
.

D. A. Poplawski

ORNL/TM-11534

Engineering Physics and Mathematics Division

Mathematical Sciences Section

SYNTHETIC MODELS OF DISTRIBUTED
MEMORY PARALLEL PROGRAMS

David A. Popiawski

Department of Computer Science
Michigan Technological University

Houghton, MI 49931

Date Pnblished: September, 1990

Research was supported by the
Applied Mathematid Sciences Research Program

of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC-05-84OR21400

Contents

1 Introduction 1

2 Definitions 2

3 Creating synthetic benchmarks 2

3.1 Froinscratch . 3
3.2 F'rom an existing program . 5
3.3 From observed behavior 7

4 Performance prediction using synthetic benchmarks 12

5 Summary 13

5.1 Furtherwork . 14

Acknowledgements 14

References 15

A Source code for Gaussian elimination with pivoting 16

B Source code for wavefront algorithm 23

C Graphs of message types and lengths for wavefront algorithm 24

iii

SYNTHETIC MODELS OF DISTRIBUTED
MEMORY PARALLEL PROGRAMS

David A. Poplawski

Abstract

This paper deals with the construction and use of simple synthetic pro-
grams that model the behavior of more complex, real parallel programs.
Synthetic programs can be used in many ways: to construct an easily ported
suite of benchmark programs, to experiment with alternate pardlel imple-
mentations of a program without actually writing them, and to predict
the behavior and performance of an algorithm on a new or hypothetical
machine. Synthetic programs are constructed easily from scratch, from ex-
isting programs, and can even be constructed using nothing but information
obtained from traces of the real program’s execution.

V

1. Introduction

A synthetic benchmark is a program that simulates the behavior of some typical pro-

grams but is not itself one of those programs. Many examples exist, including the

Whetstone [Cur761 and Dhrystone [Wei84] benchmarks for scalar machines, Reed’s

communication benchmark for distributed-memory multiprocessors [Gru87], etc. The

key attribute of these benchmarks is that they are programs that do not do any useful

computing. They only exercise the machine in some “typical” way and report on its

performance under such a workload.

In this paper we describe a method for constructing synthetic benchmarks for dis-

tributed memory multiprocessors. Each benchmark closely models the communication

behavior of a real program. Each message has the same length and type and is sent

from and to the same nodes. However, all Computation unrelated to communication is

replaced with delay loops that account for the time required to do the computation.

Synthetic benchmarks have many uses. A large collection of them can be used for

quantifying the performance of existing, new, or experimentd architectures. Porting

the synthetic benchmarks described in this paper is particularly simple because all

interprocessor communication uses PICL [GeiSO], a portable, instrumented communi-

cation library. Thus, since all computation is replaced by delays, there is no porting

effort required other than to adjust the delay times to reflect the computational speed

of the new processor.

Since a synthetic benchmark is easy to construct, it can be used to experiment

with alternate implementations or algorithms. In a sense, a simple prototype of the

application can be constructed. For example, one can develop communication and

computation structures, using simple delays to model the complex calculations and

data structure manipulations. No input or output of data need be done, except for a

few parameters such as problem size. Once the benchmark is run and its behavior and

performance determined, modifications and improvements to the communication and

computation structure can be made easily and simply.

A third application of synthetic benchmarks is to predict the behavior and perfor-

mance of programs on new or hypothetical architectures. Since synthetic benchmarks

are simple, porting them to new architectures can be done quickly, and the behavior

and performance of the application determined with considerably less effort than port-

ing the entire code. With hypothetical architectures, a simple simulation of the new

architecture running the benchmark can predict the behavior and performance of both

the machine and the application.

This paper reports on initial investigations into the construction and use of synthetic

benchmarks done by the author while visiting at Oak Ridge National Laboratory.

2

2. Definitions

A synthetic benchmark is a program that models the communication and computation

structum of a real program. It has the control structure of a real program, but does

not do any actual computation. Instead each computation is replaced with an empty

for loop that goes through enough iterations to consume the same amount of time

necessary to do the computation it replaces.

All communication code remains, except that no r e d data is sent. Messages of the

correct length and type are communicated, but the content of the messages is ignored.

Computation that determines the length and type of messages remains in the code, as

long as it is not data-dependent. (See below for a relaxation of this condition.)

No data input or outpiit i s done as the current focus of synthetic benchmarks is on

the parallel, computational part. However a benchmark is usually parameterized by

the problem size, which can be, for convenience, read as input. For example, programs

doing matrix calculations would be parameterized by the size of the matrix. Other

simple parameters that have an effect on the amount of computation or communication,

other than actual data, can also he provided.

This approach works fine for programs that are not data-dependent. However, many

programs are. In such cases, whenever the flow of the program is decided based upon

a data dependent condition, the condition i s replaced by a "well chosen" probability.

For example, in an iterative algorithm that terminates when convergence occurs, the

test for convergence can be replaced by a test whether a random variable is within an

appropriate range (e.g., if the probability of convergence on a given iteration is 0.01,

then the test would be whether a uniform random variable in the range 0 to 1 was less

than 0.01). Another example might he the probability of the pivot element being on

the diagonal in Gaussian elimination with partial pivoting.

3. Creating synthetic benchmarks

We describe three methods for creating synthetic benchmarks in this section. In all

cases, the general method is to model the communication behavior exactly (subject

to the constraints discussed below), and then to replace the computation taking place

between explicit communications by delay.

