
t

ORNL/TM- 1 1 6 5 5

Engineering Physics and Mathematics Division

Mat hematical Sciences Section

EARLY EXPERIENCE WITH THE INTEL IPSC/860

AT OAK RIDGE NATIONAL LABORATORY

M. T. Heath
G. A. Geist
J. B. Drake

Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2009, Bldg. 9207-A
Oak Ridge, TN 37831-8083

Date Published: September 1990

Research supported by the Applied Mathematical Sciences
subprogram of the Office of Energy Research, U.S. Depart-
ment of Energy

I I

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

3 445b 0316258 3

Contents

1 Introduction . 1
2 Intel iPSC/S60 Hardware . 3
3 Intel iPSC/SSO Software . 4
4 Performance on Computational Kernels . 5
5 Performance on Matrix Computations . 11
6 Superconductivity Computations . 13
7 Plasma Flow Computations . 19
8 Atomic Physics Computations . 21
9 References . 24

EARLY EXPERIENCE WITH THE INTEL IPSC/860

AT OAK RIDGE NATIONAL LABORATORY

M. T. Heath

G. A. Geist

J. B. Drake

Abstract

This report summarizes the early experience in using the Intel iPSC/SSO paral-

lel supercomputer at Oak Ridge National Laboratory. The hardware and software

are described in some detail, and the machine’s performance is studied using both

simple computational kernels and a number of complete applications programs.

- v -

1. Introduction

Today’s leading supercomputers are capable of performing over one billion floating

point operations per second (Gflops). The current generation of conventional super-

computers, typified by the Cray-2 and Cray Y-MP as well as a number of Japanese

machines, attain such prodigious computational speeds by combining a small number

(typically 4 to 8) of very powerful vector processors having a cycle time of a few nanosec-

onds (typically 4 to 10). For such a.n environment, efficient parallel implementations of

application programs tend to be very coarse grained, meaning that the sizes of tasks

executed by individual processors are relatively large. At the opposite extreme, another

means of providing Gflop performance is through massive parallelism, in which a very

large number (tens of thousands) of very small processors are employed. This approach

is typified by SIMD architectures such as those available from Thinking Machines and

MassPar. Due to the very limited power and memory of the individual processors, such

machines require a very fine granularity of parallelism in applications programs.

An intermediate approach between these two extremes is that of medium-grain,

distributed-memory multicomputers, in which a few hundred to a thousand 32- or 64-

bit microprocessors are combined by an interconnection network. Such mediurn-grain

parallel machines potentially have a price-performance advantage over either of the

other two approaches in that they require fewer custom parts, instead employing mostly

commodity parts whose development and manufacturing costs are amortized over hun-

dreds of thousands produced for the personal-computer and workstation markets. The

most successful instances of this approach to date have been parallel computers called

“ h y p e r ~ ~ b e ~ , ” named for the topological structure of the network interconnecting the

processors. The hypercube architecture, first practically realized at Caltech [19], has

served as the basis for a number of commercial machines, some of which ultimately

failed in the marketplace (Arnetek/Symult and FPS T-series), but others of which

have been notably successful (Intel and Ncube).

The aggregate performance of such a medinm-grained machine is determined by

the performance of its constituent microprocessors, the bandwidth and latency of its

interconnection network, and the total number of processors. Given their relatively low-

powered processors and limited memory, the first one or two generations of hypercubes

were not bona fide supercomputers in that they were not yet competitive with the

- 2 -

fastest conventional machines at the time unless extremely large numbers of processors

were used. Nevertheless, these early machines were valuable tools for computational

scientists to learn to deal with parallelism in applications. Recently, with the advent of

RISC designs and other technological advances, very high performance microprocessors

(with cycle times as small as 25 nanoseconds) have become available and are now

making their way into multiprocessor and multicomputer architectures. Consequently,

this class of architectures has now moved into the Gflop performance range with the

commercial release of the Intel iPSC/SSO and the Ncube 6400 hypercubes, and is now

competitive with any other class of general-purpose supercomputers.

Oak Ridge National Laboratory (ORNL) has had a long association with commer-

cial hypercubes. OR,NL was one of the first recipients of the Intel iPSC/l, iPSC/2, and

original Ncube/ten (now called Ncube 3200) machines. These machines have been used

for basic research in parallel algorithms as well as for a variety of applications at ORNI,

[lo]. In January, 1990, ORNL took delivery of one of the two beta test machines of the

new iPSC/860 hypercube produced by Intel (the other was delivered to NASA Ames

Research Center). The iPSC/860 is also known as the Touchstone Gamma Prototype,

since it represents an early phase of Intel’s Touchstone project, whose development is

funded in part by DARPA.

The purpose of this paper is to summarize ORNL’s early experience with the Intel

iPSC/S60 machine. In the sections to follow, we will present an overview of both the

hardware and software of the iPSC/860, performance data for some basic computational

kernels, and results for some initial applications implemented on the machine, including

comparisons with performance of the same applications on more conventional super-

computers. One of these applications, superconductivity, is discussed in some detail in

order t o gain an appreciation for the work done in adapting it for parallel execution.

The work reported in this paper involved the efforts of many other people in addition

to the listed authors. Contributions by key individuals will be noted in the appropriate

sections.

The reader should keep in mind that our conclusions are based on experience with

a beta release of the iPSC/S60 during the three-month period preceding the first ship-

ments of regular production models to customers. Thus, one should naturally expect

more bugs and instability in both hardware and software than might be considered

- 3 -

tolerable in a mature product. It is also unrealistic to expect highly tailored and op-

timized development tools in such a new environment. Nevertheless, even during this

early stage, the iPSC/860 has proven capable of world-class performance and shows

great promise for tackling the grand challenges of computational science.

2. Intel iPSC/SSO Hardware

Each computational node in the iPSC/860 consists of an Intel 2360 processor plus mem-

ory and communication components. The iPSC/860 at ORNL has 128 such nodes, the

maximum configuration available. Each computational node has 8 Mbytes of memory,

for an aggregate total of one Gbyte of RAM. Each is60 processor features an inte-

ger core unit, pipelined floating-point units for addition and multiplication, a graphics

unit, memory-management support, a large register set, separate instruction and data

caches, and 64-bit data paths, all integrated into a single chip having about one mil-

lion transistors [12,17]. With a clock rate of 40 MHz, each i860 processor has a peak

execution rate of 32 MIPS integer performance, 80 Mflops 32-bit floating-point per-

formance, and 60 Mflops 64-bit floating-point performance. Thus, the aggregate peak

performance rate of the 128-processor iPSC/860 is over 7 Gflops (64-bit) and 10 Gflops

(32-bit). It should be kept in mind, however, that peak execution rates are based on

optimal conditions that are difficult to realize or sustain in practice. In particular,

the peak rate for the i860 assumes an ideal instruction mix, cache utilization, data

alignment, pipelining, etc. These issues will be discussed in greater detail below.

The processors in the iPSC/860 are interconnected by a 7-dimensional hypercube

network in which “worm-hole” routing hardware is employed to provide efficient mes-

sage routing between nonadjacent processors. The network essentially provides circuit

switching (as opposed to packet switched, store-and-forward message routing), thereby

effectively emulating a fully connected network, with very little penalty for nonlocal

communication. The peak data transfer rate across the hypercube interconnection

network between any two nodes is 2.8 Mbytes per second.

