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ABSTRACT 

In this work we present a methodology for the fusion of ultrasound and visual 
sensor data as acquired by a mobile robot. The objective of the methodology 
was the reduction of systematic errors which arise in the processing of the data 
in the individual sensor domains. In the initial processing of the ultrasound 
scan, rectilinear (Cartesian map and polar (strings) data structures were built. 
In the initial processing of the kCD camera image, vertical edge segments were 
identified and labelled according to their connectivity. The systematic errors treated 
included ultrasound distortions in size, and visual ambiguities in discriminating 
depth discontinuities from intensity gradients generated by other details in the 
image. These systematic errors were first flagged by comparing the ultrasound 
strings and visual vertical edges to one another. The ranges, spatial orientation of 
the camera, and geometric information extracted from least-squares fits were then 
used in the fusion stage processing of the visual image. Vertical edge information 
was used in the subsequent fusion stage processing of the ultrasound data. By the 
end of this feedback-like fusion process the data structures in each sensor domain 
carried some information from the other domain. We had identified the vertical 
edges of interest, tagged them with range information, and removed the distortions 
from the Cartesian navigation maps, 
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1. INTRODUCTION 

One of the prerequisites for intelligent behavior in robotic systems is the ability 
to generate internally self-consistent representat ions of the environment from 
sensor data. Often, this is impossible to achieve on the basis of either one 
sensing operations or a single sensor domain, particularly when the environment 
is unstructured to any appreciable extent. The term “multi-sensor integration”, 
or equivalently, “multi-senwr fusion”, denotes the task of combining data and 
information from more than one robot location, and/or from more than one sensor, 
so that a consistent world model can be generated. 

The term “systematic errors’’ encompasses all errors which are not random in 
character (i.e-, which are not due to, say, electronic noise or counting statistics, 
etc.). These errors are produced whenever there are incorrect and/or inconsistent 
interpretations of data. They arise in automated, or robotic, systems when there is 
insufficient sensor information to correctly interpret the data, and when assumptions 
concerning the nature of the environment are violated. 

Multi-sensor fusion can be viewed as a strategy for the reduction of systematic errors 
to produce a self-consistent internal representation of the environment. There are 
two logical stages in this type of strategy. In the first phase, consistency checks are 
done between different sets of sensor data which have been acquired and initially 
interpreted. In the second part, models of the sensors, the environment, and their 
mutual interactions, are used in order to resolve the inconsistencies found in the first 
stage of the fusion process. An example of this approach was presented in [4 . In that 

navigation maps. The cells of the Cartesian maps were assigned labels denoting 
whether they were empty or occupied. During the updating procedure, co~mparisons 
were made between the sets of labels assigned from data at different sensing 
locations. Inconsistencies were flagged by conflicting label assignments. Pat tern 
analyses and consistent-labelling algorithms, based upon physical arguments and 
models, were then used to resolve the conflicting label assignments. 

Turning to the growing literature on sensor fusion we note that some of the problems 
associated with achieving location self-consistency by mobile robots were discussed 
by Chatila and Laumond [7], and by McKendall and Mintz [21 . We observe that 

3-D noisy visual maps, and Elfes [Ill constructed 2-0 maps from ultrasound data. 
Striped light and (passive) intensity images were integrated by Wang and Aggarwal 
[30] and by Hu and Stockman [16]; registered range and reflectance data from a 
laser rangefinder were fused by Duda, et al. [lo], Nitzan et al. [25], and Magee et 
al. [19]. In addition, Flynn [12] studied the integration of ultrasound and infrared 
range sensor data, Allen [l], and Stanfield [29 , investigated the integration of vision 

and visual sensor data. 

work ultrasound data from different robot locations were fused to producc A artesian 

Ayache and Fauguras [3] investigated problems associated with b uilding and fusing 

and touch, and Nandhakumar and Aggarw a [23] examined the fusion of thermal 

In the present work we developed a methodology for fusing 2-D ultrasound range 
data with 2-D visual intensity data as acquired by a mobile robot. As was the case in 
[4 , the goal of the fusion process was reduction of systematic errors. Although the 

referring to a horizontal scanning plane and the latter denoting a vertical image 
plane, the two sensor domains shared a common angular coordinate. This overlap 

2- b planes in the ultrasound and visual sensor domains were different, the former 
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enabled us to use the ultrasound information reduce systematic errors in the visual 
domain, and vice versa. 

