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ABSTRACT

We consider matrices arising out of the one-way dissection method for solving large sparse systems
of linear equations. The systems that we consider are those that may have singular diagonal blocks.
Such systems arise in certain fluid flow problems.

Gunzberger and Nicholaides [Lin. Alg. Appl. 64,pp.183-189,1985] proposed a method for resolving
the singularity in the diagonal blocks. This method uses the Moore-Penrose pseudoinverse. We pro-
pose two improvements to the Gunzberger-Nicholaides procedure: (1) The substitution of a weighted
pseudoinverse for the Moore-Penrose pseudoinverse; (2) A more elegant implementation of the back
substitution procedure. A stability analysis of both our procedure and the Gunzberger-Nicholaides
procedure is given. Both our analysis and empirical tests show that our method has better numerical
stability properties than the Gunzberger-Nicholaides procedure. We also implement our procedure
on Intel iPSC/1 Hypercube. Our improvement to the back substitution method makes the natural
parallelism in the problem easier to exploit.






1 Introduction

The basic problem is to solve the n x n system of linear equations

Az = s, (1.1)
where A and s have the form
B ¢ ©¢0 - &
0 B, © :
A= . e 0 - | s=(81,82,...,88,8k41)7 . (1.2)
B, S

GT ¢¥ . G6f F
Here B;,i = 1,2,...,k, are m; x m; matrices, F is a p x p matrix and G; and S; are m; x p matrices,
E
where p+ " m; = n. Each s, = 1,2,...,k, is an my-vector and s34 is a p-vector. This is a

matrix that: a:-ises out of the so-called one-way dissection ordering. Much of the discussion of one-way
dissection in the literature has concerned symmetric, positive definite systems. This implies, that
B;,i = 1,2,...,k, and F are symmetric, positive definite, and G; = 5;,7i = 1,2,...,k. Instead we
make the much weaker assumption that rank(A) = n, i.e. , that A is nonsingular. Thus we have that
rank(B;) = l; <my,i=1,2,... k. Applications of such systems are given in [9].

Gunzberger and Nicholaides [8] suggested an algorithm based upon Gaussian elimination with
singular pivots. It uses the Moore-Penrose inverses of the diagonal blocks B;,i = 1,2,...,k. The
Moore-Penrose pseudoinverse of a matrix B, denoted by B*, is the unique matrix satisfying the four

Moore-Penrose conditions
1.8BtB=28 3. (BB+)T=BB+ (1.3)
2. B+BB* = B* 4.(B*B)T = B*B '

We will use the notation BG),BG:) or B(Wi:*) to denote matrices satisfying conditions i,j, or k
among those in (1.3). The procedure in [8] has a simple elimination procedure, but a complicated
back substitution procedure.

In this paper, we suggest an alternative method for resolving the singularity in the diagonal blocks
B;,i=1,2,...,k. This method is based upon the weighted pseudoinverse discussed in a fundamental
paper by Elden [5]. We give evidence that this method is more stable. We also give a more elegant
back substitution procedure, which makes the algorithm easier to implement on a message passing
architecture. These algorithms are outlined in section two. An error analysis of our proposed algorithm
is given in section three. Empirical tests verifying the stability properties of our algorithm are given
in section four. We also give an implementation on Intel Hypercube(iPSC/1) in secticn four. The
implementation is very straightforward.

2 Description of Algorithms

We first describe the elimination procedure of Gunzberger and Nicholaides [8] for solving (1.1). It
makes use of the Moore-Penrose pseudoinverses of the diagonal blocks B;,1 = 1,2,...,%. The other
elimination procedures in this section will take a similar form.

Algorithm 1 Block Elimination using the Moore-Penrcse Pseudoinverse [8]
1. Compute

k k
F=F-3 GI'BfSi; Spr=se41—~ 3 GIB}s
i=1

=1

GT = GT(I - B} B;) projection of GT onto orthogonal complement of Range(B;)



N

2. Feri=1,2,... k find an m; x (my; — ;) malriz X; such that 3;X; = 0. Note that l; = rank{B;).
Thus X; is a basis for the nuli space of B;. Algevithms for finding such a basis are given by
Heath [10] end Pothen [12].