In addition to the 128 computational nodes, ORNL’s iPSC/860 has four 1/0 nodes,

each of which has an Intel 80386 processor and two 650-Mbyte (formatted) disks, for

an aggregate total of over 5 Gbytes of disk space. These 1/0 nodes and the disks they

support are directly accessible to the computational nodes over the interconnection

- 4 -

network. Peak data transfer rate between a single computational node and the 1/0

node disks is about 1.5 Mbytes per second. When more computational nodes access

the 1/0 disks simultaneously, the aggregate throughput initially increases, peaking at

about 3 Mbytes per second, but eventually degrades due to contention as still more

processors are used. For more detailed performance data for the iPSC/860 on basic

I/O, communication, and arithmetic operations, see [5] .

Like most machines of its type, the iPSC/860 is not a stand-alone machine, but

requires a host machine to serve as its interface to the outside world for program

development, resource management, and external network access. The host machine,

known in Intel terminology as the System Resource Manager (SRM), is an Intel 301

microcomputer, which features an Intel 80386/387 processor pair running at 16 MHz,

8 Mbytes of R,AM, a 300-Mbyte disk, cartridge tape unit, and an Ethernet network

connection. The SRM is attached to the hypercube network, and this link provides a

peak data transfer rate of over 1 Mbyte per second.

3. Intel iPSC/860 Software

The user interface and software environment for the iPSC/860 reside primarily on the

SRM. The SRM runs Unix System V, Release 3.2, with support for TCP/IP networking

and the Network File System (NFS) via Ethernet. The disk space on the 1/0 nodes is

managed by a separate Concurrent File System (CFS) that is not currently integrated

with the SRM disk or NFS. A special shell is provided, however, for accessing and

managing CFS files from the SRM.

The computational nodes in the iPSC/860 system run a simple operating system

kernel called NX that supervises process execution and provides buffered, queued mes-

sage passing (including communication to 1/0 nodes or the SRM). Like other MIMD

hypercubes, the programming model for the iPSC/860 is based on adding explicit

communication calls (send/recv) to serial code written in a conventional programming

language (C or Fortran). At present, there is no automation provided to aid in paral-

lelizing programs, but a node debugger is available.

Compilation of either C or Fortran for the 8 6 0 node-processor target takes place on

the SRM. The cross-compilers currently available do not take specific advantage of any

of the special features of the i860 processor (dual instruction mode, etc.) that give it its

- 5 -

unusually high performance. The result is that compiled code from high-level language

source generally runs at about an order-of-magnitude lower performance than the peak

rates expected for the i860. Specific performance data will be detailed below.

The 8 6 0 development tools currently available (compilers, linker, assembler, archiver)

run very slowly on the SRM (much more slowly than their counterparts for the 80386/387

target), even for a single user. If multiple users run the i860 development tools on the

SRM simultaneously, the SRM slows to a crawl. For example, at ORNI, we have

is60 application programs that cannot be built on the SRM in an eight-hour shift.

Thus, although the computational performance of the iPSC/860 is competitive with

conventional supercomputers, it is not yet in the same league in terms of the program

development cycle. Intel and a number of third-party software houses are presently

working on enhanced compilers and other development tools for the i860 that should

be much more efficient, both in building programs and in executing them on the i860.

In addition, another obvious route to deviating some of the SRM bottleneck would be

to move program development elsewhere on the network onto higher powered worksta-

tions via additional cross compilers, or onto the hypercube itself. Such improvements

will be necessary before the iPSC/860 can become the same kind of everyday pro-

duction workhorse that one expects of conventional supercomputers, such as the Cray

series, where compilations seem almost “instantaneous.”

4. Performance on Computational Kernels

Basic operations on vectors and matrices are common in all areas of scientific com-

puting. These fundamental building blocks form the inner loops of many numeri-

cal algorithms and are a dominant factor in determining the performance of many

numerically-intensive applications programs. The performance of these computational

kernels is therefore of great interest on any computer architecture, and they tend to be

among the first benchmarks run on any new processor. The definitions and user inter-

faces for these low-level operations have been standardized in the Basic Linear Algebra

Subprograms (BLAS) [15], which in turn form the basis for portable implementations

of higher-level matrix operations, such as solving systems of linear equations (see, e.g.,

[31).

When implemented in a high-level programming language such as Fortran or C,

- 6 -

the BLAS can be made portable across a wide range of computers, but their perfor-

mance rarely approaches the theoretical peak on any individual machine. The usual

approach, therefore, is to implement custom-coded versions of the BLAS in assem-

bler language for each particular processor, while maintaining the same user interface

across all implementations so that programs that call the BLAS will remain portable,

while retaining the speed advantage of assembler coding in their inner loops. High-

level language implementations of the BLAS are still of interest, however, in that the

performance gap between them and optimized implementations in assembler language

serves as an indication of the effectiveness of the compilers for a given machine.

We have implemented a number of the most important BLAS in assembler language

for the Intel i860 processor and compared their performance with standard irnplemen-

tations in Fortran and C. Both in writing these codes and in testing their performance,

we were confronted with a number of options regarding methodology. The i860 pro-

cessor has a number of features, and corresponding instructions in its instruction set,

that potentially enhance its performance, but whose exploitation may limit the general

applicability of the resulting code. For example, the “quad load” feature allows the

fetching of 128 bits of data from memory with a single instruction, but only if the data

are aligned on a “quad word” boundary (i.e., a byte address that is a multiple of 16).

The use of this capability substantially increases the effective bandwidth between pro-

cessor and memory, but in many applications it is impractical or impossible to meet the

concomitant restriction on data alignment. Thus, in writing a general-purpose code,

one must either forgo using this special feature entirely, or else detect those (possibly

rare) cases for which it is applicable and exploit it only then. Clearly, this issue must

be kept in mind when choosing benchmark tests and interpreting the results.

The “advertised” peak performance figures cited earlier for the 8 6 0 are based

on ideal conditions, including alignment of data on proper word boiindaries, perfect

pipelining, no cache misses, an instruction mix that exactly matches the functional

units of the processor, optimal use of dual instruction mode, etc. Full realization of

these conditions in real programs for any sustained period of time is undoubtedly ex-

tremely rare, but they can conceivably be achieved in simple, artificial benchmark tests

such as isolated tests of individual routines from the BLAS. However, we are confronted

here by another thorny question of methodology regarding cache usage. An individual

- 7-

call to a single BLAS routine on a high-performance processor is too brief to yield

reliable timing results. The usual approach to such a problem is simply to replicate

the test many times, perhaps several thousand, so that overall execution times can be

measured accurately. Unfortunately, a far higher percentage of cache hits is likely to

occur in such a replicated test than would be experienced in one-time usage of the

routine, thereby significantly skewing the results. On the other hand, there certainly

are instances in actual practice, some of which will be noted in the next section, in

which data can be expected to remain in cache for sustained periods if the algorithm is

carefully constructed. The reader should keep these comments in mind when interpret-

ing this section’s results, which were obtained through replication in order to produce

accurately measurable execution times.