The information we wished to extract from the data consisted of the positions 
in the visual image of the vertical edges of objects, and the locations in the 
ultrasound viewing plane of the occupied and empty regions of space, and also 
the angular positions of the depth discontinuities. These particular features were 
chosen for their utility with respect to robotic exploration and navigation and for 
their comparability. The processing of the data in the individual sensor domains 
to extract this information is described in Section 3. This discussion is preceded in 
Section 2 by a brief overview of the sensor environment and systematic errors. 

We begin Section 4 by noting that our comparison-correction mechanism for fusion 
is analogous to a feedback process. In the case of sensor fusion we are attempting 
to control the interpretations of the data. The two feedback-like loops used in the 
fusion of ultrasound and visual sensor data are introduced in Section 4.1. The 
sequential execution of these loops is described in Sections 4.2 and 4.4, and Section 
4.3 contains a discussion of the statistical analyses and spatial filtering done during 
the first part of the fusion process. The paper is summarized in Section 5. 
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2. SENSING, ENVIRONMENT AND SYSTEMATIC ERRORS 

2.1. Sensor Placement and Data Acquired 

Hermies-1IB is one of a series of mobile robot prototypes developed at Oak 
Ridge National Laboratory’s Center for Engineering Systems Advanced Research 
(CESAR). The hardware for this robot includes a mobile platform, dual manipulator 
arms, and a sensor turret equipped with an array of twenty-four ultrasonic range 
sensors and several CCD cameras. This robot provided the data for the fusion 
study. 

The ultrasonic sensors contained Polaroid industrial-grade transducers producing 50 
kHz bursts, 1 msec in duration. The transducers functioned as both transmitters 
and receivers of ultrasound. By processing the signals to give the time of flight for 
the earliest echo the distance to the nearest object lying either partially or wholly 
within the beam cone was determined. 

The twenty-four ultrasonic sensors were grouped into six phased-arrays of four units 
each. One phased-axray was oriented in the forward direction for reflexive collision 
avoidance. The five remaining phased-arrays were mounted on the sensor turret to 
form a partial ring in the horizontal plane. By panning the sensor turret in one of 
several modes, range data were acquired spanning 360 deg. In our studies from 24 
to 120 samples of range data were taken in 15 to 3 deg steps, respectively. 

The intensity pattern of the phased-array configuration possesses a minimum (null) 
at 4.8 deg [18]. Due to mechanical limitations of the sensor, cancellations were 
incomplete and there were small side lobes in the intensity pattern at larger angles. 
The effective beam width of the sensors depends upon the radiated power, the 
surface properties of the surfaces scanned, and the amplifier threshold sensitivity. 
In the experiments performed by us the effective beam width of the sensors was 
approximately 18 deg. 

The visual sensor used in the study consisted of a single Sony CCD camera equipped 
with a wide-angle, 4.8mm lens. This camera provided 256 x 256 pixels of 8-bit grey- 
level intensity values from a 60 degree field-of-view. The camera was mounted on 
the robot at a height of 94 cm above the floor, and was oriented facing forward with 
its opticd axis in the horizontal plane. 

2.2. Sensing Environment and Systematic Errors 

Displayed in Fig. 1 is a visual scene depicting part of the CESAR laboratory which 
served as our experimental testbed. A single box has been placed in arbitrary 
position on the floor away from walls. The horizontal dimensions of the sides of 
this and other boxes used in the experiments varied from 30 to 120 cm, and were 
of the same order of magnitude as the ultrasound beam width at typical scanning 
distances. The boxes were tall enough to intercept the Hermies-IIB ultrasound 
viewing (horizontal) plane. 

