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ABSTRACT 

We consider matrices arising out of the one-way dissection method for solving large sparse systems 
of linear equations. The systems that we consider are thaw that may have singular diagonal blocks. 
Such systems arise in certain fluid flow problems. 

Gunzberger and Nicholaides [Lin. Alg. Appl. 64,pp.183-189,1985] proposed a method for resolving 
the singularity in the diagonal blocks. This method uses the Moore-Penroae pseudoinverse. We pro- 
pose two improvements to the Gunzberger-Nicholaides procedure: (1) The substitution of a weighted 
pseudoinverse: for the Moore-Penrose pseudoinverse; (2) A more elegant implementation of the back 
substitution procedure. A stability andysis of both out procedure and the Guneberger-Nicholaides 
procedure is given. Both our analysis and empirical tests show that our method has better numerical 
stability properties than the Gunzberger-Nieholaides procedure. We also implement our procedure 
on Intel iPSC/1 Hypercube. Our improvement to the back substitution method makm the natural 
parallelism in the problem easier to exploit. 

V 
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1 Introduction 

The basic problem is to solve the n x n system of linear equations 

Ax = 6, 

* 

where A and s have the form 

B1 0 0 * s, 
0 B a 0 .  

(1.2) A = [  . . * Q *  ; s = (81 ,Sa , . .  ., SE,SE+1) T . 
* Bk Sh 

GT G$ * Gr F 

Here Bi, i = 1,2, . . . , k, are mi x mi matrices, F is a p x p matrix and Gi and Si are mi x p matrices, 

where p + mi = n. Each s i>  i = 1,2,. . . , k, is an mi-vector and 8)+1 is a pvector. This is a 

matrix that, arises out of the so-called one-way dissection ordering. Much of the discussion of one-way 
dissection in the literature has concerned symmetric, positive definite systems. This implies, that 
Bi, i = 1,2, .  . . , k, and F are symmetric, positive definite, and Gi = Si,  i = 1,2, .  . . , k. Instead we 
make the much weaker assumption that rank(A) = n ,  i.e. , that A is nonsingular. Thus we have that 
rank(Bi) = Z i  5 mi, i = 1,2,. . . , k. Applications of such systems are given in [Q]. 

Gunzberger and Nicholaides 181 suggested an algorithm based upon Gaussian elimination with 
singular pivots. It uses the Moore-Penrose inverses of the diagonal blocks Bj, i = 1,2,. . . , k. The 
Moore-Penrose pseudoinverse of a matrix B,  denoted by B + ,  is the unique matrix satisfying the four 
Moore-Penrose conditions 

k 

i= l  

(1.3) 
1. BB+B = B 3.  (BB+)T  = BB+ 
2 .  B+BB+ = B+ 4. (B+B)* = B+B 

We will use the notation B ( i ) , B ( i ~ j ) ,  or B('jta) to denote matrices satisfying conditions i,j, or k 
among those in (1.3). The procedure in [8] has a simple elimination procedure, but a complicated 
back substitution procedure. 

In this paper, we suggest an alternative method for resolving the singularity in the diagonal blocks 
Bi, i = 1,2, . . . , k. This method is based upon the weighted pseudoinverse discussed in a fundamental 
paper by Elden [5]. We give evidence that this method is more slable. We also give a more elegant 
back substitution procedure, which makes the algorithm easier to implement on a message passing 
architecture. These algorithms are outlined in section two. An error analysis of our proposed algorithm 
is given in section three. Empirical tests verifying the stability properties of our algorithm are given 
in section four. We also give an implementation on Intel Hypercube(iPSC/l) in section four. The 
implementation is very straightforward. 

2 Description of Algorithms 

We first describe the elimination procedure of Gunzberger and Nicholaides [8] for solving (1.1). It 
makes use of the Moore-Penrose pseudoinverses of the diagonal blocks Bi, i = 1 , 2 , .  . . , k. The other 
elimination procedures in this section will take a similar form. 

Algorithm 1 Block Elimination using the Moore-Yenrose Pseudoinverse [8] 

1. Compute 
k k 

F z F - GT B'Si ; s"k+l = S k + 1  Gi T Bi f .  8' 

i=l i=l  

GT = GT(I - B",) projection of GT onto orthogonal complement of Range(B,)  
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2. Fori = 1 , 2 , .  . . , k f ind am p*dj x ( ~ p 7 i . - d i )  mal t i t  Xi such that BiXi 0. Note that Ji = ~ . a n k ( B i ) .  
Thas X i  i s  a basis for ihe t a d  space Of Eli. Algoriihms for ~~~~~~ such B basis are given b y  
IIentR [IO] 5nd Pothen [I,?]. 