We note that the terms GTB}'S; , GTBifsi , i = 1,2,...,k, can be computed independently, as
can the null space bases X;,i == 1,2,...,k. The same is true for the GT i =1,2,...,k, but we will
see later that it is not necessary to compute these matrices at all.

The back substitution phase of the Gunzberger-Nicholaides procedure is somewhat complicated.
Let = = (z1,%2,...,2, T541)7, where the block components z;,i = 1,2,...,k,k + 1, are of the form

z; =y +2i, whereylz;=0,i=1,2,... kk+1, (2.1)
and the vectors z; satisfy

Bz =0, i=12...,k , (2.2a)
Fre01=0 . (2.2b)

Since A is nonsingular, F' is also nonsingular (cf. [8]). Thus

k41 =0 , (2.3a)
Tkpl T Ykyr - (2.3b)

Then Algorithm 1 reduces (1.1) to the system

Biyi + Sizpqr =8, i=1,2,...,k, (2.4a)
k

X:é?z; + F:E),+1 = Sp41- (2,4]))
=1

From (2.2a), GTz = GT%,i=1,2,...,k, thus we can replace (2.4b) with

k
Y GTz4 Frpgr = 51 (2.5)

1=1

Thus G’T need never be explicitly computed. The system (2.4) can be written

My=35§-Nz (2.6)
where
B, 0 - 0 S
0o B - - .
M = . e . (2.7a)
.. By S
i 0 F
. s
0 .0 .
N = . ST . (2.7b)
. .. L5
| GT 6§ - GT o
s = (31,521 vy Sk, §k+1)T;
v = (Wb b))’
z = (21, 2k, 2841)7 (2.7¢)



The consistency of (2.6) and the nonsingularity of F* follow from the nonsingularity of A. If we assume
that z is known, and let

f':(fl)fzs"-afkrfk+l)T=§“’-Nz (28)
then a basic (non-unique) solution y is given by
e+l = Tep1 = Fl i (2.9a)
% = B} (fi — Siyp41) (2.9b)
From [8], we have that y solves (2.6). Thus if we define the matrix @ such that
y=2f, (2.10)
where ® has the form -
Bf o0 . . -B}sF-!
. B;' AN .
® = ' , (2.11)

B} B S F1
o - - 0 F-1
we note the following fact about ®. Its proof is obvious.
Lemma 2.1 & = M(1L249), That is, ® is a (1,2,4)-pseudoinverse of M.
If we combine (2.6) and (2.10) we have
(I-MPNz= (- M3P)s. (2.12)
Let
X = diag(Xl,Xg, . ,Xk, 0),
where X; are defined in Algorithm 1. Thus (2.12) becomes

Tw=g (2.13)

where T'= (I - M®)NX; z = Xw;g = (I — M®)5. Equation (2.13) is consistent but overdetermined
(cf. [8]). It can be solved by an orthogonal factorization of T' ( in [8] ,the use of normal equations
is advocated). Gunzberger and Nicholaides show that T' must have full rank if A has full rank.
We assume that the dimensions of the null spaces of B;,i = 1,2,...,k, are much smaller than the
dimensions of the blocks themselves. That is, m; — l; < m;. Thus, the solution of (2.13) should be
very fast compared with the rest of the algorithm. We state the procedure as Algorithm 2.

Algorithm 2 Back Substitution Procedure [8]
1. Erplicitly form T = (I - M®)NX; g9 = (I - MP)s.
2. Solve Tw = g by orthogonal factorization (or normal equations).

