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Abstract 

This report summarizes the early experience in using the Intel iPSC/SSO paral- 

lel supercomputer at Oak Ridge National Laboratory. The hardware and software 

are described in some detail, and the machine’s performance is studied using both 

simple computational kernels and a number of complete applications programs. 
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1. Introduction 

Today’s leading supercomputers are capable of performing over one billion floating 

point operations per second (Gflops). The current generation of conventional super- 

computers, typified by the Cray-2 and Cray Y-MP as well as a number of Japanese 

machines, attain such prodigious computational speeds by combining a small number 

(typically 4 to  8) of very powerful vector processors having a cycle time of a few nanosec- 

onds (typically 4 to  10). For such a.n environment, efficient parallel implementations of 

application programs tend to be very coarse grained, meaning that the sizes of tasks 

executed by individual processors are relatively large. At the opposite extreme, another 

means of providing Gflop performance is through massive parallelism, in which a very 

large number (tens of thousands) of very small processors are employed. This approach 

is typified by SIMD architectures such as those available from Thinking Machines and 

MassPar. Due to the very limited power and memory of the individual processors, such 

machines require a very fine granularity of parallelism in applications programs. 

An intermediate approach between these two extremes is that of medium-grain, 

distributed-memory multicomputers, in which a few hundred to  a thousand 32- or 64- 

bit microprocessors are combined by an interconnection network. Such mediurn-grain 

parallel machines potentially have a price-performance advantage over either of the 

other two approaches in that they require fewer custom parts, instead employing mostly 

commodity parts whose development and manufacturing costs are amortized over hun- 

dreds of thousands produced for the personal-computer and workstation markets. The 

most successful instances of this approach to  date have been parallel computers called 

“ h y p e r ~ ~ b e ~ , ”  named for the topological structure of the network interconnecting the 

processors. The hypercube architecture, first practically realized at  Caltech [19], has 

served as the basis for a number of commercial machines, some of which ultimately 

failed in the marketplace (Arnetek/Symult and FPS T-series), but others of which 

have been notably successful (Intel and Ncube). 

The aggregate performance of such a medinm-grained machine is determined by 

the performance of its constituent microprocessors, the bandwidth and latency of its 

interconnection network, and the total number of processors. Given their relatively low- 

powered processors and limited memory, the first one or two generations of hypercubes 

were not bona fide supercomputers in that they were not yet competitive with the 
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fastest conventional machines at the time unless extremely large numbers of processors 

were used. Nevertheless, these early machines were valuable tools for computational 

scientists to learn to deal with parallelism in applications. Recently, with the advent of 

RISC designs and other technological advances, very high performance microprocessors 

(with cycle times as small as 25 nanoseconds) have become available and are now 

making their way into multiprocessor and multicomputer architectures. Consequently, 

this class of architectures has now moved into the Gflop performance range with the 

commercial release of the Intel iPSC/SSO and the Ncube 6400 hypercubes, and is now 

competitive with any other class of general-purpose supercomputers. 

Oak Ridge National Laboratory (ORNL) has had a long association with commer- 

cial hypercubes. OR,NL was one of the first recipients of the Intel iPSC/l, iPSC/2, and 

original Ncube/ten (now called Ncube 3200) machines. These machines have been used 

for basic research in parallel algorithms as well as for a variety of applications at ORNI, 

[lo]. In January, 1990, ORNL took delivery of one of the two beta test machines of the 

new iPSC/860 hypercube produced by Intel (the other was delivered to NASA Ames 

Research Center). The iPSC/860 is also known as the Touchstone Gamma Prototype, 

since it represents an early phase of Intel’s Touchstone project, whose development is 

funded in part by DARPA. 

The purpose of this paper is to  summarize ORNL’s early experience with the Intel 

iPSC/S60 machine. In the sections to  follow, we will present an overview of both the 

hardware and software of the iPSC/860, performance data for some basic computational 

kernels, and results for some initial applications implemented on the machine, including 

comparisons with performance of the same applications on more conventional super- 

computers. One of these applications, superconductivity, is discussed in some detail in 

order t o  gain an appreciation for the work done in adapting it for parallel execution. 

The work reported in this paper involved the efforts of many other people in addition 

to the listed authors. Contributions by key individuals will be noted in the appropriate 

sections. 

The reader should keep in mind that our conclusions are based on experience with 

a beta release of the iPSC/S60 during the three-month period preceding the first ship- 

ments of regular production models to customers. Thus, one should naturally expect 

more bugs and instability in both hardware and software than might be considered 
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tolerable in a mature product. It is also unrealistic to expect highly tailored and op- 

timized development tools in such a new environment. Nevertheless, even during this 

early stage, the iPSC/860 has proven capable of world-class performance and shows 

great promise for tackling the grand challenges of computational science. 

