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ABSTRACT

The physics models that are contained in the toroidal transport code PROCTR are de-
scribed in detail. Time- and space-dependent models are included for the plasma hydrogenic-
ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rota-
tion velocity, and the toroidal current profile. Time- and depth-dependent models for the
trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent
point model for the number of particles in the limiter are also included. Time-independent
models for neutral particle transport, neutral beam deposition and thermalization, fusion
heating, impurity radiation, pellet injection, and the radial electric potential are included
and recalculated periodically as the time-dependent models evolve. The plasma solution is
obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal
flux surface is included to maintain an approximate pressure equilibrium, or in general three-
dimensional torsatron coordinates represented by a series of helical harmonics. The detailed
coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral trans-
port model makes PROCTR especially suited for modeling of recycling and particle control
in toroidal plasmas. The model may also be used in a steady-state profile analysis mode
for studying energy and particle balances starting with measured plasma profiles.
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1 INTRODUCTION

This report describes the physics models that are contained in the toroidal transport
code PROCTR. For each model, the equations are given in full detail along with a terse
physical description. There is no description of the programming aspects of the transport
code; that is, this is a physics description and not a code description. However, the structure
of the equations parallels the structure of the code in many places, making this report useful
for understanding the coding.

The complete plasma model is made up of time- and space-dependent models for plasma
and wall parameters. In addition, time-independent models are included for sources and
sinks. Time-dependent spatial profiles are evolved for the plasma ion densities (one or
two species), thermal-alpha density (for deuterium-tritium burning plasmas), electron and
ion temperatures, toroidal rotation velocity, impurity ion densities (one or two species),
and the toroidal current density. For the chamber wall, time-dependent depth profiles are
evolved for particle concentrations (both mobile and trapped) corresponding to the plasma
ion species.

Time-independent models are included for neutral hydrogen transport, neutral beam
deposition and thermalization, fusion heating, impurity radiation, the radial electric poten-
tial, pellet ablation, and the plasma equilibrium. The plasma solution may be obtained in
simplified flux surface coordinates, where each flux surface is assumed to be an elongated
torus shifted radially with respect to adjacent surfaces to maintain an approximate pressure
equilibrium. Alternatively, nonaxisymmetric three-dimensional (3-D) flux surfaces may be
represented by a set of helical harmonics.

A time-dependent point model is included for the number of particles in the limiter.
The models for plasma, limiter, and wall particle transport, along with the scrape-off layer
and neutral transport models, compose a complete and detailed plasma recycle model.

The models are extensively cross-referenced. Italic numbers appearing in parentheses
refer to sections within the report. For example, the model for the plasma electron density
ne (2.2.1) is given in Sect. 2.2.1. In addition, the index gives section references for all
variables that are used in more than one section of the report, except for variables used in
the neutral transport model description in Sect. 3.

The bibliography contains only the references used in constructing the models in the
transport code. Thus, it is not a complete reference list for toroidal plasma transport
modeling and does not contain many interesting papers that report modeling results without
detailed model descriptions. The papers cited are of interest primarily for their complete
physical descriptions of the models in the code.

PROCTR has been used extensively to model actual tokamak shots by using shot data
where appropriate for boundary conditions and by attempting to predict diagnostic mea-
surements for the same shot as a test of the physics models in the code. Definitions of the
plasma parameters calculated in the code for comparison with diagnostic measurements are
given in Sect. 12.



2 PLASMA TRANSPORT
2.1 TRANSPORT EQUATIONS

The plasma transport equations are flux surface averages of the general equations as
described, for example, by Braginskii [1]. A review of plasma transport by Blum and Le
Foll [2] describes the averaging method.

2.1.1 Hydrogen Tons

The density of hydrogenic plasma. species j, ng;, is governed by

51 = Sile) = Suslp) = 7 5 (V2 Tui) + Sinilp) -

TH;

67‘&1{'
T = —{(Vp)*)yDuj apj + {IVpl)ynHVpnch

where Sp; is the neutral ionization source term (5.1.2), St is the loss rate of plasma fuel
due to thermal fusion (9.2), Siy; is the fueling rate from thermalized fast ions (7.1), and
the 7| term accounts for parallel loss of plasma to the limiter or divertor in the scrape-off
layer (5.8.1). In the radial particle flux (Ty;), Dy is the diffusivity (2.2.2) and vpnen is
the radial convective velocity (2.2.2).

If the hydrogenic-ion equations are not solved, the hydrogenic-ion density profiles ng;(p)
may be either specified arbitrarily (2.1.9) or calculated from a specified n.(p) (for example,
the measured laser profile) to satisfy charge neutrality

1
Ny = | ne — ) npjZ; —mn
ik 1+fn( ; e ")

nH2 = fanm
where the ion density ratio f, is specified arbitrarily. The hydrogenic-ion flux I'gy; is
calcnlated, for constant ion density, by assuming that the ion flux across flux surface p
balances the total rate of plasma creation within the volume contained by the surface. This
is equivalent to setting I'y; so that the ion density equation is dng;/dt = 0. Thus, for
constant ion density,

VoI Taso) = [ () + S = 220 ) vity
0 i (P')
where the source terms are defined above.
2.1.2 Helium Ions
The equation for jonized helium is only solved when modeling a burning plasma; that

is, this is a helium ash equation. The density of the helium component of the plasma nge

is governed by
Onye 10 NHe
= Stus(p) — == (V) I'ne) —
ot * V) 0p ( ’ c) T||[He

Onye
dp

The = —((Vp)*)y DHe



where Sty is the source due to fusion (9.2). The 7 term accounts for parallel loss to the
limiter or divertor in the scrape-off layer, including the reduction of the loss rate due to
helium recycling (5.3.1). In the radial particle flux T'ye, Dhe is the diffusivity (2.2.2).

2.1.3 Impurity Ions

The density of impurity species 7, ny;, may either be specified arbitrarily or evolve ra-
dially in time. The temporal evolution may be governed by the average-ion model, which
treats each impurity species with a single equation for the total impurity density. Alterna-
tively, the coupled set of equations for the density of each charge state of an impurity may
be solved.

Arbitrary Density If the impurity density equations are not solved, the impurity den-
sities may be either specified arbitrarily (2.1.9) or defined to give an arbitrary value of the
plasma effective Z (Z2¢). The impurity densities that give Z.g(p) = Z2z(p) are

o = —Zég = D(ne — m)
n= 7 Z -0+ [.2:(22 - 1)

niz = farn

where the density ratio f, is specified arbitrarily. The average charge state Z; is given by
the tables of Post et al. [3].

Average-lon Model The density of impurity species 7, ny;, is governed by

oMt _ gy — L2 (yip,) - ML
1 ”"SI](p) prap (VP I])-T”Ij

- 2 , <Z12) __I_Bny 1 ony; Zf_iaTi

6 .
~((VP)yDar =22 4 {|Vpl)ynsivar
ap

ng = Z"”j
J

ny = anj
J

where Sy; is the impurity source arising from ionization of wall- and limiter-evolved neutral
impurities (5.2) and the 7| term accounts for parallel loss of impurities to the limiter or
divertor in the scrape-off layer (5.3.1). The radial impurity flux T'y; includes neoclassical
fluxes driven by the total hydrogenic-ion density (ngy) gradient, the impurity density gra-
dient, and the ion temperature gradient. The radial flux also includes anomalous spreading
with diffusivity D4y (2.2.3) and anomalous convection with velocity var (2.2.3). The neo-
classical transport coefficients (Dp, K;, and H;) are given below (2.2.3). The average
charge state Z; and (Z?) are the coronal values given by the tables of Post et al. [3].




Multi-Charge-State Model The density of charge state g of impurity species j, n‘}j, is
governed by

Inl; _LQ_( : q_)w_’if_
o T Vop\ i) Ty,

+ 'nengjTl (av):-’“1 + nen‘}jl(av)g - nen'}j(av)? - nen‘}j(av)g_l

. 5 3n‘}j q
I = ~((Vp)ypDar B + ({Vpl)yni;var
_ S1j
q=0 Iy
ny, = -——->:
Is ne(U’U)g—O

Z
R q
ni; = Z nrj
g=1

1 Z
qun‘b

Z; =
L8 § st
1 <,
(Z3) = —> ¢*nf;
L3 £ s

where ¢ = 1 — Z for charge states of an impurity with total nuclear charge Z and ¢ = 0 for
the neutral impurity density. {(ov)! is the rate of ionization of impurities in charge state ¢
into charge state ¢+ 1. {ov)? is the rate of recombination of impurities in charge state ¢+1
into charge state gq. Sy; is the impurity source arising from jonization of wall- and limiter-
evolved neutral impurities (5.2) and the 7| term accounts for parallel loss of impurities to
the limiter or divertor in the scrape-off layer (5.3.1). The radial flux includes anomalous
spreading with diffusivity D4y (2.2.3) and anomalous convection with velocity vaz (2.2.3).

2.1.4 Toroidal Rotation Velocity

The toroidal momentum density of the plasma p4 is governed by

Opy _ .1 1_6_(,}“_@_) 16(, 5 31%). .
ot T Viap \ PPy ) T Viap VAVE huigo ™ | + Pex = By

Pm = Z'mHjnHj + Z miny;
] J

J
Iy =3 Ty;
i
Py
Vg =
¢ p’ITl

- |vg] 1
Pir="re (27rRo * ; ulis

where j)g' is the driving toroidal momentum source due to injected fast ions (7.1), pc is the
toroidal drag exerted by charge-exchange loss of neutrals (5.1.3), and p| is the drag exerted



by the limiter. w4 is the toroidal rotation velocity, p,, is the total plasma mass density,
I'r is the total radial ion flux, and 5, is the perpendicular ion viscosity (2.2.4). The two
radial transport terms represent momentum transport due to radial mass convection and
viscosity, respectively.

2.1.5 Eleciron Temperature

The electron temperature T, is governed by

3 BT ' Me T,
neg = ) - g (Vo) - 3T - T
+ qrad(p) + qlon(p) + QOh(p) + Qec(p) + qu(P) + qfeus(p)
on,
= 29Teny — T e

3T 3
. 2 Yie na et
((Vp) )“/JneXe ap + q. + 2Tere

Te=Y Thj+ ZuTue+ 2 2Ty
J

J
. THj NHe
Ny = + =
1= 2 s e

where the first three terms represent neutral beam heating (7.7), radial transport, and
electron-ion rethermalization, respectively. Radial transport (g.) includes heat conduction
with the coefficient x, (2.2.5), conduction ¢?* due to helical ripple (2.2.7) and convection.
Axmbipolarity determines the radial electron flux T';, which is the sum of the hydrogenic-ion
flux Ty (2.1.1), the helium-ion flux Ty, (2.1.2), and the impurity-ion flux I'y; (2.1.3). The
electron collision time is 7, (2.2.1). Impurity and anomalous radiation losses are given by
grad (2-2.9), Gion is the ionization and radiation loss from neutrals (5.1.4), goh is the ohmic
heating (2.1.7), and ¢f,, is heating due to fusion alpha particles (9.1). Electron cyclotron
resonance heating is represented by ge. (8.1) and electron heating by ion cyclotron resonance
heating is given by ¢f, (8.2). The 7| term accounts for parallel energy loss to the limiter or
divertor in the scrape-off (5.3.1), where ¥ is the sheath enhancement factor (5.3.2).

2.1.6 JIon Temperature

The temperature of plasma ions and impurities T; is governed by

3 aT me nE s & 1 8 ’
39t = Py =T = g, (V)
; ; ; 3 dnr
e ch(p) + qlnj(p) + qxc(p) + qfus(p) 2T n“ T ot

oT; 3.
G =) ( (Vo) wnaixa; 5 7 S g + §7ifﬂi)

J
ny = Ny + NHe + NJ
where the first two terms are electron-ion rethermalization and radial transport, respectively.
Radial transport (g;) includes heat conduction with the coefficient xz; (2.2.6), conduction



g7 due to helical ripple (2.2.7) and convection due to ion particle flux I'y; (2.1.1). Energy
loss due to neutral charge exchange is given by gcx (5.1.4), giy; is ion neutral beam heating
(7.1), g is ion-cyclotron resonance heating (8.2), ¢}, is ion heating due to fusion alpha
particles (9.1), and parallel heat loss to the limiter or divertor is given by the term containing
| (2.1.5). n is the total plasma ion density.

2.1.7 Rotational Transform Profile

The resistive diffusion of the total current I(p,t) contained within each flux surface p is
governed by

)

to | Por, csTp OTp

1 o
= 9 i
ot Ho 070 ar, “Teers or, (anb(p))

Ho

where 74 is the parallel resistivity g (2.2.8) modified inside the ¢ = 1 surface to simulate
the effect of sawteeth on the current profile (6.6.1). Jj is the shielded current perturbation
driven by injected fast ions (7.1). The geometric constants ¢4 and cg (6.4) are flux surface
averages of the metric coefficients g;; for the axisymmetric surfaces.

Instead of following the evclution of the toroidal current on the resistive time scale,
the instantaneous steady-state current profile may be calculated. This current profile will
evolve with time-dependent changes in the parallel resistivity profile 74, the total plasma
current Io(t), and the beam-driven current density J,. The steady-state current profile is
given by

1(p) = I(p) + I(p)
Li(p) = /rp 27rr;c¢Jb dr:,
0

L(p) = (Io(t) - I(p = 1)) ( /0 " 51;7"2% dT}) / ( /0 T;—f'rf;% dr})

where I, is the current carried by the plasma and I is the current carried by the fast beam
ions including shielding by the plasma electrons.

The average poloidal magnetic field due to plasma current Bj, the toroidal current
density J,, and the toroidal electric field F, are obtained from the total current profile

I(p,t) by

Bl = 1ol (p)
Dy = —
2megr,
1 1 9
J, = ————— (CgrpBg)
fo coT, OT)p

Ez = 77||(Jz - Jb)

The equivalent toroidal current density used in the ohmic heating term (gon) of the electron
temperature equation (2.1.5) is

_ 1 (27f)2R0 J I
= o Vp’ 6p (CngBg)

Goh = E.Jon

Joh



The average vacuum poloidal magnetic field Bj is given in terms of the vacuum rotational

transform +, by
cyrp BT
B'U = —-.—-.-..p.w..—-
8 v RO

and the total average poloidal magnetic field is By = BY+ B}. The total rotational transform
+ is defined below (2.2.1).

2.1.8 Boundary Conditions

At the plasma center (p = 0), a zero-slope boundary condition is used for ng;, nye,
n1j, V4, Te, and T;. Thus, if the variable X is any of these plasma parameters, the central
boundary condition is

X (p,t
9X(pY) _ g for
op
For the toroidal current equation (2.1.7), I(p = 0,t) = 0.

At the plasma edge (p. = a), arbitrary, constant values are assigned to ng;, ns;, vs, T,

and T;. Thus, if X represents any of these variables,

p=0

X(p,t)=Xo for p=a

Helium jons are assumed to be perfectly reflected from the plasma outer boundary. These
ions may leave the system only by limiter or divertor pumping (5.3.1). Thus, the helium
ion edge boundary condition is

anHe(p, t)

ap =0 at p=a

The toroidal current at the edge may be any specified time-dependent value I(p = a,1) =
In(t), where Ip(t) is the total toroidal current. Alternatively, the loop voltage may be zero,
in which case the toroidal current boundary condition is

O1p) ¢ ut p=a

dp

2.1.9 Initial Conditions

At the initial time ¢ = {g, arbitrary magnitudes and profile shapes are specified for
the electron temperature T.(p,%) (2.1.5), the ion temperature T;(p,%9) (2.1.6), the im-
purity densities ny;(p,to) (2.1.3), the helium-ion density nu.(p,to) (2.1.2), and the wall
concentrations of trapped hydrogen cz;(y,%0) (4.1). The initial toroidal momentum density
Ps(p,to) = 0 (2.1.4).