We observe in Fig. 1 that the floor has been marked with a rectangular grid. There 
is also a variety of wall markings and other background clutter. The upper portion 
of the figure shows the placement of unmodified, hanging fluorescent lamps which 
serve as a non-uniform source of ambient light for the CCD camera. 

3 



Fig. 1. Experimental setup: CCD image of part of the CESAR 
laboratory. The box to be identified is located in center of the image. 

The ultrasonic systematic errors depend upon the beam width (resolution), the 
sensing frequency, the radiated power and sensing thresholds, and the environmental 
geometry and surface properties of the objects being scanned. There are two broad 
classes of errors. These are (i) distortions, and (ii) specular reflections/cornplete 
absorption. The former are resolution, power and threshold dependent; the latter 
are environmental geometry, surface property and frequency related. We focussed 
our attention in this study on the distortion errors; the second class of errors will 
be discussed by us elsewhere. 

Several techniques for extracting edges and lines from CCD camera images have 
been developed. Roberts [21] ,  Rosenfeld and Thurston [28], Nevatia and Babu [24], 
Marr and Hildreth [20] ,  and Canny 6 for example, employed either 1st derivative 

15 used zero crossings in the 2nd directional derivative, and Prewitt [26], Hueckel I 1  17 , Haralick [15] and Nalwa and Binford [22] developed surface-fitting methods. 

operators or Laplacians; Marr and Hi Id reth [20], Yuille and Poggio [32], and Haralick 

Shown in Fig. 2 are the results of using a first derivative operator to find the vertical 
edges in the grey-scale CCD image. Both first and second derivative, directional 
and non- directional, edge detectors function by finding intensity gradients in the 
image (see, for example, the studies by Canny [6], Marr and Hildreth [20], Nalwa 
and Binford [22], and Haralick [15]). As a result, there will be systematic errors, 
arising from the interpretation of the output from these gradient operators as object 
boundaries, that is, as depth discontinuities, For example, we observe in Fig. 2 that 
for our environment we have depth discontinuities which characterize the boxes, and 
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we also have intensity gradients generated by variations in the background and floor 
markings, by the overhead lights and air- conditioning ducts, and by shadows and 
glare. The number of vertical edges in t,he processed image, in fact, far exceeds 
the number of actual depth discontinuities forming boundaries of the physically 
interesting objects . 

Fig. 2. Vertical edge segments. Features were extracted using 
anisotropic Gaussian smoothing and a horizontal derivative operator. 

In the psychophysical theory of monocular vision [13,14], scenes such as that shown 
in Fig. 1 contains sufficient information for a spatial understanding of its features. 
That is, the textural, shading, perspective a.nd edge information contained in the 
visual scene provides the (human) viewer with sufficient depth information to 
disambiguate the objects of interest. The rriinimally processed image displayed 
in Fig. 2 no longer contains this wealth of information. One solution to this lack of 
information would be to pcrform a more detailed processing of the initial data in 
order to extract textural, shading and other types of information. Alternatively, we 
observe that the minimal, vertical edge information is sufficient for navigation and 
exploration. Furthermore, we can provide the missing depth perception by making 
use of the information available in the ultrasound sensor domain, that is, by fusing 
the ultrasound and visual sensor data. 
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3. PROCESSING OF THE SENSOR DATA PRIOR TO FUSION 

3.1. Initial Processing of the Ultrasound Scan 

The initial processing of the ultrasound scan data is depicted in the block diagram, 
Fig. 3. In brief, in the pre-processing stage, consistency checks were done 
between returns from adjacent scan angles, and synthetic beams were generated at 
intermediate scan aagles. The synthetic beams enabled the ray-tracing algorithm 
used in the mapping stage to cover the appropriate region of the Cartesian map. 
In the present work the initial sample of range data was transformed at the end of 
the pre-processing stage into 240 samples of range data spanning 360 deg in 1.5 deg 
steps. 