In our examples, only the node program will be shown. A corresponding host pro-

gram need only determine the problem size and machine size, start the node programs,

send the problem size to the nodes, wait for completion, and terminate. No data

need be read, distributed, collected and/or written. Consequently a very simple host

program suffices.

3

Delay is added by inserting an empty for loop at the appropriate place. The

number of iterations the loop must go though is determined in several ways. In all
cases, however, it is necessary to know how many iterations are required tqo delay

for a given length of time - say one millisecond. Since the resolution of the clock is

one millisecond on the Intel iPSC/2, the multiprocessor used for our experiments, the

loop was run for one million iterations in order to get an estimate for the time per

iteration accurate to three decimal places. That many iterations took 0.761 seconds,

resulting in 761 iterations per millisecond (0.761 iterations per microsecond). There

was approximately a one microsecond startup time for the loop, but for simplicity and

because delays are usually much longer than a microsecond, this overhead was ignored.

3.1. From scratch

One method for creating a synthetic benchmark program is to write one from scratch.

This approach would be appropriate not only for creating a benchmark, but also for

experimenting with trial implementations, or as a step in the development of an appli-

cation.

The procedure is similar to writing a real application, except that none of the actual

computing and input or output of data would have to be done, thus simplifying the

task. In particular, complex data structures and/or intricate indexing are eliminated.

All computing is simply replaced by delay loops whose delay time can be estimated

from the complexity of the operations being replaced.

As an example, the synthetic benchmark below comes from the Fan-Out algorithm

for solving triangular systems [Kuc76]. Pseudo code for the algorithm is given in Fig. 1.

for j := 1 to n do
if j E myrows then

endif;
fan-out(sj, m a d j)) ;
for i := j -+ 1 to n do

xj := b j / L j j ;

if i E myrows then

endif;
b, := b; - x . L . . . J '39

end for;
end for

Figure 1: Pseudo code for the Fan-Out algorithm.

Rows of the matrix are distributed among the processors. rnap(j) is a function that

returns the processor containing row j . The result of the operation fan-out(t, root) is

4

define COHPUTE(x) {int q i ,qj ; qj=x; for(qi=o; qi<qj; q i t t) ; }
define USEC e0.761
define C (18.6 USSC)

int nodes, ae, host , n;
in t bufaize;
char buf C056361;

main() {
ins; i , j ;

for (j=O; j<n; j t t) {
i f (jYaodas == m e)

COMPUTE (C);
fanout(j, j%odes);
for (i = j t i ; i<n; i t +)

C01(PUTE(2*6) ;
i f (i k o d e s == me)

1
ssndO(bui, s i zeo f (in t) , 0 , host);
cloaeO() ;
1

iarnout (j , root)
int j, root;

{
int i;

Figure 2: Synthetic program for Fan-Out algorithm.

5

that processor mot sends t, and d other processors receive t. Figure 2 contains the

code for the synthetic benchmark.

The first three define statements implement the COWUTE construct. The initial

open0 and recvO statements get the parameters for the problem, and the send0 and

C l O S e O inform the host that the node is done and terminate the node.

The fan-out function is implemented as a ring dgorithm, although many other

algorithms could have been chosen (e.g., recursive doubling). The root node sends the

data to the next node in the ring. Each of the other nodes receives the data, and sends

it to the next node in the ring, except for the node preceeding the root node in the

ring, which simply receives the data.

Note that the algorithm is simple, and 60 is the code. In fact, compared to a “real”

program for this algorithm, the synthetic code is much simpler, not having to deal with

the input and output of data and results, calculations, and the sending and receiving

of actual data.

3.2. From an existing program

Another approach is to create a benchmark from an existing program for which the

source code is available. One would use this method for adding a program from a new

type of application to a benchmark suite, or for constructing a simulation for predicting

the performance of the program on a hypothetical machine.

Appendix A is a listing of an existing, complete program for solving a dense system

of linear equations using Gaussian elimination with partial pivoting. Figure 3 contains

a synthetic benchmark for the same program, where CONPUTE, USEC, and C are defined

as in Fig. 2.

Note the following points:

(1) The subroutine structure has been eliminated to produce a small example for this

paper. Typically the original structure of the program would be preserved.

(2) Pivoting is data-dependent. However the synthetic program is not (and cannot

be) and therefore does not simulate precisely the behavior of a real program.

Instead, whether to swap rows or not is contingent on the value returned from

a random number generator (called uniform) that returns a real value in the

range 0 to 1. In this example, the assumption was made that the probability

that the pivot element is on the diagonal is 0.05, thereby causing the program

to consume time associated with the swapping of rows 95 percent of the time,

Another possibility would have been to choose the row in which the pivot was

found randomly, but in this implementation it makes no difference to the behavior

or performance of the program.

int nodes, me, host, i, j , Its n;

main() {
openo(hodes, h e , &host);
recvO(h, sizeai(int1 , 0) ;

/* initialize */

for (i=O; i<n; i++) {
if (iyaodes ==

/* find pivot */
for (to=me+l; to<pae+nades; to++)

sendO(buui ~ n*sizeof(double) ,
esdO(bu2, sizeof(int), i, to

1
1

e l se {
recvO(bui, sizeab(int), i);
recvO(bni n*sizeof (double) , i) ;
1

if (unifom(O.0,l.O) > 0 . 0 6)
for (bi; h<n+l; k++) /* swap rows */

if (kyaodaa == me)
COHPWTE(C) ;

for (k=n; k>=i; k--) /* elimination */
if (kyaodee == me>

/* back aubatitution */ I
if (nyaodas == me> {

fox (j=n-1; j>=Q; j--)
if (jyaodee == me>

else
conPuTE(c*j);

i f (j != O > {
retvO(col, sa*sizeoi(dauble) xn+j);
COXPUTE(C*j) ;
1

else
for (j=me; j'n; j+=aades)

if (j != 0) {
conPuTE(C*j);
sendO(co1 ,n*sizeoi(double) ,n+j ,ny.nodes) ;
1

sendQ(buf , sizeof(int) , 0 , hast); /* terminate */
close00 ;
I

Figure 3: Synthetic program for Gaussian elimination with partial pivoting.