2. Intel iPSC/SSO Hardware 

Each computational node in the iPSC/860 consists of an Intel 2360 processor plus mem- 

ory and communication components. The iPSC/860 at ORNL has 128 such nodes, the 

maximum configuration available. Each computational node has 8 Mbytes of memory, 

for an aggregate total of one Gbyte of RAM. Each is60 processor features an inte- 

ger core unit, pipelined floating-point units for addition and multiplication, a graphics 

unit, memory-management support, a large register set, separate instruction and data 

caches, and 64-bit data paths, all integrated into a single chip having about one mil- 

lion transistors [12,17]. With a clock rate of 40 MHz, each i860 processor has a peak 

execution rate of 32 MIPS integer performance, 80 Mflops 32-bit floating-point per- 

formance, and 60 Mflops 64-bit floating-point performance. Thus, the aggregate peak 

performance rate of the 128-processor iPSC/860 is over 7 Gflops (64-bit) and 10 Gflops 

(32-bit). It should be kept in mind, however, that peak execution rates are based on 

optimal conditions that are difficult to realize or sustain in practice. In particular, 

the peak rate for the i860 assumes an ideal instruction mix, cache utilization, data 

alignment, pipelining, etc. These issues will be discussed in greater detail below. 

The processors in the iPSC/860 are interconnected by a 7-dimensional hypercube 

network in which “worm-hole” routing hardware is employed to  provide efficient mes- 

sage routing between nonadjacent processors. The network essentially provides circuit 

switching (as opposed to packet switched, store-and-forward message routing), thereby 

effectively emulating a fully connected network, with very little penalty for nonlocal 

communication. The peak data transfer rate across the hypercube interconnection 

network between any two nodes is 2.8 Mbytes per second. 

In addition to the 128 computational nodes, ORNL’s iPSC/860 has four 1/0 nodes, 

each of which has an Intel 80386 processor and two 650-Mbyte (formatted) disks, for 

an aggregate total of over 5 Gbytes of disk space. These 1/0 nodes and the disks they 

support are directly accessible to the computational nodes over the interconnection 
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network. Peak data transfer rate between a single computational node and the 1/0 

node disks is about 1.5 Mbytes per second. When more computational nodes access 

the 1/0 disks simultaneously, the aggregate throughput initially increases, peaking at 

about 3 Mbytes per second, but eventually degrades due to  contention as still more 

processors are used. For more detailed performance data for the iPSC/860 on basic 

I/O, communication, and arithmetic operations, see [5] .  

Like most machines of its type, the iPSC/860 is not a stand-alone machine, but 

requires a host machine to  serve as its interface to  the outside world for program 

development, resource management, and external network access. The host machine, 

known in Intel terminology as the System Resource Manager (SRM), is an Intel 301 

microcomputer, which features an Intel 80386/387 processor pair running at 16 MHz, 

8 Mbytes of R,AM, a 300-Mbyte disk, cartridge tape unit, and an Ethernet network 

connection. The SRM is attached to  the hypercube network, and this link provides a 

peak data transfer rate of over 1 Mbyte per second. 

3. Intel iPSC/860 Software 

The user interface and software environment for the iPSC/860 reside primarily on the 

SRM. The SRM runs Unix System V, Release 3.2, with support for TCP/IP networking 

and the Network File System (NFS) via Ethernet. The disk space on the 1/0 nodes is 

managed by a separate Concurrent File System (CFS) that is not currently integrated 

with the SRM disk or NFS. A special shell is provided, however, for accessing and 

managing CFS files from the SRM. 

The computational nodes in the iPSC/860 system run a simple operating system 

kernel called NX that supervises process execution and provides buffered, queued mes- 

sage passing (including communication to  1/0 nodes or the SRM). Like other MIMD 

hypercubes, the programming model for the iPSC/860 is based on adding explicit 

communication calls (send/recv) to serial code written in a conventional programming 

language (C or Fortran). At present, there is no automation provided to aid in paral- 

lelizing programs, but a node debugger is available. 

Compilation of either C or Fortran for the 8 6 0  node-processor target takes place on 

the SRM. The cross-compilers currently available do not take specific advantage of any 

of the special features of the i860 processor (dual instruction mode, etc.) that give it its 
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unusually high performance. The result is that compiled code from high-level language 

source generally runs at about an order-of-magnitude lower performance than the peak 

rates expected for the i860. Specific performance data will be detailed below. 

The 8 6 0  development tools currently available (compilers, linker, assembler, archiver) 

run very slowly on the SRM (much more slowly than their counterparts for the 80386/387 

target), even for a single user. If multiple users run the i860 development tools on the 

SRM simultaneously, the SRM slows to  a crawl. For example, at ORNI, we have 

is60 application programs that cannot be built on the SRM in an eight-hour shift. 

Thus, although the computational performance of the iPSC/860 is competitive with 

conventional supercomputers, it is not yet in the same league in terms of the program 

development cycle. Intel and a number of third-party software houses are presently 

working on enhanced compilers and other development tools for the i860 that should 

be much more efficient, both in building programs and in executing them on the i860. 