RANGE DATA 

ORNL-DWG WM-5595 

L 
PRE- 

PROCESSIF 

<*> CARTESIAN STRING 

COMPOSITION 

<&- LIST OF 

FEATURES 

Fig. 3. Block diagram of the initial processing of the ultrasound data. 

Two types of data structures, Cartesian maps and strings, were built in the second 
stage of the ultrasound data processing. The Cartesian map is a global, rectilinear 
representation of occupied and empty regions of space. It was built by transforming 
the (range, angle) information to Cartesian (x, y> coordinates. The cells of the map 
so found represent the scattering sources giving rise to the echoes, and were labelled 
as occupied. For each return a ray-tracing algorithm was executed to find and 
label as empty the pixels representing the regions lying between the robot and the 
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sources of the echoes. Regions which were either occluded or were located beyond 
the maximum range of the sensor were labelled as unknown. 

The term “strings”[4] denotes a sequence of returns of similar range from 
neighboring scan angles, bounded at both ends by depth, or range, discontinuities. 
Strings are the interesting features in the ultrasound scene, marking the possible 
locations of object surfaces. This second type of data structure is a local, polar 
representation of the data, containing information on (i) the ranges and angles of the 
boundaries of the strings, and (ii) the (x,y) Cartesian map coordinates of each string 
element. For the simple configurations studied herein the depth discontinuities were 
unambiguously detected using a threshold odometer. 

A 64 cell x 64 cell Cartesian map produced at the termination of the initial 
processing of a 360 deg scan is displayed in Fig. 4. Each cell of the map denotes a 15 
cm x 15 cm region of space, and is labeled as either occupied, empty or unknown. 
We see that there are several empty zones fanning out from the robot origin. These 
empty zones are terminated by sequences of occupied pixels, that is, by the strings. 
The strings shown in the figure denote the positions of the exposed surfaces of three 
boxes, which had been placed on the floor, and a portion of the laboratory walls. 

ORNL-DWG 90M-10853 

I I I I I I I 

24 

16 

a 

0 

I x  8 
-I 

2 X 1 
L 

I I I I I 

X 
I 

8 16 24 32 0 

Fig. 4. Cartesian map of a setup containing three objects (boxes). 
Each cell denotes a 15 cm x 15 cm region of space. Cells labeled by 
‘3’s are empty; those marks by ‘2’s are occupied, and cells left blank 
represent unknown areas. The robot origin is at the center of the “fan” 
pattern. 
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In constructing this figure, the labelling of empty pixels at scan angles for which 
no echoes was received (long returns) was suppressed. This was done in order to 
clearly outline the strings and their defining depth discontinuities. 

The Cartesian map produced from the one box configuration shown in Fig. 1 is 
presented in Fig. 5. Long returns were not suppressed, and the fan paitsern is less 
pronounced than in Fig. 4. 111 [4] a numerical representation was used together 
with a simple logic for label multiplication to mark and update the cells of the 
Cartesian maps. We did not perform these operations in this study, and have now 
changed the appearance of the displayed map in order to more easily exhibit the 
modifications due to fusion with the visual data. The cells labelled as empty and 
occluded represent the same physical dimensions as in Fig. 4. The cells labelled 
as occupied have a slightly diffcrent interpretation. The sizes of the occupied cells 
have no direct meaning. Instead, their positions, in 1.5 deg intervals, denote the 
(x,y) coordinates of the individual string elements. 

Fig. 5. Cartesian map of a the setup in Fig. 1. Empty (grey) and 
unknown (black) cells have the same meaning as in Fig. 4. The small 
(white) squares denote the string elements, that is, occupied locations 
in 1.5 deg steps. 

3.2. Initial. Processing of the Visual Image 

The minimal processing of the visual image as outlined in the block diagram, Fig. 6 ,  
was straightforward. In order to obtain the binary image shown in Fig. 2, the grey- 
scale CCD image was convoluted with an anisotropic Gaussian and differentiated 
in the horizontal direction. The vertical edge segments were then identified using 
non-maximal suppression and local extremum finding. 
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Fig. 6. Block diagram of the initial processing of the visual image. 