3. Let 2z = Xw and solve
y=®(5§ - Nz)

4. The solution z = y + z.

We propose two changes in Algorithms 1 and 2. The first is a simplification of the back substitution
procedure. This simplification uses computations arising directly out of the elimination procedure. To
describe that, we give a more specific version of Algorithm 1 which includes the method for computing
B.?" vt =1,2,..., k. The method is slightly different from that given in [8], but uses the method for
computing B}t given in Golub and Van Loan[7, pp.162-167].



Algorithm 3 Implementation of Block Elimination vsing the Moore-Penrose pseudoinverse

1.

2

Fori=1,2,... k perform steps 2-7.

N g2
B.":Qs'[U(') Ub ]P:T

Factor B; inio

where Q; 18 orthogonal, U.-m 1s an l; x I; upper triangular, U,.m is an l; x (m; — ) matriz,
and P; is & permutation matriz. This factorization and the determination of rank l; can be
done by orthogonal decomposition with column pivoting (cf. (11, Chapler 10]) or some other
method(cf. [2,4,6]).

Compule

{11 1]
Syt g ATl o
[ 5.[2] sEz] } = @y (Si, 8i)

where S'P] isl; x p and 5',[2] is (m; - I;) x p.

Solve for .§‘,— and §;
Uim(S.-, 8;) = (S;[X], st

Compute
X; = [ “[U;'[lll"'lUs'[2] ] (2.14)
Iy,
X; is a common choice for the null basis matriz of B; (cf.[10,12]).
Factor
e %]

where Z; is orthogonal and W; is upper triangular and compute

0 0

(‘/i;vl') = Zﬁ [ 0 Ip~m.+h

| 778
The items (Vi,v;) are projections of (S;,5;) onto the space orthogonal to the null space of B;,
thus providing B (S;, s:).

Compute
(Ri, 7"l') = ”"G;r(‘/l ) ’U,‘)

Compute
£ E
P o= P‘+LR4; Sk41 = Sk4g1 +ZT«'

1=1 i=1

Algorithm 3 requires

2m,-1,'(m,- — I,') + %1? + 2mili(p + 1) + l?(m. — lg)+
(mi — )2 (my = §(mi — &) +4(mq — L)mi(p+ 1) + p(p + 1)L + O(m?)



3]

flops for each i = 1,2,...,k. Let m = max m;. If p < m and |m; — I;] < ¢ = O(1) this simplifies to
—-'—-

2
2mili(p + 1) + 31? + p(p + D + O(em?)

for each i = 1,2,...,k. We assume here that all of blocks in (1.2) are dense.
If we consider equation (2.4a) and apply the reduction from Algorithm 3, we have

Ui + SMzipn = 6l (2.15a)
Sz = A (2.15b)
where U; = (U‘-[ll,U‘-["’]). Since equation (2.15) is just an orthogonal reduction of some rows from

Az = s, it follows that it is underdetermined but consistent. Using the null basis (2.14) for B; and
by letting

G’, = G?X.
equation (2.5) becomes
k
Z é,—w,- + F-’tk.{-l = §p41 (2.16)
i=1

where z; = X;w;. Thus if we let S12 = (S’[-Z], . ..,S£2])T, 2] = (sgz}, ; ..,s?])T ,and G = (Gy,...,Gy),
then zz4+; and w = (wy, w3, ..., wi)T solve the linear system

[§ @]l ]=1] .

The nonsingularity of A guarantees that (2.15) is a nonsingular system of linear equations. For
problems arising in practice, its dimension will be small compared to the dimension of 4. It can be
solved by Gaussian elimination with partial pivoting or orthogonal decomposition. Such a reduction
is much simpler than the back substitution procedure in Algorithm 2. The values of y; and z;,
i=1,2,...,k can be recovered from (2.9a) and the step

z; = yi + Xpw;. (2.18)

The computation (2.9a) can be simplified into
vi = [N — sMzpy) (2.19)

thereby avoiding the reuse of the orthogonal factor Q;. We now formally state this procedure as
Algorithm 4. This algorithm is a method for solving (2.5) and is simply a particular implementation
of Algorithm 2.