In a high-level language such as Fortran or C, the user has little specific control over

cache utilization, but in i860 assembler, data traffic to and from memory can bypass

cache at the programmer’s option to obtain better overall cache utilization. The general

principle, of course, is that reusable data should be cached, while nonreusable data

should bypass cache so that it does not displace any resuable data that may already

reside there. For example, one of the most important computational kernels in linear

algebra is to compute the result of a scalar times a vector plus a vector, commonly

known in BLAS terminology as axpy, y = cy2 t y, where 2 and y are vectors and cy

is a scalar. Cache management is particularly important for this operation because of

the different roles played by the variables involved. In particular, y is both fetched and

stored, while 2 is only fetched, so it may be advantageous to cache y, while bypassing

cache with x.

Figures 1 through 3 show results for the BLAS routines saxpy, daxpy, and zaxpy

for single precision real, double precision red, and double precision complex data,

respectively. In all cases the vector length is measured in words of the appropriate

size for the precision involved. The execution rates shown were obtained using timing

tests that make 10,000 successive calls of the basic routine, using a stride of 1 and

with the same argument list for each call. Thus, after the first call, some data may

remain in cache that is potentially reusable on successive calls, depending on the vector

length involved. Some of the implementations shown use special instructions that load

multiple words, but these require the input vectors to be aligned on special boundaries.

- 8 -

60

50

40

M
f
1 30
p”
S

20

10

0

P
- x cached* \ \

.
r‘ y cached

- I_

Fortran

I I I I I I
500 1000 1500 2000 2500 3000

vector length (words)

Figure 1: Execution rate for various implementations of saxpy on the Intel i860. As-
terisk indicates routine requires aligned data.

- 9 -

The routines using the special instructions are indicated by an asterisk in the figures.

These results are included for comparison purposes, but it should be kept in mind

that not all applications will be able to meet the restrictions on data alignment, and

hence may not be able to take advantage of the higher performance offered by the

kernel implementations that use these special features. The maximum execution rates

achieved with assembler-coded axpy routines are about 55 Mflops with single precision

data, and about 27 Mflops with double precision data. The 2-to-1 performance ratio

between the two precisions for this computation is presumably due to the fact that the

8 6 0 can issue a single precision multiply instruction on every clock cycle, but it can issue

a double precision multiply instruction only on alternate clock cycles. These maximum

execution rates represent about 50% to 70% of the advertised peak performa,nce of the

2360, depending on the precision. Fortran implementations of axpy, on the other hand

achieve only 7% to 15% of theoretical peak performance, suggesting that the compiler

is taking little or no advantage of the i860’s high-performance features.

30

25

20

M
f
1 15 ;
S

10

5

0

1 y cached*

I I I I I 1
250 500 750 1000 1250 1500

vector length (words)

Figure 2: Execution rate for various implementations of daxpy on the Intel i860. Rs-
terisk indicates routine requires aligned data.

Cache effects can also be seen clearly in Figures 1 through 3. Performance falls off

- 10 -

5 -

markedly when the vector size exceeds the 8 Kbyte cache size. This point is reached

for vectors only half as large if both z and y are cached. And of course, the longer

wordlength of double precision and complex data cause the cache to be saturated at a

smaller vector size. As expected, caching only y gives better performance than caching

only x. The best performance occurs when y is cached and x is “quad aligned,” so

that it can be piped from memory in 128-bit chunks. For very large vectors, the

performance curves for all of the assembler routines converge to about the same level,

which is little better than that of Fortran, suggesting that “strip mining” should be

used to keep vector lengths within the cache size. Unlike the assembler routines, the

Fortran routines are relatively insensitive to vector length and precision of data, but

J

there is little virtue in this consistency.

- 30 I x and y cached

1, y cached

k a c h e d ,\ Il/A /------

Figure 4 shows results for the RLAS routines sdot, ddot, and zdot, which compute

the inner product of two single-precision, double precision, or complex double precision

vectors, respectively. In our assembler implementations, one of the two vectors is

cached, while the other is piped from memory, bypassing cache. Again we see some

- 11 -

fairly clear-cut cache effects similar to those seen earlier for axpy. Note, however, that

we do not see the factor of two difference in performance between single precision and

double precision for dot that we saw for axpy. The relatively higher performance for

zdot is presumably due to the larger ratio of arithmetic operations to memory accesses

for complex arithmetic.

The assembler kernels whose performance is reported in this section were written

by T. H. Dunigan, R. E. Flanery, and G. A. Geist.

M
f
1 :
S

35

30

25

20

15

10

5

assembler, z

assembler, s

Fortran, s - --+
Fortran, d 1

I I I I 1 I
500 1000 1500 2000

vector length (words)

Figure 4: Execution rate for sdot, ddot and zdot on the Intel i860.

5 . Performance on Matrix Computations

Although simple computational kernels such as those discussed in the previous section

do a reasonably good job of capturing the flavor of the dominant inner loops of many

scientific applications, their performance as isolated modules does not necessarily reflect

their performance when used within the context of a larger, more complicated program.

Cache management , in particular, plays a major role in determining overall performance

and is much Iess straightforward to optimize in a real program with complicated data

- 12 -

structures, memory reference patterns, and multiple computational phases.

For benchmarking purposes, a useful compromise between simple computational

kernels and fully-detailed application programs is provided by more substantial oper-

ations on matrices, such as matrix factorization to solve systems of linear equations.

With their more complex memory-reference patterns, such matrix operations place a

more realistic and demanding load on data paths between processor and memory, and

contain enough computation that performance can he accurately measured without

replication. These features probably account for the popularity of the Linpack bench-

mark, in which a linear system of order 100 or 1000 is solved as a basis for comparing

floating-point performance of many computers [2]. At present, however, the Linpack

benchmark code is limited to serial computers and a few shared-memory multiproces-

sors (with or without vector capability), so we have developed our own programs for

rnatrix factorization for parallel execution on multiple processors of the distributed-

memory iPSC/860.

We first consider the Cholesky factorization A = LLT of a symmetric positive def-

inite matrix A , where L is a lower triangular matrix. There are three basic algorithms

for implementing this factorization, corresponding to different ways of arranging the

triply-nested loop that defines the computation (see [9] for a full discussion and an

explanation of the terminology we use here):

e row-Cholesky, for which the inner kernel is sdat,

e column-Cholesky, for which the inner kernel is saxpy,

e submatrix-Cholesky, for which the inner kernel is saxpy.

Column-Cholesky and submatrix-Cholesky are both column-oriented and both use

saxpy, but they differ in their memory-reference patterns. Column-Cholesky makes

repeated calls to saxpy with the same y hut different 2 vectors, whereas submatrix-

Cholesky makes repeated calls to saxpy with the same z but different y vectors. More-

over, in a parallel implementation, column-Cholesky uses fan-in communication, while

submatrix-Cholesky uses fan-out communication. Row-Cholesky makes repeated calls

to sdot with one vector fixed and the other varying, and in a parallel implementation

uses fan-out communication. These features suggest a different strategy for each of the

algorithms in the use of cache by the underlying BLAS kernel.

- 1 3 -

The single-processor i860 performance of the three Cholesky algorithms is shown

in Table 1. The variation in single-processor performance among the algorithms is due

in part to differences in their effectiveness in exploiting cache. Note that we have not

used “strip mining” in any of the algorithms to enhance the use of cache, so for large

matrices the vectors involved in a given call to a BLAS routine may exceed the cache

size. The row-Cholesky algorithm based on inner products is clearly the most effective

algorithm for this computation on the i860 processor, probably due to the fact that it

requires no stores to memory (or cache) in accumulating the inner products, whereas

the other two algorithms require stores in the inner loop. The performance of the serial

Cholesky algorithms correlates well with the performance of their underlying BLAS

kernels, as reported in the previous section.