The anisotropic Gaussian convolutions were accomplished through repeated 
operation with spatially-limited, additive filters. Two filtering operations were done, 
each using a “triangular” filter with a small number of repetitions, one along the 
direction of the edges, and one across the edges. This approach was based upon 
the observation that repeated convolution with any spatially-limited filter tends to 
an equivalent Gaussian convolution. Simple averaging was also tried, and found 
to produce results similar to that obtained using the filters. It may be noted that 
the maxima in the output of this operator corresponds to the zero-crossings in the 
output of the Laplacian, when restricted to one dimension. 

The next stage of processing consisted of using a connected component algorithm to 
identify sequences of contiguous edge segments in the binary image, and to assign 
a unique label to the pixels in each sequence. The definition of contiguous was a 
strict one, namely, two edge segments were contiguous if they were separated from 
one another by no more than one pixel in the horizontal and vertical directions. 
That is, the edge segments were contiguous if they were 8-connected. The output 
of the connected component algorithm was a two-dimensional array of the assigned 
edge segment labels. 

This array of edge segment labels was then used to build a linked-list containing the 
geometric features of each of the edge segments. The first part of each entry in the 
linked-list specified the label, the horizontal (x) coordinate, and the top and bottom 
vertical coordinates, ytop and ybot, of each segment. The second part of each entry 
in the linked-list contained pointers to the entries for the next and adjacent edge 
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segments of the same label. These were found by sorting the entries for each set of 
edge segments sharing a given label. 

The final operation prior to fusion was that of weak thresholding with respect to 
the total length of the labelled sequences. The interesting edge segments cannot 
be uniquely distinguished from uninteresting ones by simple geometric properties 
or by their grey-scale intensity gradients. For these reasons only weak thresholding 
operations were carried out in the image processing. To produce Fig. 2 a weak 
thresholding, or non-maximal suppression, was done with respect to the magnitude 
of the intensity gradient. The weak thresholding operation done on total length 
of the labelled sequences served to remove short, isolated edge segments from the 
image. The results are presented in Fig. 7. 

Fig. 7. Vertical edge segments after t hresholding. Edge segments 
removed by t h e  thresholding operation appear  as short  bright lines. 
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4. SENSOR FUSION 

4.1. Fusion and Feedback 

Upon completion of the initial processing, the partially interpreted sensor data were 
fused. This was done by exchanging information between the two sensor domains. 
Underlying this exchange was the observation that while the ranges extracted from 
the ultrasound data were intrinsically accurate to 0.25 cm, the resolution in the 
horizontal plane was poor. The visual edge data, on the other hand, yielded accurate 
horizontal distance measures when the appropriate edges were identified, that is, 
when the missing depth (range) perception was provided. 

The mutually beneficial exchange of information between ultrasound and visual 
sensor domains was handled by the pair of sequentially executed “feedback” loops 
shown in the flow chart, Fig. 8. In the first loop, ultrasound range information 
was used to identify candidate vertical edge pairs. In the second loop, the resulting 
visual edge information was used to reduce the influences of ultrasound distortion 
errors upon the strings and Cartesian maps. 

ULTRASOUND 

STRING 
ERROR 

REDUCTION 

Fig. 8. Conceptual block diagram of the fusion process. 

4.2. Ultrasound Information in the Visual Domain 

The fusion process was initiated by using the shared horizontal angular coordinate to 
establish a preliminary correspondence between ultrasound strings and visual edge 
segments. The list of strings was first pruned of all entries whose angular extent lies 
outside the field-of-view of the CCD camera. The remaining strings were mapped 
into the visual domain. Results of this mapping are shown in Fig. 9. In this figure 
we observe the vertical edge segments after the weak thresholding with respect to 
segment length and intensity gradient magnitude. Also shown in the figure are a 
series of small squares. These squares are spaced in 1.5 degree intervals, and are in 
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a one-to-one correspondence with the ultrasound string elements displayed in Fig. 
5. 