Algorithm 4 Improved Back Substitutien Procedure

1. Solve the linear system in equation (2.17) for £r41 and w = (wi, wa, ..., ws)T using orthogonal
factorization by Householder transformations.

2 Fori=1,2,...,k, do steps 3-6

3. Compule
f;p] = sE—ll - S}l]xk.'.l. (2-20)



4. Let
I w1 gD
gi = ”[ 0 ] i A, (2:21)
§i = (Imr-'l.'lo)zir‘ng%
5. Solve

o oy, [
o =]

Here S,ll], (1] G[I] Um W;, and 7Z; are frem Algovithm 3.

6. Compule

zi = g + Xiw;,
where X; is in Algorithm 3.
The back substitution procedure requires

p-}—Z(m,—l) +Z3I(m,- )+ = m + = 12]+O(m)

1=l i=1

wlw

flops. If max |m; — | = ¢ = O(1) then this reduces to
1<i<k

2o+ kP4 L S0+ ]+ O(em)

i=1
flops.
The second modification to Algorithms 1 and 2 is to replace B:r with B§1’3),i =1,2,...,k, ie. any
matrix B,(l’a) satisfying Penrose conditions 1 and 3. For the elimination algorithm, this is equivalent

to solving (cf.[5])
min ||B (Vi, vi) — (Si, 8:)|| ¢

and then computing

F=F— i GTV;, (2.22a)
i*;l
Sk41 ™= Spa1 — ZG;-TU,', (2.22b)
i=1
GT =GT(1 - BM9 B). (2.22¢)
1t is essential that all of the columnuns of
(}I,', h,’) = (S, 8i) — B:(V;, v;) (2.23)

be vectors in the space orthogonal to the colurans of B;. It is guaranteed by the use of Bgl’a). This
allows us to set up equation (2.17) by orthogonal factorization of B; by column pivoting or some other

mmethod to detect rank (c.g. [2,4,6]). When we substitute B(l ® for B}, we lose the property that

. ’



y¥ z; = 0, but this property is not necessary for the algorithm to work. Again since GTz; = GTz;, it
is not necessary to do the computation (2.22¢).

The matrix B,(l's) is not unique unless B; has full rank. In our modified algorithm, we can choose
B 0 as to minimize ||GT B{*V5;||¢ and ||GT B{*¥s;)|5. As will be shown in the next section this
Jeads to a new algorithm with better numerical stability properties. Elden [5] showed that the (1,3)
pseudoinverse with this property is the weighted pseudoinverse defined below.

Definition 2.1 The G-weighted pseudoinverse of B is defined by

B} = (I - (GTP)y*GT)B*

where

P=1-B8*B.
In [5], it is shown that the matrix B}, is the (1,3)-inverse such that
G BES|Ir < NIGT B2 S| (2:24)

for all (1,3)-inverses of B and matrices S. The G-weighted pseudoinverses [Bg]! need not and should
not be explicitly computed. Instead we compute the quantities

R = -GF[BgI}S: i=1,2,...,k, (2.252)
i = ~G¥[Bglfsi i=1,2,...,k, (2.25b)
and then compute
k k
F=F+) R &41=seq+ 3 1 (2.26)
i=1 $=1

The quantities (R;, r;) are simply the residuals of the least squares problem

i T I3 .
v in, NGV wlle, (2.27)

where Tg, is the set of minimizers of

(Vi,u.')Er;lll’{‘lix(p+l) IIB’(V" ‘U,‘) - (Sl') si)”F-

The computation of (V;, v;) is not necessary. The residuals (Rj, r;) can be computed directly. The
problem (2.27) has an unique solution if rank g} = mi, i = 1,2,...,k. This is a direct conse-
i

quence of nonsingularity of A. We now give a more detailed description of this procedure. Steps 1-4
are the Bjorck-Golub(cf.[3]) direct elimination procedure for solving (2.27).

Algorithm 5 Block Elimination Scheme Using the weighted Pseudoinverse
1. Fori=1,2,...,k, do steps 2-5
2. Same as Steps 2-3 of Algorithm 3.