We note that the t e r m  GT0:Si , GTR;~~, , i = 1,2,. . . , k ,  can be computed independently, as 
can the null space bases Xi, i = 1 , 2 , .  . . , k, The same is true far the @, i = P,2 , .  I * ,  k, but we will 
see later that it is not necessary to compute thew matrices at all. 

The back substitution phase of the G u n z b e r ~ ~ r - N i c h o l a ~ ~ ~  procedure i s  somewhat complicated. 
Let I = (z1,2'2,. . . , zk, ~ k + 1 ) ~ ,  where the block components zi, i 1 , 2 , .  . . , E ,  E -+- 1, are of the form 

2i = zpi + ~ i ,  where Y T Z ~  z 0, i = 1 , 2 , .  . . , k, k +- 1, (2.1) 

and the vectors zi satisfy 

Biri T 0, i = 1,2, ".  .,k , 
E%t+l == 0 

Since A is nonsingular, is  also nonsingular (cf. [SI). Thus 

z k + 1  = o  , 
z k + l  s. Yk+I  . 

Then Algorithm 1 reduces (1.1) to the system 

Bivi + Sizka-1 s i s  i = I, 2,. . . , k ,  
c 

k 

i=l 

Thus 8: need never he explicitly cornpnted. The system (2.4) can be written 

M y -  i - N Z  

Where 

(2.2a) 
(2.2b) 

(2.4a) 

(2 Ab) 

(2.7b) 

(2.7c) 
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The consistency of (2.6) and the nonsingularity of 
that z is known, and let 

then a basic (non-unique) solution 21 is given by 

follow from the nonsingularity of A. If we assume 

f = (fl , f2, . . . , ft , b+dT = g - .Nz (2.8) 

Y k + l  = Zk+l = P-%+l 
pi = Bi+(fi - S ~ Y ~ + I >  

(2.9a) 

(2.9b) 

From [8], we have that y solves (2.6). Thus if we define the matrix ip such that 

y =  *f, (2.10) 

where ip has the form 

o =  

we note the following fact about Qi. Its proof is obvious. 

Lemma 2.1 cf, = M ( ' I ~ $ ~ ) .  That is, Qi i s  a (f,&,/)-pseudoinverse of M. 

If we combine (2.6) and (2.10) we have 

( I  - M*)N% = ( I  - M a ) ; .  

X = d i a g ( X 1 , X z ,  ..., Xk,h)), 
Let 

where Xi are defined in Algorithm 1. Thus (2.12) becomes 

I (2.11) 

(2.12) 

T W = g  (2.13) 

where T = (I - M@)NX; z = Xw;g = (I - M@)S.  Equation (2.13) is consistent but overdetermined 
(cf. [$I). I t  can be solved by an orthogonal factorization of T ( in [$I ,the use of norrnd equations 
is advocated). Gunzberger and Nichnlaides show that T must have full rank if A has full rank. 
We assume that the dimensions of the null spaces of Bj, i = 1,2,. . . , k, are rnuch smaller than the 
dimensions of the blocks themselves. That is, mi - li -g mi. Thus, the solution of (2.13) should be 
very fast compared with the rest of the algorithm. We state the procedure as Algorithm 2. 

Algorithm 2 Back Substitution Procedure [B] 

1. Ezplicitly form T = ( I  - M @ ) N X ; g  = (P - Ma);. 
2. Solve Tw = g by orthogonal factorimtion (or  n o m a !  equations). 

3. Let z = Xw and solve 
y = Qip - N z )  

4 .  The solution z = y -+ z .  