7

(3) All messages are sent and received from the same dummy buffer (except n, the

size of the problem).

(4) All computation is compressed into COMPUTE statements, using C = 18.5 nnicrosec-

onds as the average time for a single floating point operation, including memory

access, indexing, etc. A more accurate function could have accounted for each

operation separately.

5.3. From observed behavior

The third approach is to create a benchmark by modeling the observed behavior of an

existing program. One might consider doing this if the source code for the application

were not available (e.g., proprietary), or if the source code were extremely difficult

to understand (e.g., poorly written). While no technique for constructing a program

purely from observed behavior can be guaranteed to work, for matrix-oriented data-

independent algorithms, the following steps can be followed:

First, model the communication behavior of the program:

(1) Pick values of p (the number of processors) and n (the size of the problem) such

that all of the following values are distinct: p,n,n/p,log,p (e-g., p = 8, 7t = 32).

(2) Run the program for these p and n, get trace files, and produce graphs of the

communication behavior. A visual representation of the communication helps

tremendously, and examples of graphs produced for a particular application are

shown in Appendix C.

(3) Hypothesize the structure of the communication and write code that will produce

it.

(4) Verify that the code produces the correct behavior for the p and n chosen, and

if so, also for other p and n satisfying the relationship above. If not, modify the

code until it works for many combinations of p and n by repeating steps (2) and

(3)-

Once the communication behavior is modeled, the computation times can be sim-

ulated with delay loops. The following steps can be followed:

(1) Get patterns of computation times between each send/recv for a few different n

and p.

(2) Hypothesize general structure of a function for compute time, usually a function

of n, p, or both. Use some statistical method (e.g., least squares) to determine

constants.

8

(3) Verify for several a and p as done for communication structure.

We now show the procedure used to create a synthetic code for a particular, un-

known algorithm. It turned out that the unknown algorithm i s a triangular-system

solver using a column-oriented wavefront vector-sum algorithm described in [Kea881

(the original. code for this program is shown in Appendix B). However, neither the

problem nor the algorithm nor the code were known at the time the synthetic code was

being produced. Only an execut le version of the progrm was available. Figure 5

contains the final synthetic code for this al
The table below shows the results of running the real program and the synthetic

program for the various numbers of processors and sizes of problem.

Nodes
4
8
16

Problem Size
64 128 -- - 256

Figure 4: Execution times in milliseconds for original program/synthetic program for
wavefront algori t hin.

Processor utilization curves for the red program and the synthetic program are dis-

played in Fig. 6 and Fig. 7, respectively. As can be seen, the curves do not differ

significantly.

The procedure used for constriacting this benchmark was as follows:

(1) Ran the program for p = 8 and n = 64 and collected a communication trace.

(2) Determined by examining the trace file that nodes were communicating in a ring

topology with their neighbors in gray-code order (i.e., 0 --+ 1 -+ 3 -+ 2 -+ 6 --3

7 --z 5 -+ 4 -+ S). Verified this by running the program for p = 4 and p = 16.

(3) Constructed message type and length graphs as shown in Appendix C. Each

graph shows, for each node, the order in which messages were sent and received,

and either length or type. Messages sent are indicated by lines starting at 0 and

going positive; messages received are indicated by lines starting at 0 and going

negative. The length of the line indicates the type (type graphs) or length (length

graphs). The left to right order of the bines is the order in which messages

9

define COXPUTg(x) {int qi,qj; qj=(x); for(qi=O; qicqj; qi++);}
define HSEC *761.267

int p, m e , host, n, bufsize;
char buf [66636] ;

main0 {
int i, msgs, junk;
int rnext, oldtype, imsgs. len, type, node;

openO(&p, h e , thost);
recvO(&n, sizeof (int) , 999999) ;

rnext = grayO((ginvO(me)+i >%p) ;
msgs = (n*n+n*p)/(8*p) - (n/p)*(ginvO(me)/41;
oldtype = 0;
imsgs = 0;

if (me == 0) {
COHPUTE(O.01220 HSEC);
sendO(buf, 12, I, mext);
for (i=i; id(; it+) {

COMPUTE(0.01220 MSEC) ;
sendO(buf, 16, I, rnext);
1

imsgs = n/4;

for (i=imsgs; i<msgs; it+) {

recvO(buf, 16. AMY);
recvinfoO(tlen, &type, &node) ;
if (type != oldtype) {

l en -= 4;
oldtype = type;

COHPUTE(O. 13664 HSEC) ;

1
if (len != 0) {

COHPUTE(O.01220 HSEC) ;
sendO(buf, len, type+l, rnext) ;
1

1

sendO(&junk, sizeof(int), 0, host);
closeO() ;
1

Figure 5: Synthetic program for wavefront algorithm.