The initial profile of a plasma parameter X {(p,tp) (which may be T¢, T}, n., ng;, ni;,
or ny.) is given by one of two forms. The exponential form is

_ [ (XK= Xo)[1 = (p/p0)°) + X0y p<p
Xle) = {Xof i p> /)g



where the profile is specified by the parameter set (X3, X,, a, 8, pg). The Gaussian form is
1 _ a
X(p) = — [(Xs = X,) "0/ 1 X, - X, fo]
1-fo

fo = exp[~(po/B)°]

where the profile is specified by the parameter set (X3, X,, A, a, po). For both profiles, X,
is the value at p = 0 and X, is the value at p = pg.

The initial profile shape of the mobile hydrogen concentration of species j in the wall
¢;(y,to) (4-1) is assumed to be given by the wall deposition profile h(y, Ep) (3.7) for Ey =
10eV. Thus, N ho, Ey)

AL Y, Ly
¢i(y,t0) = A, [5h(y, Ey) dy

where A, is the equivalent wall area (5.1) and N,,; is the initial total number of particles
in the wall.

For a simulation that does not use actual data from a plasma shot, arbitrary magnitudes
and profile shapes are assumed for the hydrogenic-ion densities ng;(p,to) (2.1.1). For each
hydrogenic species H j, the total number of particles in the wall initially, N, ;, is assumed
to be equal to the initial total number of ions in the plasma. Thus, initially,

Nyj = /0 ng;(p,t0) V, dp

The initial number in the limiter Np;(t0) = 0 (4.4).

When a plasma shot is simulated, the measured gas feed rate is used to calculate the
number of particles-equivalent in the prefill, Nys. This total number is arbitrarily divided
between the initial numbers in the plasma, wall, and limiter. The fraction of Ny in the
plasma is f;), the fraction in the wall is fu1f2, and the fraction in the limiter is fg) fcl;(. Here,
fw1 = 1= fy1 is the fraction of Ny initially in the wall and limiter, and f2% are the fractions
of the charge-exchange efflux from the plasma incident on the wall and limiter, respectively
(5.1.2). For the hydrogenic species corresponding to the prefill gas, the initial profile shape
of the plasma density is specified arbitrarily, while the profile of the wall concentration is
given by the initial wall deposition profile as described above. Thus, the initial conditions
for the prefill species are

/0 ng;(p,to) V,dp = fuNos

ij - fwlf:;chf
Nr;(to) = fur f5Not
For the other hydrogenic-ion species (not prefilled), the initial values are set as described
in the previous paragraph for a stand-alone simulation. Normally, the initial level of the
other species is assumed to be very small.
The initial toroidal current profile I(p,t9) (2.1.7) is determined by assuming that (1)
the initial average toroidal electric field is flat (0E.(p,10)/0p = 0) (2.1.7) and (2) the total
toroidal current Io(tp) is specified. With these assumptions, the initial current profile is

Tp 1 Ta 1
I(p,to) = Io(t / 7! cg dr’ / —1! cp dr!
(,0 0) 0( 0) o ptp ar, o pte 0Ty



where the resistivity 7 (2.2.8) and magnetic metric coefficient ¢4 (6.4) are defined below.

2.2 PLASMA AND TRANSPORT PARAMETERS
2.2.1 Plasma Parameters

The electron density n. is obtained from charge neutrality by

Ne = NH + NHeZHe + EnI]Z] + ny
7
ng =3 ny;
J

where ny is the total hydrogenic-ion density (2.1.3), nye is the helium density (2.1.2), ny;
is the impurity density (2.1.3), and n; is the injected fast-ion density (7.1). The effective
Z of the plasma, which appears, for example, in the plasma parallel resistivity, is

1
Zef = (nH + e Zhe + 3 an(Z}))
Ne — N 7

where the average charge state Z; is defined above (2.1.3). For the ion conductivity (2.2.6),
a slightly different effective Z that accounts for the difference between like and unlike particle
collision frequencies is required and is given by

. 1
i = — [nH + ﬁ(nHEZﬁe +3 an(Z?))]
j

The mass-weighted Z which appears in energy equilibration rates is given in terms of the
ion masses (my;, Mmye, my;) and the proton mass m, by

1 m. m m
7] = My L7z e (72 ._.lL)
[Z] e (ZJ: ny; - + ny ZHemHe + zj:'"J;( J)m“

The basic electron collision time [1] is

.- 3mi/2T3/2

* 7 4(27)Y %40, In A

e/ *(cm™3)
Te(eV)

InA=23~In
where In A is the Coulomb logarithm. The electron collision frequency including impurities
is

Ve = Zet / Te

The collision frequency of hydrogenic-ion species j is

. (9&)3” me \? (zz&)_’_ég..
Hi=\T mH; ne ) 27,
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The safety factor ¢ and the rotational transform + are given by

T Br and t:-l-

=c
4 ¢Ro By q
in terms of the geometric factor ¢4 (6.4), average poloidal magnetic field By (2.1.7), and
the toroidal magnetic field By at major radius Rpg.
The electron (a = €) and ion species j (@ = Hj) values of the toroidal gyroradius p,,
thermal velocity v,, and collisionallity v, are

MoVy v = (?_&)1/2
eBr’ * 7 \mg

L V2Roqra  _pry
> ’00,63/2 3 - RO

Po =

2.2.2 Hydrogen and Helium Ion Transport Coefficients

The particle diffusivity used for most modeling is based on an anomalous, empirical
diffusivity D4,

2 1013 2
D (cm?/ms) = %;?E;n«:gj {2 + 20 <§) + 10 exp [~(as — p)/0.1a,]
where i, is the model line-average electron density and p = a, is the contour separating
the confined and scrape-off plasmas. The hydrogenic-ion and helium diffusivities are

DH]' = CD(t)DA
Dye = Dy

where the multiplier Cp(?) is either held constant or determined by feedback (11.2).
The neoclassical radial convective velocity vpneh is given by

1.65¢1/2 E.
(1.0 + 0.79102% + 0.561,.)(1.0 + 0.51v,,¢3/2) Bo

where v, is the electron collisionallity (2.2.1), E, is the toroidal electric field (2.1.7), and
By is an average poloidal magnetic field (2.1.7). The form used here for vpne is given by
Hinton and Hazeltine [4].

An anomalous inward convective velocity is required to model central peaking of the
density profile. A given density profile shape f(p) may be obtained by adjusting the inward
convective velocity to give zero net radial particle flux, that is, to force I'y; (2.1) to evolve
in time to zero. The anomalous convective velocity is given by

N ((Vp)2)¢DH, 1 df(p)
PR IVl T f(p) dp

This model will evolve the density profile shape to f(p) on a time scale determined by the
magnitude of Dy;. The resulting ny; profile will be somewhat broader than f(p) because
of (1) the source of ionized neutrals at the edge and (2) the flattening of the ny; profile
inside p,—; by enhancement of Dy ; in this region (6.6.1). The enhancement is added after
the anomalous g, is calculated.

Upnech =
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2.2.3 Impurity Ion Transport Coefficients

The neoclassical impurity transport coefficients Dy, K;, and H; that appear in the
neoclassical impurity flux (2.1.3) are

Dy = ¢*p%vy

Moy 2T; 1/2_ . 1
PH = BBT, g = (%) ) = '{;Zj:nHijJ

Te 3/2 me 1/2 1
we(z) (%) =
where 77 is the average hydrogenic-ion mass, By is the toroidal magnetic field, and the
other plasma parameters are defined above (2.2.1). In addition,

Kj=Cyj
Hj = Cij— Gy
o 0.52ay;

Gy =10- G557 arj + 1.3452
o 0.29 4+ 1.20ay;
2 =15~ 55 +ag; + 1.3482

_ ngi{Z3)
" Ty
. _YH

v qRo

The form of the neoclassical coefficients used here is given by Hirshman and Sigmar [5].

The anomalous impurity diffusivity Day (2.1.3) is usually taken to be a constant of
approximately 5 x 10% cm3/s. The anomalous convective velocity is chosen to force the
total impurity density profile toward an arbitrarily chosen shape fr(p). This is the same
model used to obtain centrally peaked ion density profiles {2.2.2). The convective velocity
is given by

_ (Ve 1 dfilp)
(Vele " fip) dp

The impurity density profile will evolve toward fi(p) only if the anomalous impurity fluxes
are much larger than the neoclassical fluxes.

VAT

2.2.4 Perpendicular Viscosity

The perpendicular ion viscosity is given by

=~ 2.2
nL =y myinw; fiq phve;
;

fi = 0.2 2.30,41;6/* gy
0.7+ (V*Hjes/z)z 1+ V*ij‘g/z



12

where the plasma parameters are defined above (2.2.1). The first term in f; is the neo-
classical value given by Tsang and Frieman [6], the second term is a collisional regime
modification suggested by Hogan [7], and the third term, which is the dominant term, is an
empirical enhancement required to predict measured toroidal rotation velocities using the
toroidal momentum equation (2.1.4).

2.2.5 Electron Heat Conduction Coefficient

The empirical model used for ohmic tokamak discharges is

Xe(cm?/ms) = 3_’_‘_10_13_ [2 +20 (5)2]

fle(cm—3)

which approximates Alcator scaling.
For neutral-beam-heated discharges, additional heat conduction loss due to pressure-
driven ballooning modes [8] may be included:

sy 20 (BP@ )P[0y
Xe = 1.5v7, 74 ( ) 1+ ( > )

S €0 Lp
(ch(P))l’2
vr, = —
P
THP
—— for2
mi(p)
Ry
THP = ;}‘;
_ By
vA 1/2
(47r Ej mHjnHJ)
p(0)
go B} /240
—Ts
€0 Ro
p 0q17"
L, = abs [—~——~——J
! q(p) Op

Lp = abs [pm) ap]

where p is the plasma pressure, 7 is the resistivity (2.2.8), and other plasma parameters
are defined above (2.2.1).

The diamagnetic drift stabilization factor [9] in x. requires the growth rate v, which is
given by the solution of

Y(v* 4 wl) =5
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where )
_— <n) Q(p) e ,vTe 1
Wy = e
plas, mpaiwy Ly

a_ 1 [@Li@ﬁa@f)r(%)a

To S p/a_., GOLp Ro
(n) ~5-10

eBr
Wei =

My

as On.]!
L, = abs [—-—’¥—-—e]
ne(p) Op

The ballooning mode transport model applies for pg=1 < p < a;.
The diagonal part of the neoclassical electron heat conduction [4] is given by

Xe = (€73 Kq3) ¢p2ve
0.450,.(3/2)? 1.0
1.0+ 0.430.€/2 7 1.0 4 0.4501% 1 0.430.,

,ng = 255 [

where the plasma parameters ate defined above (2.2.1).

2.2.86 Jon Heat Conduction Coefficient
The neoclassical coefficient is from Hinton and Hazeltine [4] and is given by
xu; = Ku;j ¢ pir;vn;

177w, ;6/? K3e3/?
LO+0.740mje*? * 1.0 4+ 1.030 07 + 0.31vum;

Kyj=0.66 (

where the plasma parameters are defined above (2.2.1). The finite toroidicity correction
factor K, which was unity in the original derivation, is a simplified form of the complete
derivation of Chang and Hinton [10] and is

K} =1+ 2.85¢/2 ~ 2.33¢

Ton heat transport due to ripple in the toroidal magnetic field is given by Uckan et al. [11]
as

XP = (0.1)46.5 6%/ 2(’1(/?‘)1;3
’U%;. . - 2meBr

wWBr RO ’ T my

1-3a+28a a<}
G(a) =

vy =

0.38 — 0.36¢x % <a<l
0.02/a? a>1

Bmax - Bmin
*= (I.Ni(sR; Nc = number of COilS; 6R - (Bmax + Bmin)
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The ripple g is specified in the midplane between the plasma center and the outside (in
major radius) plasma edge. The factor 0.1 that appears in x; approximately accounts for
the flux surface average of the ripple heat conduction loss.

2.2.7 Helical Ripple Transport

The nonambipolar fluxes of particles I'?* and heat ¢]* of plasma species a due to the
helical ripple are given by Hastings, Houlberg, and Shaing [12]:

na 2 2 « 52—« Va(Z)Aa(T)
Fa = —€/€p vdana/ dr z / W
na 3 na /2 —x I/a(:E)A (.T)
(qa + Era Ta) —€t \Y% h'vd naT / drz / “‘-‘;2"(—:15—
1dn, Z,ed® ( 3) 1 07T,
+1lz—-

Ae) = T T T, 9

t

where

- VY
)= G
€

IL‘:‘-T—a

wi(z) = 302(z) + (et/en) {1.67 (wg + wBa)2

()" [ vomnin ()]}

1 09
wg = -_—
B rspB 07,
Oey,

WB, = ~Vdy 5
p

Vg, = Lo

da = Z.eBpr,

The collision frequency v, of plasma species a is given above (2.2.1). The toroidal and
helical modulations of the magnetic field are given by ¢; and €3, respectively (6.2). The
radial potential ®(p) is specified arbitrarily and does not automatically ensure that the
neoclassical particle fluxes are ambipolar.

2.2.8 Resistivity
The parallel resistivity 7 [13] is given by
) = Motz 7T

where, in terms of Z = Z.g,
me

Mo = —
€“NeTe

o — zZ (2671+7
7340\ 1134+ 7
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and the resistivity enhancement vy due to the fraction of trapped electrons fr is

-1 _ [y fr 1 - CR(7)fT
T = 1+ Evee/Z 1+ ¢vee/Z
3 (1 _ 5)2(1 _ 62)1/2 . 3
fr=1-"—Hgn o °7

£ = 0.58 +0.207

er(Z) = 0;6 (30 Z)

2
Ro

3.0+ 7

The plasma parameters are defined above (2.2.1).

2.2.9 Radiation

The radiated power ¢..q that appears in the electron temperature equation (2.1.5) is
the sum of hydrogen bremsstrahlung radiation ( qu 1), impurity radiation from each impurity
species j (qi,fd), and an arbitrary amount of additional radiation (g ;). Thus,

Qrad(p) - (]rad(ro) + Z q, ad(p) + qrad(p)

Radiation due to hydrogen bremsstrahlung is given by
qB (W /em®) = —=1.6 X 10™%%n,(cm™>)ng (cm™2)To(e V)2

If the impurity density nj; is specified arbitrarily or is governed by the average ion
model, the radiation from impurity species j is given by

y .
Graa(p) = —nenp; L(Te)
where the coronal radiation rates L, are given by Post et al. [3].

When the impurity density nj; is governed by the multi-charge-state model, the radia-
tion from impurity species j is given by

Z-1 z
gria(p) = = Lnb o)~ me Yan+l(av) — 1.6 x 10732, T1/? > ¢*nd;
g==0 g=1

where the first term is due to line radiation summed over the strongest lines, the second
term is recombination with the average radiated energy per recombination event given by
X}, and the third term is due to impurity bremsstrahlung.
The arbitrary radiation is given by
A

P
flrfld(/’) = ‘rfadhrad(p)
Y4

where P4, is the total power radiated in the arbitrary term and V} is the plasma volume.
The normalized radiation profile is

f(p)
(f(p))v
f(p) = n.T.exp[~(a— p)/6]

hrad(ﬂ) =
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where 6 is an arbitrary width and the volume average (- - -}y is defined below (3.8).
The total arbitrary radiation power Pr’;d is chosen in one of two ways. It may be specified
as a fraction fp of the total power input to electrons

a
Pha= fr /0 (qoh(P) + gini(0) + gic(o) + qfus(p)) V,dp

where the terms in the integrand are described above (2.1.5).
When modeling data from a plasma shot, the measured total radiation power PM, (1)
is sometimes used. In this case, the extra, arbitrary power at any time during the shot is

adjusted so that the total power radiated by the g.q term is PM,. Thus,

rad*
A __ pM B I
Prad" rad”Prad“Prad

where P2, and P, are the model values of the total radiated powers from bremsstrahlung
and line radiation as calculated above.