In addition, another obvious route to deviating some of the SRM bottleneck would be 

to move program development elsewhere on the network onto higher powered worksta- 

tions via additional cross compilers, or onto the hypercube itself. Such improvements 

will be necessary before the iPSC/860 can become the same kind of everyday pro- 

duction workhorse that one expects of conventional supercomputers, such as the Cray 

series, where compilations seem almost “instantaneous.” 

4. Performance on Computational Kernels 

Basic operations on vectors and matrices are common in all areas of scientific com- 

puting. These fundamental building blocks form the inner loops of many numeri- 

cal algorithms and are a dominant factor in determining the performance of many 

numerically-intensive applications programs. The performance of these computational 

kernels is therefore of great interest on any computer architecture, and they tend to be 

among the first benchmarks run on any new processor. The definitions and user inter- 

faces for these low-level operations have been standardized in the Basic Linear Algebra 

Subprograms (BLAS) [15], which in turn form the basis for portable implementations 

of higher-level matrix operations, such as solving systems of linear equations (see, e.g., 

[31). 

When implemented in a high-level programming language such as Fortran or C, 
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the BLAS can be made portable across a wide range of computers, but their perfor- 

mance rarely approaches the theoretical peak on any individual machine. The usual 

approach, therefore, is to implement custom-coded versions of the BLAS in assem- 

bler language for each particular processor, while maintaining the same user interface 

across all implementations so that programs that call the BLAS will remain portable, 

while retaining the speed advantage of assembler coding in their inner loops. High- 

level language implementations of the BLAS are still of interest, however, in that the 

performance gap between them and optimized implementations in assembler language 

serves as an indication of the effectiveness of the compilers for a given machine. 

We have implemented a number of the most important BLAS in assembler language 

for the Intel i860 processor and compared their performance with standard irnplemen- 

tations in Fortran and C. Both in writing these codes and in testing their performance, 

we were confronted with a number of options regarding methodology. The i860 pro- 

cessor has a number of features, and corresponding instructions in its instruction set, 

that potentially enhance its performance, but whose exploitation may limit the general 

applicability of the resulting code. For example, the “quad load” feature allows the 

fetching of 128 bits of data from memory with a single instruction, but only if the data 

are aligned on a “quad word” boundary (i.e., a byte address that is a multiple of 16). 

The use of this capability substantially increases the effective bandwidth between pro- 

cessor and memory, but in many applications it is impractical or impossible to  meet the 

concomitant restriction on data alignment. Thus, in writing a general-purpose code, 

one must either forgo using this special feature entirely, or else detect those (possibly 

rare) cases for which it is applicable and exploit it only then. Clearly, this issue must 

be kept in mind when choosing benchmark tests and interpreting the results. 

The “advertised” peak performance figures cited earlier for the 8 6 0  are based 

on ideal conditions, including alignment of data on proper word boiindaries, perfect 

pipelining, no cache misses, an instruction mix that exactly matches the functional 

units of the processor, optimal use of dual instruction mode, etc. Full realization of 

these conditions in real programs for any sustained period of time is undoubtedly ex- 

tremely rare, but they can conceivably be achieved in simple, artificial benchmark tests 

such as isolated tests of individual routines from the BLAS. However, we are confronted 

here by another thorny question of methodology regarding cache usage. An individual 
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call to  a single BLAS routine on a high-performance processor is too brief to  yield 

reliable timing results. The usual approach to such a problem is simply to replicate 

the test many times, perhaps several thousand, so that overall execution times can be 

measured accurately. Unfortunately, a far higher percentage of cache hits is likely to  

occur in such a replicated test than would be experienced in one-time usage of the 

routine, thereby significantly skewing the results. On the other hand, there certainly 

are instances in actual practice, some of which will be noted in the next section, in 

which data can be expected to  remain in cache for sustained periods if the algorithm is 

carefully constructed. The reader should keep these comments in mind when interpret- 

ing this section’s results, which were obtained through replication in order to produce 

accurately measurable execution times. 

In a high-level language such as Fortran or C, the user has little specific control over 

cache utilization, but in i860 assembler, data traffic to and from memory can bypass 

cache at the programmer’s option to obtain better overall cache utilization. The general 

principle, of course, is that reusable data should be cached, while nonreusable data 

should bypass cache so that it does not displace any resuable data that may already 

reside there. For example, one of the most important computational kernels in linear 

algebra is to compute the result of a scalar times a vector plus a vector, commonly 

known in BLAS terminology as axpy, y = cy2 t y, where 2 and y are vectors and cy 

is a scalar. Cache management is particularly important for this operation because of 

the different roles played by the variables involved. In particular, y is both fetched and 

stored, while 2 is only fetched, so it may be advantageous to  cache y, while bypassing 

cache with x. 