10

14

12

10

P 8
6

4

2

.1 .2 .3 .4 .5 .6 .7

Time (in seconds)

Figure 6: Processor utilization curve for the wavefront algorithm.

I 7

14

12

10

P 8

6

4

2
L . -

I I I I I I
.1 .2 .3 .4 .5 .6 .7

'Time (in seconds)

Figiire 7: Processor utilization curve for synthetic model of wavefront algorithm.

11

were sent/received. The distance between lines is constant; it does not reflect the

actual time between sends and/or receives. Graphs were drawn for each node for

several values of p and n and were used in many of the following steps.

(4) Ran for several values of p and n and found that the message lengths were always

4, 8, 12 or 16, and were independent of both p and n.

(5) Noticed that node 0 started by sending n/4 messages. The first message was

always length 12, the remaining always length 16. Following that, each node

(including 0) received a message from its predecessor in the ring and then imme-

diately sent a message to its successor.

(6) The type of the message sent was always one more than the type of the message

received.

(7) If a node received a message of a new type, it would send a message that was 4
bytes shorter than the one it received, otherwise it would send a 16-byte message.

If the message to be sent would have 0 length, it was not sent.

(8) From this information, wrote an initial synthetic program to mimic this behavior.

The initial program worked fine except for termination. To fix it, the total number

of messages received by each node was determined to be

except for node 0 which received n/4 fewer, where me is the node number of a

gjven node and pos(me) is the position in the gray-code ring (node 0 is at position

0)-

(9) The program was modified and run for several values of p and n, and the mes-

sage traces compared with the real program (Le., the order, types and lengths

were compared for every node). Since they agreed in all cases, the program was

assumed to have the correct communication structure.

(10) Next, trace files were examined for the computational times between sends and

receives. I t appeared that the times between the send and receive and between

the receive and send were both (different) constants, independent of both p and

n.

(11) From the trace files, the average delays were computed and inserted into the

synthetic program. The program was run for several p and n and the overal run

12

times compared with the real program. After some fiddling with the times (they

were too long initially), the find values shown in the program in Fig. 5 were

determined.

The experience of constructing this and other synthetic benchinarks in this way

pointed out the following things. First, the communication graphs were of immense

help in finding patterns. It woiild have been difficult, if not impossible, to determine

what was happening otherwise. Pictures are essential for discovering patterns.

Second, determining the delay times was a difficult task, mostly due to the low

resolution of the clock on the iPSC/2 (1 millisecond). The eventual values for the

delays were considerably less than a millisecond, which is much less than the clock

resolution. To get the run times of the synthetic program to match those of the red

program, much fiddling had to be done. To be more accurate, a clock with resohition

on the order of a rnicrosecoIid would be necessary.

Despite this difficulty, the synthetic benchmarks constructed did match real pro-

grams’ run times to within five percent. As a further verification of the validity of this

method, the programs were moved to an Ncube/3200. After a small adjustment of the

computation delay times (almost in exact proportion to the relative computation rates

of the iPSC/2 and the Ncube/3200), the synthetic programs had run times very close

to the the real programs on the Ncube/3200 for a large range ofp and n.

4. Performance prediction using synthetic benchmarks

Performance prediction of new and hypothetical architectures is another use for syn-

thetic benchmarks. Constructing a benchmark suite, and using synthetic benchmarks

for implementation prototyping are fairly straightforward and will not be discussed

further.

Predicting the performance of an algorithm represented as a synthetic benchmark

on a new architectlire requires two things. First, the communication function calls must

be translated into the proper form for the new architecture, unless the new architecture

is compatible with the old, or unless a compatiblie library, such as PICL, was used in

the synthetic benchmark. Second, the compute times must be determined for the new

architecture. This may be as easy as simply scaling the delay constants by the ratio

of the speed of an existing architecture, on which the benchmark already matches a

real program, to the speed of the new architecture, measured by some simple unit

such as megaflops. This will probably suffice fop. node processors that do not pipeline,

do not have cache, etc., or as a first-order approximation for those that do. More

accurate models of computation that take into account many aspects of the architecture

of the node are necessary for more accurate compute times and, as a result, more

13

accurate performance prediction. We do not consider this here, except to say that as

node architectures get more complex, more accurate models of compute times will be

necessary. However, since the performance of distributed-memory machines is typically

so much more dependent on communication performance than computation, the use

of simple scaling should suffice for accurate predictions in most cases. The experience

in running the benchmarks constructed for the iPSC/2 on the Ncube/3200 haa shown

that simple scaling works.

Predicting the performance of a hypothetical architecture requires the use of a simu-

lator. The simulator can be simple if the architecture is simple or if high accuracy is not

necessary. In particular, given the nature of the synthetic program, the simulator can

be event driven, where an event is either the reception of a message or the termination

of a COMPUTE statement. In this case the execution time of the simulation is propor-

tional to the number of events. This often eliminates one of the common drawbacks of

simulation, long execution times. Using an event driven simulator, a communication

taking hundreds of microseconds on a red machine can be simulated in less time, and

a computation taking milliseconds, seconds or even minutes or hours can be simulated

in a few microseconds ~ the time it takes to evaluate the expression in the COMPUTE
statement and post an event in the event queue of the simulator.

The fortunate result of fast performance predictions with simulators using synthetic

benchmarks is that many simulations, with varying parameters, can be done i n a rea-

sonable time. Instead of just getting a performance prediction of a single program on

one data set and one set of architectural parameters, many programs, with different

problem-dependent parameters (like problem size), and varying architectural parame-

ters (like communication or computation speed), can be simulated in a reasonable time.