2.2.10 Radial Potential

In an axisymmetric, toroidally rotating plasma, the plasma radial potential may be
derived from the radial force balance of the plasma hydrogenic ions. This potential is

299
Q = —Tg _d, =
(p) = —r i ®(a) =0
0P 1 Opg 1
dp  engrs Op C%Be
nH:ZnHj

pH = nyT;

where py is the plasma pressure, By the poloidal magnetic field (2.1.7), and vy the toroidal
rotation velocity (2.1.4). This form for ®(p) is only valid when the poloidal rotation is
completely damped.
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3 NEUTRAL HYDROGEN TRANSPORT

The transport of neutral hydrogen in the plasma is modeled with a two-species slab
model. The model was developed by Audenaerde et al. [14], who describe the derivation of
the governing equations and method of solution. The model has been expanded to allow two
neutral species. Additional improvements include molecular sources (3.2.1), limiter sources
(8.2.2), momentum transport (8.4), wall sputtering (9.6.3), and wall deposition (3.7). The
entire slab model is described here, as is the method of solution used in conjunction with
the multispecies plasma transport model (3.8). The coupling of the neutral profiles to the
plasma and wall transport models is described below (5.1).

3.1 MULTIGENERATION CHARGE-EXCHANGE TRANSPORT

The rate of creation of neutrals of species j at position z due to charge exchange is given
by the solution of the integral equation,

sl () = si(z) + E/ dz’ 1/-7" m Eﬂ:r'))si‘x(m')%lff (a:,:c', ET(IC'))

where 3{,(:):) is the source rate at position z of neutrals of species j due to the first charge
exchange of neutrals emitted from the wall or limiter. This source has several contributions,
which are described below (3.2).

The attenuation at position z of a flux of neutrals of species j emitted isotropically from
position z’ with energy E is

-7 A A Y 1 2_ 7 ’
Kl(z,2,E)= ——_uj(x E)c'?:zE" (,8 (x,x,E))

(lE) -1 ([3’(3: ' E))

The ionization decrement between z/ and z is
8 (z,2', E) = ——abs [/ de" V(2" E ]
(@e" B) = s (=", E)

where the total ionization frequency »7(2’, E) at position z of a neutral of species j with
energy F is ' _ )
iz, E) = ve(x) + Z vhi(z, B + vl(z, E)
k

The frequency of charge exchange at position  of a neutral of species k and energy E with
a plasma ion of species j (producing a neutral of species j) is

vik(z, B) = ngj(e){ov)ex (v] (2), v3(E))

The ionization frequency at position z due to electron impact is

ve(2) = ne(@)(ov)e (1o())
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The jonization frequency at position z due to ion impact of a neutral of species j and energy
E by both plasma ion species is

uf(x, E)= Zn;{k(z)(av); (v,}*’(m), 1)?(E))
k

The total impact ionization frequency at position = of a neutral of species j and energy E
is
vz, E) = ve(z) + v](z, E)

ion

The velocity of an ion of species j and mass m; at position z is assumed to be

The velocity of a neutral particle of species j, energy F, and mass m; is
1/2
2F
0 3
J m;
The energy of an ion with temperature 7; is assumed to be

3
Ep = °T;
=3

The exponential integral that appears in the attenuation factor is
e-——at

tn

En(a) = / dt
1
where n is the order of the integral (n =0, 1,2, ...).

3.2 EDGE SOURCES

The rate of creation at position 2 of neutrals of species j due to the first charge exchange
of nentrals emitted from the wall and limiter contains several contributions, which are
described in this section. The total creation rate is

sh(z) = 83,0 (2) + S () + 55(2) + (2)

where s{u 4 Is due to atomic neutrals emitted from the wall (2.2.1), s}  results from the
ionization and dissociation of wall-emitted raolecules (8.2.1), s} is due to (atomic) neutrals
emitted from the limiter (3.2.2), and sp is due to the charge-exchange efflux from the

plasma that is reflected from the wall (3.2.3).

3.2.1 Cold Wall Source

The initial neutral flux incident on the plasma from the wall may be either atomic or
molecular.
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Atomic flux The source at position z of first-charge-exchange neutrals of species j due
to atomic neutrals emitted from the wall is

s,4(2) = 3oTE ywik(s, Br)2K5(x, 0, Er)
k

where I‘ﬁ, 4 is the flux of neutral species k emitted inward from the wall with energy FEg. per
atom.

Molecular flux The effects on the plasma that result from introducing the wall flux as
molecules rather than as atoms are described by Howe [15].

The source at position z of first-charge-exchange neutrals of species j due to atomic
neutrals created by the ionization and dissociation of molecules emitted from the wall is

s’m(a:)-— / do' sk () ',’:(x,Efc)[Kg(x,x',Efc)

+ 2ri]'ccE2 (ﬂk(x’ 07 Efc)) K,.:,;C((]’ xlv Efc)]

where sf (z) is the rate of creation of neutrals with energy Er. from molecules of species k
at position z.

Atomic neutrals created from molecules at position 2/ may travel to position z either
directly (first term in s,.,) or by first reflecting from the wall (second term in sy ). The
wall reflection coefficient for these neutrals is

Ttl‘cc,: Tﬁ(EfC)

where 7 is the wall reflection coefficient (3.2.3).
The creation rates of neutrals (sg.) and hydrogenic ions (8,4 ) from molecules are

s(z) =19, vn(z) g (ﬂ] (z, E.m)) [ 2 + ( 2 ) (V3+2V4)]

J(E ) vy + vg v+ vy V3 + Iy
m+(:r) V?éx)) £ (ﬁfn(l‘, Em)) (1/1 lj:l/z) (1/3 If V4>

where T, is the flux of neutral particles of species j emitted in molecular form (with
energy Ey, per molecule) from the wall. The energy per neutral particle is E,, = (1/2)Fg,.
The attenunation decrement of a molecule between the wall (z = 0) and position z is

J(E)abs [/ dz’ um(r')]
vm(z) = n1(z) + v2(z)

where v, is the frequency of molecular loss due to dissociative excitation () and ionization
(1/2).

The singly ionized molecules (HJ) created by molecular ionization are assumed to im-
mediately dissociate either by excitation into an ion-neutral pair (v3) or by recombination
into two neutrals (v4). The rates for these two dissociation processes are used to calculate
the branching ratios in sg and s,4 above.

The molecular reactions corresponding to each rate coefficient are

%(x»E) =
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(ovh Hy+e - 2H +e Dissociative excitation
(ov)2 Ho+e — HY 4 2e Tonization

(ov)s Hi +e— Ht+H+e  Dissociative excitation
{ov)4 Hf +e— 2H Dissociative recombination

where the reaction frequency is vy = ne{ov)y for £ = 1-4. The rate coefficients are given
by Freeman and Jones [16) and by Jones [17).

3.2.2 Cold Limiter Source

‘The source at position = of first-charge-exchange neutrals of species j due to atomic
neutrals emitted from the limiter is

sL(x) Zl‘k/ Bl A G (m,EL)[f£I(§(z,x',EL)

+ 207k B (64(2,0,E0)) KO, Ex)]

where Fy, is the energy of the emitted neutrals, which includes the energy gained from the
limiter surface potential by the plasma ions (3.8).

Plasma ions incident on the liriter are assumed to be reemitted as atomic neutrals at
the position of incidence. This neutral flux is introduced into the neutral transport model
as a volume source with total flux for species £ of T¥ . A fraction f} of the neutral source
is emitted inward while the remaining fraction of the flux ff = 1 — f} is emitted outward
toward the wall. The normalized deposition profile h%(z’) is derived from the profile of
plasma ion flux to the limiter (3.8).

Neutrals emitted from the limiter at position 2’ may travel to position z either directly
(first term in sg,) or by first reflecting from the wall (second term in sp). The wall reflection
coeflicient for these neutrals is

ri = ri(EL)

where rp is the wall reflection coefficient (3.2.3).

3.2.3 Reflected Source

The source of first-charge-exchange neutrals of species j due to the flux of neutrals
reflected from the wall is

OTR(E)

shiz) = / dE vi¥(z, E)2K%(2,0, E) Y5

where the integral is over the reflected-neutral energy spectrum.
The differential flux of reflected neutrals of species j at energy E is

AT}(E) /d ,0°T (2", E)
IE dz'dE
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The differential flux of reflected neutrals of species j at energy E due to reflection of neutrals
created by charge exchange at position z’ in the plasma with energy Er is

PIRE) Lo @[ [ (0,2 Brts)]
1

- 1= rh(Bx)] B 6 (0., Br())) } g/ (B0 Er()

Here, r%(E) is the particle reflection coefficient for normal incidence of a neutral at energy
E as given by Oen and Robinson [18].

For a neutral particle flux incident on the wall at energy E’, f(E,E’) is the energy
distribution of the reflected flux per unit incident flux, where £ is the reflected energy. The
reflected spectrum is normalized so that

1

E'
for all E’. If we assume that the reflected flux is uniformly distributed in energy up to the
incident energy, then

/Ooof(E,E’)dE:l

n_ 1, E<E
f(EaE)"'{O’ E>E’

A more realistic model is obtained from a fit to the reflection histograms of Oen and Robin-
son [18] and to the reflected spectra measured by Eckstein and Verbeek [19]. The normalized
spectrum for £ < E' is

1 2F'E
w1+ (BB, B2 + E?

f(Eﬂ El) = 1
where f(E,E') = 0 for E > E’. The energy E, depends on the wall material.

3.3 PLASMA ION SOURCE (SLAB)

The source of plasma ions of species j at position z due to impact ionization and charge
exchange (s} ) is

sh(2) + si(e) = T4 (2, Ero)2K](2, 0, Eie) + sl (2)
+ % /Oa dz’ szc(x')vj(:c, Ex) [I(g(m, z', Ex.)
+ 25,8 (92,0, F)) (0, 2", B
+13 /OZL da’ (")’ (z, EL) [f};Kzl(:c, z', Er)
+2f3ri Ba (2,0, 1)) K3 (0, , EL)]
+ /0 "o v (=, Ex(=") sﬁx(x’)%ﬁ’g (2.4, Bx(2")

OTH(E)
OF

+/ dEuj(x,E)QKg(m,O, E)
0
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where the terms are contributions due to atomic wall flux T'y4 (3.2.1), ions (8,4 ) and
neutrals (s¢) from molecules (3.2.1), flux T'y, emitted from the limiter (3.2.2), energetic
neutral transport, and reflected neutrals.

The plasma neutral density of species j is

né(z) = jA2K§(a: 0, Fs.)
/ dz' 8] (= [K’(a: &', Ege) + 2r)Ey (,Bj(z 0, Efc)) K3(0,2' Efc)]
413, [ aa' o) | 1 Ko o', B + 2420 B (97(2,0, B1) K0, o', )|
+ /: dz’ s{;x(x')%K% (a:,x', ET(:L"))
+ /Ooo dE2K(z,0, E)-‘%(E)

where the terms contain contributions corresponding to those described above for the ion
source s} .

3.4 TOROIDAL MOMENTUM DRAG (SLAB)

The loss of momentum per unit volume due to neutral transport is

Pex(2) = v4(2) 3 [sha(#) + shu(2) + sb ()]
k
e o) 0] 5228 o (e ) (B

/ da’ v,,,(z)z lon(z Er(z") ) gx(m')%lfg(x,x’,ET(z'))

+/0 dE vy(z) 3" vt (e, B2 E(, 0, £) L) (E)
Ik

where the plasma velocity vg(z) is directed parallel to the wall.

3.5 PLASMA ENERGY LOSS (SLAB)

The energy loss from the plasma ions due to transport of charge-exchange neutrals is

tex(z) = [37) = Bid 3 [shae) + sbon(0)]

k
3' -
+ [ET,-(;L') - LL] zk:s’,i(z)
+ /: dx’g, [Ti(z) — Ti(z")) Zygf (1-’ ET(JT’))S“;:X(.’E,)%K; (1,1,/’ Eq*(z'))
Ik
v ["am B - B] ik, e 0, HRE)

3.k
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where each term is described after the ion source equation above (3.3).
The energy regained by the plasma ions due to ionization of neutrals is

%i(z) = ¢f(z)
k

qf(a:) = EfcI‘j ’;m(a: Efc)QKg(a:,O, Eg) + Efcsfn+(a:)
/ dz’ EfCSfC(Z,) loxl(:1:, Ex.) [Kg(x,z', Es)

+ 27‘ch'2 (ﬂj (z,0, E{C)) Kg(O, z’, E{c)]
+1d / da’ Bk (a")d () Er) [ FiKi(2, ', Er)
+2£37 By (8 (2,0, B)) K3(0, 2, EL)]

+ / &z’ 2T(z') ,on(x,ET<x'>)sz;x(x'>1K§ (z.2", Br(«"))

+ /0 dEEvi (3, E)2Ki(2,0, ) (E)

where the terms are described after the ion source equation above (3.3).
The total energy loss due to neutrals is the sum of ¢g.x and ¢;.

3.6 NEUTRAL FLUXES AT WALL
3.6.1 Particle Fluxes

The flux of neutral particles of species j incident on the wall due to neutrals created
from molecular ionization is

- /0 da' s (a" ) E (57(0,<', Ex,))
The wall flux due to neutrals emitted from the limiter is
Mo = f20), [ do' hi(a)Ex (800, 2', Eu))
The flux due to neutrals created within the plasma by charge exchange is
: a , 1 .
J [ LAY 7 ) 7
I‘H - /0 dzx Scx(x )2E2 [ﬂ (O,.’E ,ET(-’I? ))]

The flux of reflected energetic neutrals is

i _-/‘ dEaF (E)
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3.6.2 Energy Fluxes

The flux of energy carried into the plasma by the neutrals of species j emitted from the
wall and limiter is ‘ ‘ ‘
&I, = Ee Y, + ELTY

The energy flux carried to the wall by ener'getic charge-exchange neutrals is
. a 3 . 1 .
@ = [ @' STk B [6 (0,4, Br(a")
The reflected energy flux carried into the plasma is

T (E)
¥)
%—/ dEE R

3.6.3 Sputtered Impurity Fluxes

The flux of impurities sputtered from the wall by energetic charge-exchange neutrals
created in the plasma is

a 1
. 1k "o k [ [ I '
= §k:/0 da' sk (') Ey [8%(0, ', Br(="))] V[ (Ex(a"), my)
where Y/ is the normal-incidence sputter coefficient defined below (3.6.4).

3.6.4 Sputter Yield Coeflicient

The average number of impurity atoms sputtered from the wall for each neutral incident
normally on the wall is given by Smith [20] as

QOZ% my E

Y(E = —
a > TH) Ey, myp (E’ + 50Z1)2
E, = E - Et
2
B, = matm)” g
dmpgmy

where £ is the energy of the neutral charge-exchange particle of mass my, m; and Z;
are the mass and nuclear charge of the impurity (wall) atom, Ej is the binding energy,
E, is the sputtering threshold energy, and all energies are in electron volts. The sputter

yield dependence on the angle of incidence §; of the neutral flux is is assumed to be ¥ =
Y/ cos(8;).