BLAS
C
C
assembler
assembler

Precision
single
double
single
double

4.4
24.6 15.5 N/A

Table 1: Asymptotic execution rate in Mflops for Cholesky factorization cln a single
8 6 0 processor.

Multicomputer performance of the row-Cholesky algorithms is shown in Figure 5 ,

using all 128 processors of the iPSC/SSO. In the multicomputer case, the use of double

precision also doubles the necessary communication volume (measured in bytes), in ad-

dition to incurring a slightly lower arithmetic execution rate. We see that performance

exceeds 1 Gflop for single precision, and about 600 MAops for double precision.

The work reported in this section was done by M. T. Heath, greatly assisted by the

assembler kernels discussed in the previous section.

6. Superconductivity Computations

The discovery of high temperature superconductivity in 1986 has provided the poten-

tial for spectacularly energy-efficient power transniission technologies, ultra-sensitive

instrumentation, and other devices. Each year new materials are found to add to the

family of existing high temperature superconductors. In general these materials are

difficult to form and use, and some of the superconducting compounds are unstable.

- 14 -

1000 -

800 -

600 -

400 -

200 -

double precision

--
2000 4000 6000 8000 10000

matrix dimension

Figure 5: Execution rate of row-Cholesky factorization using 128 processors on the
Intel iPSC/860.

- 15 -

These difficulties are exacerbated by the lack of an accepted theory explaining super-

conductivity at higher temperatures. To further our understanding of the behavior

of solids in general and of superconductors in particular, quantum-mechanical laws

have been incorporated into sophisticated computer algorithms to predict from first

principles the structural, vibrational, and electronic properties of matter.

Present calculations of the electronic structure of real materials usually employ a

mean field approximation in which each electron is viewed as moving independently in

a self-consistent potential due to all of the electrons and nuclei. According to density-

functional theory, it is possible to express the energy of any system of electrons and

nuclei as a unique functional of the electron density [l]. Since this functional is not

known exactly, it is usually approximated by that of a homogeneous electron gas. This

local density approximation to density functional theory has been very successful when

applied to metallic and semiconducting systems, but it appears inadequate to explain

important physical phenomena such as optical band gaps and superconductivity found

in transition metal oxides. More sophisticated treatments of the many-electron problem

are possible, but have not been attempted previously because the Green’s function and

the susceptibility function needed to construct the electron self-energy are very difFicult

to calculate for real systems, especially those with narrow bands such as transition metal

oxides.

The approach taken by researchers at ORNL is based on theoretical advances grow-

ing out of work on the Korringa, Kohn, and Rostoker coherent potential approxima-

tion (KKR-CPA) theory of alloys and magnetism [13,14]. The advantage in using the

KKR-CPA approach is that it yields directly the Green’s function for the system and

thereby a dircct way of calculating susceptibilities. The effects of disorder are treated

in the CPA, which is an analytic technique for calculating the configurationally aver-

aged Green’s function [20]. The KKR approach is a natural context for implementing

the CPA, became it is a Green’s function method, and there is a natural separation

between the lattice and the potential.

Researchers at ORNL and their colleagues have developed a self-consistent, serni-

relativistic KKR-CPA computer code that can handle multiple atoms per unit cell.

The code has wide applicability to situations in which some form of substitutional

disorder plays an important role, including metallic alloys, high-temperature supercon-

- 16 -

ducting compounds, metallic magnetism, and metal-insulator transitions. There are

three primary reasons for parallelizing this code.

e The KKR-CPA calculations are computationally intensive. A single KKR-CPA

calculation commonly requires 10 hours of CPU time on a Cray-2. An estimated

1000 hours or more of Cray CPU time would be needed to complete a single self-

consistent computational experiment. The turnaround time for such experiments

makes them prohibitive on conventional supercomputers.

o The KKR-CPA algorithm embodies natural parallelism that can be exploited to

increase computational throughput e The feature we exploit is the calculation of

the density of states (DOS) at a given energy level. Computation of the DOS a t

over one hundred energy levels is required to determine the Fermi level. Each of

these DOS can be calculated independently of the other energy levels.

e The availability of a parallel computer with Gflop performance, the iPSC/860,

has made it feasible and attractive to develop an efficient parallel version of the

KKR-CPA code.

In adapting the KKR-CPA code to a parallel setting, the modifications to the

KKR-CPA code were made in such a way that the code can still be run on Crays, and

smaller problems can be run on scientific workstations. Having only one consolidated

code to maintain has made software modifications much simpler to implement than

trying to keep three versions of the code up to date. Moreover, the user interface is

identical across all the machines the code runs on, which has been an important factor

in inducing scientists to use the code in a relatively unfamiliar parallel environment.

Explicit parallelism is hidden from the user, with operations such as allocating a number

of processors and loading programs onto these processors done automatically by the

code. The niiinber of processors to he used in a given computational experiment is

specified in the input file, making it easy for the user to control the degree of parallelism

for each run of the progmm. Organizing the code in this way required writing only a

few new routines to be added to the existing serial code. None of the additional routines

involved new calculations, so exactly the same computational routines are called in the

serial and parallel versions.

A master/slave paradigm is used in the parallel implementation. In this scheme, one

- 1 7 -

processor controls work on the entire problem, and the remaining processors perform

work requested by the master process. The master process in our implementation is

called the pseudo-host and executes on one of the iPSC/SSO nodes. We avoided using

the SRM for the master process because of the computational imbalance between its

80386-based processor and the much more powerful i860-based computational nodes.

The SRM is also burdened with executing the Unix operating system and program

development tools for time-shared use by multiple users.

The KKR-CPA algorithm is organized in the following way. We start by inputting

the atomic numbers of the species and initial estimates for the charge density and

potentials. Since the Green’s function for the system at any energy is independent of

any other energy, this is a natural point in the algorithm at which to exploit parallelism.

In the parallel implementation, the energies to be evaluated are held in a queue of tasks.

The difficulty of each task is initially unknown, so a heuristic strategy is used to arrange

the queue in order of approximately decreasing difficulty. Each idle processor selects the

next task in the queue and returns the DOS to the master process, which computes the

integral over all energies. Load balancing is achieved naturally, with all the processors

remaining busy as long as there are tasks left in the queue.

The most computationally intensive portion of the tasks assigned to the processors

is integrating the KKR matrix inverse over the first Brillouin zone. To evaluate the

integral, hundreds or possibly thousands of complex double precision matrices of order

between 80 and 300 must be formed and inverted. Each matrix correspands to a

different vertex of the tetrahedrons into which the Brillouin zone has been subdivided.

The results of the integration are used to compute the Green’s function for the system

and the DOS for the given energy.

A further outer iteration is necessary to incorporate self-consistency of the charge

density into the KKR-CPA code. This outer iteration involves integrating the Green’s

function over energy to obtain the charge density, which is used to derive the potential

for the next iteration. Thus the entire process described thus far is repeated several

times in the self-consistent version of the code, greatly magnifying the already substan-

tial computational demands of the program.

Using the high temperature superconductor Bal-,K,BiO~ as a test problem, the

consolidated KKR-CPA code has been run on several computers. The test problem

- 18 -

requires the calculation of the DOS for a fixed number of representative energies, with-

out iterating to self-consistency. The average execution rate for a range of computers

is shown in Table 2.