This produces more insight, not only into performance, but into relationships between

program, problem parameters, and architectural characteristics.

Using synthetic benchmarks for performance prediction produces more than simply

a measure of the execution time of the algorithm on the new or hypothetical archi-

tecture. It also produces the lower level, detailed behavior of the algorithm. This

can be useful in determining heretofore unseen bottlenecks in the algorithm, processor

utilization as a function of time, interconnect congestion, etc.

5. Summary

In this paper we have shown that simple programs can emulate the behavior of more

complex programs to a high degree of accuracy. This means that constructing a suite

of small, easily ported benchmark programs would be quite easy using at least two of

the methods shown herein. A large suite, encompassing a wide variety of applications,

14

would be of immense utility in characterizing the performance of parallel architectures.

The simplicity of construction of synthetic codes also makes them ideal for quick

prototyping of large, complex real applications. One can focus on the larger issues

of data partitioning and computation and communication algorithm choice without

getting bogged down in the details of implementing complex computations and data

structures.

Finally, predicting the behavior and performance of an application on new or hy-

pothetical architectures through the use of a synthetic benchmark of the application

makes flexible and eficient performance prediction possible.

6.1. Further work

More work remains to further refine the techniques for creating synthetic benchmarks.

In particular, the conversion of programs that are data-dependent into synthetic codes

using statistical or probabilistic methods needs to be further investigated. Another

interesting question is how one would incorporate caching, vectorization, and pipelining

of the computational aspect of programs.

A major goal is to construct a large suite of synthetic benchmarks covering a wide

variety of areas of study and many diverse algorithms. Work to date has focused on

matrix algorithms, but algorithms for other numerical applications as well as noa-

numerical algorithms are necessary as well.

The follow-on to the construction of the benchmark suite is using it in the char-

acterization of the performance of various distributed-memory parallel architectures.

Because synthetic benchmarks are naturally parameterized for problem size, machine

size, alternate communication implementations, and statistical properties, much would

be gained by quantifying the impact of variation in these parameters on various archi-

tectiires and algorithms.

Acknowledgments

The author thanks Mike Heath and Oak Ridge National Laboratory (ORNL) for provid-

ing the opportunity and resources for this work. ?at Worley provided the inspiration,

much coaching, some criticism, but mostly needed encouragement (and converted the

entire paper from troff to TeX). Conversations with Mike and AI Geist helped form

and refine many of the ideas. Tom Dunigan’s suggestions improved the readability of

the paper.

15

References

[Cur761 H. J. CURNOW A N D B. A. WICHMAN, A synthetic benchmark, Computer

Journal, 19 (1976).

[GeiSO] G. A. GEIST, M. T. HEATH, B. W. PEYTON, A N D P. H. WORLEY, PEL:
Q portable instrumented communication libmry, C reference manual, Tech.

Report ORNL/TM-11130, Oak Ridge National Laboratory, Oak Ridge, TN,
July 1990.

[Gru87] D. C. GRUNWALD AND D. A. REED, Benchmurking hgpercube hadware und

softwarn, in Hypercube Multiprocessors 1987, M. T. Heath, ed., Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1987, pp. 169-177.

[Hea88] M. T. HEATH AND C. H. ROMINE, Parallel solution of triangular systems on

distributed-memory multiprocessors, SIAM J. Sci. Statist. Comput., 9 (1988),

pp. 558-587.

[Kuc76] D. J. KUCK, Pamllel processing of ordinury progmms, in Advances in Com-

puters, 15 (1976), pp. 119-179.

[Wei84] R. WEIKER, Dhrystone: A synthetic systems progmmming benchmark, Comm.

ACM, 27 (1984), pp. 1013-1030.

16

A. Source code for Gaussian elimination with pivoting

Solve dense set of simultaneous equations using
Gaussian elimination with partial pivot-

define fl 612 /* maximum number of equations */

define ITYFE 1
define GOLMPODE 2
define GOLMHOST 3
define PIVOT 4
define SUBST 5

double *a [Zr+ 11 ;
double eo1 [MI ;
in t n = 0 ;
int me,nodes,hoat;
int bufsiz0;

/* message types */

/* vaxiables */

define COL(x) ((x-me)/nodes)
define A(x,y) (acyl CxI>

main driver - gat miac. info and data, solve, return resul ts

main() {

/* get tha data */

/* solve the equations */

17

/* send back resul ts */

receive the colurane of the matrix for t h i s node

/* get the columns for t h i s node */

f o r (j=me; j<n+ l ; j+=nodes) {
c j = COL(j);
a[cj] = (double *> malloc(buf6iZ%) i
recvo(a[cj], bufsize, COLTONODE);

1
I

dr iver loop f o r solving equations

solve() {

i n t i , j , k ;

/* for each column of the mat r ix (except t h e l a s t) */

/* e i t h e r ... */
if (iy’odes == me) {

/* f ind the pivot and send it and column t o others */

j = findmax(i);
sendcol(i , j ;
1

e l s e {

/* o r receive the pivot and column from another */

18

j = recvcol(i);
1

/* exchange r o w */

/* do eliminations */

/* do back substitutions */

find pivot IIOQ

f inchax (i)
int i;