Figures 1 through 3 show results for the BLAS routines saxpy, daxpy, and zaxpy 

for single precision real, double precision red,  and double precision complex data, 

respectively. In all cases the vector length is measured in words of the appropriate 

size for the precision involved. The execution rates shown were obtained using timing 

tests that make 10,000 successive calls of the basic routine, using a stride of 1 and 

with the same argument list for each call. Thus, after the first call, some data may 

remain in cache that is potentially reusable on successive calls, depending on the vector 

length involved. Some of the implementations shown use special instructions that load 

multiple words, but these require the input vectors to be aligned on special boundaries. 
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Figure 1: Execution rate for various implementations of saxpy on the Intel i860. As- 
terisk indicates routine requires aligned data. 
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The routines using the special instructions are indicated by an asterisk in the figures. 

These results are included for comparison purposes, but it should be kept in mind 

that not all applications will be able to  meet the restrictions on data alignment, and 

hence may not be able to  take advantage of the higher performance offered by the 

kernel implementations that use these special features. The maximum execution rates 

achieved with assembler-coded axpy routines are about 55 Mflops with single precision 

data, and about 27 Mflops with double precision data. The 2-to-1 performance ratio 

between the two precisions for this computation is presumably due to the fact that the 

8 6 0  can issue a single precision multiply instruction on every clock cycle, but it can issue 

a double precision multiply instruction only on alternate clock cycles. These maximum 

execution rates represent about 50% to 70% of the advertised peak performa,nce of the 

2360, depending on the precision. Fortran implementations of axpy, on the other hand 

achieve only 7% to 15% of theoretical peak performance, suggesting that the compiler 

is taking little or no advantage of the i860’s high-performance features. 
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Figure 2: Execution rate for various implementations of daxpy on the Intel i860. Rs- 
terisk indicates routine requires aligned data. 

Cache effects can also be seen clearly in Figures 1 through 3. Performance falls off 
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markedly when the vector size exceeds the 8 Kbyte cache size. This point is reached 

for vectors only half as large if both z and y are cached. And of course, the longer 

wordlength of double precision and complex data cause the cache to be saturated at a 

smaller vector size. As expected, caching only y gives better performance than caching 

only x. The best performance occurs when y is cached and x is “quad aligned,” so 

that it can be piped from memory in 128-bit chunks. For very large vectors, the 

performance curves for all of the assembler routines converge to about the same level, 

which is little better than that of Fortran, suggesting that “strip mining” should be 

used to keep vector lengths within the cache size. Unlike the assembler routines, the 

Fortran routines are relatively insensitive to vector length and precision of data, but 

J 

there is little virtue in this consistency. 

- 30 I x and y cached 

1, y cached 

k a c h e d  ,\ Il/A /------ 

Figure 4 shows results for the RLAS routines sdot, ddot, and zdot, which compute 

the inner product of two single-precision, double precision, or complex double precision 

vectors, respectively. In our assembler implementations, one of the two vectors is 

cached, while the other is piped from memory, bypassing cache. Again we see some 
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fairly clear-cut cache effects similar to  those seen earlier for axpy. Note, however, that 

we do not see the factor of two difference in performance between single precision and 

double precision for dot  that we saw for axpy. The relatively higher performance for 

zdot is presumably due to the larger ratio of arithmetic operations to  memory accesses 

for complex arithmetic. 

The assembler kernels whose performance is reported in this section were written 

by T. H. Dunigan, R. E. Flanery, and G. A. Geist. 
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Figure 4: Execution rate for sdot, ddot and zdot on the Intel i860. 

5 .  Performance on Matrix Computations 

Although simple computational kernels such as those discussed in the previous section 

do a reasonably good job of capturing the flavor of the dominant inner loops of many 

scientific applications, their performance as isolated modules does not necessarily reflect 

their performance when used within the context of a larger, more complicated program. 

Cache management , in particular, plays a major role in determining overall performance 

and is much Iess straightforward to optimize in a real program with complicated data 
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structures, memory reference patterns, and multiple computational phases. 

For benchmarking purposes, a useful compromise between simple computational 

kernels and fully-detailed application programs is provided by more substantial oper- 

ations on matrices, such as matrix factorization to  solve systems of linear equations. 

With their more complex memory-reference patterns, such matrix operations place a 

more realistic and demanding load on data paths between processor and memory, and 

contain enough computation that performance can he accurately measured without 

replication. These features probably account for the popularity of the Linpack bench- 

mark, in which a linear system of order 100 or 1000 is solved as a basis for comparing 

floating-point performance of many computers [2]. At present, however, the Linpack 

benchmark code is limited to  serial computers and a few shared-memory multiproces- 

sors (with or without vector capability), so we have developed our own programs for 

rnatrix factorization for parallel execution on multiple processors of the distributed- 

memory iPSC/860. 

We first consider the Cholesky factorization A = LLT of a symmetric positive def- 

inite matrix A ,  where L is a lower triangular matrix. There are three basic algorithms 

for implementing this factorization, corresponding to different ways of arranging the 

triply-nested loop that defines the computation (see [9] for a full discussion and an 

explanation of the terminology we use here): 

e row-Cholesky, for which the inner kernel is sdat, 

e column-Cholesky, for which the inner kernel is saxpy, 

e submatrix-Cholesky, for which the inner kernel is saxpy. 