Fig. 9. Dual visual representation: Vertical edge segments and 
The bounding region is indicated by the ultrasound string elements. 

rectangle. 

Returning to Fig. 1 we note that the visual picture contains a horizon which divides 
the scene into upper and lower domains. The lower domain is dominated by a single 
surface, the floor (ground), attached to which is the box we wish to identify. As 
can be seen in Fig. 2, the mapping of the floor coordinates to the corresponding 
pixel positions in the lower half of the visual image was not linear. Instead, there 
were distortions due to perspective geometry and the wide-angle lens of the CCD 
camera. To map the ultrasound strings into the visual domain a look-up table 
was constructed from detailed floor calibration data. This information was used 
together with the range data to locate the bottoms of the objects in the image. In 
Fig. 0 the y-coordinates of the squares denoted the location of the ground (floor) 
at the appropriate distance from the CCD camera. 

In Fig. 9 the squares have been surrounded by a rectangular region. This bounding 
region represented a crude estimate of the tolerances involved in the dual string-edge 
representation. The bounding region was defined by the inequalities: 

xmin - Sx < x < xmax + Sx 

and 
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In the first of these two expressions xmin and xmax denoted the string endpoints; the 
inequalities and large values for 6x were needed in order to take into account the as 
yet untreated ultrasound systematic errors. In the second relation y(r) represented 
the y-coordinate of the floor at range, r, in the visual image, and 6y was a tolerance 
which included uncertainties in the floor calibration and errors in detecting the 
bottom of the object in the environment using the vertical edge detection algorithm. 
These expressions provided bounds on the coordinates, x and ybot, of the sets of 
vertical edges of interest. 

In Fig. 9 the two sequences of vertical edges falling within these bounds have been 
highlighted. As seen in the figure, the highlighted features correspond to the vertical 
edges of the box sitting on the floor of the CESAR lab. In greater detail, we note 
that the vertical lines accurately represent the horizontal dimensions of the box. 
One of the goals of the Gaussian smoothing was to reduce the sizes and numbers of 
the breaks in the edge segments. In accomplishing this goal the smoothing increased 
the lengths of the edge segments beyond the boundaries in the vertical direction. 
This lengthening was taken into account by by. 

4.3. Statistical Analysis 

Our objective in performing a statistical analysis was to extract the salient geometric 
features of each extended sequence of vertical edge segments sharing a common 
label. In doing so we noted that many background features such as floor markings 
and overhead lighting fixtures gave rise to 8-connected edge sequences possessing 
overall non-vertical slopes. These slopes (and intercepts), when found, could be 
used as an additional spatial filter to eliminate the unwanted features from the 
image, thereby increasing the robustness of the bounding region algorithm. 

The statistical analysis consisted of least-squares, linear fits plus an evaluation of 
the results using the calculated values for chi-square. In performing a least-squares 
analysis it should be noted that we do not assume that the distribution of errors 
is gaussian. The justification for this type of fitting resides in the observation (see, 
for example, [8, 311) that least-squares fits provide the most accurate description 
possible of a set of data (vertical edge segments). That is, this fit corresponds to 
a condition of minimum error or, equivalently, to a condition of maximum weight, 
which for a Gaussian is also a condition of maximum likelihood. 

The statistical analysis was simplified by dividing the connected sequences into two 
groups with respect to their distribution in (horizontal) x-coordinates. The first 
group contained those sequences having narrow distributions of their x-coordinates, 
specifically, sequences whose width was no more than two or three pixels. A full 
statistical analysis was unnecessary for these cases. Instead, we calculated the 
length-weighted first moment of the distribution of x-coordinates: 
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where X i  is the length of the ith segment. The original sequence of vertical edge 
segments was replaced by a single line located at < x >, extending from the top to 
the bottom of the sequence. The bright lines displayed in Fig. 8 were generated in 
this manner. 