3 Let GT = (G[I],G’?]) where GEI] is @ p X I, matriz and GE-Q] is a p X {(m; ~ I;) matriz. Compute

i

G; = G - GMUM-10P and (3, 30) = —GPWUM~1(S;, 8:). (Note that G; = GT X;).



4. Fector
A Wi
G,‘ = Z!' [ 0' ] ’
where Z; is orthogonal and W; is upper triangular. Then compuie
0 0 5 .
(R"?ri) = Z" [ 0 Ip--vﬂi‘}"lé ] Z?(S‘.,s“).
5. Compute

k k
F= F+ZR;'; B4l = Sk +27‘.‘-
=1 =1
With the change that
gi = ~GHUH Y (2:28)
in (2.21), the back substitution procedure in Algorithin 4 can be used directly after Algorithm 5. This
adds an additional I;p flops for each i = 1,2,..., k. Except for differences in terms of O(m?), the
operation count for Algorithm 5 is identical to that of Algorithm 3. We note however, one difference
that the matrix
B o . . —BMIg 1]
B )

=1
i

) B _p(dg, f1
0 -0 F-1
is only a (1)-pseudoinverse of M. This can be verified easily. However this is enough to assure that
y = ®f satisfies (2.10) . Hence we can use the back substitution procedure in Algeorithm 4.

The stability properties of these direct eliminaticn procedures can be shown using well known
properties of methods for solving coustrained least squares problems and systems of linear equations
(cf. [7,13]). These propetties are given in the next section.

3 Error Analysis of the Revised Algorithms

We now use backward error analysis (cf. [13] ) to bound the errors in the computational versions of
the algorithms in section one. The general forin of the reductions are

k k
F=F-5 GIs; G = seqn— 3 GIBM s (3.1)

=1 i=1

where B'(l’a) is a (1,3) pseudoinverse of B;. First we need the following lemma from [1] on the Bjorck-
Golub direct elimination procedure as applied in steps 1-4 of Algorithm 3.

Lemma 3.1 Let steps 2-5 of Algorithm 5 be implemented using Householder transformations in float-
ing point arithmetic with machine unil u. Then the factorization of each of the blocks [ (}3; ],

i
i=1,2,...,k, satisfy

Uy U,
B 0 0 6B
| 0 0
[ &) gl ]
(S;9) = Y| 3 Zlﬁl + (85, 85) (3.2b)




where Y = Q1 LQ)2, Q1 and Q2 are orthogonal, and L is unit lower triangular. The backward errors
6B, 6G, §S, and és satisfy

18Blle < éallBllr 1 +0(u?), (3.33)
t6le < éaral( dr )|, n+ 067, (3.3b)
IS, 69l < b5 IS, )l 1+ O, (339)

where ¢p, dg, and ¢s are modestly sized polynomials in the dimension of B, G, and S, and

re = max{|[[VU 0|, max 1+ UG UG 1#), (3.4)

rs = [|GUULI}1 |, (3.5)
where Uggy = (U([B,U(I:;) 1s the first ¢ rows of U, U([;]) is a ¢ X ¢ nonsingular matriz, and U(Iﬂ is a
gx (n—gq) matriz, ¢ = 1,2,...,L

A backward error analysis of the reduction stage of Algorithm 5 can be obtained from this theorem
by substituting I for GT.