Column-Cholesky and submatrix-Cholesky are both column-oriented and both use 

saxpy, but they differ in their memory-reference patterns. Column-Cholesky makes 

repeated calls to  saxpy with the same y hut different 2 vectors, whereas submatrix- 

Cholesky makes repeated calls to saxpy with the same z but different y vectors. More- 

over, in a parallel implementation, column-Cholesky uses fan-in communication, while 

submatrix-Cholesky uses fan-out communication. Row-Cholesky makes repeated calls 

to  sdot with one vector fixed and the other varying, and in a parallel implementation 

uses fan-out communication. These features suggest a different strategy for each of the 

algorithms in the use of cache by the underlying BLAS kernel. 
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The single-processor i860 performance of the three Cholesky algorithms is shown 

in Table 1. The variation in single-processor performance among the algorithms is due 

in part to  differences in their effectiveness in exploiting cache. Note that we have not 

used “strip mining” in any of the algorithms to enhance the use of cache, so for large 

matrices the vectors involved in a given call to  a BLAS routine may exceed the cache 

size. The row-Cholesky algorithm based on inner products is clearly the most effective 

algorithm for this computation on the i860 processor, probably due to the fact that it 

requires no stores to  memory (or cache) in accumulating the inner products, whereas 

the other two algorithms require stores in the inner loop. The performance of the serial 

Cholesky algorithms correlates well with the performance of their underlying BLAS 

kernels, as reported in the previous section. 

BLAS 
C 
C 
assembler 
assembler 

Precision 
single 
double 
single 
double 

4.4 
24.6 15.5 N/A 

Table 1: Asymptotic execution rate in Mflops for Cholesky factorization cln a single 
8 6 0  processor. 

Multicomputer performance of the row-Cholesky algorithms is shown in Figure 5 ,  

using all 128 processors of the iPSC/SSO. In the multicomputer case, the use of double 

precision also doubles the necessary communication volume (measured in bytes), in ad- 

dition to incurring a slightly lower arithmetic execution rate. We see that performance 

exceeds 1 Gflop for single precision, and about 600 MAops for double precision. 

The work reported in this section was done by M. T. Heath, greatly assisted by the 

assembler kernels discussed in the previous section. 

6. Superconductivity Computations 

The discovery of high temperature superconductivity in 1986 has provided the poten- 

tial for spectacularly energy-efficient power transniission technologies, ultra-sensitive 

instrumentation, and other devices. Each year new materials are found to add to the 

family of existing high temperature superconductors. In general these materials are 

difficult to form and use, and some of the superconducting compounds are unstable. 
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Figure 5: Execution rate of row-Cholesky factorization using 128 processors on the 
Intel iPSC/860. 
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These difficulties are exacerbated by the lack of an accepted theory explaining super- 

conductivity at higher temperatures. To further our understanding of the behavior 

of solids in general and of superconductors in particular, quantum-mechanical laws 

have been incorporated into sophisticated computer algorithms to predict from first 

principles the structural, vibrational, and electronic properties of matter. 

Present calculations of the electronic structure of real materials usually employ a 

mean field approximation in which each electron is viewed as moving independently in 

a self-consistent potential due to  all of the electrons and nuclei. According to  density- 

functional theory, it is possible to  express the energy of any system of electrons and 

nuclei as a unique functional of the electron density [l]. Since this functional is not 

known exactly, it is usually approximated by that of a homogeneous electron gas. This 

local density approximation to  density functional theory has been very successful when 

applied to metallic and semiconducting systems, but it appears inadequate to explain 

important physical phenomena such as optical band gaps and superconductivity found 

in transition metal oxides. More sophisticated treatments of the many-electron problem 

are possible, but have not been attempted previously because the Green’s function and 

the susceptibility function needed to  construct the electron self-energy are very difFicult 

to  calculate for real systems, especially those with narrow bands such as transition metal 

oxides. 

The approach taken by researchers at ORNL is based on theoretical advances grow- 

ing out of work on the Korringa, Kohn, and Rostoker coherent potential approxima- 

tion (KKR-CPA) theory of alloys and magnetism [13,14]. The advantage in using the 

KKR-CPA approach is that it yields directly the Green’s function for the system and 

thereby a dircct way of calculating susceptibilities. The effects of disorder are treated 

in the CPA, which is an analytic technique for calculating the configurationally aver- 

aged Green’s function [20]. The KKR approach is a natural context for implementing 

the CPA, became it is a Green’s function method, and there is a natural separation 

between the lattice and the potential. 

Researchers at ORNL and their colleagues have developed a self-consistent, serni- 

relativistic KKR-CPA computer code that can handle multiple atoms per unit cell. 