We propose two changes in Algorithms 1 and 2. The first is a simplification of the back substitution 
procedure. This simplification uses computations arising directly out of the elimination procedure. To 
describe that, we give a more specific version of Algorithm 1 which includes the methad for computing 
B:, i = 1 , 2 , .  . . , C. The method is slightly different from that given in [8], but uses the method for 
computing B r  given in Golub and Van Laan[7, pp.162-1671. 
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Algorithm 3 Implementation of Block Elamindim ee~ilag the Moore-Pesamse pseudoinverse 

1. F o r i  r=. ]1,2,. ..,A: p e r f o m  steps 2-7. 

2. Factor Bi into 

Where $i i S  0dhQg59e0/9 U/l1 i s  an ii X li Upper X (tni - !i) mUtrfZ, 
and Pi as a permutat ion matrix. This factorizataon and the detennina&iosD of rank li C Q ~  be 
done by ofthogoreal decomposition wiiB column p i n d i n g  (cf. [ll, Chapter 101) o r  some ofher 
method($ [2,4j 61). 

url is  a% 

9. Cornpule 

(2.14) 

X i  is  a C O V T I , ~ Q ~  choice f o .  the null basis matrix of Bj (cf.[10112]). 

6. Factor 

where X, is orthogonal and Wi i s  upper trinngindor atid compute 

Thw i t e m  (K ,  ui) are projections of (.$, ii;) onto the space orthogonal to the n d l  space of Bi, 
thus providing B:(s~, s i ) .  

7. Corn p ut e 
( & , T i )  zz - c T  ~i (Vi jv i )  

8. Cornpiate 
k 

Algorithm 3 requires 



flops for each i = 1,2,. . . , L. Let m = m? mi. If p m and Irni - lil 5 c = U(1) this simplifies to 
l < c S k  

for each i = 1,2, .  . . , k. We assume here that all of blocks in (1.2) are dense. 
If we consider equation (2.4a) and apply the reduction from Algorithm 3, we have 

(2.15a) 

(2.15b) 

where Vi = (Up], Up]). Since equation (2.15) is just an orthogonal reduction of some rows from 
A t  = 6, it follows that it is underdetermined but consistent. Using the null basis (2.14) for Bi and 
by letting 

equation (2.5) becomes 

&j = qxi 

(2.16) 

where Zi = X j W i .  Thus if we let Sr21 = ($I,. . . , S r l ) T ,  d2] = ($I,. . . , 
then z k + 1  and w = (w1 , w2, .  . . , ~ k ) ~  solve the linear system 

, and 6 = (GI,. . . , G k ) ,  

(2.17) 

The nonsingularity of A guarantees that (2.15) is a nonsingular system of linear equations. For 
problems arising in practice, its dimension will be small compared to the dimension of ti. It can be 
solved by Gaussian elimination with partial pivoting or orthogonal decomposition. Such a reduction 
is much simpler than the back substitution procedure in Algorithm 2. The values of yi and zi, 
i = 1,2,  . . . , k can be recavered from (2.9a) and the step 

zi = 3/ I  + x j w i .  (2.18) 

The computation (2.9a) can be simplified into 

y; = [U]t(Sf'] - si ['I Z k + I )  (2.19) 

thereby avoiding the reuse of the orthogonal factor Qi. We now formally state this procedure as 
Algorithm 4. This algorithm is a method for solving (2.5) and is simply a particular implementation 
of Algorithm 2. 

Algorithm 4 Improved Back Substitution Procedure 

1. Solve the linear system in equation (2.1 7) for z ~ + 1  and w = (~11, w2, .  . . , using orthogonal 
factorization by Householder transformations. 

2. Fori = 1,2, .  . . , k, do steps 9-6 

(2.20) 
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4. Le# 

5. Solve 

(2.21) 

6. Cornpaate 

The ba,ck substitution procedure requires 

flops. If inax Irni - diI = e = O(1) then this reduces to 
l < i < k  

flops. 
The second modification to Algorithms 1 and 2 is to replace B$ with Bill3),  i = 1,2, . . . , k, .Le. any 

satisfying Pcnrose conditions 1 and 3. For the elirrillrration algorithm, this is equivalent matrix 
to solving (cf.[5]) 

min IIBi(q, V i )  - (Si, Sp.)ll1- 
(Va,Vn) 

and then computing 

(2 .Z 2 a) 

(2.22b) 

(2 2 2 c )  

I t  is essential that all of the co1urra:as of 

be vectors in the space orthogonal to the columns of Bi. It is gnarant.~ed by the use of @‘I3). This 
allows us to set up equation (2.17) by orthogonal factorization of R, by column pivoting or some other 
method to detect rank (c .g .  [2,4,6]). When w:: substitute B~”” €si I?:, we lose the property that 
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yTzi = 0, but this property is not necessary for the algorithm to work. Again since G T z i  = GTri, it 
is not necessary to do the computation (2.22~). 

