ix  (except t h e  l a s t )  */ 

/* e i t h e r  ... */ 
if (iy’odes == me) { 

/* f ind  the  pivot and send it and column t o  others  */ 

j = findmax(i); 
sendcol(i ,  j ; 
1 

e l s e  { 

/* o r  receive the  pivot and column from another */ 
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j = recvcol(i); 
1 

/* exchange r o w  */ 

/* do eliminations */ 

/* do back substitutions */ 

find pivot IIOQ 

f inchax (i ) 
int i; 

{ 

int cisj,k; 
double m a ;  

t racermark ( Q ) ; 
ci = COL(i1; 
max = -1.0; 

for (k=i; kcn; kc+) 
j = -1; 

if (fabs(A(k,ci)) > max) { 
rnax = fabs(A(k,ci)); 
j = k; 
1 

if ( m a r  == 0 . 0 )  

tracemark( 1) ; 
return( j) ; 

printf ("ERROR: Singular Xatrixeq) ; 

1 

send index of pivot row, and pivot column to other nodes 
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s endcol( i , p) 
i n t  i , p ;  

{ 

i n t  c i ,  j , to ;  

/* make a copy of t he  pivot column */ 
c i  = COL(i);  
for (j=i; j<n; j++)  

colCj1 = A(j ,c i ) ;  

/* for each other  nods . . . */ 

f o r  (to=me+l; to<me+nodes; to++) { 

/* send index of pivot row */ 
sendO(&p, sizeof ( i n t )  , PIVOT+i, t obodes ) ;  

/* send pivot column */ 

sendO(co1, bafsize,  PIVOTti ,  toyaodes); 

1 

receive index of pivot rou and pivot column from other node 

recvcol( i )  
i n t  i; 

{ 

i n t  j ,k; 

/* get index of pivot row */ 

recvO(lrk, s i zeo f ( in t ) ,  PIVOTti); 

/* get  pivot column */ 
recvO(co1,buf size ,PIVOT+i) ; 
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swap xous in  c o l ~ s  i n  t h i s  node 

suapras (i I I  j ) 
int. i , j ;  

{ 

int ck,k; 
double temp; 

i f  4 i  == j) 
return; 

/+ suap in pivot column */ 
tracemark(l0); 
temp = colCi1; 
colEi3 = colCj1; 
colCjl = temp; 

/* swap in a l l  other eo~uslxls */ 

do eliminations. step 

i n t  ck, j, k ;  
double c o l i ,  temp; 
double * aeoP; 
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/* reduce */ 

tracemark ( 2 0 )  ; 
c o l i  = colCi1; 
f o r  (lt=n; k>=i;  k--1 { 

i f  (kyaodee != me) 
continue ; 

ck = COL(k); 
acol  = aCck3 ; 
temp = acolCil/coli ;  
for (j=i+l; jcn; j++) 

acolCj1 -= colCjl*temp; 

1 
/* normalize pivot row */ 

f o r  (k=n; k>=i;  k--1 { 
i f  (kyaodes != me) 

continue ; 
A(i,COL(k)) /= c o l i ;  

1 
tracemark(2 I) ; 
1 

do back subst i tut ion 

subst()  { 

i n t  c j , cn , i , j , l t ;  

/* i f  t h i s  node contains the  last  column */ 
cn = COL(n); 
i f  (nyaodes == me) { 

/* do subst i tut ions from each column */ 

f o r  (j=n-i;  j>=o; j--1 { 

/* i f  column i n  the same node */ 

c j  = COL(j); 
i f  (jkodes == me) { 

/* j u s t  do subst i tut ions */ 
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tracemark (30) ; 
f o r  (i=O; i<j; i t + )  

tracemark (31) ; 
A(i,cn) -= A(i,cj)*A(j ,cn); 

1 
s l s e  

/* get column from aaraoth%r node 
and do substitutions */ 

/* send coluauxa t o  the node doing the substitutions */ 

f o r  (j=m ; j <n; j +=nodes) 
if (j != O )  { 

c j  = COL(j); 
for ( i = O ;  i<j ; i t + )  

aendO(cQl,j*sizeoi(double),SUBS$+j+s,n~~odes); 
colCi3 = A(i,cj); 

send results ta host 

/a: if th i s  node does not  contain last col 

/* otherwise send the l a s t  c o l m  */ 

sendO(a[CUL(ng~,buisiza,CaLTaHOST,hast); 

1 
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B. Source code for wavefront algorithm 

col-uav-0 ( n, ncols, map, mycols, col, b, segment ) 
int n,  ncols, +map, *mycols, segment ; 
float **col, *b ; 

int is j, k, m, me, lim, tag, bytes, a t ,  node, type ; 
float *z ; 

{ 

segment = (segment > n) ? XI : segment ; 
bytes = segment*sizeof(float) ; 
z = (float *)mallocO(bytes) ; 

j = O ;  
for ( k = 0 ; k < n ; k++ ) if (mapcld == me) { 

tag = I ; 
m = O ;  
while (m < n-k) { 

if (k > 0 )  { 
recvO(z, bytes, k) ; 
recvinfoO(&cnt, ktype, &node) ; 

1 
else { 

cnt = segment*sizeof(float) ; 
for ( i = O ; i < segment ; i++ ) zCi3 = O ; 

1 
lim = cnt/sizeof(float) ; 
if (lim > n-a) lim = n-m ; 
if (tag) { 

bCjl -= zC0l ; 
bCjl /= *colCjl ; 
m++ ; 

1 
for ( i = tag ; i < lim ; i++ , m++ ) 

z[il += bCjl * *(col[jl+m) ; 
i f  (k < n-1 (It& lim-tag > 0 )  

sendO(&z[tad, (lim-tag)+sizeof (float), 
k+l, map[k+l]) ; 

tag = 0 ; 
1 
j++ ; 

free(z) ; 
1 

1 
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C. Graphs of message types and lengths for wavefront algorithm 

Figure 8: Graph of message types for node 0. 
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Figure 19: Graph of message lengths for node 2. 
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