Let (fZ,-,f-;),i =1,2,...,k ,F , and 8,4, be the computed values of (R:,7), F, and Sp41 from
Algorithm 3 or 5. Then we have the computational equations

(Bi 7)) = (Gi + 6G)T (B; + 6B)L2)(S; + 65, si + 65;),

k k
F:F+6F+ZR.~=}’!(F+ZE->,

i=1 i=1

E E
Sp41 = Spg1 + 0541 + Zf'i = fl<5k+1 + Ef'i) ,

i=1 =1

where 8Gy, 6By, (85;, és;) are errors that can be bounded by Lemma 3.1 and fI(-) denotes the floating
point computation of the contents. The errors §F and 6s;41 are just the errors in the floating point
sums. Thus from standard bounds on errors in sums we have

ISFllr < 6 wmax{l|Fllr, max [[Rillr} +O(u?),

85541112 < b5 wmaxllsisallz, max. [Irilla} + O(?),

where ¢p and ¢s are modestly sized polynomials in the dimensions of A. From the definition of R;
and r; we have A
R =GTBMS:; ri=GTBM s, i=1,2,..,k ;

thus
HRllF < HGTBED|lISillF, (3.6)

lIrill2 < 1GT BEPYallsilla. (3.7)

Using the fact that
[ Wi ] = p(12®)
0 ]
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is a (1,2,3) psendoinverse of U; and (2.24) we have that
IGT 1Bz < G lz. (3.8)

This gives us the following bound for Algorithm 5. Note that if the Moore-Penrose pseudoinverse B}
is substituted for [B£];, the inequality (3.8) may be false since the Moore-Penrose pseudoinverse does
not satisfy (2.24) . The following theorem summarizes our results.

Theorem 3.1 Let Algorithm 3 or 5 be implemented using Householder transformations 1n floating
point arithmetic with machine unit u. Let the backwerd substitution phese be done using Algorithm 4.
Then the computed solution T satisfies

(A+8A) =s+bs

where
[1BAllF < 64 TallAllF i + O(n?)

|185ll2 < @4 7alls|lz -+ O(i?)
— e {77t -1 . g1.3)
7a = max{ max |G Ml2y max [|GiB; I}
and ¢4 and ¢, are modestly sized polynomials in the dimension of A.

We now give a corollary that gives stronger stability results for Algorithm 5. It is a straightforward
consequence of Theorem 3.1 and equation (3.8).

Corollary 3.1 Let Algorithm 5 be implemenied using Househelder transformations tn floating point
arithmetic with machine unit u. Then A and s in Theorem 3.1 satisfy

6Allr < a4 76l1Allp 1t + O?),

1és]2 < 85 76 l8ll2 1t + O(u?),

where

+ el =1y
igxkllG‘ [Ul ] i|2’

=i

T = 11
1

1A

and ¢4 and ¢s5 are medestly sized polynomials in the dimension of A.

The bound 7¢ arises out of of the Bjorck-Golub procedure. The factors ||GT[BElill2,i = 1,2,... &,
arise out of the condition of each of the problems of the form (2.27). We note that the bound in
Corollary 3.1 is smaller than that in Theorem 3.1. The Moore-Penrose inverse does not satisfy the
inequality (3.8) and we know of no error bound as good as that in Corollary 3.1 for Algcrithm 3.

Thus the error bounds obtained by this analysis are better for Algorithin 5 than for Algorithm 3.
In the next section, we give numerical tests which seem to indicate that Algorithm 5 will give more
reliable answers.

4 Tests and Conclusions

4.1 Stability Tests

We implemented Algorithms 3 and 5 in FORTRAN single precision on the SUN3 with the back
substitution procedure in Algorithm 4. The two algorithms differ only in their compntation of
BY® i—12 . k.
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The matrix A is generated randomly. Rank one singularities are introduced into each diagonal
block by replacing the last row of each such block by the sum of its other rows. Then the right hand
side is formed by making the known solution vector (1,1,...,1)T. We then calculated the relative
error in the solution. The results are shown in Table 1. Here the experiments clearly suggest that
Algorithm 5 has better numerical stability properties than Algorithm 3. Thus we see that the use of
the weighted pseudo-inverse rather than the Moore-Penrose pseudoinverse gives us a better method
of resolving the singularity in the diagonal blocks.