M ac him
DEC 3100
IBM RS/6000
Cray-2
Cray Y-MP
Cray Y-MP
Cray Y-MP
iPSC/SSO
iPSC/860

Processors
1
1
1
1
1
8

128
128

Mflops
2

18
49

130
203

1509
725

1792

Comments

Model 530

Fortran only
assembler BLAS
multitasking
Fortran only
assembler BLAS

Table 2: Average execution rate for superconductor test problem on several computers.

The KKR-CPA code using only Fortran runs at a rate of about 130 Mflops on a

single processor of the Cr,ay Y-MP. Performance increases to about 203 Mflops when

assembler-coded RLAS are used. The addition of multitasking to make use of all eight

processors of the Cray Y-MP yields an aggregate performance of over 1.5 Gflops. The

rate shown for the iPSC/86O includes the time to load the problem onto 128 processors,

all communication, file I/Q (four fairly large output files are generated), and dynamic

load balancing overhead. The rate of 725 Mflops was attained using only compiled

Fortran. This rate was increased to about 1.8 Gflops by iising an assembler language

zaxpy in the inversion routine and in the formation of the KKR matrix. The test

problem used here is too small to attain the asymptotic execution rate of which the

code is capable on the i860. Larger problems are expected to yield execution rates of

approximately 2.5 Gflops.

The use of parallel computation on the iPSC/860 has led to more than an order-

of-magnitude improvement in computational speed compared to a single processor of

the Cray supercomputers previously used for the KKR-CPA code. From a research

standpoint the improvement in turnaround time for computational experiments is even

more suhstantial, since each subcube of the iPSC/SSO is dedicated to only one user a t a

time, while the Crays are time-shared by many users. This greater computational power

allows us to begin investigating many unanswered questions in superconductivity and

materials science. For example, several studies are underway on the effects of alloying

in the two perovskite superconducting compounds Bal-..KxBiQ3 and HaPbl-,Bi,Qs.

- 19 -

The work reported in this section was done by 6. A. Geist, W. A. Shelton, and

G . M. Stocks. For further details, see the paper [8].

7. Plasma Flow Computations

One of the obstacles to the design of a magnetic-fusion reactor is an understanding

of anomalous transport mechanisms that destroy plasma confinement. The onset of

plasma turbulence can be studied numerically by considering the dynamics of the

plasma edge. Detailed measurements are possible at the plasma edge using probes,

so that experimental verification of numerical models is possible. The study of plasma

edge turbulence faces many of the same challenges as the classical fluid turbulence prob-

lem. All the important time scales and length scales must be resolved in a numerical

computation, and this strains the abilities of present supercomputers. In addition, since

the plasma is not a perfect conductor, the turbulence can cause changes in the topology

of the magnetic field. These topological changes are critical for plasma confinement.

A code for studying plasma instabilities based on the reduced magneto-hydrodynamic

(MHD) equations has been in use by researchers in the Fusion Energy Division of ORNL

for several years [ll]. This code has been optimized for use on the Cray machines avail-

able at the National Energy Research Supercomputer Center. As a pilot study, the code

was implemented on the Intel iPSC/1 hypercube [4]. The MHD equations in a toroidal

geometry are discretized by a pseudo-spectral method, with derivatives in the time and

radial directions approximated by finite differences while functions of the two angu-

lar variables are expanded in Fourier series. Derivatives in the angular variables are

performed analytically. All quantities are stored in spectral form. The nonlinear con-

vection terms are taken to be explicit in time, while linear terms are treated implicitly.

The convolutions arising from the nonlinear terms are performed analytically, rather

than using a fast Fourier transform. This allows for explicit study of mode interactions

during the nonlinear evolution.

Parallelism is incorporated by a spatial domain decomposition of the radial coor-

dinate. This approach preserves data locality for the computationally intensive con-

volution calculation. The implicit terms require solving multiple tridiagonal systems

distributed across the processors. A ring-based, pipelined solution strategy is used for

this phase. Results on the iPSC/l indicated that the calculation is well suited to large-

- 20 -

scale parallel computation, attaining parallel efficiencies above 90%. But as a practical

matter, on this early hypercube the run time was considerably larger than correspond-

ing runs on Cray machines. The iPSC/l is also limited by its relatively small memory

of 512 Kbytes per processor. Only s m d problems having 20 to 30 modes fit in memory,

whereas interesting simulations involve 500 or more modes.

The second generation Intel hypercube, the iPSC/2, offers an improvement in both

processor speed and memory size, but still falls short of the Cray-2 in overall run time.

The 4 Mbytes of memory per processor accommodates much larger problems, but a

500-mode case remains infeasible on the iPSC/2. The Intel iPSC/860, on the other

hand, with 8 Mbytes of memory per processor and vastly improved computational

speed, has the potential to run full-sized simulations with times comparable to any

other supercomputer available. Figure 6 shows execution times on two generations of

Intel hypercubes, the iPSC/2 and iPSC/SSO. Each data point represents the CPU time

required to take 10 time steps using 16 processors.

I I I I I I I I I I I I 1 I 1 1 1 l 1-

1 10 100 1000

problem size (number of modes)

Figure 6: Execution times of plasma Bow code using 16 processors on two generations
of Intel hypercubes.

Table 3 shows CPU times on the iPSC/860 compared with the corresponding single-

processor Cray-2 time for a 300-mode case. The Cray code uses 60-bit precision, while

- 21 -

Machine Processors CPU time
Cray-2 1 67
iPSC/860 16 180
iPS C /860 16 130
iPSC/SSO 16 110
iPSC/860 16 69
iPSC/860 32 49

Comments

unoptimized Fortran
optimized Fortran
unoptimized, loops rearranged
optimized, loops rearranged
optimized, loops rearranged

Since the timing results from these tests appear favorable for large scale compu-

tations simulating plasma edge turbulence, we are developing more extensive models,

such as the KITE code [7], for use on the iPSC/860.

The work reported in this section was done by J. B. Drake and V. E. Lynch. For

further details see the paper [16].

8. Atomic Physics Computations

The collisions of heavy ions at high energy levels can be simulated using a quantum

electrodynamic framework, which is somewhat simpler and more tractable than the

full coupling of quantum chromodynamics. One of the structures to emerge from the

collision is a strongly coupled lepton-antilepton pair. This structure usually decays

in less than seconds. The simulation of the production and decay of leptons

is a formidable computational challenge. The ability to simulate the production of

such pairs is important in the design of experiments for colliders currently under con-

struction. Until recently, most accelerator designers have worked in the domain where

fundamental interactions can be decoupled from engineering considerations, with little

or no involvement in the modeling of basic processes on supercomputers. It is now rec-

- 22 -

ognized, however, that beam stability and focusing in all advanced collider designs are

strongly influenced by pair production. The theory of these processes is rapidly evolv-

ing for both high-energy heavy-ion colliders and for electron-positron linear colliders

1181.

The fundamental model for heavy ion collisions is based on Dirac’s equation [21].

The solution of this equation gives the motion of the leptons, which are assumed to

move independently of the classical electromagnetic fields. Dirac’s equation relates the

time rate of change of the particle probability distributions to spatial derivatives of the

distributions. This equation is linear, so that propagation of the distribution in time

can be represented as an operator exponential. Methods developed for the simulation

of lepton-pair production are also applicable to related non-relativistic problems in

nuclear, chemical, surface and plasma physics.