The matrix B{1t3) is not unique unless Ei has full rank. In our modified algorithm, we can choose 
Bill3) 50 as to minimize IICTBI1”)Sill~ and ]l~yBi(~’~)sj112. Aa will be shown in the next section this 
leads to a new algorithm with better numerical stability properties. Elden [5] showed that the (1,3) 
pseudoinverse with this property is the weighted pseudoinverso defined below. 

Definition 2.1 The G-weighted pseudoinverse of B i s  defined by  

In 151, it is shown that the matrix .€I$ is the (1,3)-inverso such that 

I~G“BISIIF 5 IICTR(l’”)SII~ (2.24) 

for all (1,3)-inverses of B and matrices S .  The G-weighted pseudoinverses [B,]: need not and should 
not be explicitly computed. Instead we compute the quantities 

and then compute 
k k 

P = F &; s k + l  -# ri. 

i= l  i=l 

The quantities (R,, ri) are simply the residuals of the least squares problem 

(2.25a) 

(2.25b) 

(2.26) 

(2.27) 

where TB, is the set of minimizers of 

The computation of (&,vj )  is not necessary. The residuals (&,rj) can be computed directly. The 

problem (2.27) has an unique solution if runk [ $ ] = m+,i = 1,2,. . .,k. This is a direct conse- 

quence of nonsingularity of A. We now give a more detailed description of this procedure. Steps 1-4 
are the BJorck-Golub(cf.[3]) direct elimination procedure for solving (2.27). 

Algorithm 5 Block Elimination Scheme Using the weighted Pseudoinverse 

1. Fori = 1,2, .  . . , k ,  do steps 2-5 

2. Same as Steps 2-9 ctfAlgordthm 9. 

3. Let GT = (G’P], GY’) where Gf‘] i s  a p x I ,  matrix a9zd Cyi i s  a p x (mi - I i )  matrix. Compv-te 

Gi = G ~ Z ]  - G ~ ] [ U , Y J - W ~ ~  and (si, ii) = - c f ’ l [ ~ ~ l ~ - ~ ( s ~ ,  sile (Note that Gi G T X ~ ) .  



4 .  Factor 

where ;si ia orlhogosaal clad Wj i s  upper triangular. ?%en c o m p t e  

5. Cornp.ute 
k 

(2.28) 

in (2.211, the back substitution procedure in Algorithm 4 can be used directly after Algorithm 5. This 
adds an additional l i p  flops for each i = 1,2, i . .  , k. Except for differences in terms of O(rn2), the 
operation count for Algorithm 5 i s  identical to that of Algorithm 3. We note however, one difference 

is only a (1) pseudoinverse of M .  This caii be verified easily. However this is enough to assure that 
y = 6j satisfies (2.10) . Hence we can iise the back subskitiition procedure ill Algorithm 4. 

The stability properties of these direct elirninatim procedures can be shown using we!! known 
properties of methods for solving cornstrained least squares problems and systrrns of hwar equations 
(cf. [‘7,13]). These properties are given iir the next section. 

3 

We  POW use backmxrd error analysis (cf. [13] ) to boiand the errors in the cormpratationa) versions of 
the algorithms in sect,ion one. ‘The general forin of the reducticxrs are 

Error Analysis of the Revised Algorithms 

k k 

I F - G~’B~’’3).5’;; s k + i  sk.( . i  - ls, GTBj”3)~ i  (3.1) 
i = l  i = l  

where 
Golub direct elimination procedure as applied in steps 1-4 of Algorithm 3 .  

Lemma 3.1 Let steps 2-5 of Algorithm 5 Be implemented u s i ~ g  Rouseholder transformations Pa gnat-  

ing point arifhrnetic with machine unit y. Then the factorization of each of the blocks [ :; ], 
i = 1 , 2 , .  . ., k, satisfy 

is a (1,3)  pseudoinverse of H i .  First we Reed the €dowing lemma from [l] on the RjSrck- 

P + [  

] -k (6 6s) 
(3%) 

(3.2b) 
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where Y = Q1LQ2, Ql and Qz are orthogonal, and L as anit lower triangular. The bockward errors 
6B, 6G, bS, and 6s satisfp 

(3.3a) 

(3.3b) 

(3.3c) 

where #JB,  4 ~ ,  and 4s are modestly sated polynomials in ibe dimension of B,  G ,  and S, and 

76 = max{ll[~[ll]-l~[2]11F Il!?<l max 1 -t I~[U{;”,-’U:$~~F}, (3.4) 

rs = IIG[lIIU[’J]-lll,, (3.5) 

where U(q) = ( U l ~ ~ l ~ J ~ $ )  is  the first q rows of U ,  U$ is a q x q nonsingzrlar matrix, and Ul:; is  a 
q x (n - q )  malriz, q = 1,2,. . . l 1 .  