The code has wide applicability to situations in which some form of substitutional 

disorder plays an important role, including metallic alloys, high-temperature supercon- 
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ducting compounds, metallic magnetism, and metal-insulator transitions. There are 

three primary reasons for parallelizing this code. 

e The KKR-CPA calculations are computationally intensive. A single KKR-CPA 

calculation commonly requires 10 hours of CPU time on a Cray-2. An estimated 

1000 hours or more of Cray CPU time would be needed to complete a single self- 

consistent computational experiment. The turnaround time for such experiments 

makes them prohibitive on conventional supercomputers. 

o The KKR-CPA algorithm embodies natural parallelism that can be exploited to 

increase computational throughput e The feature we exploit is the calculation of 

the density of states (DOS) at a given energy level. Computation of the DOS a t  

over one hundred energy levels is required to determine the Fermi level. Each of 

these DOS can be calculated independently of the other energy levels. 

e The availability of a parallel computer with Gflop performance, the iPSC/860, 

has made it feasible and attractive to develop an efficient parallel version of the 

KKR-CPA code. 

In adapting the KKR-CPA code to  a parallel setting, the modifications to  the 

KKR-CPA code were made in such a way that the code can still be run on Crays, and 

smaller problems can be run on scientific workstations. Having only one consolidated 

code to maintain has made software modifications much simpler to  implement than 

trying to keep three versions of the code up to date. Moreover, the user interface is 

identical across all the machines the code runs on, which has been an important factor 

in inducing scientists to use the code in a relatively unfamiliar parallel environment. 

Explicit parallelism is hidden from the user, with operations such as allocating a number 

of processors and loading programs onto these processors done automatically by the 

code. The niiinber of processors to  he used in a given computational experiment is 

specified in the input file, making it easy for the user to control the degree of parallelism 

for each run of the progmm. Organizing the code in this way required writing only a 

few new routines to be added to the existing serial code. None of the additional routines 

involved new calculations, so exactly the same computational routines are called in the 

serial and parallel versions. 

A master/slave paradigm is used in the parallel implementation. In this scheme, one 
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processor controls work on the entire problem, and the remaining processors perform 

work requested by the master process. The master process in our implementation is 

called the pseudo-host and executes on one of the iPSC/SSO nodes. We avoided using 

the SRM for the master process because of the computational imbalance between its 

80386-based processor and the much more powerful i860-based computational nodes. 

The SRM is also burdened with executing the Unix operating system and program 

development tools for time-shared use by multiple users. 

The KKR-CPA algorithm is organized in the following way. We start by inputting 

the atomic numbers of the species and initial estimates for the charge density and 

potentials. Since the Green’s function for the system at any energy is independent of 

any other energy, this is a natural point in the algorithm at which to  exploit parallelism. 

In the parallel implementation, the energies to  be evaluated are held in a queue of tasks. 

The difficulty of each task is initially unknown, so a heuristic strategy is used to arrange 

the queue in order of approximately decreasing difficulty. Each idle processor selects the 

next task in the queue and returns the DOS to the master process, which computes the 

integral over all energies. Load balancing is achieved naturally, with all the processors 

remaining busy as long as there are tasks left in the queue. 

The most computationally intensive portion of the tasks assigned to the processors 

is integrating the KKR matrix inverse over the first Brillouin zone. To evaluate the 

integral, hundreds or possibly thousands of complex double precision matrices of order 

between 80 and 300 must be formed and inverted. Each matrix correspands to a 

different vertex of the tetrahedrons into which the Brillouin zone has been subdivided. 

The results of the integration are used to compute the Green’s function for the system 

and the DOS for the given energy. 

A further outer iteration is necessary to incorporate self-consistency of the charge 

density into the KKR-CPA code. This outer iteration involves integrating the Green’s 

function over energy to obtain the charge density, which is used to derive the potential 

for the next iteration. Thus the entire process described thus far is repeated several 

times in the self-consistent version of the code, greatly magnifying the already substan- 

tial computational demands of the program. 

Using the high temperature superconductor Bal-,K,BiO~ as a test problem, the 

consolidated KKR-CPA code has been run on several computers. The test problem 
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requires the calculation of the DOS for a fixed number of representative energies, with- 

out iterating to  self-consistency. The average execution rate for a range of computers 

is shown in Table 2. 

M ac him 
DEC 3100 
IBM RS/6000 
Cray-2 
Cray Y-MP 
Cray Y-MP 
Cray Y-MP 
iPSC/SSO 
iPSC/860 

Processors 
1 
1 
1 
1 
1 
8 

128 
128 

Mflops 
2 

18 
49 

130 
203 

1509 
725 

1792 

Comments 

Model 530 

Fortran only 
assembler BLAS 
multitasking 
Fortran only 
assembler BLAS 

Table 2: Average execution rate for superconductor test problem on several computers. 