The second group contained all other groups of extended sequences of vertical edge 
segments. The method adopted by us for fitting a least-squares line to a set of 
vertical edge segments sharing a common label was to use the midpoints of each 
segment as the (vertical) y-coordinate, and weigh the corresponding term by the 
length of that segment. This simple procedure can be justified by noting that for any 
connected sequence of edge segments the excursions in the horizontal direction were 
just one pixel per segment. This ansate was also in accordance with our intuitive 
notion that long edge segments are fa r  more likely to correspond to actual depth 
discontinuities than short edge segments. 

The y-coordinate midpoints were treated as the dependent variable and the x- 
coordinate as the independent variable in the least-squares fits. The corresponding 
least-squares line of slope ‘b’ and intercept ‘a’ was determined from the data as 

1 
A 

a = - -  cy 2 

i i 

1 b = -  
A 

with determinant 

A =  I I 
2 

E? I i 

and weight factor 

1 
Q .  - 

a i  

(4) 

( 5 )  

Least-squares lines generated using Eqs. 4 to 6 are shown superimposed upon the 
appropriate sequences of edge segments in Fig. 10. These fitted lines, as well as 
the bright lines shown in Fig. 9, were added to the visual image using Bresenham’s 
(51 line-drawing algorithm. As can be seen in the figure, the least- squares lines are 
nearly indistinguishable from the underlying connected edge segments. 
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In Fig. 10 the least-squares lines correspond to details of the overhead lighting 
fixtures. These lines were identified easily by their slopes which were small compared 
to those of the lines describing the vertical edges of the object of interest, Le., the 
box standing on the floor of the lab. By the end of the least-squares analysis these 
and similar lines were removed from the list of lines using this "slope filter". The 
output from the analysis was a short list of lines and their geometric features. The 
geomctric features consisted of the coordinates of one endpoint (the top), and the 
slope and intercept. 

Fig. 10. Least-squares fitting. Least squares lines are shown as bright 
lines superimposed upon the underlying sequences of edge segments. 

The final quantity of interest was the value for chi-square. We had found that, in 
some instances, sets of edge segments belonging to different features in the visual 
image were 8- connected. For example, for certain placements of the box on the 
floor of the lab, the floor markings were merged into the vertical edges of the 
box. The solution to this type of systematic error was to use the value of chi- 
square as a criterion for identifying their occurrence, since the quality of the fits 
deteriorated whenever sequences of edge segments of differing slope were merged 
into one another. An iterative end- point fitting algorithm [9] was applied to locate 
the rcgian(s) of inflection, and the two sets of edge segments were unlinked by fitting 
more than one line to the data. 

The expression used by us for calculating the value for chi- square was 
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Similarly, the reduced chi-square was defined as 

In Eq. 8, L denotes the total length of the edge segments in the sequence. For 
simplicity, the deviations were only calculated for the midpoint y-coordinates of 
the edge segments. This served as an adequate means for distinguishing between 
good and bad (erroneous) fits. To conclude this section it should be noted that 
Andress and Kak [2] defined similar linking, unlinking and merging operations in 
their production system work. 

4.4. Visual Information in the Ultrasound Domain 

Having discussed how the ultrasound information was incorporated into the visual 
image, we now turn to the second feedback process, where visual sensor data was 
used to modify and correct the (ultrasound) Cartesian map. The starting point 
for the corrections to the map was the dual representation of the ultrasound and 
visual data depicted in Fig. 9. This representation enabled direct comparisons 
of the string elements to the highlighted vertical lines. Specifically, a minimum 
distance algorithm was used to find the ultrasound string element nearest each 
of the identified visual vertical lines. These vision-defined string elements were 
interpreted as the corrected string endpoints. 

We recall that the string data structures contain the identifying (x,y) coordinates 
of the corresponding occupied cells of the Cartesian map. This information was 
used to modify the Cartesian map to reflect the corrections to the string endpoints. 
The results are exhibited in Fig. 11. Upon comparison of the two maps, Figs. 5 
and 11, we find that the exposed surface of the box has been modified to reflect the 
visual information. The remainder of the map was left unchanged. In modifying 
the Cartesian map, cells at the appropriate scan angles initially labelled as either 
occupied or occluded were relabelled as empty. The ranges assigned at these 
angles were based upon data from scan angles lying just beyond the original string 
endpoints. 