,4 B-spline collocation method for Dirac’s equation has been implemented on the

iPSC/2 and iPSC/860, as well as on the Cray and the FPS T-series computers. The col-

location method employs basis splines of user-selectable order. The high-order splines

have better approximation properties than low-order splines or the simple interpolants

typically used in finite difference and finite element discretizations. The B-spline col-

location method thus has excellent convergence and accuracy properties. The method

also allows implementation in a storage-efficient tensor product style, where the effects

of the discrete operator in each coordinate direction are separated. The desired level

of resolution is a 100 x 100 x 100 lattice. The computations typically involve solving

an eigenvalue problem for the initial minimum energy state and then taking several

thousand time steps through a transient pair production and decay. The eigenvalue

calculation is an iterative procedure using only the operator; the tensor form of the

operator replaces explicit formation of a matrix representing the operator.

Parallelism is introduced by domain decomposition, with processors and data as-

signed in a two-dimensional grid or, with edges connected, a torus arrangement. Apply-

ing the discrete Dirac operator to a state vector requires three matrix-matrix products,

one for each coordinate direction. Two of these directions, y and z, have data divided

among the processors by the domain decomposition. The first matrix of the product

represents the derivatives of the Dirac operator in the particular coordinate direction.

This matrix is of order 100 for the desired resolution and can easily be formed and stored

- 23 -

50 -

40 -

M
30-

20-

10 -

on each processor, so that only the state vector is then divided among the processors.

A "roll" algorithm similar to the well known parallel matrix-matrix product algorithm

[6] is employed to accumulate the results. This phase requires nearest-neighbor com-

munication on the grid of processors, accumulating the results for the y direction using

rings of processors in one direction and then accumulating the results for the z direc-

tion using rings of processors in the perpendicular grid direction. The inner loop of

the implementation is a saxpy, even though all of the state vectors are complex. Real

and imaginary parts of the state vector have been rearranged to gain efficiency from

the use of only real arithmetic.

Preliminary performance data for this code on the iPSC/860 are shown in Figure

7. The figure shows dramatic improvements in computational speed with the use of an

assembler-coded saxpy for the inner loop calculation. The crossover in performance

between the two codes based on assembler-coded saxpy is due to the lower efficiency

of the the aligned code when the vector lengths are short, which is the case when a

fixed-size problem is spread over more processors. Timing studies and operation counts

show a dependence on the number of processors, p , and the grid resolution, n, that is

proportional to n4/p. Physically interesting results computed at the rates shown and

at the desired resolution can be obtained with runs lasting approximately one day.

0 ' I I I 1 I

0 1 2 3 4

hypercube dimension

Figure 7: Execution rate of lepton pair code for a 16 x 16 x 16 lattice.

- 24 -

Efforts to optimize the performance of the code for the iPSC/860 have thus far

taken precedence over exploring the physics of pair production using the iPSC/86O’s

computational power. The latter activity will begin in earnest during the next few

months. The work reported in this section was done by C. Bottcher, J. B. Drake, R. E.

Flanery, and M. R. Strayer.

9. References

[l] U. Von Barth, Density functional theory for solids. In P. Phariseau and W. M.

Temmerman, editors, The Electronic Stmctesre of Complex Systems, pages 67-140,

Plenum Press, New York, 1984.

[2] J. J. Dongarra, Performance of various computers using standard linear equa-

tions software. Tech. Rept. CS-89-85, Dept. of Computer Science, University of

Tennessee, Knoxville, TN, January 1990.

[3] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, Linpack User’s

Guide, SIAM, Philadelphia, 1979.

[4] J. B. Drake, W. F. Lawkins, B. A. Carreras, H. R. Hicks, and V. E. Lynch,

Implementation of a 3-D nonlinear MHD calculation on the Intel hypercube. Tech.

Rept. ORNL-6335, Oak Ridge National Laboratory, Oak Ridge, T N , 1987.

[5] T. H. Dunigan, Performance of the Intel iPSC/860 hypercube. Tech. Rept.

ORNTJ/TM-11491, Oak Ridge National Laboratory, Oak Edge, TN, 1990.

[6] G. Fox, et al. Solving Problems on Concurrent Computers. Prentice-Hall, Engle-

wood Cliffs, NJ, 1989.

[7] L. Garcia, €1. R. Hicks, B. A. Carreras, L. A. Charlton, and J. A. Holmes, 3-D

nonlinear MHD calculations using implicit and explicit time integration schemes.

J. Comput. Phys., Vol. 65, pages 253-272, (1986).

(81 G. A. Geist, B. W. Peyton, W. A. Shelton, and G. M. Stocks, Modeling high-

tempaerature superconductions and metallic alloys on the Intel iPSC/860. Proc.

Fifth Distributed Memory Computing Conf., to appear,

- 25 -

[9] A. George, M. T. Heath, and J. Liu, Parallel Cholesky factorization on a shared-

memory multiprocessor. Linear Algebra Appl., Vol. 77, pages 165-187, (1986).

[lo] M. T. Heath, Hypercube applications at Oak Ridge National Laboratory. In M. T.

Heath, editor, H t ~ ~ ~ w h e Multiprocessors 1987, pages 395-417, S U M , Philadel-

phia, 1987.

[ll] H. R. Hicks, B. A. Carreras, J. A. Holmes, D. K. Lee, and B. V. Waddell, 3-

D nonlinear calculations of resistive tearing modes. J. Comput. Phys., Vol. 44,

pages 46-69, (1981).

[12] L. Kohn and N. Margulis, Introducing the Intel 8 6 0 64-bit microprocessor. IEEE

Micro, Vol. 9, No. 4, pages 15-30 (1989).

[13] W. Kohn and N. Rostoker, Solution of the Schrodinger equation in periodic lattices

with an application to metallic lithium. Phys. Rev., Vol. 94, page 1111, (1954).

[14] J . Korringa, On the calculation of the energy of a Bloch wave in metal. Physica,

Vol. 13, page 392, (1947).

[15] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra, subpro-

grams for Fortran usage. ACM Trans. Math. Software, Vol. 5, pages 308-325,

(1979).

[16] V. E. Lynch, B. A. Carreras, J. B. Drake, and J. N. Leboeuf, Plasma turbulence

calculations on the Intel iPSC/860 (RX) hypercube. Internat. J. Supercomputer

Appl., submitted.

[17] N. Margulis, The Intel 80860. Byte, Vol. 14, No. 13, pages 333-340, (1989).

[18] M. Month, Physics of particle accelerators. A.I.P. Conference Proceedings, Vol.

184, Ithaca, NY, 1988.

[19] C. L. Seitz, The cosmic cube, Comm. ACM, Vol. 28, pages 22-33, (1985).

[20] P. Soven, Application of the coherent potential approximation to a system of

muffin-tin potentials. Phys. Rev., Vol. 156, page 809, (1967).

- 26 *

[21] A. S. Umar, J . Wu, M. El. Strayer, and C. Bottcher, Basis-spline collocation

method for the lattice solution of boundary value problems. J . Comput. Phys.,

submitted, 1989.