{

int cisj,k;
double m a ;

t racermark (Q) ;
ci = COL(i1;
max = -1.0;

for (k=i; kcn; kc+)
j = -1;

if (fabs(A(k,ci)) > max) {
rnax = fabs(A(k,ci));
j = k;
1

if (m a r == 0 . 0)

tracemark(1) ;
return(j) ;

printf ("ERROR: Singular Xatrixeq) ;

1

send index of pivot row, and pivot column to other nodes

19

s endcol(i , p)
i n t i , p ;

{

i n t c i , j , to ;

/* make a copy of t he pivot column */
c i = COL(i);
for (j=i; j<n; j++)

colCj1 = A(j ,c i) ;

/* for each other nods . . . */

f o r (to=me+l; to<me+nodes; to++) {

/* send index of pivot row */
sendO(&p, sizeof (i n t) , PIVOT+i, t obodes) ;

/* send pivot column */

sendO(co1, bafsize, PIVOTti , toyaodes);

1

receive index of pivot rou and pivot column from other node

recvcol(i)
i n t i;

{

i n t j ,k;

/* get index of pivot row */

recvO(lrk, s i zeo f (in t) , PIVOTti);

/* get pivot column */
recvO(co1,buf size ,PIVOT+i) ;

20

swap xous in c o l ~ s i n t h i s node

suapras (i I I j)
int. i , j ;

{

int ck,k;
double temp;

i f 4 i == j)
return;

/+ suap in pivot column */
tracemark(l0);
temp = colCi1;
colEi3 = colCj1;
colCjl = temp;

/* swap in a l l other eo~uslxls */

do eliminations. step

i n t ck, j, k ;
double c o l i , temp;
double * aeoP;

21

/* reduce */

tracemark (2 0) ;
c o l i = colCi1;
f o r (lt=n; k>=i; k--1 {

i f (kyaodee != me)
continue ;

ck = COL(k);
acol = aCck3 ;
temp = acolCil/coli ;
for (j=i+l; jcn; j++)

acolCj1 -= colCjl*temp;

1
/* normalize pivot row */

f o r (k=n; k>=i; k--1 {
i f (kyaodes != me)

continue ;
A(i,COL(k)) /= c o l i ;

1
tracemark(2 I) ;
1

do back subst i tut ion

subst() {

i n t c j , cn , i , j , l t ;

/* i f t h i s node contains the last column */
cn = COL(n);
i f (nyaodes == me) {

/* do subst i tut ions from each column */

f o r (j=n-i; j>=o; j--1 {

/* i f column i n the same node */

c j = COL(j);
i f (jkodes == me) {

/* j u s t do subst i tut ions */

22

tracemark (30) ;
f o r (i=O; i<j; i t +)

tracemark (31) ;
A(i,cn) -= A(i,cj)*A(j ,cn);

1
s l s e

/* get column from aaraoth%r node
and do substitutions */

/* send coluauxa t o the node doing the substitutions */

f o r (j=m ; j <n; j +=nodes)
if (j != O) {

c j = COL(j);
for (i = O ; i<j ; i t +)

aendO(cQl,j*sizeoi(double),SUBS$+j+s,n~~odes);
colCi3 = A(i,cj);

send results ta host

/a: if th i s node does not contain last col

/* otherwise send the l a s t c o l m */

sendO(a[CUL(ng~,buisiza,CaLTaHOST,hast);

1

23

B. Source code for wavefront algorithm

col-uav-0 (n, ncols, map, mycols, col, b, segment)
int n, ncols, +map, *mycols, segment ;
float **col, *b ;

int is j, k, m, me, lim, tag, bytes, a t , node, type ;
float *z ;

{

segment = (segment > n) ? XI : segment ;
bytes = segment*sizeof(float) ;
z = (float *)mallocO(bytes) ;

j = O ;
for (k = 0 ; k < n ; k++) if (mapcld == me) {

tag = I ;
m = O ;
while (m < n-k) {

if (k > 0) {
recvO(z, bytes, k) ;
recvinfoO(&cnt, ktype, &node) ;

1
else {

cnt = segment*sizeof(float) ;
for (i = O ; i < segment ; i++) zCi3 = O ;

1
lim = cnt/sizeof(float) ;
if (lim > n-a) lim = n-m ;
if (tag) {

bCjl -= zC0l ;
bCjl /= *colCjl ;
m++ ;

1
for (i = tag ; i < lim ; i++ , m++)

z[il += bCjl * *(col[jl+m) ;
i f (k < n-1 (It& lim-tag > 0)

sendO(&z[tad, (lim-tag)+sizeof (float),
k+l, map[k+l]) ;

tag = 0 ;
1
j++ ;

free(z) ;
1

1

24

C. Graphs of message types and lengths for wavefront algorithm

Figure 8: Graph of message types for node 0.

18

-17

26

-25

-4b I 'I5', -,

Figure 9: Graph of rnessa e types for node 1.

25

19

- 18 h ii -34

43

-42

Figure 10: Graph of message types for node 3.

20

-19
I

2)

-27
h II -35

4i

-43

5:
60

-59

Figure 11: Graph of message types for node 2.

26

21

-20

29

-28
I

3’1

-36 f -44

6

-E

Figure 12: Graph of message types for node 6.

22

-21

30

-29 l4 45

Figure 13: Graph of message types for node 7.

27

31

- 30

I

Figure 14: Graph of message types for node 5.

32

-3 1

1

1/ -4

Figure 15: Graph of message types for node 4.