A backward error analysis of the reduction stage of Algorithm 5 can be obtained from this theorem 
by substituting I for @. 

Let (kl F;), i = 1,2, .  . .) k , p  , and &+I be the computed values of ( E ,  ri), PI and 6 ” ~ + 1  from 
Algorithm 3 or 5. Then we have the computational equatioris 

where bGi, 6Bi, (SSi, 6 s i )  are errors that can he bounded by Lemma 3.1 and fZ(,) deiiotev the floating 
point computation of the contents. The errors 6F and &$&+I are just the errors in the floating point 
sums. Thus from standard hounds on errors in sums we have 

thus 

Using the fact that 
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is a (1,2,3) pseudoireverse of Ui and (2.24) we bare that 

I IGT[B,bli s 12 5 I I [G$'Il [V,r1ll-l I 12. (3.8) 

This gives us the €ollowirsg bound for Algorithm 5 .  Note that if the Moore-Penrose pseudoinverse B: 
is substituted for [BA];, the inequality (3.8) may be false since the Mmre-lrsen~ose pseidoinverse does 
not satisfy (2.24) . The following theoeem summarkm our results. 

where 

and 4~ and #J# are modestly sized polylaorniab ase the dzmension. 0 4 ~ 4 .  

We now give a corollary that giws stronger stability results for Algorithm 5. It is a straightforward 
consequence of Theorem 3.1 and equation (3.8). 

C o r ~ l h r y  3.1 Let Al~~o~mtlrm 5 be implemented msang UouseRoldPr transjmmdaons m fEotltraig poznf  
m-zthmPtx with mnchme una: p.  Then SA asd 6s gn Theorem 3.i  sattsfy 

where 

and q 5 ~  a ~ d  4s are modestly sized polynornrlnls art the drmensaon of A .  

The bound TG arises out of of the Bjorck-Goluh procedure. The farbard /IGT[BGf],112, i = 1 , 2 ,  . . . , k, 
arise out of the condition of each of the problems of the form (2.27). We note that the bound in 
Corollary 3.1 is smaller than that in Theorem 3.1. The Moore-Penrose inverse does not satisfy the 
inequality (3.8) and we know of no error bound Z L ~  good i49 that, in Corollary 3.1 for Algorithm 3. 

Thus the error bounds obtaiaaed by this analysis arc better €or Algorithm 5 than for Algorithm 3. 
In the next section, we give numerical tests which seem to indicate that Algorithm 5 will give more 
reliable answers. 

4 Tests and Conclusions 

4.1 Stability Tests 

We implemented A!gorithrns 3 and 5 in FORTR.AN single precision on the SUN3 with the back 
substitution proced1.m in Algnrithnn 4. The two algorithms differ only in  their computation of 

B y ) ,  i = 1,2, . . . , k, 
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The matrix A is generated randomly. Rank one singularities are introduced into each diagonal 
block by replacing the last row of each such block by the sum of its other rows. Then the right hand 
side is formed by making the known solution vector (1, 1, . . . , l)T. We then calculated the relative 
error in the solution. The results are shown in Table 1. Here the experiments clearly suggest that 
Algorithm 5 has better numerical stability properties than Algorithm 3. Thus we see that the use of 
the weighted pseudo-inverse rather than the Moore-Penrose pseudoinverse gives us a better method 
of resolving the singularity in the diagonal blocks. 

4.2 Hypercube Implementation 

To simplify the implementation on a Hypercube, it is assumed that each diagonal block Bi and F are 
of equal size Le. mi = p, i = 1 , 2 , ,  . . , k, and that p = k + 1, Le. the size of each diagonal block is 
also equal to the number of diagonal blocks. It then €allows that p2 = n. The number of processors 
in the Hypercube is denoted by P (numbered from 1 to P). It is further assumed that the number of 
diagonal blocks k + 1 is at least as large as the number of processors (P), 

The blocks Bi, i = 1,2, . . . , k are equally distributed among the first P - 1 processors, along with 
the corresponding Si and Gi matrices. And the matrix F is processed by the node P ,  A brief 
description of the algorithm emphasizing the flow of data between the processors follows. 