- 27 -

ORNL/TM-11655

INTERNAL DISTRIBUTION

1. V. Alexiades
2. B. R. Appleton
3. C. Bottcher
4. W. H. Butler
5. B. A. Cameras
6. E. F. D’Azevedo
7. J . J . Dongarra

13. T. H. Dunigan
14. W. R. Emanuel
15. R. E. Flanery

8-12. J. B. Drake

16-20. G. A. Geist
21-22. R. F. Harbison

23. M. B. Heath
24-28. M. T. Neath

29. H. R. Hicks
30. E. R. Jessup
31. J . P. Jones
32. W. F. Lawkins
33. M. R. Leuze
34. V. E. Lynch

35-39. F. C. Maienschein
40. R. C. Mann
41. J . B. McGrory
42. E. G. Ng
43. V. W. Ng
44. C. E. Oliver
45. G. Ostrouchov

46. B. W. Peyton

52. C. H. Romine
53. W. A. Shelton
54. G. M. Stocks
55. M. R. Strayer
56. V. S. Tripathi
57. D. W. Walker

58-62. R. C. Ward
63. P. H. Worley
64. A. Zucker
65. J. J . Dorning (EPMD

Advisory Committee)
66. R. M. Haralick (EPMD

Advisory Committee)
67. J. E. Leiss (EPMD Advisory

Commit tee)
68. N. Moray (EPMD Advisory

Committee)
69. M. F. Wheeler (EPMD

Advisory Committee)
70. Central Research Library
71. ORNL Patent Office
72. K-25 Plant Library
73. Y-12 Technical Library /

74. Laboratory Records - RC
75-76. Laboratory Records Dept.

47-51. S. A. Raby

Document Reference Station

EXTERNAL DISTRIBUTION

77. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, MJS 7L-21, Seattle,
WA 98124-0346

78. Donald M. Austin, 6196 EECS Bldg, University of Minnesota, 200 Union St., S.E.,
Minneapolis, MN 55455

79. Robert G. Babb, Dept. of Computer Science and Engineering, Oregon Graduate
Institute, 19600 N.W. Walker Rd., Beaverton, OR 97006

80. David H. Bailey, NASA Ames Research Center, Mail Stop 258-5, Moffett Field,
CA 94035

81. Jesse L. Barlow, Dept. of Computer Science, Pennsylvania State University, Uni-
versity Park, PA 16802

- 28 -

82. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

83. Eric Rarszcz, NASA Ames Research Center, MS T045-1, Moffett Field, CA 94035

84. Robert E. Benner, Parallel Processing Div. 1413, Sandia National Laboratories,
P. 0. Box 5800, Albuquerque, NM 87185

85. Donna Rergmark, Cornell Theory Center, Engineering and Theory Center Bldg.,
Ithaca, NY 14853-3901

86. Chris Rischof, Mathematics and Computer Science Div., Argonne National Labo-
ratory, 9700 South Cass Ave., Argonne, IT, 60439

87. Ake Bjorck, Dept. of Mathematics, Linkoping University, S-581 83 Linkoping,
Sweden

88. Jean R. S. Blair, Dept. of Computer Science, Ayres Hall, University of Tennessee,
Knoxville, T N 37996-1301

89. George Bourianoff, Superconducting Super Collider Laboratory, 2550 Beckleymeade
Ave., Suite 260, Dallas, TX 75237

90. James 6. Browne, Dept. of Computer Sciences, University of Texas, Austin, T X
78712

91. Bill L. Buzbee, Scientific Computing Div., National Center for Atmospheric Re-
search, P.O. Box 3000, Boulder, CO 80307

92. Donald A. Calahan, Dept. of Electrical and Computer Engineering, University of
Michigan, Ann Arbor, MI 48109

93. Brian Carlson, Dept. of Computer Science, Vanderbilt University, Nashville, T N
37235

94. John Cavallini, Office of Scientific Computing, Ofice of Energy Research, ER-7,
Germantown Building, U S . Dept. of Energy, Washington, DC 20545

95. Ian Cavers, Dept. of Computer Science, University of British Columbia, Vancou-
ver, British Columbia V6T 1W5, Canada

96. Tony Chan, Dept. of Mathematics, University of California, Los Angeles, 405
Hilgard Ave., Los Angeles, CA 90024

97. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

98. Eleanor Chu, Dept. of Computer Science, University of Waterloo, Waterloo, On-
tario, Canada N2L 3G1

99. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

100. Ben Cole, Superconducting Super Collider Laboratory, 2550 Beckleymeade Ave.,
Suite 260, Dallas, TX 75237

101. Thomas Coleman, Dept. of Computer Science, Cornell University, Ithaca, N Y
14853

102. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

- 29 -

103. Tom Crockett, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

104. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

105. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright St., Urbana, IL 61801-2932

106. George J . Davis, Dept. of Mathematics, Georgia State University, Atlanta, GA
30303

107. Larry Dowdy, Dept. of Computer Science, Vanderbilt University, Nashville, T N
37235

108. Nolan Drevitch, Intel Scientific Computers, 20 Tech Park, N.W., Suite 150, Nor-
cross, GA 30092

109. Iain Duff, Numerical Analysis Group, Central Computing Dept., Atlas Centre,
Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

110. Patricia Eberlein, Dept. of Computer Science, SUNY at Buffalo, Buffalo, NY
14260

111. Stanley Eisenstat, Dept. of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

112. Lars Elden, Dept. of Mathematics, Linkoping University, 581 83 Linkoping, Swe-
den

113. Howard C. Elman, Computer Science Dept., University of Maryland, College Park,
MD 20742

114. Albert M. Erisnian, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seat-
tle, WA 98124-0346

115. Ian Foster, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL 60439

116. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Tech-
nology, Paqadena, CA 91125

117. Paul 0. Frederickson, NASA Ames Research Center, WACS, M/S T045-1 Moffett
Field, CA 94035

118. Fred N. Fritsch, L-300, Mathematics and Statistics Div., Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550

119. Robert E. Funderlic, Dept. of Computer Science, North Carolina State University,
Raleigh, NC 27650

120. Dennis B. Gannon, Computer Science Dept., Indiana University, Bloomington, IN
47405

121. David M. Gay, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

122. C. William Gear, Computer Science Dept., University of Illinois, Urbana, IL
61801

123. W. Morven Gentleman, Div. of Electrical Engineering, National Research Council,
Building M-50, Room 344, Montreal Rd., Ottawa, Ontario, Canada KIA OR8

- 30 -

124. J . Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

125. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo
Alto, CA 94304

126, Gene H . Golub, Dept. of Computer Science, Stanford University, Stanford, CA
94305

127. Joseph F. Grcar, Div. 8331, Sandia National Laboratories, Livermore, CA 94550

128. John Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,
Ames, IA 50011-3020

129. Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

130. Richard Hanson, IMSL Xnc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, TX 77042-3020

131. Don E. Heller, Physics and Computer Science Dept., Shell Development Co.,
P.O. Box 481, Houston, TX 77001

132. Nicholas J. Wighani, Dept. of Mathematics, University of Manchester, Grt Manch-
ester, M13 9PL, England

133. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

134. Robert E. Huddleston, Computation Dept., Lawrence Livermore National Labo-
ratory, P.Q. Box 808, Livermore, CA 94550