3.7 HYDROGEN DEPOSITION PROFILE IN WALL

The rate of deposition of nonreflected particles at depth y in the wall is
9i(y) = (1= rf)T3.h(y, Ee) + (1 = r1)T0h(y, Ep)
. 1 .
— ! = J ! / '
+ / do' siy(a") [1 = rie (Fr(a")] 5B [67(0,2', Bx(s")] b (3, Er(="))
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The first term is due to neutrals created by molecular ionization and dissociation within the
plasma (3.2.1) that are incident on the wall with flux T}, (3.6.1) and energy FEx.. The second
term represents neutrals emitted from the limiter (3.2. 2) that contribute a flux T'7, (8.6.1)
to the wall at energy Ey. The wall reflection coefficients for these fluxes are r{, (3.2.1 ) and
7 (3. 2.2 ), respectively, and the corresponding sticking coefficients are therefore 1 — 7] and
1- rL The last term in g,, is due to energetic neutrals created in the plasma by charge
exchange that reach the wall and are not reflected. The integral in this term is essentially
over the energy spectrum of the charge-exchange flux incident on the wall.

The normalized deposition profile in the wall of neutrals incident at energy FE is given
by h(y, E). An approximate fit to the calculations of Oen and Robinson [21] for hydrogen
on copper is [22]

Ay, E) = 279 e~ 3v/¥
2 7
where h(y, E) is normalized so that

O
/ h(y, E) dy = 1
¢l

for all F.
The average range (F) for a particle incident at energy F is

Y(E)= f(e)Rg
Rg = cEY?, c¢=227AK/(eV)}/?
€= EI% E; = 3.12keV
F€) = 0.12 4 1.625 x 107%(3 + log, €)*

3.8 NORMALIZED TOROIDAL PARAMETERS AND PROFILES

For simulation of a plasma with two hydrogenic-ion species, the neutral transport solu-
tion is obtained separately for each species. An arbitrary total neutral flux I'g is assumed
incident on the plasma slab from the wall and limiter for ion species 1, while the incident flux
of ion species 2 is assumed to be zero. The resulting ionization and energy loss profiles and
wall fluxes for both ion species are calculated. The same arbitrary flux is then introduced
for ion species 2 (while the flux for ion species 1 is assumed to be zero), and the calculation
is repeated. The total source profiles used in the plasma transport model are then formed at
each time by a sum of the neutral profiles for each species. This procedure ensures particle
conservation of each hydrogenic species in the plasma-wall transport model as the plasma
and wall models evolve in the time between recalculation of the neutral transport.

Let the neutral flux incident on the plasma slab of ion species k (k = 1 or 2) be I'; and
assume that the incident flux of the other ion species is zero. The fractions of flux I'g that
are incident from the limiter (f7) and from the wall ( fyr) are determined from the neutral
fluxes of species k that are recycled, injected, or desorbed from the limiter and wall in the
plasma transport model at the time the neutral transport calculation is performed. These
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fractions are

fw=NZV+1Y'E.G+N'?
Ny
NE
fL:X/:kE

where the particle flow rates N are defined below (5.1.1).
The wall flux of neutral particles, emitted as either atoms or molecules, used in the
neutral transport model above is

Fﬁ;A + I‘ﬁm = fwlo

where the wall flux is usually chosen to be either all atomic with energy Ej. or all molecular
(3.2.1).
The flux of neutrals emitted from the limiter is

I} = fulo
Ey = Eic+ ¢4 /2.0

where the energy of the limiter-emitted neutrals Ey, includes the energy gained by the ions
as they pass through the limiter potential ¢1, (5.3.2).

The flux of neutrals from the limiter is included in the slab neutral transport model as
a volume source. The source profile is determined by the profile of parallel ion flow to the
limiter. The normalized profile is

_ MHk (P(x))/THHk
~ Jo H(nur/Tymk) d2’

where 7 is the parallel ion loss time (5.9.1 ) and the normalization extends over the width
of the scrape-off (zr) in the slab.

The mapping between = and the plasma coordinate p is necessarily somewhat subjective
because of the contorted shape of the plasma. The plasma temperature and density at a
distance z into the plasma slab from the plasma edge are given by the corresponding value
of the plasma parameter on the flux surface for which 2(p) = rq — r,, where r, (6.1.6) is
the radius of the equivolume toroid for surface p.

The flux of species j deposited in the wall due to injection of flux I'g of species &k into
the plasma (as described above) is

hi(z)

(1—ri)0d + (1 — )i, + Tf ~Th
r%

Pik =

where I‘% = I'y and the wall-deposited flux is expressed as a fraction of T'y. There are
two values (7 = 1, 2) of the wall pumping fraction (p;z) for each value of k due to charge
exchange between species in the plasma. The wall fluxes used to define pj;; are defined
above (3.6.1), and rgc (8.2.1) and ri (3.2.2) are the reflection coefficients of cold neutrals.
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The normalized source profile for plasma ions of species j due to an edge flux of species

Lk is .
B2 () = m
R EAEP) Y

where a neutral transport parameter on flux surface p is given by the corresponding value
of the parameter at slab distance z(p) from the plasma edge. s/ () is the jon source profile
derived above (3.3).

The volume average of any parameter X (p) is

www=%fxmww

The total flux of impurities sputtered from the wall due to a flux Ty of neutral ion species
k incident on the plasma is
ry
Ure = -

r T
where the impurity flux T'] (3.6.8) is normalized to the incident neutral flux.

The normalized deposition profile of neutral species j in the wall due to a flux T'¢ of

species k incident on the plasma is

o () = — T(¥)
() o gi(y) dy

where y is the distance into the wall and g7, is derived above (3.7).
The momentum loss term for both ion species due to a flux I'g of neutral species k
incident on the plasma edge is

3 (p) = Pex(2(p))

where the slab value for the momentum loss pci(2) is derived from the slab neutral transport
model (3.4).

The energy loss term for both ion species due to a flux I'g of neutral species k incident
on the plasma edge is

G (P) = tex (2(0)) — 4:(2(0))

where the slab profiles for charge-exchange energy transport (gex) and reionization (g;) are
derived from the slab neutral transport model (3.5).
The total neutral density due to a flux Iy of neutral species &k incident on the plasma

edge is ‘
ngu(p) = 3 mj (2(0))

where the neutral profile n{,(m) is derived from the slab neutral transport mode] (32.3).
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4 WALL AND LIMITER TRANSPORT
4.1 WALL TRAPPING AND DIFFUSION

The concentration of hydrogen in the wall evolves according to Fick’s law including traps
[23] and is governed by

dci(y,1) _ .f{.( ,%’(%0) (o oy Oeri(y,t)
ot - ay Dw] ay +G1(y7t) It

deri(y,t)  Dwj
ot ,\261”61(1/’”6%(%15)"”CTJ(y,t)

cre(y,t) = cro(y) — Z eri(y,t)

where y is the distance into the wall from the surface. For hydrogenic-atom species j, c; is
the mobile concentration, ¢r; is the trapped concentration, G; is the volume source due to
nonreflected neutrals incident on the wall from the plasma (5.1.2), and D,,; is the diffusivity
(4.2). Also, cr, is the total concentration of traps, cr. is the concentration of empty traps,
cy is the metal concentration, A is the jump distance, and v is the detrapping frequency

(4.2).
4.2 MATERIAL COEFFICIENTS
The wall diffusivity of hydrogenic-atom species j is
Dg
D,; = ——exp(-Qp/kT
7 \/m—] )

where Dy is the diffusivity pre-exponential, Qp is the migration energy, T is the wall
temperature (assumed constant), and m; is the atomic mass.
The detrapping frequency is

v=wvyexp(—(Qp + Er)/kT]| + vi
a .
vy = AI ZNkaJk
v ik

where v is the pre-exponential and E7 is the trap binding energy. The empirical detrapping
frequency vy is an empirical detrapping cross section oy times the total flux of neutrals
incident on the wall (5.1.1).

4.3 SURFACE BOUNDARY CONDITIONS

The flux emitted from the surface is given by a balance between recombinative desorption
and outward diffusion from the bulk to the surface of the wall [24]. The surface boundary

condition is 9
s
J — s} : s
= 2krcj Cj';
jl

y=0
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where k, is the recombination rate coefficient including surface roughness (Howe and Langley
[25]) and ¢? = ¢;(y = 0) is the concentration at the surface. At the inner boundary,
a .
gci =0
6y Y=¥Ymax

4.4 LIMITER TRANSPORT

A simple point model is currently used to model the accumulation of plasma particles in

the limiter. The number of particles of hydrogenic species j in the limiter Ny ; is governed
by
dNpg;

dt

where the source terms are due to ions and neutrals, and the loss term represents desorption
at an arbitrary rate specified by the limiter confinement time 7, .

The ion source term arises from the fraction of the ion flux incident on the limiter that
is not directly reflected; 7y, is the limiter reflection coefficient for ions. The total rate of
incidence of hydrogenic ions of species j on the limiter or divertor due to parallel plasma

loss in the scrape-off is .
. d -
N = [ 22y
as T||H;j
The parallel loss time is 7yy; (5.3.1), and the integral extends over the scrape-off volume
enclosed between the inner scrape-off edge (p = a,) and the flux surface coinciding with
the pump limiter duct leading edge (p = a4). If there is no limiter pumping, a4 = a and
the jon flux to the entire limiter is included. When limiter pumping is included (aq < a),
ions incident on the limiter at radial distances greater than the leading edge of the pumping
duct (p > aq4) are completely pumped.
The neutral source Ngj arises from neutrals created in the plasma that are absorbed by
the limiter. This source is given below (5.1.2).

:(1_TL)N_,TJ.+NL°J.~T—§’




30

5 PLASMA-WALL INTERACTION
5.1 COUPLED PLASMA AND WALL HYDROGEN SOURCES

The basic method for coupling the plasma, neutral, and wall particle transport models
is described by Howe [22]. The complete method is described here.

5.1.1 Neutral Source Fluxes at Surfaces
The total rate of emission of neutral hydrogenic species j from all surfaces is
vC _ arW v L vG 7 D
Ny =N+ N7+ N7+ Nj
The rate of emission from the wall due to recycling of plasma lost to the wall is

NY = —Ry (V,Tu;)

p=a

where R, is the fraction of the ion flux incident on the wall that is reemitted into the
plasma as a neutral flux and I'py; is defined above (2.1.1).

The rate of emission from the limiter or divertor is given by one of two models. If the
absorption and release of plasma and neutrals by the limiter are not explicitly calculated,
then the limiter emission rate is

Nj = RN},

where N Z] is the total ion flux of hydrogen species j incident on the limiter (4.4) and Rp,
is the fraction of ions flowing to the limiter that is reemitted into the plasma as a neutral
flux. Ry may be a constant or may be controlled by feedback (11.3).

If the absorption and release of particles at the limiter are modeled as described above
(4.4), then the emission rate of neutral hydrogenic species j from the limiter is

Np;
TL

¥

L

The first term represents ions that are directly reflected from the limiter as neutrals with
reflection coefficient r7, . The second term gives the rate of desorption from the limiter.

External fueling with gas (Sg;) or continuous pellet injection (S,;) produces an addi-
tional wall neutral emission rate of

NJG = Sq; + Sp;

When the wall diffusion and trapping model (4.1, {.2) is used, the rate of emission from
the wall due to recombination is

NP =2k Ayesy  ch
]'I

where k, is the recombination rate coefficient, A, is the wall area, and ¢? = ¢;(y = 0) is
the particle concentration at the surface of the wall.
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If the wall diffusion and trapping model is not used, complete desorption from the wall is
obtained by letting the rate of desorption equal the rate of incidence of nonreflected neutrals
on the wall from the plasma. For a plasma with two hydrogenic-ion species, let the two
species be denoted by subscripts 7 and k. Then the desorbed emission rate of species j is

. NP1~ pi ~d) + N pje
Nll):fcx ! d J

I
d=(1-p;;)(1 — prx) — PikPk;

where the wall pumping fraction pji is defined above (3.8) and f¥ is defined below (5.1.2).
The complete-desorption model is usually used for long-pulse simulations where the wall is
expected to be saturated.

The general recycling model described above does not apply for constant plasma den-
sity. Instead, the neutral source rate is determined from an arbitrarily set global particle
confinement time 7. The total rate of emission of neutrals of species j from all surfaces for

constant plasma density is given by N JC =N J-W where

. 1 o

WY = [ ms V) df
vl _ nvG . gD .
Niy=N7=N; =0

5.1.2 Plasma, Wall, and Limiter Particle Sources

The ion source term Sy; that appears in the transport equation for hydrogenic ion
density ng; (2.1.1) is

1 (. .
Suj(p) = v, (N ChE(p) - zk: N¢ ijhfk(f)))

where the total neutral emission rate (N ]C ) from the walls and limiter due to recycling and
external fueling is given above (5.1.1). The normalized deposition profiles of the neutrals in
the plasma (A7, ) and the fractional pumping rates p;i are derived from the neutral transport
model (3.8).

The particle source term &';, which appears in the transport equation for the hydrogenic
particle concentration ¢; in the wall (4.1), is

Gi(y) = 22 Y NEpuhi(v)
Wk

where A, is the wall area and fY% is the fraction of the neutral outflux from the plasma
that is deposited in the wall. The normalized wall source deposition profile A%} is derived
from the neutral transport model (3.8).

The rate of deposition of neutral particles of hydrogenic species j on the limiter (4.4) is

7O ¢L 7
NLj: fcszlc Dik
k
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where fL =1 - f¥ is the fraction of the neutral outflux from the plasma that is deposited

in the limiter.

This form for Sg;, G;, and N 9 ; ensures particle conservation, since each neutral emitted
from the wall or limiter is deposited either in the plasma as an ion or in the wall or the
limiter as a neutral particle.

For constant plasma density where the general recycle model is not applicable, the
ionization source rate for hydrogenic-ion species Hj is

1.
Sujp) = i};Njch_z;j(p)

The wall pumping fractions pj; are not included; this assumes that all charge-exchange
particles that are not reflected from the wall are reemitted at the thermal energy.

5.1.3 Plasma Toroidal Momentum Loss

The toroidal momentum loss p., due to neutral charge exchange, which appears in the
toroidal velocity equation (2.1.4), is

j’cx(p) = Z(I‘Z/FO) sz,k(ﬂ)

k
FZ = NkC/Asp

where N is defined above (5.1.1) and A,p = (27)?r, Ry is approximately the plasma surface
area. I'g is the (arbitrary) edge neutral source flux used in the slab neutral transport model,
and pg, ; (5.8) is the slab value for the charge-exchange momentum loss.

5.1.4 Plasma Energy Loss

The energy loss g.x due to neutral charge exchange, which appears in the ion temperature

equation (2.1.6), is
dox(p) = (T5/To) a2y k()
k

where '} and To are defined above (5.1.3) and ¢, ; (3.8) is the slab value for charge-
exchange energy transport, including reionization.

The energy loss gon due to neutral ionization and radiation, which appears in the elec-
tron temperature equation (2.1.5), is

Gion(p) = — o ENEhzk(p)
o

where Ei,, is the energy lost per neutral ionization.

5.1.5 Neutral Density

The neutral density ng(p) in the plasma is
no(p) = Y _(L7/To) g x(p)
k

where T} and g are defined above (5.1.3) and ng , is the slab value for the neutral density

(3.8).
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5.1.6 Average Recycle and Pumping Coefficient
The global recycle coefficient is

R=(1-p)+pvu

5= ik N';?ij
Ny
Yk NEpik

where N ¢ N D (5.1.1), and p;x (3.8) are defined above, p is the total fraction of the incident
neutral ﬁux that is deposited in the wall, and v, is the fraction of this flux reemitted from
the wall surface back into the plasma by recombinative desorption.