The KKR-CPA code using only Fortran runs at a rate of about 130 Mflops on a 

single processor of the Cr,ay Y-MP. Performance increases to  about 203 Mflops when 

assembler-coded RLAS are used. The addition of multitasking to  make use of all eight 

processors of the Cray Y-MP yields an aggregate performance of over 1.5 Gflops. The 

rate shown for the iPSC/86O includes the time to  load the problem onto 128 processors, 

all communication, file I/Q (four fairly large output files are generated), and dynamic 

load balancing overhead. The rate of 725 Mflops was attained using only compiled 

Fortran. This rate was increased to about 1.8 Gflops by iising an assembler language 

zaxpy in the inversion routine and in the formation of the KKR matrix. The test 

problem used here is too small to  attain the asymptotic execution rate of which the 

code is capable on the i860. Larger problems are expected to yield execution rates of 

approximately 2.5 Gflops. 

The use of parallel computation on the iPSC/860 has led to more than an order- 

of-magnitude improvement in computational speed compared to a single processor of 

the Cray supercomputers previously used for the KKR-CPA code. From a research 

standpoint the improvement in turnaround time for computational experiments is even 

more suhstantial, since each subcube of the iPSC/SSO is dedicated to only one user a t  a 

time, while the Crays are time-shared by many users. This greater computational power 

allows us to begin investigating many unanswered questions in superconductivity and 

materials science. For example, several studies are underway on the effects of alloying 

in the two perovskite superconducting compounds Bal-..KxBiQ3 and HaPbl-,Bi,Qs. 
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The work reported in this section was done by 6. A. Geist, W. A. Shelton, and 

G .  M. Stocks. For further details, see the paper [8]. 

7. Plasma Flow Computations 

One of the obstacles to the design of a magnetic-fusion reactor is an understanding 

of anomalous transport mechanisms that destroy plasma confinement. The onset of 

plasma turbulence can be studied numerically by considering the dynamics of the 

plasma edge. Detailed measurements are possible at the plasma edge using probes, 

so that experimental verification of numerical models is possible. The study of plasma 

edge turbulence faces many of the same challenges as the classical fluid turbulence prob- 

lem. All the important time scales and length scales must be resolved in a numerical 

computation, and this strains the abilities of present supercomputers. In addition, since 

the plasma is not a perfect conductor, the turbulence can cause changes in the topology 

of the magnetic field. These topological changes are critical for plasma confinement. 

A code for studying plasma instabilities based on the reduced magneto-hydrodynamic 

(MHD) equations has been in use by researchers in the Fusion Energy Division of ORNL 

for several years [ll]. This code has been optimized for use on the Cray machines avail- 

able at the National Energy Research Supercomputer Center. As a pilot study, the code 

was implemented on the Intel iPSC/1 hypercube [4]. The MHD equations in a toroidal 

geometry are discretized by a pseudo-spectral method, with derivatives in the time and 

radial directions approximated by finite differences while functions of the two angu- 

lar variables are expanded in Fourier series. Derivatives in the angular variables are 

performed analytically. All quantities are stored in spectral form. The nonlinear con- 

vection terms are taken to be explicit in time, while linear terms are treated implicitly. 

The convolutions arising from the nonlinear terms are performed analytically, rather 

than using a fast Fourier transform. This allows for explicit study of mode interactions 

during the nonlinear evolution. 

Parallelism is incorporated by a spatial domain decomposition of the radial coor- 

dinate. This approach preserves data locality for the computationally intensive con- 

volution calculation. The implicit terms require solving multiple tridiagonal systems 

distributed across the processors. A ring-based, pipelined solution strategy is used for 

this phase. Results on the iPSC/l indicated that the calculation is well suited to large- 
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scale parallel computation, attaining parallel efficiencies above 90%. But as a practical 

matter, on this early hypercube the run time was considerably larger than correspond- 

ing runs on Cray machines. The iPSC/l is also limited by its relatively small memory 

of 512 Kbytes per processor. Only s m d  problems having 20 to  30 modes fit in memory, 

whereas interesting simulations involve 500 or more modes. 

The second generation Intel hypercube, the iPSC/2, offers an improvement in both 

processor speed and memory size, but still falls short of the Cray-2 in overall run time. 

The 4 Mbytes of memory per processor accommodates much larger problems, but a 

500-mode case remains infeasible on the iPSC/2. The Intel iPSC/860, on the other 

hand, with 8 Mbytes of memory per processor and vastly improved computational 

speed, has the potential to run full-sized simulations with times comparable to any 

other supercomputer available. Figure 6 shows execution times on two generations of 

Intel hypercubes, the iPSC/2 and iPSC/SSO. Each data point represents the CPU time 

required to  take 10 time steps using 16 processors. 

I I I I I I I I I  I I I 1 I 1 1 1 l  1- 

1 10 100 1000 

problem size (number of modes) 

Figure 6: Execution times of plasma Bow code using 16 processors on two generations 
of Intel hypercubes. 

Table 3 shows CPU times on the iPSC/860 compared with the corresponding single- 

processor Cray-2 time for a 300-mode case. The Cray code uses 60-bit precision, while 
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Machine Processors CPU time 
Cray-2 1 67 
iPSC/860 16 180 
iPS C /860 16 130 
iPSC/SSO 16 110 
iPSC/860 16 69 
iPSC/860 32 49 

Comments 

unoptimized Fortran 
optimized Fortran 
unoptimized, loops rearranged 
optimized, loops rearranged 
optimized, loops rearranged 

Since the timing results from these tests appear favorable for large scale compu- 

tations simulating plasma edge turbulence, we are developing more extensive models, 

such as the KITE code [7], for use on the iPSC/860. 