135. Ilse Ipsen, Dept. of Computer Science, Yale University, P.O. Box 2158 Yale Sta-
tion, New Haven, C T 06520

136. Victor Jackson, Intel Scientific Computers, 2250 E. Imperial Hwy., Suite 218, El
Segundo, CA 90245

137. Lennart Johnson, Thinking Machines IIIC., 245 First St., Cambridge, MA 02142-
1214

138. Harry Jordan, Dept. of Electrical and Computer Engineering, University of Col-
orado, Boulder, CO 80309

139. Bo Kagstroni, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

140. Malvin H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

141. Hans Kaper, Mathematics and Computer Science Div., Argonne National Labo-
ratory, 9700 South Cass Ave., Argonne, IL 60439

142. Robert J. Kee, Applied Mathematics Div. 8331, Sandia National Laboratories,
Livennore, CA 94550

143. Kenneth Kennedy, Dept. of Computer Science, Rice IJniversity, P.O. Box 1892,
Houston, TX 77005

144. Sangtae Kim, Dept. of Chemical Engineering, University of Wisconsin, Madison,
WI 53706

- 31 -

145. Thomas Kitchens, Dept. of Energy, Scientific Computing Staff, Office of Energy
Research, ER-7, OEce G-236 Germantown, Washington, DC 20585

146. Richard Lau, Offic of Naval Research, 1030 E. Green St., Pasadena, CA 91101

147. Alan J . Laub, Dept. of Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara, CA 93106

148. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709

149. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Dr.,
Pasadena, CA 91109

150. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer St., New York, NY 10012

151. John Levesque, Pacific Sierra Research Corp., 537 Main St., Suite B, Placerville,
CA 95667

152. John 6 . Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

153. Ted Lewis, Computer Science Dept., Oregon State University, Corvallis, OR 97331

WA 98124-0346

154. Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,

155. Heather M. Liddell, Center for Parallel Computing, Dept. of Computer Science
and Statistics, Queen Mary College, University of London, Mile End Rd., London
E l 4NS, England

156. Joseph Liu, Dept. of Computer Science, York University, 4700 Keele St., North
York, Ontario, Canada M3J 1P3

157. Franklin Luk, School of Electrical Engineering, Cornel1 University, Ithaca, NY
14853

158. Thomas A. Manteuffel, Dept. of Mathematics, University of Colorado - Denver,
Denver, CO 80202

159. John Meissen, Oregon Advanced Computing Institute, 19500 S.W. Gibbs Dr.,
Suite 110, Beaverton, OR 97006-6907

160. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd. Pasadena, CA 91125

161. James McGrnw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

162. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

163. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

164. V. E. Oberacker, Dept. of Physics, Vanderbilt University, Box 1807, Station B,
Nashville, T N 37235

165. Dianne P. O’Leary, Computer Science Dept., University of Maryland, College
Park, MD 20742

TX 77042-3020

- 32 -

166. James M. Ortega, Dept. of Applied Mathematics, Thornton Hall University of

167. Chris Paige, Dept. of Computer Science, McGill University, 805 Sherbrooke St.

168. Roy P. Pargas, Dept. of Computer Science, Clemson University, Clemson, SC

Virginia, Charlottesville, VA 22903

W., Montreal, Quebec, Canada H3A 2K6

29634-1906

169. Reresford N. Parlett, Dept. of Mathematics, University of California, Berkeley,
CA 94720

170. Merrell Patrick, Dept. o f Computer Science, Duke University, Durham, NC 27706

171. Paul Pierce, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaverton,
OR 97006

172. Robert J . Plemmons, Dept.s of Mathematics and Computer Science, North Car-
olina State University, Raleigh, NC 27650

173. Jesse Poore, Dept. of Computer Scierice, Ayres Hall, University of Tennessee,
Knoxville, TN 37996-1301

174. Alex Pothen, Dept. of Computer Science, Pennsylvania State University, Univer-
sity Park, PA 16802

175. Michael J . Quinn, Computer Science Dept., Oregon State University, Corvallis,
OR 97331

176. Justin Itattner, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaver-
ton, OR 97006

177. John I<. Reid, Numerical Analysis Group, Central Computing Dept., Atlas Centre,
Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

178. Werner C. Rheinboldt, Dept. of Mathematics and Statistics, University of Pitts-
burgh, Pittsburgh, PA 15260

179. John R. Rice, Computer Science Dept., Purdue University, West Lafayette, IN
47907

180. Lee Riediiiger, Science Alliance Program, University of Tennessee, Knoxville, T N
37996

181. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

182. Donald J . Rose, Dept. of Computer Science, Duke University, Durham, NC 27706

183. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

184. Ahmed H . Sameh, Computer Science Dept., University of Illinois, Urbana, IL
61801

185. Michael Saunders, Systems Optimization Laboratory, Operations Research Dept.,
Stanford University, Stanford, CA 94305

186. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

- 33 -

187. Martin H. Schultz, Dept. of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

188. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaver-
ton, OR 97006

189. Charles L. Seitz, Dept. of Computer Science, California Institute of Technology,
Pasadena, CA 91125

190. Lawrence F. Shampine, Mathematics Dept., Southern Methodist university, Dal-
las, TX 75275

191. Kermit Sigmon, Dept. of Mathematics, University of Florida, Gainesville, FL
32611

192. Horst Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA
94035

193. Burton Smith, Tera Computer Company, 400 North 34th St., Suite 300, Seattle,
WA 98103

194. Larry Snyder, Dept. of Computer Science and Engineering, FR-35, University of
Washington, Seattle, WA 98195

195. Danny C. Sorensen, Dept. of Mathematical Sciences, Rice University, P . 0. Box
1892, Houston, TX 77251

196. Rick Stevens, Mathematics and Computer Science Div., Argonne National Labo-
ratory, 9700 South C a s Ave., Argonne, IL 60439

197. G. W. Stewart, Computer Science Dept., University of Maryland, College Park,
MD 20742

198. Quentin F. Stout, Dept. of Electrical and Computer Engineering, University of
Michigan, Ann Arbor, MI 48109

199. Paul N . Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80303

200. Leigh Ann Tanner, NASA Ames Research Center, MS 258-6, Moffett Field, CA
94035

201. Michael Thomason, Dept. of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37996-1301

202. A. S. Umar, Dept. of Physics and Astronomy, Vanderbilt IJniversity, Nashville,
T N 37235

203. Charles Van Loan, Dept. of Computer Science, Cornel1 University, Ithaca, NY
14853

204. James M. Varah, Centre for Integrated Computer Systems Research, University
of British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia
V6T 1W5, Canada

205. Robert G. Voigt, ICASE, MS 1 3 2 4 , NASA Langley Research Center, Hampton,
VA 23665

206. Michael Vose, Dept. of Computer Science, hyres Hall, University of Tennessee,
Knoxville, 'I'N 37996-1301

- 34 -

207. Phuong Vu, Cray Research Inc., 1408 Northland Dr., Mendota Heights, MN 55120

208. Tomny Wagner, Dept. of Computer Science, Vanderbilt University, Nashville,
T N 37235

209. Daniel I). Warner, Dept. of Mathematical Sciences, 0-104 Martin Hall, Clemson
University, Clemson, SC 29631

210. Andrew 13. White, Computing Div., Los Alarnos National Laboratory, Los Alamos,
NM 87545

211. Michael Wolfe, Oregon Graduate Institute, 19600 N.W. von Neumanu Dr., Beaver-
ton, OR 97006

212. Margaret Wright, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

213. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, T X 78731

214. Office of Assistant Manager for Energy Research and Development, U.S. Dept. of
Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N 37831-8600

215--224. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