5.2 IMPURITY SOURCES

The impurity source term S7;, which appears in the transport equations for impurity
density j (ng;) (2.1.8), contains contributions due to charge-exchange neutral sputtering of
the wall (5.2.1), ion sputtering of the limiter (5.2.2), impurity recycling from the wall and
limiter(5.2.3), and external injection from the wall (5.2.4).

5.2.1 Wall Charge-Exchange Neutral Sputtering

The source of impurities due to sputtering of the wall by the energetic charge-exchange
neutrals emitted from the plasma is

1 -
S1i(p) = 3 ST NS Gkhi(p)
P %

where N ,? is the cold neutral flux of hydrogenic species % incident on the plasma from the
wall and limiter (5.1.1), §r;k is the sputtered flux of impurity species j divided by the cold
neutral flux of hydrogenic species k& (32.8), and V, is the plasma volume. The normalized
impurity deposition profile is

~0Bs (8'(p, v1y)) /0r,

hi;(p) =
ST (0B (810, vr) f0y),,
B(p,vij) = ;}; /T:“ ne(p'){ov)rdr)
<2v1j)1/2
Vi = |
ij

where £p; is the energy of the sputtered neutral impurity, my; is the mass, and (ov)y is the
neutral-impurity ionization rate coefficient. The exponential integral E3 (8.1) and volume
integral {...)y (3.8) are defined above.
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5.2.2 Limiter lon Sputtering

The impurity source due to sputtering of the limiter by plasma ions flowing parallel to
field lines in the scrape-off layer is

1 . s
S1i(p) = T/—N;jhlj(/’)
14

. ad
Ni; = / s1i(P)V, dp

s (v _51i(p)
) = o
NHE x 15/ 1n
s1i(p) = —Y,7(E,mux), a;<p<a
o zk: THk HE ’

et O, ad < p <a
E =Ti(p) + 2Te(p)

where the sputter yield coefficient for a hydrogenic ion of energy E and mass my, Y, (E, my),
is given above (3.6.4) and nyy, and 7, are the density (2.1.1) and parallel loss time (5.3.1)
of hydrogenic-ion species k. The sputtered impurities are assumed to be deposited (ionized)
on the same flux surface p where they are sputtered. The separation of the source into the
product of a normalized deposition profile hﬁj(p) and the total rate of sputtered impurity

emission N {; ensures impurity number conservation. Ions that enter the limiter pumping
duct (p > aq) (5.1.1) are assumed not to sputter impurities into the main plasma. V), is
the plasma volume and the volume integral (.. .}y is defined above (3.8).

5.2.3 Wall and Limiter Recycling

The impurity source due to recycling from the wall of a fraction Rj,, of the outflux of
impurity species j is
Ry \ I
S1(p) = *‘—*pr (Vp/ L ”),,:a h1;(p)

where T'7; (2.1.3) and the normalized deposition profile hfj (5.2.1) are defined above.
The impurity source due to complete recycling of impurity species j from the limiter is
1 .
S1i(p) = f/‘Nﬁhﬁ'(P)
P

N = [ shovdp

R
R\ SIj(P)
hlj(p) <5g(P)>V
shi(p) = El‘jj
yivs;

where the impurity parallel loss time 7)1; is defined below (5.3.1 ). The recycled impurities
are assumed to be deposited (ionized) on the same flux surface p where they are incident



35

on the limiter. The separation of the source into the product of a normalized deposition

profile hﬁ-(p) and the tota)l rate of recycled impurity emission N }} ensures impurity number

conservation. V,, is the plasma volume (6.3) and the volume integral (.. .}y is defined above
(3.8).
5.2.4 External Source

The impurity source due to an external source such as impurity injection or laser blowoff
is given by

1 . ex
Srilp) = V;szthfj(ﬁ')
where ij’-‘t is the time-dependent external source rate and AJ; is the normalized deposition
profile(5.2.1).
5.3 PLASMA SCRAPE-OFF PARALLEL LOSS
5.3.1 Parallel Loss Time

The parallel loss time of plasma species u (¢ = Hj, He, or Ij) in the scrape-off layer is
based on the loss time given by Emmert et al. [26] and is

i = 7I'R0 L . a =
e = San, 27 Ry’ T2

2Ti 1/2
=\
m

where v, is the thermal velocity and m,, is the mass. The average toroidal length L is

E

R

L . . ..
Srke 1 for a poloidal diaphragm limiter
= qF for a toroidal belt limiter
= g-[Q(p ~ a,)/as)" /2 for a vertical rail limiter
L
= B (14 La/Aex) for a bundle divertor with mirror ratio R,,
2r R()

Lp = 2rRoRmgp(a— as)/(p — as)

_ 1
7 no(p)acx(vm;)

When modeling a tokamak with a given set of limiters, the parallel loss time is given by

32 Raor,
v,s(p)
where s(p) is the poloidal arc length of flux surface p intersected by the limiters as shown

in Fig. 1. s(p) changes during the shot as the flux surfaces shift with respect to the fixed
limiters.

M =



36

Helium recycling is included in the model by assuming that the helium ions that flow to
the limiter are reemitted and ionized at the position of incidence. This reduces the effective
parallel loss rate in the scrape-off by increasing the loss time 7). If the parallel loss time
calculated above is denoted by T|’|He, then

TI
T”He = ’i:'l'l—ljlﬁe;{—e, a; < p< a4
= e ag<p<a

where Ry, is the limiter recycle coefficient of helium ions. Notice that all helium ions
incident on the limiter at positions outside the leading edge of the pump duct (p = aq)
(5.1.1) are assumed to be pumped.

5.3.2 Energy Loss Factor

The enhancement to the parallel electron energy loss in the scrape-off due to the sheath
potential at the limiter or collector plate is
1 edr,

=T T kT

&

where o, is the secondary electron emission coefficient of the limiter (described below) and
¢r, is the limiter sheath potential. There are two models for ¢y,.

If the electron and ion fluxes to the limiter are ambipolar at every point on the limiter
surface, then ¢y, varies across the limiter face and is given by [26]
edy, 1 I [1 my Te

Imple . 2
n 4meTi(1 as)]

KT, ~ 2
If, instead, currents can flow within the limiter, then the electron and ion fluxes are not
necessarily locally ambipolar [27], and the sheath potential adjusts to ensure that the limiter
is globally ambipolar; that is, the total flux to the limiter face is ambipolar, and locally
nonambipolar fluxes are equilibrated by currents flowing in the limiter from regions of
excessive electron flux to regions of excessive ion flux. If the sheath potential is assumed to
be constant as a function of position on the limiter face, then ¢; is determined from the
integral condition:

¢, T 1 ne(Te/Ti)1/2 A P '
/a, Vo dp = /a 21~ US)ZJ' g (me/ma;)1/? p(egr/KTe) hmVp o

iy = Y0

T ;
7 “H]

The secondary electron emission coefficient is evaluated at £ = T, where

1 In[20(E/Emay) + 1]
27 N(E] Bmr) + 1177

os(E) =

and, for iron, omax = 1.3, Finax = 400 eV, The space-charge upper limit on o, is accounted
for by imposing a limit of o,(¥) = 0.85 if o,(£) > 0.85.
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6 EQUILIBRIUM
6.1 FLUX SURFACE EQUATIONS

A point on a flux surface is located by its Cartesian cylindrical coordinates z; = (R, ¢, Z),
where R is the major radius, ¢ is the geometric toroidal angle and Z is the distance above
the midplane. The corresponding flux coordinate is a; = (p,#,£), where p is the flux surface
label, 8 is a poloidal angle, and £ is a toroidal angle. Flux surfaces are defined by the inverse
representation

R(p,0,8) = Z Ry n(p) cos(mb — n§)

Z(p,0,8) = Z Zmn(p) sin(mb ~ nf)

L]

#(p,8,8§)=¢
The set of coeflicients R,,,, and Z,, , determines the flux surface geometry. In addition,
a third set of coefficients A, ,, (6.2) is required to define the magnetic fields. The models
used for the R, n, Zy, , coefficients are described in this section.

6.1.1 Axisymmetric Surfaces

For axisymmetric plasmas (tokamaks), a shifted-ellipse representation is given by

Rop = Ro+ A(p)
Zop =10

RI,O = -~7'p

ZI,O = E’I‘p

This model is described in detail below (6.5) and is shown in Fig. 2. The metric coefficients
used in the plasma transport equations may be derived in closed form for this representation;
the resulting coefficients are also given below (6.5). The shifted-ellipse model was used in
the tokamak version of the transport model [28]. Note, however, that the radial variable p
is a normalized radius here, while p was the actual midplane minor radius in the tokamak
model. The parameter p used previously has been replaced here by r,.

6.1.2 Model 3-D Surfaces

A model 3-D flux surface representation is used for model development and for cases
where detailed surfaces are not available. The flux surfaces are a set of concentric ellipses
with elongation F3p that rotate poloidally as the toroidal angle increases. The moment
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coefficients for this model are

Rop = Rap
Zop=0

10 = aspp
Z10 = aspp

Ry n3p = —fEa3pp
Z1n3D = fEA3DP
fE=(Easp—-1)/(Esp+ 1)

where the major radius R3p, average minor radius agp, and the number of field periods nap
are specified arbitrarily. The radial variable p is a normalized radius, where p = 1 is the
last closed surface. This representation is fixed in real space as the plasma evolves in time.

6.1.3 Vacuum 3-D Surfaces

For low-beta torsatron plasmas, the vacuum flux surfaces may be used. Starting with a
filamentary model of the helical and poloidal coil currents, a fast field-line-following model
[29] is used to map out a set of flux surfaces. The resulting surfaces are spectrally resolved
into the inverse representation described above (6.1) using a method [30] that selects the
poloidal angle 8 to give the smallest number of R,, , and Z,, ,, coefficients. Typical vacuum
surfaces for the Advanced Toroidal Facility calculated with this method are shown in Fig. 3.

The radial variable p is defined as

i) 1/2
= (&)
where ®(p) is the vacuum toroidal magnetic flux enclosed by surface p and @, is the torcidal

flux enclosed by the outermost surface (p = 1). The toroidal fluxes are calculated by the
field-line-following model.

6.1.4 Fixed-Boundary 3-D Equilibrium

For moderate to high beta, the plasma equilibrium may be calculated [31]. This cal-
culation returns the R, n, Zmn, and A, , coefficients for a given plasma pressure profile.
The boundary may be specified from the vacuum surface calculation (6.1.3).

6.1.5 Scrape-Off Surfaces

The last closed flux surface is p = 1 for all of the surface representations described above.
The treatment of the scrape-cff (p > 1) in the shifted-ellipse axisymmetric representation
is described below (6.5). To include a scrape-off model in the 3-D representations, the
surfaces outside the last closed surface are assumed to be linear extrapolations of the inner
surfaces. The outermost surface modeled is labeled p = a; for the region 1 < p < a, the
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representation is
Ron(p) = Rmn(p=1)+ %ﬁ
m,n\P) = dtm nip = dp
dZmnl|

dp

Zmn(p) = Zmalp=1) +

The resulting flux surfaces for the model 3-D representation (6.1.2) are shown in Fig. 4.

6.1.6 Equivolume Average Surfaces

Several models (for example, magnetic diffusion (2.1.7) and neutral beam deposition
(7.2)) have not yet been formulated for the 3-D flux surface representation. Average,
axisymmetric surfaces are defined by

R(p,8) = Ro + A(p) — r,cos6
Z(p,0) = Er,sind
where, for surface p, the average surface is defined to contain the same volume as the actnal
3-D surface.
The real and average surfaces are aligned at the toroidal position ¢ = 0 as follows. The

major radii of the inner (Ri,) and outer (Roue) intersections of surface p with the midplane
are given approximately by

Rin(p) = Z(_l)mRm,n(p)
Rout(p) = Z Rm,ﬂ(p)

Raialp) = 3 (Bin(p) + Roui()

where Ryid(p) is the average major radius of each flux surface. The plasma major radius
and flux surface shift for the average surfaces are

Ro = Ria(p=1), A(p) = Rmia(p) — Ro

If V(p) is the volume contained within surface p (as defined below (6.3)), then the midplane
minor radius of the average surface is

1/2
ro(p) = (p) )]

2n2E (Rg + A(p)

A comparison between the real and average flux surfaces is shown in Fig. 5. The average
radius of the last closed surface (p = 1) is 7, and of the outermost surface (p = a) is r,.

If the axisymmetric shifted-ellipse representation (6.5) is used, the average and actual
surfaces coincide and Ry, r,, and A(p) become the surface major radius, minor radius, and
shift as defined below (6.5).
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6.2 MAGNETIC FIELDS AND FLUXES

If the magnetic field magnitude on flux surface p is approximated by

B(p,8,4) = Bo(p) [1 + &(p) cos 8 + ex(p) cos(mb ~ nd) + - - -]

where m = 2 and n = number of field periods, then ¢ is the toroidal ripple and € is the
helical ripple. For the vacuum surfaces (6.1.3), Bo, €, and ¢, are derived from field-line
following for each surface.

6.3 PLASMA TRANSPORT METRICS

The flux surface average of a variable X(p, 8,£) is

1 2T 27
(X)y = W/o dg/o d6. /5 X

The plasma volume between p and p + dp is

Vi) = [ e [ doys

and the volume contained within surface p is
P
V(p) = /0 dp' V,(p')

where V, = V(p = a) is the total plasma volume including the scrape-off.
The differential plasma volume is

\/ﬁ =R det(G,-j)
Gi; = 0z /0

where, as defined above (6.1), z; = (R, ¢, Z) is the cylindrical coordinate and o; = (p, 8,§)
is the corresponding point in flux coordinates. Since the magnetic toroidal angle £ is defined
to be the geometric toroidal angle ¢, /g is given as in the axisymmetric case by

8ROZ OROZ
vi= (555, ~ 5, 37)
The metric coefficients are

C_OROR .00 06 0202
Yii = Jda; Oa; O0a; 0a;  Oa; Oa;

The transport metrics {(Vp)?)y and {|Vp|)y are obtained by flux-surface averaging the local
value

(Vp)* = é (900ge¢ 935)

where the flux surface average operator is defined above. While this average is performed
numerically for the general 3-D flux surface representation, an analytical form is obtainable
for the axisymmetric shifted-ellipse surfaces (6.5).
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6.4 MAGNETIC DIFFUSION METRICS

The poloidal averages of the metric coefficients required for the magnetic diffusion eqna-
tion (2.1.7) are

Ror! Ror!
co = —{ga0/\/3)a = ——2(\/4(Vp)*/ E*}q
P P
_ R 1 € E? A, ) 2
T EmEC-A) [(14-56) (H «55) (1+5A, T+
R R
¢s = =~ (/3/980)0 = T (\/5/ B?)o
p'e ple
= _IELE (1 — GAP
N RM 66 1+ 65
fe=(1-e)?, e=lto_To_
‘ ’ R Ro+ Alp)
A A’
= (1 - A2)1/2 48 B
6A (1 Ap) 7 Ap drp' ,r/p

dr dA
L r I
r""—dp’ A &

6.5 AXISYMMETRIC, SHIFTED, ELLIPTICAL SURFACES

The plasma flux surfaces are assumed to be nested, elongated toroids. The equilib-
rium force balance is approximately satisfied by allowing each flux surface to shift in the
major radius direction while assuming constant elongation for all surfaces. In cylindrical
coordinates (R, Z, ¢), where R is the major radius, Z the vertical distance above the torus
midplane, and ¢ the toroidal angle, the equation of each surface is

R = Rp(p) — rpcos8
Z = Erpsiné
Ru(p) = Ro+ A(p); 1p=prs; 15, =75

Here, 7, is the midplane minor radius of the elliptical surface, £ is the elongation, 8 is the
poloidal angle, Ry (7,) is the major (minor midplane) radius of the surface (p = a,) that
separates the confined and scrape-off plasmas, and A(p) is the shift, which is derived from
the Grad-Shafranov equation. The entire plasma, including the scrape-off layer, is enclosed
by the outer flux surface p = a. The geometry is shown in Fig. 2.