It is worthwhile to note that the simple combination of ultrasound and visual sensor 
data yielded estimates of linear dimensions of objects which were both accurate and 
precise. For example, the ultrasound range estimate for the box was 4.42 m. In Fig. 
9 the ultrasound string data provided an absolute scale for the visual edge angular 
separation. Upon combining this information with the range data we obtained a 
box width of 59.8 cm. The actual width of the box was 61.0 cm; that is, our 
result was accurate to 2%. The accuracy declined as the yaw of the box increased. 
In those situations the strings tended to bend away from the surface of the box 
and the range estimates denoted the distance to the nearest part of the box only. 
The outer (diagonal) edges were imaged, while the interior edge of the box became 
progressively more difficult to observe. 
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Fig. 11. Cartesian map of the setup shown in Fig. 1, after sensor 
fusion. Symbols have the same meaning as in Fig. 5. 

Turning to the precision of the width estimates, we note that the repnesentation 
of visual and ultrasound data in Fig. 9 yielded far more precise values for widths 
than did the Cartesian map, Fig. 11. The intrinsic precision of Cartesian map was 
given by the 15 cm cell size. The dual representation was a factor of 5 more precise. 
To obtain the overall precision of the 59.8 cm width estimate, we combined the 
ultrasound range and visual pixel errors in quadrature to yield an error of 3.2 cm. 

19 





V. SUMMARY AND CONCLUDING REMARKS 

To summarize, we have presented a methodology for fusing ultrasound and visual 
sensor data as acquired by a mobile robot. The objective of the fusion process 
was to reduce the systematic errors which arise in the processing of the data in 
the individual ultrasound and visual sensor domains. The need for strategies of 
this type arises whenever autonomous robots, or other automated data processing 
systems, begin to interpret data collected in environments which are unstructured 
to any appreciable extent. 

We noted both in the present study and in our previous one on ultrasound data 
fusion that there were two distinct error treatment stages. In the identification stage 
comparisons were made between different sets of initially interpreted sensor data. 
In the resolution stage, models of the sensors, the environment and their mutual 
interactions were used to modify the initial interpretations and remove the errors 
flagged in the first stage. This two stage method for error treatment is analogous 
to that of a feedback process. 

In the ultrasound domain examined herein we focussed our attention on the 
distortion errors produced by the limited angular resolution of the beam. In the 
visual domain we extracted vertical edge information, and the systematic errors 
involved the well-known ambiguities in discriminating depth discontinuities from 
intensity gradients generated by other details in the image. To flag these sets of 
errors we compared the ultrasound strings, that is, polar representations of the 
ultrasound scan data, and visual vertical edges to one mother. The comparisons 
were straightforward to do, since the data structures in the two sensor domains 
shared a common angular coordinate. By the end of the second stage, the data 
structures in each sensor domain carried some information from the other domain. 
We found that we could identify the vertical edges of interest, tag them with range 
information, and remove the distortions in size from the Cartesian navigation maps. 

n o m  the viewpoint of the visual sensor domain, a series of operations was applied to 
the visual image to extract the vertical edges corresponding to depth discontinuities. 
The edges of interest were neither intense nor prominent, and could not be extracted 
using low-level thresholding and morphological operations, alone. Instead, we made 
use of the ultrasound information, the special horizontal orientation of the camera, 
and statistical techniques to perform additional spatial filtering of the visual data. 
Likewise, from the viewpoint of the ultrasound sensor domain, a series of non-local 
algorithms were applied to the processed data to remove distortion errors. The 
operation of snipping back the length of the strings to match that of the visual edge 
separation was formally equivalent to the pattern analysis done in [4] involving two 
strings, and represents an additional spatial filter for the ultrasound data. 
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