4.2.1 Host Program 

generate matrix A and the vector s 
compute the number of blocks that each node numbered from 1 to P - 1 gets 
€or i := 1 to P - 1 

send appropriate blocks of 8, S, G and s to node i 
send F to node P 
wait for the solution parts to arrive from all the nodes 

4.2.2 Node Program 

if it is not the Inst node (P) then 
receive the matrix blocks B, G, S and s 
diagonalize each Bi and solve the LSE problem as described in Algorithm 3 

send the matrices Gi and Sp’ along with syl, R, and rpi to node P (cf. Algorithm 5 )  
wait for 2k+l and w, vectors to arrive from node P 
complete the solution process to get q 
send xi’s to the host 

n 
2 
4 
IO 
10 
20 
40 
60 
80 
100 

- k + l  I Estimated Condition No. 
2 1  2.OE02 
2 
2 
3 
4 
5 
6 
8 
10 

1 .OEOl 
4.OE01 
1 .OE02 
3.OE02 
8.OE02 
9.OE02 
2.OE03 
2.OE04 

Table 1: Error in Algorithms 3 and 

Err0r:Alg.S 
0 

9.0G6 
3.066 
4.0E6 

2 . 0 6 4  
8 . 0 6 5  
1 . 0 6 4  
2 . 0 6 3  

9.OE-6 

Error :Alg -5 
0 

6.OJ3-7 
2.0E.6 
2.0E6 
3.OE-6 
4.0E-5 
7.OE-6 
2.OE-5 
5.0E-5 
~~ 

for Random Matrices 
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size of 
each block(p) 

8 
8 
8 
1s 
16 
16 
32 

32 --I I 32 

no. of 

8 
4 
2 
1s 
8 
a 
32 
16 
8 

processors(P) ~ 

time in 
seconds 

1.22 
1.46 
2.64 
5.35 

11.46 
34.12 
48.62 
71.94 

7.86 

Tahle 2:  Timings results on Intel Hypercube 

else 
receive F from the hsst 
receive the ma.trices Gi and $I, sy], 42, and ~i sent by all other nodes 
solve the system (2.17) 
broadcast zk (-1 and aqpropriate blocks of w i  to all the other I' - 1 nodes 
send xt+l to host 

The above ,4lgorithm was implemented in FORTRAN on art Intel hyp"rcuuhe(iPSC/l) at the 
ACRF facility at hgonne National 1,aboratmy and the Table 2 shqivs &he timings rrasults from these 
experiments The matrix in each caw w a  ail p z  x p2 inakrh. For a fixed valine of p1 the problem was 
run on cubes of different dimensions to deterirke the speed up. The fame show2 2s elapsed tame z n  
secondajrom the neonient the host s t a d s  sendaqg the data $0 the nodes 2111 the f i n d  solutaou, as returned 
t o  the host. 

It appears from the results that by increasing aha nuinber of procesors by a factor of 2, one would 
get a speed-up by a factor of 1.43. The main reason i s  that the back sitbstitution process has a 
bottleneck - the other nodes must, remain idle while node P determines zk+l and tu. 

4.23 

It i s  assumed that the time required tu transmit a mesmge of N words from one node to another is 
(a + P N ) d  where cy i s  the start-up timc for the message and 0 is  the time required to send one word 
after the initial message is set-up and 9 is the distance between the nodes. 

The only communication required in the parallel algorithm described above is the transinksion of 
e,, S!], s:], R, and rl to node P and vectors I, w from node P to nodes 1 to P - 1.  Since the size 
of R, is  much larger than other matrices and since the maximum tiistalaw hetween any two nodes on 
the Hypercube is log P ,  it is easily seen that the upper hound ow the communication complexity of 
the algorithrn is O ( [ P a  + P(y2 + Pn)] log P > ~  

The computational complexity i s  easier to bound bccauxe all the conputafional work except the 
solution of (2.17) i s  done in parallel and hence it i s  divided equally among P - 1 processors. However 

the matrix in the system (2 17) is of the order p + C ( m i  - &) and henee only i ( p  -4- C(m, - 
are not dane in parallel. 

Complexity of the Parallel Algorithm 

n n 

;=l 1=1 
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