The matrix of metric coefficients that defines the coordinate transformation from cylin-
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drical to shifted-ellipse coordinates is

2 2

Gpp = (%};_Z) + (%%—) = (A"~ 1}, cos8) + (Er’,)?sin? 8
_amon 9207

906 = 5,96 " Bp 98

OR\? AZN? 5. ., 2 2
gos = <-5—0—) + (”(;)70“) = 15 (sin“ 6 + E* cos* 6)

9p0 = R?
9ps = gop = 0 due to axisymmetry

= rpsin 8 [A' + (E? — 1)r} cos §]

The Jacobian is

g = det(gi;) = 9p¢(9po900 — 940)
dROZ OROZ\
Vi=R <—é—8—5; - 5;55) = ERr,(r, — A’ cos §)
ap\? 0p\?  ges9ss c0s?8 + (1/E?)sin? 8
2 (2 —— = =
(Vo) = (BR) + (BZ) g (v, — Al cos8)?

The coeflicients that appear in the transport equations are poloidal averages of the metric
coefficients (g;;). The poloidal average of a variable X is
1 27

(Xyo=5- [ Xa0

and the corresponding flux surface average is

(X ={VgX)e/{\/9)o

One virtue of the shifted-ellipse, constant-elongation coordinate system is that all required
poloidal averages may be obtained in closed form. Thus, the differential volume of a flux
surface is

Vp' = (271')2(\/_6)9 = (27r)2E7':,r,, (RM + /—)29—1)

where A’ = dA(p)/dp. The total volume enclosed by flux surface p is V(p) = 27r2E’r§RM
and the volume of the entire plasma is V, = V(p = a).

The flux surface average of the transport term in the density, rotation, and temperature
equations involves the integral of (Vp)? over the flux surface volume. The resulting factor

° V(o) (Vo) = 21)H/G (V)

Ras E2_—1
= (27)?
(2m) E’D(EZ(SA, [” 1+5A,]

’ 02 2
A1 - 13+( A, )
E? 6A'(1+6A’) 4 1+ b6ar

_ A A" 1dA
P79, T rodp

2
bar=(1—AHVZ A
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The integral of Vp over a flux surface is approximated by

(Vo) = 7, (Vo) )y

The horizontal shift of the flux surfaces is derived from the Grad-Shafranov equation as
described by Lao, Hirshman, and Wieland [32]. This representation is fairly accurate for
small poloidal beta (8, < A/2, where A = Ry/7; is the aspect ratio). The shift is defined
relative to the surface (p = a,) that first touches a material surface (or the separatrix for
a divertor); thus, A(p = a,) = 0. This means that the shift is positive (outward) in the
plasma and negative (inward) in the scrape-off layer. The shift A of surface p is

ra 4E? =, [ B(P) = p(p)
AP =7, (0)(3E2+1>./ pd”( B2/8x )

1 E
RM(O)/ ”d”( e(")+23E2+1>

where the average poloidal field is

+

5 _ 2B I(p)
PTE? 41 2mpgprs

The pressure is
P= neTe+nTTi+pr_

where pp1 is the perpendicular fast ion pressure (7.1).
The average pressure is

— 2 /p U (2 £
= d
p(p) 5 ), Pde (o)
the internal inductance is

i(p) = 2AE*+1) 1

3EZT+1 B(p) p?

/ p'dp’ B(p)

and the major radius of the magnetic axis is Rp(0) = Ro + A(0).

The plasma equilibrium is recalculated whenever the plasma pressure or magnetic field
changes sufficiently. Since the position of the confined-plasma edge (Rap(p = as) = Ro) is
assumed to be constant, large changes in plasma energy content or toroidal current due
to major-radius compression are not included in the model. Therefore, only the plasma
density is renormalized after the shift profile is recalculated in order to maintain particle
conservation. The small resulting errors in the plasma energy density and current profile
are usually unimportant. If we denote plasma parameters before recalculation of the shift
profile with superscript b, then the corresponding densities in the new equilibrium are

/b
o) = )

where the renormalization is applied to the densities of hydrogenic ions (u = Hj), helium
jions (¢ = He), and impurity ions (pu = I7).
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6.6 INTERNAL DISRUPTIONS
6.6.1 Transport Coefficient Enhancement

When the discrete sawtooth model (6.6.2) is not used, enhanced transport due to in-
ternal disruptions is simulated by increasing the plasma transport coefficients in the region
where ¢ € 1. The coefficients enhanced are Dy; (2.2.2), Dye (2.2.2), 1 (2.2.4), X. (2.2.5),
and xg; (2.2.6). If the value of a particular coefficient X before enhancement is Xo, the

enhanced value is 1
—1\1~
X = Xo+ Xat [1 + exp (%)]

where the enhancement is performed for all radii; g(p) is the safety factor (2.2.1), and the
enhancement X may be either a constant (usually = 10* cm?/s in present-day devices) or
0.01Dpg, where Dg = ckT./16eBy is the Bohm diffusion coefficient.

Another model for transport enhancement is

- 2(7'qu=1)2
Tst

Dmna

where 7y, is the sawtooth period and pg=; is the outermost flux surface for which ¢ = 1.
An expression for 7, that agrees with experimental measurements from several ohmically
heated tokamaks [33] is

Tet = 3 (Tﬁ‘rﬁrfz{)lﬁ
where the resistive time is
. l‘O(Tqu=1)2
- m(0)
the Alfvén time is
R Br

v

T = e
A va ’ A (47rP[I)1/2 )

PH =Y Mginy;
J

and the central heating time is

_ § ne(O)Te(O)
"~ 2E2(0)Jon(0) + ¢5,;(0)

The ohmic result for 7 has been extended here with the inclusion of ¢f; in 7. For this
model, the enhancement of any coefficient X is given by

-1
X = XO + Dmhd [1 + exp <M>]

TH

0.1[)q:1

The flattening of the toroidal current profile is simulated by modifying the parallel resistivity
) (2.2.8) inside the flux surface py=; where ¢ = 1. The modified resistivity 5y is used in
the current evolution model (2.1.7) and is given by

s

3/2
n5(p) = (I—}p(qf)l—)) MPg=1), P < Pe=1

=n(p)y P> py=1
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8.6.2 Sawtooth Model

Let variables with a superscript zero be parameters immediately before the sawtooth
and variables with a superscript f be the corresponding parameters immediately following
the sawtooth. A sawtooth is simulated by stopping the temporal evolution of the plasma
parameters, flattening the plasma densities, temperatures, and current density profiles as
shown below, and starting the temporal evolution using the flattened profiles as initial
conditions.

Let p, = V2 Pg=1; then the volume enclosed by the singular surface is -

Ps
I/_‘, = / Vﬂ, dp
0
and the flattened values for p < p, are
1 Ps
nf{j = f/:/o ngy;V, dp
i 1 Pa o ,
an = -‘};_/0 anVp dp

nf: = Zn{“ <+ sznj;j + ny
J J

1 Ps
Téf = f/ TSTLSVPI dp
Vene J0
f 1 Pe 0. 0yst
T/ = — [ 109V, dp
Vs'nT 0

ny = ZnHj +Z"Ij
J J

P
H(p) = J;f??r/ cgp dp
0

Jf = ...._..I.(.].EE_’)_._
oo2m 3 cppdp
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7 NEUTRAL BEAM HEATING
7.1 PLASMA SOURCES

Plasma sources of energy, momentum, and particles due to neutral beam injection as well
as fast-ion density and pressure are calculated for each beam energy component (full, one-
half, and one-third energy) and for each injector fast-neutral source. For energy component
j with energy E;x ( = Eox/j, where Egi is the full injection energy) and particle current
I; x (where k specifies the ion source), the flux-surface-averaged fast-ion source rate is

ik = {—"’/-’;H,-,k(p)
where V,, is the plasma volume (6.3) and H;x(p) (7.2) is the normalized neutral beam
deposition profile. Thermalization of the fast ions is modeled by the moments method
(7.8.1), which gives the fractions of fast-ion energy, momentum, and particles deposited in
the plasma electrons and ions. The total source terms are formed by summing the product
of the fast-ion source rate and the appropriate moment over all beam components.
The heating source for electrons is

@ni(P) = Y _ 5k EjaGe,
5k
The heating source for ions is
Gy (P) = D 7k Ei kG, + TiSimi(p)
Jik

The toroidal current density perturbation (including the shielding response of plasma elec-
trons) due to fast ions is

Io(p) =D i Zsev;kbitsKe, (1 — Zf ] Zew)
ak

1/2
2F; OrR.
Y5k = ( J’k) » fk = h ok

my _R0+Tp

where, for soutce k, & is the cosine of the initial pitch angle and ©f = 1 (—1) for co-injection
(counter-injection). The fast-ion density is

ne(p) = O njxTsNjk
7k

The source of plasma ions due to thermalized fast ions is

Sinj(P) = Z hj,kpcx('”T.-)
7.k

The source of toroidal momentum for the plasma (electrons and all ions) is

Pi(p) = 3 iampvipba(Ke;, + Ki, )
iF
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The source of toroidal momentum for the hydrogenic-ion plasma component is

pu(p) =D wismsviabr Ky,
gk

The source of toroidal momentum for the plasma impurities is

pr(p) =Y njemsvipbiKr,,
o

The fast-ion perpendicular pressure is

pr(p) = #jnEjxmePL,,
1k

The fast-ion parallel pressure is

pyy(p) = z ik Eikts B,

jyk

7.2 BEAM DEPOSITION

The neutral beam jonization and initial deposition model is based on the original model
described by Rome et al. [34]. The present model departs from the original model by (1)
excluding first-orbit effects and (2) including shifted, elongated flux surfaces.

7.2.1 Diffuse-Beam Integration

The neutral beam shape within the plasma is assumed to be a cylinder of radius 7. The
tangency major radius of the beam centerline for ion source k is B, = R. ;. The normalized
deposition profile for flux surface p is

Hix(p) = H*(p)+ H (p)

where the contribution from the outer (H*) and inner (H ~) intersection of the beam with
the flux surface is

Zy Rz:
H(p) = 2 / dz /I; dRy Jy(e) B(p, R, 23)
0 L

The integration variables Ry and z; are the major radius and distance from the midplane (in
the beam tangency plane) of each differential beamlet. The'integration in B and 2, extends
over the beam cross section. The contribution of a beamlet at (Ry, 2;) is A% (p, Ry, ) and
is given below (7.2.2). The integration limits

2z, = min [Er,, s

Ry = R, — (r2 — z})!/?

R = min [Ro + Ap) £ ('r? - (zb/E)z)I/'z R+ (r? - zg)l/z]
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ensure that only beamlets intersecting the given flux surface p contribute to H(p). H¥(p)
is zero if R, > RE.
The current density distribution within the beam cross section is

1 2, 2\17! 2, 2
Jb(a)~m[1~exp (—rb/o )] exp (—a /o ) , O<a<lm
=0, a> T
1/2
a= [(Rb - Rc)z + zf]
where « is the perpendicular distance from the beam centerline and o is the Gaussian
half-width of the current density profile.

7.2.2 Pencil-Beam Deposition

The normalized deposition profile for flux surface p of a beamlet with tangency radius
Ry and distance above the midplane 2, is

2 ' -1
+ _ o’ [r,A(p) ( A(p))] R
h (pv Rb,Zb) ) [ 2R, +(1+ Ro (R2 " Rg)llz

{73 - o/ 7] ™+ B (exp(- o) + v [0+ 200 s

where 12
R=Ro+ Alp) £ |o* - (/E)?)

Do =D (R,Ro + a2 - (zb/E)2]1/2)
Dy = D(Ry, R)

The factor vy, determines whether the second intersection of the beamlet with the flux
surface is included. Thus, 74 = 1 when

By > Ro - [a® = (n/E)]"

and the beam intersects the outside wall (tangential injection), and y4 = 0 when

Ry < Ro — [a2 - (z;,/E)z]l/2

and the beam intersects the inside wall (perpendicular injection).
The beam decrement along the beamlet path between major radii R, and R, is

. Rz RdR 1
D(R17R2) = A 1/2 /\( /)
1 (RI2 - RZ) P

where the mean free path A is evaluated at the p’ for which

o) = { (1 = (Ro+ 8)]" + )
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The local mean free path (X) for ionization of the injected neutral is

1 _ ne<aev>ion
Ap) vy

where vy = (2E;x/m;)'/? is the fast neutral velocity. The terms give neutral ionization due
to electron impact (o,), hydrogenic-ion charge exchange (o) and impact (o;), and impurity
charge exchange and impact. The hydrogenic-ion and electron cross sections are given by
Riviere [35]). The impurity cross sections are taken to be Z; times the hydrogenic-ion cross
sections [36] where Z is the charge state of impurity species k. Impact and charge-exchange
ionization by helium ions and fast ions are also included in the above expression for A(p).

+ neacx(vf) + neai(vf)

7.3 FAST-ION THERMALIZATION

Thermalization of injected fast ions is modeled using the moments solution of the fast-ion
Fokker-Planck equation as described by Callen et al. [37].

7.3.1 Moments of Fokker-Planck Equation

The moments of the fast-ion velocity distribution are given for each energy component
J of each ion source k. The fraction of the initial fast-ion energy deposited in the plasma

electrons is 5
2 [ v
Ge., = w/ dv e
€5,k 'szf v(t) vav ,03 + ,vg ch(’v)

The fraction of the initial fast-ion energy deposited in the plasma ions is
2 [ut v3
G o= = / VAV~ Doy (v
T gy 2 ()
The fraction of the initial fast-ion toroidal momentum deposited in the plasma electrons is
1 gvr v3
I(,:-/ AV ————= Pex{v)b(:
el vp Jory  v° 402 Pex(v)b(v)

The fraction of the initial fast-ion toroidal momentum deposited in all plasma ions (hydro-
genic and impurities) is

1 fvs v3 My Zeof
K. = = dv ——S P e x
R /v(t) R (1 T 12 ) e 0)

The fractions of the initial fast-ion toroidal momentum deposited in the hydrogenic ions
(Kgjr) and in the impurities (K7p;x) are

2ng o
ne(Zesr + [Z]) ok

The pitch-angle scattering term that appears in odd moments is

a\ L/3)(mp/m ;) (Zew /[ 2]
b(v) = (”?“*’Uf’v*‘)[ N7 /121)]

v3 4 3 v?