28

r
16

12

8

4

0

-4

-8

- 12

- 16

Figure 16: Graph of message lengths for node 0.

1

I

Figure 19: Graph of message lengths for node 1.

29

12
l6 1

-8

-12

-16

16

12

-4

-8

- 12

-16

Figure 18: Graph of message lengths for node 3.

Figure 19: Graph of message lengths for node 2.

16

12

8

4

0

-4

-8

- 12

-16

1.

L.

Figure 20: Graph of message lengths for node 6.

16

12

8

4

0

-4

-8

- 12

-16

J

Figure 21: Graph of message lengths for node 7.

31

16

12

8

4

0

-4

-8

-12

-16

I -

Figure 22: Graph of message lengths for node 5.

t

Figure 23: Graph of message lengths for node 4.

33

ORNL/TM-11634

INTERNAL DISTRLBUTION

1.
2.
3.
4.
5.

6-7.
8.
9.

10-14.
15.
16.

17-21.
22-26.

3. R. Appleton

E. F. D’Azevedo
J. J. Dongarra

T. H. Dunigan

G. A. Geist
R. F. Harbison
M. T. Heath
M. R. Leuze
F. C. Maienschein
C. E. Oliver
G. Ostrouchov
S. A. Raby

R. C. Ward

23.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38-39.

P. H. Worley

J. J. Dorning (EPMD Advisory Committee)
R. M. Haralick (EPMD Advisory Committee)

J. E. Leiss (EPMD Advisory Committee)

N. Moray (EPMD Advisory Committee)
M. F. Wheeler (EPMD Advisory Committee)
Central Research Library
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library
/Document Reference Station
Laboratory Records - RC

Laboratory Records Department

EXTERNAL DISTRIBUTION

40. Dr. Loyce M. A d a m , Department of Applied Mathematics, University of Washington,

Seattle, WA 98195

41. Dr. Donald M. Austin, 6196 EECS Bldg, University of Minnesota, 200 Union St., S.E.,
Minneapolis, MN 55455

42. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Grad-

uate Center, 19600 N.W. Walker Road, Beaverton, O R 97006

43. Dr. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Pvioffet

Field, CA 94035

44. Dr. Edward 11. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia

National Laboratory, Albuquerque, NM 87185

45. Dr. Robert E. Benner, Parallel Processing Division 1413, Sandia National Laboratories,

P. 0. Box 5800, Albuquerque, NM 87185

46. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Liakoping,

Sweden

47. Dr. James C. Browne, Department of Computer Sciences, University of Texas, Austin,
TX 78712

34

48. Dr. Bill Le Ruabee, Scientific Computing Division, National Center for Atmospheric
Research, P. 0. Box 3000, Boulder, CQ 80307

49. Dr. Doiidtf A. Cdahan, Department of Electrical and Computer Engineering, University
of Michigan, Ann Arbor, MI 48109

50. Mr. Brian M. Carbon, Corn uter Science Department ~ Vanderbilt University, Nashville,

T N 37235

51. Dr. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical

Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC 20585

52. Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles, 405
Hilgard Avenue, Lm Angela, CA 90024

53. Dr. Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,

NC 27709

54. Dr. Melvyn Ciment, National Science Foiandation, 1800 G Street N.W., Washington, DC

20550

55. Prof. Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca, NY

14853

56. Dr. Paul Concw, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley,
CA 94720

57. Dr. Jane K . Cullum, IBM T. J. Watson Research Center, E'. 0. Box 218, Yorktown
Heights, NY 10598

58. Dr. George Cybenko, Center for Supercomputing Research and Development, University
of Illinois, 104 South Wright Street, Urbana, TL 61801-2932

59. Ms. Helen Davis, Computer Science Department, Stanford University, Stanford, CA

94305

60. Prof. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville, T N

37235

61. Dr. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Centre,
Rutherford Appleton Laboratory, Didcot, Oxon OX 11 OQX, England

62. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P. 0. Box 2158
Yale Statim, New Haven, CT 06520

63. Prof. GeofTrey C. Fox, Physics Department, MS 356-48, California Institute of Technol-
ogy, Pasadena, CA 91125

64. Dr. Paul 0. Rederickson, NASA Ames Research Center, RIACS, M/S "045-1, Moffet
Field, CA 94035

65. Dr. Robert E. hnder l i c , Department of Computer Science, North Carolina State Uni-

versity, Raleigh, NC 27650

35

66. Prof. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-

ton, IN 47401

67. Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana, IL

61801

68. Dr. W. Morven Gentleman, Division of Electrical Engineering, National %search Coun-

cil, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada K1A OR8

69. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

70. Dr. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

71. Dr. Eric Grosse, 2C 471, 600 Mountain Avenue, Murray Hill, N J 07922

72. Prof. John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,

Ames, IA 50011-3020

73. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development Co.,
P. 0. Box 481, Houston, T X 77001

74. Dr. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

75. Dr. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Balling Air

Force Base, Washington, DC 20332

76. Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National Lab-

oratory, P. 0. Box 808, Livermore, CA 94550

77. Dr. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-

1214

78. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

79. Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5901 $7
Umea, Sweden

80. Prof. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg., Cor-

ne11 University, Ithaca, NY 14853-3901

81. Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National Labc-

ratory, 9700 South C a s Avenue, Argonne, 11, 60439

82. Dr. Alan H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

83. Dr. Robert J . Kee, Applied Mathematics Division 8331, Sandia National Laboratories,

Livermore, CA 94550

84. Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 1892,
Houston, T X 77001