4.2 Hypercube Implementation

To simplify the implementation on a Hypercube, it is assumed that each diagonal block B; and F are
of equal size i.e. m; = p,i = 1,2,...,k, and that p = k + 1, i.e. the size of each diagonal block is
also equal to the number of diagonal blocks. It then follows that p? = n. The number of processors
in the Hypercube is denoted by P (numbered from 1 to P). It is further assumed that the number of
diagonal blocks k + 1 is at least as large as the number of processors (P).

The blocks By, = 1,2,...,k are equally distributed among the first P — 1 processors, along with
the corresponding S; and G; matrices. And the matrix F is processed by the node P. A brief
description of the algorithm emphasizing the flow of data between the processors follows.

4.2.1 Host Program

generate matrix A and the vector s
compute the number of blocks that each node numbered from 1 to P — 1 gets
fori:=1to P~1
send appropriate blocks of B, S, G and s to node i
send F' to node P
wait for the solution parts to arrive from all the nodes

4.2.2 Node Program

if it is not the last node (P) then
receive the matrix blocks B, G, S and s
diagonalize each B; and solve the LSE problem as described in Algorithm 3
send the matrices Gy and S,P] along with sgzl, R; and ry to node P (cf. Algorithm 5)
wait for x4y and w; vectors to arrive from node P
complete the solution process to get z;
send z;’s to the host

n | k+1 | Estimated Condition No. | Error:Alg.3 | Error:Alg.5

2 2 2.0E02 0 0

4 2 1.0E01 9.0E-6 6.0E-7
10 2 4.0E01 3.0E-6 2.0E-6
10 3 1.0E02 4.0E-6 2.0E-6
20 4 3.0E02 9.0E-6 3.0E-6
40 5 8.0E02 2.0E-4 4.0E-5
60 6 9.0E02 8.0E-5 7.0E-6
80 8 2.0E03 1.0E-4 2.0E-5
100 10 2.0E04 2.0E-3 5.0E-5

Table 1: Error in Algorithms 3 and 5 for Random Matrices
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gize of no. of time in
each block(p) | processoes(P) | seconds
8 8 1.22
8 4 1.46
8 2 2.64
16 18 5.36
16 8 7.86
16 4 11.46
32 32 34.12
32 16 48.62
32 8 71.94

Table 2: Timings results on Intel Hypercube

else
receive F frorn the host
receive the matrices G; and S;[z], s?], ; and r; sent by all other nodes
solve the system (2.17)
broadcast x4, and appropriate blocks of w; to all the other P — 1 nodes
send rg41 to host

The above Algorithm was implemented in FORTRAN on an Iuiel hypercube(iPSC/1) at the
ACRF facility at Argonne National Laboratory and the Table 2 shows the timings results from these
experiments. The matrix in each case was an p* x p? mairix. For a fixed valne of p, the problem was
run on cubes of different dimensions to deterinine the speed-up. The fime shown is elapsed time in
seconds from the moment the host starts sending the data o the nodes till the final solution 1s returned
to the host.

It appears from the results that by increasing the number of processors by a factor of 2, one would
get a speed-up by a factor of 1.43. The main reason is that the back substitution process has a
bottleneck -— the other nodes must remain idle while node P detersiines zx41 and w.

4.2.3 Complexity of the Parallel Algorithm

It is assumed that the time required to transmit a message of N words from one node to another is
(a + BN)d where « is the start-up time for the message and 8 is the time required to send one word
after the initial message is set-up and d is the distance between the nodes.

The only communication required in the parallel algorithin described above is the transmission of
G, S’.P], s?], R; and r; to node P and vectors z, w from node P to nodes 1 to P — 1. Since the size
of R; is much larger than other mairices and since the maximum distance between any two nodes on
the Hypercube is log P, it is easily seen that the upper bound on the communication complexity of
the algorithm is O([Poa + B(p* + Pn)]log P).

The computational complexity is easier to bound because all the computational work except the

solution of (2.17) is done in parallel and hence it is divided equally among  — 1 processors. However
n

the matrix in the system (2.17) is of the order p+ 3 (m; — ;) and hence only %(p + Y (mi - 1))3
i=1 i=1
are not done in parallel.
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