'A‘ijk = I([j’k = I(ij,k -~ Ifyj’k
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The stacked fast-ion density moment is
vy v?
N;p= dv ———= pex(v
I o(t) 3 + U? CK( )
The deuterium-tritium beam-plasma fusion moment is
’Uf '03
Ry, =T / dv ——— v)optT(v
bp; & s o(t) NEN U? ch( ) DT( )

The fast-ion perpendicular pressure moment is

P, = i/“’ do—""_ po )[1-1(352—1)1;3(1;)]
Lk — 31)? u(t)v vv3+v§ Dex\V 5 0

The fast-ion parallel pressure moment is

2 s v® 2 3
}%¢:ﬁglmvwzfﬁghﬂﬂhﬂW%o“Ub@ﬂ

The probability that a fast ion will slow down to velocity v without undergoing charge
exchange on the background neutral density ng (5.1.5) is

'U? 'J(" vg *73/37'cx
pcx(v) = ;3~m
[
1

Togy = ~————————
o novfacx(vf)

where o.«(vy) is the charge-exchange cross section at the initial fast-ion velocity. The fast-
ion velocity at time t after beam turn-on is

1/3
o(t) = [v?e-Bt/n _ ’U?(l _ e~3t/‘fs)] / , t< 1y

= VT, t>'l'f

where v(¢) is used only to approximate the finite initial stacking time after initial beam
turn-on. The fast-ion lifetime is

e |1 &)’
U:mejﬁﬂiq
3 1+ (vg;/vc)
The fast-ion slowing-down time (in seconds) is

(T./1keV)3/2  m;

=012 my
Ts (n./10% cm=3)22 m,

The initial and final fast-ion velocities are

e = 2F; 1/2_ _ 275 12
A T
f f
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The critical velocity and energy are

v, = 2F, 1/2' E. =T (9-[’7’73‘2)1/3 E ' mf{Z] N
¢ my ! ¢ “\ 16 m. mp my

The cosine of the initial pitch angle for source k is

. Rc,k
N Ro + T,

€o

7.3.2 Complete Fokker-Planck Equation

For most cases, the steady-state moments solution to the fast-ion Fokker-Planck equation
(7.1, 7.3.1) is sufficiently accurate and gives essentially the same plasma source profiles as
the time-dependent solution described here. When the time dependence of the fast-ion
velocity distribution function is important, the solution described by Fowler, Smith, and
Rome [38] (referred to in this section as FSR) is used. This solution assumes that fast
ions slow down on their birth flux surfaces and solves the time-dependent Fokker-Planck
equation in velocity space at each radius. The model and method of solution are described
in detail by FSR, and only the method of interfacing their solution with the transport model
is described here.

The fast-ion source rate due to beam-energy component j and injector source k on flux
surface p is

Lk
'i‘. 1 i:
W5in = gz ko)
+ - Gch,k
Ro + Tp

where I ; is the beam current, V), is the plasma volume, and Hji,k is the normalized depo-
sition profile (7.2.1) for the outer (H1) and inner (H ™) intersection of the beam with the
flux surface p. The corresponding initial pitch angle for each source is Bji'k where O = 1
(—1) for co-injection (counter-injection). The source term and initial pitch angle appear in
Eqs. (2.1) and (2.14) of FSR, respectively.

The resulting plasma source terms are given by appropriate moments of the calculated
fast-ion distribution function. The following equations from FSR define the moments of the
fast-ion distribution function on the right-hand side of each equation. Equation numbers
from FSR are given in parentheses.

The electron heating source is

Q
Q
]
D
!
e
!

Gni(P) = ~Qe ~ Pp (4.13,4.11)
The ion heating source is ’ .
@oi(p) = —Qi — Pp (4.12,4.10)
The fast-ion density is
m(p) = Dy (4.2)

The source of plasma ions due to thermalized fast ions is

‘Sillj(p) = _D:;h’ag - Dfirag ~ Dg (44’45)46)
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The toroidal current density perturbation (including the shielding response of plasma elec-
trons) due to fast ions is

Jo(p) = 1.7 ;j—f (1~ Z1/Zest) (= Ripag) (4.21)
The source of toroidal momentum for the plasma (electrons and all ions) is
55(0) = ~Rling — Rirag — Ra (4.20,4.21,4.22)
The fast-ion parallel (py) and perpendicular (pyy ) pressures are also calculated:
PoL(p) = EovS/:v2 cos? 8 f d°z
pyi(p) = 2Eqvg / z?sin? 0 f &z

where the notation follows that in Sect. 4 of FSR..
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8 WAVE HEATING
8.1 ELECTRON CYCLOTRON RESONANCE

Two models for electron-cyclotron resonance heating are used. The resonance layer
model is appropriate for axisymmetric devices, while the multireflection mode! is used for
torsatron modeling.

8.1.1 Resonance Layer Model

A simple model for electron-cyclotron resonance heating is included by assuming that a
specified amount of power P.. at frequency ve. is absorbed on a resonance surface at major
radius Re., where
€ ROBT

M 2MVec

Rec -

The absorbed power is assumed to have a Gaussian distribution in major radius about
R.. with a half-width A... Equal power is absorbed by each electron, and the deposition is
therefore proportional to the local electron density. In addition, no power is absorbed inside
the outermost flux surface (at p = p.), where the wave frequency equals the electron plasma
frequency. This occurs when the plasma electron density n. equals the cutoff density =,
where

With these assumptions, the flux-surface-integrated heating profile for p > p. is proportional
to f(p), where

f(p) = n(p) /:W exp [M (R(p, ) — Rec)z/QAzC] g db

and f(p) = 0in the region p < p.. The major radius R(p, 8) (6.1.6) and the volume element
/G (6.3) are defined above. The normalized heating profile is

hee(p) = f(p) / (% /0 ’ HENHED dp’)

where V,, is the total plasma volume (6.3). This normalization ensures that the entire power
P, is absorbed; that is, the power excluded from the resonance layer inside the cutoff region
is added to the absorbed power outside this region. The resulting electron heating profile is

P,
ec = _ec‘hec
Zec(p) A (r)
8.1.2 Multireflection Model

The heating profile go is approximated by a linear-absorption, multireflection model
for second harmonic heating [39]. The shape of the absorption profile is assumed to be
proportional to the product f(p) of the local electron density and temperature. No power is
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absorbed inside the outermost flux surface (at p = p.) where the wave frequency v.. equals
the cutoff frequency for the extraordinary mode. This occurs for

ne = n./f2
m
Ng 47"; (27r1/e¢)2

where n. is the density where the wave frequency equals the plasma frequency. The factor of
1/2 results from assuming that the wave frequency is twice the electron cyclotron frequency.
The normalized heating profile is

0 p < pe
f(p) ne(p)To(p)

1 a
Yabs = 17 hec(p,)vpl(pl) dp'
Vp Pec

1l

where 7,p¢ is the fraction of the normalized deposition that is not cut off (i.e., yaps = 1 if
there is no cutoff).
The fraction of the incident power absorbed by the plasma f,ps is given by

FP(1—- F¥)(1 - F
fas = Fit m((l ~ Fw))((l — ;2)

Fi = 2x107% (/10" cm™%) To(eV)

FP = 6.9 % 10772, (neo/10" cm ™) Tg(eV)
FY = 0.02

where F} is the fraction of the wave absorbed on the first pass through the plasma, F¥ is the
fraction absorbed on subsequent passes after reflection from the wall, and F* is the fraction
absorbed by the wall on each reflection. The fractions depend on the central (p = 0) values
of the electron density n.g and temperature Teg.

The resulting heating profile is

Pccfabs
gec(p) = ~hec(p)
Ve

Note that the total absorbed power is less that the fraction fu;,s of the incident power when
a cutoff is present (p. > 0), since the power not absorbed inside the cutoff radius is not
assumed to be absorbed outside the cutoff radius.
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8.2 ION CYCLOTRON RESONANCE

Provision is made for an arbitrary heating profile to represent ion-cyclotron heating of
plasma electrons and ions. The heating profiles are given by

e iecp
Ge(p) = == < hic(p)
P

fie

(ch(P) = _ﬁ*ﬁhnc(p)

hic(p) = f(P)/( f(p)V(p)dp)
f(p)“ﬂp (p/Alc)]

where the total power P, the profile width A;., and the fraction of the power absorbed by
the electrons f2 and ions f (where fE + fi = 1) are specified arbitrarily.
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9 FUSION

Heating of the plasma by the thermalization of the alpha particles produced by deuterium-
tritium (D-T) fusion is included in the model. The alpha particles are assumed to slow down
on their birth flux surface; the thermalized particle is introduced as a source term in the
helium-ion particle transport equation (2.1.2).

9.1 PLASMA FAST-ALPHA HEATING

The heating source rate of plasma electrons (g§, ) and ions (gf,) due to fast-alpha
slowing-down is given by

Ghon(P) = Eo(Stus(p) + Stp(p)) G
qiius(p) = EO‘ (Sfus(P) + pr(p))G;:us

where E, is the initial alpha energy, Sg,s is the thermal D-T fusion rate (9.2), Spp is the
beam-plasma D-T fusion rate (9.3), and the fractions of the fast-alpha energy deposited in
electrons (Gg,.) and in ions (G},,) are given by

2 U ’03
G = — / v dv ———i
us 2 3 3
vs Jo v+ v,

G}.'us =1- G?us
Vo = (2Eo/ma)"?

1/3 1/3 2/3
Vea = (QECO‘/mOI)l/2§ Eeo =Te (gzlnﬁ) (—m—?—) (mQ[Z—]>

16 m, my My

where the initial alpha velocity is v,, the alpha critical energy is E.,, and the alpha particle
mass is my,.

9.2 THERMAL FUSION RATE
The rate of thermal D-T fusion g is
Stus(p) = na1nm2{0v)DT

where nyy and npgo are the hydrogenic-ion species (one of which is deuterium; the other,
tritium) and (ov)pr is the D-T reaction rate.

9.3 BEAM-PLASMA FUSION RATE
The rate of beam-plasma D-T fusion Shp is
I.
Sup(p) = mrtp 3 Hik(p) i, ()
g

where the sum is over the injector sources (k) and energy components (j). I;x is the beam
current of component j,k, V, is the plasma volume, H; is the injected-neutral ionization
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profile (7.2), and Ry, gives the fusion rate averaged over the slowing-down spectrum (7.3.1).
ngp is the density of the plasma-ion species that is not the fast-ion species. Normally,
deuterium is injected into a D-T mixture, so that ng, is the tritium density.
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10 PELLET FUELING

Fueling of the plasma by pellet injection is included either by injection of discrete pellets
or with a continuous fueling source that simulates injection of many pellets closely spaced
in time.

10.1 ABLATION MODEL

Pellets are injected in the midplane of the torus and perpendicular to the magnetic
axis (inward from the outside along a major radial chord). The pellet ablation model
calculates the pellet radius r,(¢) as a function of the time ¢ since the pellet entered the
plasma edge. The plasma profiles T.(p) and n.(p) are transformed to 7.(t) and n.(t) with
the transformations

)
Up
+
s(p) = {3_(;0)’ t < s0/vp
s7(p), t>so/vp
so = s*(p = 0)

where s(p) is the distance the pellet has traveled within the plasma after time ¢, vy is the
pellet velocity, and + (—) refers to the outer (inner) intersection of the pellet with flux
surface p.

For the shifted-ellipse, axisymmetric geometry (6.5), the chord lengths are

(p) = Ro+a+ Aa) - ()
r5(p) = Ro £ 7,(p) + Ap)

while for the more general 3-D case, the chord lengths are determined by a chord-tracking
algorithm [40].

The solution for dry(t)/dt = f(Te(t),n(t),...) is obtained from the shielded-pellet
ablation model of Milora et al. [41] using the method described by Houlberg et al. [42].
The resulting increase in plasma ion density is

2051 dr (ti) ds*
A = £ P S il Pt AR
nP(p) V’;'vp ; [ Trp( ) dt dp

+ ?i(P)
Up

t

where the sum is over the two intersections of the pellet with flux surface p (at times ¢+
and t7), s*(p) is defined above, and npen is the molecular density of the frozen pellet.

10.2 DISCRETE PELLET FUELING

At the time of injection of a discrete pellet, the transport evolution of the plasma is
stopped, the pellet deposition profile (An,) is calculated (10.1), the plasma densities and
temperatures are incremented as shown below, and the transport evolution is restarted
using the incremented plasma parameters as initial conditions. Let the plasma parameters
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before (after) injection be unprimed (primed). The ion density of the pellet species j and
the plasma electron density are incremented by the pellet deposition profile:

nyg; = ngj+ Any; 0l =n. + An,
and the plasma temperatures are decreased adiabatically,

nrd; . ' nele

,
) [

T, =

1

ny A

where nr is the total ion density (2.1.6).

10.3 CONTINUOUS PELLET FUELING

If pellets are injected frequently enough, the fueling is considered to be continuous, and
the pellet ablation profile An, is used to calculate a normalized fueling profile,

hes(p) = Any(p) / (—5— | aneyve0 dp’)

The plasma fueling profile that appears in the particle transport equation of the fueled
hydrogenic-ion density (2.1.1) is

1
Sui(p) = ff;spy‘hm(ﬂ)

where S5y,;(t) is the rate of total particle input by pellets, which may be arbitrarily specified
or controlled by feedback (11.1) to obtain a desired plasma density.
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11 FEEDBACK CONTROL

Feedback control is used to allow a complicated transport model to evolve to a desired
state without repeated trial-and-error attempts. Feedback is used in PROCTR (1) to obtain
a desired plasma density, (2) to obtain a desired level of fusion power in a burning-plasma
simulation, and (3) to match an experimental value for the charge-exchange ion temperature.
The feedback equations used in PROCTR are all of the same basic type. If the variable to
be controlled is X and the variable to be continually adjusted in the model is y, then the

feedback equation used is p Y_x ix
y ~ 40 :
a=c(Feey)

where X is the desired value of X. The first term on the right causes y to change if X is
different from Xo, where the sign of the constant C is chosen to ensure that y changes in
the correct sense to drive X toward Xo. The second term is a damping term that prevents
X from oscillating around Xg. Choosing 7 to be between 5Atps (Atas is the maximum
timestep) and the expected rate of change of X, 8 = 2, and C to be about the expected
by/6X usually is a good starting point for empirically determining a stable set of feedback
parameters. The several places in the model where a feedback equation has proved useful
are described in this section.

11.1 PLASMA DENSITY CONTROL BY GAS FEED RATE

To obtain a desired plasma density, the external gas feed rate of plasma species 7, Sg;,

is controlled by

dSq; V, NH;) — Ng; d{ng;

J:___B(< J> 3J+,3G (HJ>)
dt TQ TG dt
1 [2 ,

(nHj> = —‘7;/0 'n[{ij d/)
where V), is the plasma volume, n,; is the desired volume-average density for species j,
(ng;) is the model value of the volume-average density, 8¢ = 2, and 7 is usually chosen
to be 5Aty (where Aty is the maximum timestep). Separate control of the density of
each plasma ion species is especially desirable in burning-plasma simulations. A similar
equation is used to obtain a desired line-average electron deusity in a nonburning plasma.

The fueling rate that results from this feedback equation may be used either as a gas rate
Sa; (5.1.1) or as an equivalent continunous pellet fueling rate Sp; (10.3).

11.2 LINE DENSITY CONTROL BY PARTICLE DIFFUSIVITY

In simulating an actual plasma shot, the measured gas feed rate and the complete wall-
recycle model are used. Therefore, the level of plasma diffusivity is continuously adjusted to
obtain the measured time-dependent line density. The feedback equation for the diffusivity
multiplier Cp(?) is

dCp 90Cp (n.—n} d(ie — nf)
where #3(?) is the measured line-average density and 7.(¢) is the modeled line-average
density. Good results are obtained by choosing 7p = 5Atps (where Atps is the maximum
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timestep), Bp = 2, and the constant dCp/0n equal to the ratio of a change in diffusivity
to the resulting change in line density. The resulting Cp(t) shows the required temporal
dependence for a realistic model of diffusivity. Testing of predictive models for plasma
particle transport is reduced by this feedback equation to finding a model for particle
diffusivity that gives Cp(t) ~ constant.

11.3 LINE DENSITY CONTROL BY LIMITER RECYCLING

It is sometimes interesting to examine the time dependence of the limiter recycling coef-
ficient Ry, (5.1.1) necessary for a given particle transport model to reproduce the measured
line-density evolution during a given plasma shot. The feedback equation for this case is

dRp __6RL (ﬁe— ns +p d(7e —ﬁ;))
dt ~  On T L dt

where 7i, and 7] are the modeled and measured line-average electron densities and the
constants are chosen as described above.