36

85. Br. Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of Ener

&search, ER-7, Office G-236 Germantown, Washington, DC 20585

86. Prof. Clyde P. Kruskd, Department of Computer Science, IJniversity of ~ a r ~ l ~ ~ , Col-

lege Park, MD 2074%

i c h d Langston, Department of Computer Science, University of Ten~iessee,

T N 379961301

88. Dr. Richard Lau, Office of N

89. Dr. Robert L. L ~ M ~ w P , Army

arch, 1030 E. Green Street, Paaadens, CA 91101

Oilice, P. 0. Box 12211, RRwarch TPiangle Park,
NC 27709

90. Dr. Scott A. von Laven, Mission Rematch Corporation, 1720 Randolph Road, §E, Albu-

querque, NM 87106-4245

91. Prof. Tom Leightoan, Lab for Computer Science, Massachusetts Institute of Technulo\gy,

545 Technology Square, Cambridge, MA 02139

92. Dr. Heather M. Liddell, Center for Parallel Computing, Department of Computer Science

and Statistics, Queen M ~ s y College, University of London, Mile End Road, London E l

4NS, England

93. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
D ~ W I A S V ~ W , Ontario, Canada M3J 1P3

94. Dr. Franklilt Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY

14853

95. Dr. Thomas A. Manteuffel, Department of Mathematics, University of Colorado - Denver,

Denver, CO 80202

96. Dr. Jaimes McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

97. Dr. Paill C. Messina, Nail Code 158-79, California Institute of Technology, 1201 E.
California UBvd. Pasadena, CA 91125

98. Dr. Clew B. Moler, Mathworks, 325 Linfield Place, Menlo Park, CA 94025

99. Dr. Jorge J. More, Mathematics and Computer Science Division, Argsnne National Lab-

oratory, 9700 South Cass Avenue, Argonne, IT, 60439

100. Dr. Dianne P. O’Lcary, Cornplater Science Department, University of Maryland, College

Park, MD 20742

101. Dr. Joseph Oliger, Computer Science Departmerit, Stanford IJniversity, Stanford, CA

94305

102. Prof. James M . Ortega, Department of Applied Mathematics, Thornton Hall, University

of Virginia, Charlottesville, VA 22901

37

103. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

104. Dr. James C. Patterson, k i n g Computer Services, P.O. Box 24346, MS 7L-21, Seattle,
WA 981240346

105. Dr. Peter C. Patton, Special Consulting Services, Inc., 1990-A Christensen Avenue, West
St. Paul, MN 55118

106. Dr. Linda R. Petzold, 6316, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

107. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

108-112. Dr. David A. Poplawski, Department of Computer Science, Michigan Technological
University, Houghton, MI 49931

113. Prof. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL
61801

114. Dr. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

115. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette, I N
47907

116. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Lab-
oratory, Livermore, CA 94550

117. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

118. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Urbana, IL
61801

119. Dr. Jorge Sanz, IBM Almaden Research Center, Department K53/802, 650 Harry Road,
San Jose, CA 95120

120. Prof. 'Robert B. Schnabel, Department of Computer Science, University of Colorado at
Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, CO 80309-0430

121. Dr. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field,
CA 94035

122. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P. 0. Box 2158
Yale Station, New Haven, CT 06520

123. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

124. The Secretary, Department of Computer Science and Statistics, The University of Rhode
Island, Kingston, RI 02881

38

125. Prof. Charles L. Seitz, Qepartment of Computer Science, California Institute of Technol-
ogy, Pasadena, CA 91125

126. Dr. Horst D. Simon, Mail Stop 258-5, NASA Am= Research Center, MofTett Field, CA
94035

127'. Dr. R U K ~ O ~ B Smith, Tera Computer Company, 400 North 34th Street, Suite 300, Seattle,

WA 98103

128. Dr. M a c §nir, IBM T.J. Watson &march Cenker, Department 428/38241, P. 0. Box 228,
Yorkkwn Heights, NY 10598

129. Prof. Larry Snyder, Department of Computer Science a d Engineering, FR-35, University

of Washington, Seattle, WA 98195

130. Dr. Danny C. Smensen, hpa r tmen t of Mathematical Scicwces, Rice University, P. 0.
Box 11892, Houston, T X 77251

131. Prof. G. W. Stewart, Cornyuter Science Department, University of Maryland, College

Park, MD 2074%

132. Mr. Steven Suhr, Computes Seience Department, Stanford University, Stanford, CA

94305

133. Dr. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada N21 3G1

134. Dr. Lloyd N. 'Ikefethen, Department of Mathematics, Massachusetts Institute of Tech-

nology, Cambridge, MA 02139

135. Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,

NY 14853

136. Dr. Robert G . Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA .

23665

137. Dr. Michael D. Vme, 107 t$yres Wall, Department of Computer Science, University of
Tennessee, Krroxville, 'rlV 37996-1301

138. Mr. 'rhomas Wagner, Computer Science Departnient, Vanderbilt University, Nashville,

T N 37235

139. Dr. A h h e w R . White, Computing Division, Lcps Alamos Mat,ioxra\ Laboratory, Los Alarroos,

NM 87545

140. Office of Assistant Manager for Energy Research and Development, US . Department of

Energy, Oak Ridge Operations Ofice, P. 0. Box 2001, Oak Ridge, T N 37831-8600

141-150. Ofice of Scientific 0 Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