The work reported in this section was done by J. B. Drake and V. E. Lynch. For 

further details see the paper [16]. 

8. Atomic Physics Computations 

The collisions of heavy ions at high energy levels can be simulated using a quantum 

electrodynamic framework, which is somewhat simpler and more tractable than the 

full coupling of quantum chromodynamics. One of the structures to  emerge from the 

collision is a strongly coupled lepton-antilepton pair. This structure usually decays 

in less than seconds. The simulation of the production and decay of leptons 

is a formidable computational challenge. The ability to  simulate the production of 

such pairs is important in the design of experiments for colliders currently under con- 

struction. Until recently, most accelerator designers have worked in the domain where 

fundamental interactions can be decoupled from engineering considerations, with little 

or no involvement in the modeling of basic processes on supercomputers. It is now rec- 
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ognized, however, that beam stability and focusing in all advanced collider designs are 

strongly influenced by pair production. The theory of these processes is rapidly evolv- 

ing for both high-energy heavy-ion colliders and for electron-positron linear colliders 

1181. 

The fundamental model for heavy ion collisions is based on Dirac’s equation [21]. 

The solution of this equation gives the motion of the leptons, which are assumed to 

move independently of the classical electromagnetic fields. Dirac’s equation relates the 

time rate of change of the particle probability distributions to spatial derivatives of the 

distributions. This equation is linear, so that propagation of the distribution in time 

can be represented as an operator exponential. Methods developed for the simulation 

of lepton-pair production are also applicable to related non-relativistic problems in 

nuclear, chemical, surface and plasma physics. 

,4 B-spline collocation method for Dirac’s equation has been implemented on the 

iPSC/2 and iPSC/860, as well as on the Cray and the FPS T-series computers. The col- 

location method employs basis splines of user-selectable order. The high-order splines 

have better approximation properties than low-order splines or the simple interpolants 

typically used in finite difference and finite element discretizations. The B-spline col- 

location method thus has excellent convergence and accuracy properties. The method 

also allows implementation in a storage-efficient tensor product style, where the effects 

of the discrete operator in each coordinate direction are separated. The desired level 

of resolution is a 100 x 100 x 100 lattice. The computations typically involve solving 

an eigenvalue problem for the initial minimum energy state and then taking several 

thousand time steps through a transient pair production and decay. The eigenvalue 

calculation is an iterative procedure using only the operator; the tensor form of the 

operator replaces explicit formation of a matrix representing the operator. 

Parallelism is introduced by domain decomposition, with processors and data as- 

signed in a two-dimensional grid or, with edges connected, a torus arrangement. Apply- 

ing the discrete Dirac operator to a state vector requires three matrix-matrix products, 

one for each coordinate direction. Two of these directions, y and z, have data divided 

among the processors by the domain decomposition. The first matrix of the product 

represents the derivatives of the Dirac operator in the particular coordinate direction. 

This matrix is of order 100 for the desired resolution and can easily be formed and stored 
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on each processor, so that only the state vector is then divided among the processors. 

A "roll" algorithm similar to  the well known parallel matrix-matrix product algorithm 

[6] is employed to accumulate the results. This phase requires nearest-neighbor com- 

munication on the grid of processors, accumulating the results for the y direction using 

rings of processors in one direction and then accumulating the results for the z direc- 

tion using rings of processors in the perpendicular grid direction. The inner loop of 

the implementation is a saxpy, even though all of the state vectors are complex. Real 

and imaginary parts of the state vector have been rearranged to  gain efficiency from 

the use of only real arithmetic. 

Preliminary performance data for this code on the iPSC/860 are shown in Figure 

7. The figure shows dramatic improvements in computational speed with the use of an 

assembler-coded saxpy for the inner loop calculation. The crossover in performance 

between the two codes based on assembler-coded saxpy is due to the lower efficiency 

of the the aligned code when the vector lengths are short, which is the case when a 

fixed-size problem is spread over more processors. Timing studies and operation counts 

show a dependence on the number of processors, p ,  and the grid resolution, n, that is 

proportional to n4/p. Physically interesting results computed at  the rates shown and 

at the desired resolution can be obtained with runs lasting approximately one day. 

0 '  I I I 1 I 

0 1 2 3 4 

hypercube dimension 

Figure 7: Execution rate of lepton pair code for a 16 x 16 x 16 lattice. 
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Efforts to  optimize the performance of the code for the iPSC/860 have thus far 

taken precedence over exploring the physics of pair production using the iPSC/86O’s 

computational power. The latter activity will begin in earnest during the next few 

months. The work reported in this section was done by C. Bottcher, J. B. Drake, R. E. 

Flanery, and M. R. Strayer. 
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