11.4 FUSION POWER CONTROL BY VARIABLE DENSITY

The fusion power produced by a burning plasma simulation may be controlled by chang-
ing the fuel density. This control involves the use of two feedback equations. The desired
plasma density of species j, n;, is governed by

dnsj . _QE_ (Pfus - Pset deus)
T,

at - ap A
Pfus = En/ﬂ- (Squ(p) + pr(p))vpl dp

where Pp,s is the modeled fusion power, which is the volume integral of the sum of the
thermal fusion rate Spys (9.2) and the beam-plasma fusion rate Spp (9.3). Peet is the desired
fusion power, assuming an energy E, per fusion event. The resulting time-dependent ng; is
used as the desired value for the fueling rate feedback equation (11.1).

11.5 FUSION POWER CONTROL BY TOROIDAL FIELD RIPPLE

The fusion power may also be controlled by changing the plasma temperature at a fixed
plasma density. One way to change the temperature is to control the ion heat conductivity
by imposing a time-variable toroidal magnetic field ripple. The feedback equation for the
edge ripple &g is

d‘SO _ 860 Pfus — d'get deus
& ~ 9P ( o F A,
where Ppys and Py, are defined above (11.4). The resulting ripple is used in the ion heat

conductivity x;F (2.2.6) by letting the average ripple on each flux surface §g be

Sr(p,t) = 6o(t) fr(p)

where fr is the spatial profile of the ripple.
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11.6 ION TEMPERATURE CONTROL BY ION CONDUCTIVITY

The simulated charge-exchange ion temperature Tf* (12.1.9) may be made to equal a
given value ;PP by adjusting the level of ion heat conduction with the feedback equation

dCy  0C, (T&* — TP
dt 9T, Tx

where C is the x; multiplier and 7, is the feedback response time. The feedback technique
works best for C, if the damping factor 3, = 0.
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12 DIAGNOSTICS
12.1 DIAGNOSTIC VALUES FOR EXPERIMENTAL COMPARISON

For comparison of the model with experimental data, plasma parameters measured by
experimental diagnostics are calculated. The definitions of common parameters used for
comparison between the modeled and measured plasmas are given in this section. Model
parameters are defined in the sections given in the index.

12.1.1 Line-Average Density

For shifted-ellipse, axisymmetric geometry (6.5), the line-average electron density mea-
sured along a vertical chord at major radius R is

2 fe dz
_FIR _ < az
nc - Lc./O dpne(p)dp
) 211/2
Ap)=E|r; - (RF ~ Ro + A(p))

where L, is the total chord length used to define 7. experimentally.
The horizontal line-average electron density measured in the plasma midplane is

a
R

For the more general 3-D geometry or for an arbitrary chord in the axisymmetric case, the
line density for any chord is

_ 1

e = —L—c / ne ds

where the chord mapping s(p) is derived with a chord-tracking algorithm [40].

12.1.2 Loop Voltage

The loop voltage is defined as the average between the inner and the outer voltage drops
around the plasma. Thus,
Vi = 27 RoE (p = a)

where E,(p = a) (2.1.7) is the average toroidal electric field at the plasma edge.

12.1.3 Beta

The average pressure, including the fast-ion component, is given by
= [ o
p] - V; 0 p] P P P
where V; is the plasma volume enclosed within the confined plasma region excluding the

scrape-off,
g
Vs:/ V) dp
0
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The parallel (u =||) and perpendicular (u = L) pressures are

Pu(p) = neTe + nrTi + poy

where the fast-ion pressures py, are defined above (7.1).
Toroidal (A1) and poloidal (f8r) betas are defined by

B = (P +p1)/2
- B%/Qllo
Br = E? 4+ 1(py+p1)/2
2 Bg/?,uo

where 0y is often referred to as the “engineering beta” and

B - HOIT
P orr,

Perpendicular beta as measured by a diamagnetic loop is

__E2+1 PL

By T
2 B2

The actual value of poloidal beta (“MHD beta”) is

_(py+pL)/2
A= Bg/QMo
B} = (polr/2m)* ({+/9)o{g00/+/3)e) ™"

where the metrics g are defined above (6.5).

12.1.4 Energy Confinement Time

The energy confinement time that is usually determined experimentally (“gross confine-
ment time”) is the ratio of the stored energy (determined magnetically) to the total power
incident on the plasma. This time is

* w
TH = -
Poh+ Pinj - W
3. _ _
W= (g +p1)
Pon :/ "BV dp

[¢]
1

Pmj= -3 IizEjx
[ Tk

where W is the stored energy excluding the scrape-off, P, is ohmic heating power corrected
for inductance, and P, is the total neutral beam heating power delivered to the torus.



65

12.1.5 Internal Inductance

The plasma internal inductance is

f = 2p0 1
T Bg(as) Vs Jo

(B3 (p)/210) V} dp
where B and V, are defined above (12.1.3).

12.1.8 Safety Factor

A simplified definition of the safety factor (“engineering ¢”) is

E*4+1r,By
qr = =
5 RobB,

where B, is defined above (12.1.3).
The complete safety factor is used in the transport model; thus

9 = q(p = a)
where ¢(p) is defined above (2.2.1).

12.1.7 Neutron Rate

The thermal neutron rate for a deuterium plasma is used to infer the ion temperature.
The total emission rate of neutrons from the plasma is

1 a
Bop = /0 nd (0v)ppV, dp

where np is the density of deuterons in the plasma and (ov)pp is the total reaction rate
with the branching ratio assumed to be 1/2.

12.1.8 Radiated Power

The total power radiated by impurities in the plasma is

Prag = -/(; (Irad(P)V,: dP

For comparison with bolometer measurements, the charge-exchange and radiation losses
from hydrogenic neutrals (5.1.4) must also be considered.
12.1.9 Charge-Exchange Ion Temperature

The calculation of an apparent ion temperature from a measured charge-exchange spec-
trum is described by Davis, Mueller, and Keane [43). The charge-exchange flux at energy
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E for hydrogenic-ion species j is

Sm
Iex(E) = L ds {ov)cxMonH; g+ e~ D)

(0v)ex = Ocx(VE)VE, VE = (2E[mp;)'/?

2EM? oo
9+(E) = 7 73 © B

s ds
PO= 5@

1 n{ov). ‘
X" T en + ny (acx(vE) + m(vE))
where the values of the plasma parameters on surface p at a distance s(p) along the viewing
chord are calculated from the magnetic geometry with a chord-tracking algorithm [40].
The apparent ion temperature T7* is given by a least-squares fit of the function

y(E) = yo — E[TF™

to the calculated values
v =l (E‘l/2 FCX(E,-))

i

where the spectrum is measured at the energies F; for i = 1,...,n. Thus, TF* is given by
e« (1 A2 2 R
==\ S E) = E} ZyiEi“;LEizyi
i i i i B

12.1.10 Spectroscopic Lines

The line emission Sf;bs observed by a spectrometer for a line emitted by charge state ¢,
of impurity species j is given by
Sm
£ £ £
She = ]; ds nenf; by (0v)ex
where the values of the plasma parameters on surface p at a distance s(p) along the viewing

chord are calculated from the magnetic geometry with a chord-tracking algorithm [40]. b
is the branching ratio and {(ov)¢, is the excitation rate for the observed line.

12.2 INTEGRATED BALANCES

The volume integrals of the terms in the transport equations are computed for printing
and plotting and for use in estimating confinement time and transport coefficients. In
this section, the notation used for these balances is detailed and the derived confinement
parameters are defined. The neoclassical fluxes appropriate for a nonaxisymmetric plasma,
which are used for comparison with the experimentally inferred fluxes, are also given.

If f(p) represents a term in a transport equation, then the corresponding volume-
integrated value F(p) is

Fip) = Cu [ 56 Wi dp
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where ), is a constant which properly converts the units.

The units used in the transport model are centimeters (distance), milliseconds (time),
electron volts (energy and temperature), and amperes (current).

The integrated hydrogenic ion density equation (2.1.1) is in number per second and
Cy = 10° ms/s. The terms for species j, in the order in which they appear in (2.1.1), are

i
neutral ionization minus fusion loss Nmn, diffusion N7, convective flow anch fueling due

to thermalized fast ions Nbem, and parallel loss in the scrape-off layer N
When the ion density equation is not solved, the definition of I'y; g;ven at the end of
Section (2.1.1) applies and
Nl =

conv

N;nch =0

( 1on+Néeam" N:ol)

The integrated electron temperature equation (2.1.5) gives the electron power balance
in kilowatts, and C,, = 1.6 x 107'? joule/eV. T he terms, in the order in which they appear in
(2.1.5), are neutral beam heating of electrons Pj;, heat conduction FZ, 4, convection Fg,,,,
electron-ion thermalization Pg, impurity radiation P, 4, neutral ionization P, ohmic heat-
ing P5, wave heating PZ, fusion heating Py, and parallel loss in the scrape-off layer Pg,

When the T, equation is not solved, the difference between the volume heating sources

and volume plus convective losses is attributed to heat conduction; thus

e € e e e e e
Pgond - ij + + P + fus Puonv - Pei “ frad T “Pion  4s0l

The integrated ion temperature equation (2.1.6) gives the ion power balance in kilowatts
and C, = 1.6 x10~1° joule/eV. The terms, in the order in which they appear in (2.1.6), are
ion-electron thermalization P, heat conduction P!, convection Pgonv, thermal charge-
exchange loss including reionization P, neutral- beam ion heating Pi ., fusion heating Pf ,
and parallel loss in the scrape-off layer Psol.
When the T; equation is not solved, the difference between the volume heating sources
and volume plus convective losses is attributed to heat conduction; thus
Pgon Ijt:i'{”Pz +Pfus Péonv_Péx“‘ ;

80l

inj’

The energy confinement times for the plasma inside flux surface p are

Welp) + W,
5(p) = (/Z)) i(p)
h + Pm_] W ,W
. We(p)
TEe(p) = Py - Pe — We
W,
iP) = 5 +P'(p) W

inj

where the stored energies are
3 [° :
Welo) = 5 [ TV

Wito) =5 [ (S nste) + 3 s YTV
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the total electron heating power is

P = Pog+ P + P

inj

and the W terms are given by the volume integrals of the sums of the dn/dt and AT/t
terms in the 7. (2.1.5) and T; (2.1.6) equations. The W terms are zero in profile analysis
mode.

The total particle confinement time for flux surface p is defined by

2 Nuj
Z] (Nljon—l—NlieaJn—i-NH])

Nuj(p) = /0 ’ ni;i(p)V,(p") dp’

p(p) =

where Ng;(p) is the total number of ion of species j contained within surface p and NHj is
the volume integral of the dnp;/0t term in the hydrogenic-ion density equation (2.1.1).

The total rates of collisional transport of species a across flux surface p of particles N e
and heat P}° are given by

NI =VI{(Vp))y (T3 +T17%)
P =V {(Vo) Dy (& + a2

where the nonaxisymmetric helical ripple transport fluxes (I'?* and ¢}*) are given above
(2.2.7). The axisymmetric neoclassical transport is given approximately by

on
I\s___ s a
a aap
o 29T
qa" aXa ap

s

The transport coefficients DJ, x3 are described by Hinton and Hazeltine [4].

The T, profile may be used to infer an electron heat conduction coefficient xI"¥(p) with
the assumption that the entire electron heat conduction flux is proportional to only the
electron temperature gradient. The coefficient inferred from this profile inversion is

inv . P(fon (P)
X )= T un (070

where PS¢ ;(p) is the power flow across surface p due to electron heat conduction as de-

fined above. Note that, while this inversion is used primarily when T.(p) is the (constant)
measured value, the inversion may also be performed when the T, equation is solved.
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INDEX OF VARIABLES

The number after each variable is the section in the text where the model for or definition
of the variable is given.

a 6.1.5 Jp 7.1 Gion 5.1.4
ag 5.1.1 Joh 2.1.7 Goh 2.1.7
as 6.1.5 Jz 2.1.7 Grad 2.2.9
Ay 5.1.2 K; 2.2.3 Tp 6.1.6
Bt 2.2.1 k. 4.3 Ts 6.1.6
By 2.1.7 Me 221 Tq 6.1.6
Cp 11.2 my; 2.2.1 R 6.1

cj 4.1 my; 2.2.1 Ry 5.1.1
cT; 4.1 myp 2.2.1 Ry 6.1.1
Cq 6.4 1 7.1 R, 5.1.1
ce 6.4 Ne 2.2.1 P 6.1

Xe 2.2.5 ng 2.1.3 Po 2.2.1
XHj 2.2.6 NHe 2.1.2 Sbp 9.3

Dy 2.2.2 n; 2.1.1 Stus 9.2

Dy 2.2.3 ny 2.1.3 Sa; 5.1.1
Dye 2.2.2 ny; 2.1.3 SH;j 5.1.2
Dy; 2.2.2 )| 2.1.5 Sinj 7.1

D,; 4.1 nr 2.1.6 Sp; 10.3
A 6.5 ng 5.1.5 Os 5.3.2
E 6.5 Ve 2.2.1 T, 2.1.5
Ez 2.1.7 vH; 2.2.1 T; 2.1.6
f 6.6.1 Via 2.2.1 Te 2.21
m 2.2.8 Pbjj 7.1 T||He 5.3.1
nL 2.2.4 Doy 7.1 T||H;j 5.3.1
@, 5.3.2 Pik 3.8 v, 6.3

v 5.3.2 Do 2.1.4 Vg 2.2.1
Mge  2.1.2 i 7.1 Vg 2.1.4
I'y; 2.1.1 q 2.2.1 Vo 6.3

Iy 2.1.3 Qex 5.14 Upnch  2.2.2
G;(y) 5.1.2 Gec 8 Ze 2.2.1
H; 2.2.3 % 91 Zig 221
Hix(p) 7.2.1 G 91 Zne  2.1.5
I(p) 2.1.7 Gn; 7.1 Z; 2.1.3
& 2.2.1 . 7.1 (23) 213

(7] 2.2.1
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Fig. 1: Intersection of scrape-off flux surface and limiters. For a scrape-off flux surface
p, the arc length s(p) used in the definition of the parallel loss time 7) is the sum of the
intersection lengths of the cross section of the flux surface with all limiters. Thus, for the
middle scrape-off layer surface shown above, s(p) is the sum of the shaded arc lengths that
intersect the inner rail and outer mushroom limiters.
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Fig. 2: Axisymmetric flux surface geometry. The cross section of each toroidal flux
surface p is an ellipse with minor radius 7, ( = ryp) and elongation F centered at major
radius Ba(p) = Ro+ A(p). The smallest flux surface that contacts a material surface is
labeled p = a, (a; = 1), has minor radius ry, and is centered at major radius Ry. The
shift A(p) of surface p is with respect to the surface p = a,; that is, A(p = as;) = 0. The
outermost flux surface on which the plasma solution is obtained is at p = a. The scrape-off
layer is the region a; < p < a.
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Fig. 3: Vacuum flux surfaces (6.1.3) calculated for ATF at equal p intervals. The
toroidal angle of each cut is given at the top of the plot by the fraction of a field period S
The vacuum vessel cross section is also shown. The FIR array chords are shown at fr=0.
The ratios of the poloidal coil currents to the helical coil current are —0.0981 (outer trim
coil), 4-0.1505 (inner coil), and 0.0 (mid coil). For the outermost surface shown, « = 1.0.
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Fig. 4: Vacuum flux surfaces for ATF showing extrapolated scrape-off layer surfaces.
The last closed surface (p = 1) is dashed. Scrape-off surfaces outside p = 1 are linear
extrapolations of the inner surfaces (6.1.5).
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Fig. 5: Superposition of 3-D surfaces and corresponding equivolume axisymmetric
shifted circular surfaces (6.1.6).
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