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Abstract 

In this report, we consider a compute-ahead computational technique in the 
distributed factorization of large sparse matrices using the fan-in parallel scheme. 
Experimental results on an Intel iPSCI2 hypercube are provided to demonstrate 
the relevance and effectiveness of this technique. Fortran source code is also iti- 
cluded in an appendix. 
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1. Introduction 

A fan-in algorithm for distributed sparse numerical factorization of large symmetric 
positive definite matrices has been proposed in [l]. This report describes an imple- 
mentation of this fan-in scheme that uses a “compute-ahead” technique to improve 
performance. We assume familiarity with the research area of parallel sparse matrix 
factorization and refer the reader to 161 for background material. 

The basic idea behind the compute-ahead technique is simple, yet effective. In 
essence, when a processor is waiting for external information required by the current 
column on hand, it suspends this column task and proceeds with useful work on future 
columns of the matrix. The task of computing the original column is resumed as new 
external data for the column arrives. 

An outline of the paper is as follows. Section 2 contains a high-level description 
of the basic fun-in sparse factorization scheme. Section 3 discusses how to incorporate 
compute-ahead updating into the basic fan-in scheme, and it deals with some of the 
issues that arise in implementing the resulting compute-ahead fun-in algorithm. Sec- 
tion 4 provides performance data for our Fortran implementation on an Intel iPSC/2 
hypercube. It also compares the performance of our code with that of the fan-out code 
used in [6]. Section 5 contains a few closing remarks, and an appendix contains the 
source listing of our Fortran code. 

2. The Fan-in Distributed Factorization Scheme 

The fun-in distributed sparse factorization scheme is proposed in [l]. The scheme is 
best described by using the notion of aggregate updute columns. For a column j ,  its 
complete update column is defined to be 

An aggregate update column for column j is 

where K is any subset of { I C  < j I !j, # 0}, i.e. any subset of the nonzero off-diagonal 
locations in row j of L .  

Assume that we are given a mapping of columns to processors, and let map[j]  
denote the processor assigned to column j. For a given processor p and a column j, we 
define the set 

Xk, j ]  := { I C  < j I l j k  # 0 and map[k] = p }  , 
which is simply the set of columns owned by processor p that update column j .  The 
internal update column for column j from processor p is defined to be the aggregate 
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for column j := 1 to  n do 
compute the internal update column v for column j ; 
if rnapb] # p then 

else 
if Klp,j] # 0 then send v to  processor map[ j ]  ; 

while o is not the complete update column for column j do 

end while 
Form L,j from A,j and ‘u ; 

receive an external update column for column j and add i t  to o ; 

end if 
end for 

Figure 1: Fan-in distributed sparse Cholesky factorization on processor p.  

update column where K = K [ p , j ] .  If processor p owns column j ,  then each external 
update column for column j is an aggregate update column for column j that is internal 
to  another processor q # p s  and for which K [ q , j ]  # 8. 

Using the notation and terminology introduced above, the fan-in algorithm for 
distributed sparse Cholesky factorization is stated in its simplest form in Figure 1. 
The fan-in scheme is driven by the columns, which are processed in increasing order. 
When processor p is computing a column j that it owns and the update column ’u is not 
yet complete, then it is forced to  wait for external update column(s) for column j to 
arrive from other processor(s) before it can proceed with useful work on later columns 
of L. The next section presents an implementation of a compute-ahead strategy whose 
sole purpose is to help alleviate this problem. 

3. Implementation of a Compute-ahead Fan-in Scheme 

A processor need not remain idle while waiting for external data required by column j, 
as processor p does in Figure 1. Instead, the processor can perform so-called “compute- 
ahead” work on later columns i > j of the matrix. The term “compute-ahcad” has been 
used by Heath and R,omine [8] (Page 564) in studying eficient distributed algorithms 
for triangular soliltion of dense linear systems. The algorithm in Figure 2 is a high-level 
description of how we incorporate the strategy into fan-in sparse Cholesky factorization. 

As long as there are external update columns for column j that have not yet arrived, 
the modified algorithm alternates between processing available external update columns 
for column j and performing compute-ahead work on somc column i > j of the matrix. 
To ensure that the message buffer is checked regularly for incoming data required by 
column j, the algorithm works on only one column i > j before again checking for 
incoming data required by column j .  This permits prompt completion of the factor 
coliimn L * j  once the last of its external update columns has arrived. 
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for column j := 1 to n do 
complete the internal update column 2, for column j ; 
if mapb]  # p then 

else 
if l i lp, j]  # 0 then send w to processor map[j] ; 

add to w all available external update columns for column j ; 
while TI is not the complete update column for column j do 

perform compute-ahead updating for some column i > j ; 
add to 

end while 
Form L,j from A,j and w ; 

all newly-available external update columns for column j ; 

end if 
end for 

Figure 2: Cornpute-ahead fan-in sparse Cholesky factorization on processor p.  

Compute-ahead work can be performed on any column i > j. Naturally, columns 
required earlier in the factorization should be given priority over those required later. 
Performing compute-ahead work on columns j + 1,j + 2,. . . ,n in ascendiiig order by 
column number is a reasonable choice. 

3.1. Types of Compute-Ahead Updates 

When waiting for external data required to complete column j ,  processor p will perform 
one of two distinct “tasks” as a unit of compute-ahead work before resuming efforts to 
complete column j. 

0 [Compute-ahead external update.] Receive and subtract an external update 
column from some column i > j. 

0 [Compute-ahead internal updates.] Choose some i > j whose internal up- 
date column has at least one indexed SAXPY operation pending, and do the 
following: For every k E Klp,i] such that a) L*k  has been computed, and b) 
L,I, has not yet been applied to the internal update column for column i, add 
the appropriate multiple of L*k to the internal update column for column i (an 
indexed SAXPY operation). 

Note that the compute-ahead internal updating task is “greedy” in the sense that it 
performs every needed indexed SAXPY on column i’s internal update column that 
it possibly can with the columns of L that are currently computed. Implementing 
a compute-ahead external update turns out to be simple and straightforward, as we 
shall see later in this section. But implemention issues connected with cornpute-ahead 
internal updates require more extended discussion. 
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One of the key issues is management of the work storage required to  accumulate 
internal update columns. While the basic fan-in algorithm requires that each processor 
allocate only a single column of work storage to  accumulate successive internal up- 
date columns (see Figure 1)) the compute-ahead fan-in algorithm requires more work 
storage for this purpose. The compute-ahead internal-updating task cannot complete 
an internal update column that must be modified with a multiple of column j .  As a 
result, the compute-ahead feature requires each processor to  allocate a block of storage 
that can contain incomplete internal update columns for more than one column i > j. 
Thus, we must choose a mechanism to limit and manage work storage, while retaining 
sufficient access to  compute-ahead work. 

Our implementation does not permit the computation of all “available” compute- 
ahead updates. Compute-ahead internal updates are restricted to target columns 
within the currently active supernode, primarily to  preserve a simple but effective over- 
all implementation. A supernode is a block of contiguous columns in the Cholesky factor 
whose diagonal block is full triangular and whose off-block-diagonal column structure 
is the same for every column. Supernodes have been used in [3] to  devise efficient 
vectorized sparse factorization schemes. They are also used in the domain-separator 
model [2] to  study distributed sparse factorization schemes. 

In our implementation, when a processor p begins work on the columns of supernode 
S ,  it has on hand work space sufficient to hold an internal update column for each 
column in S. For columns of S not owned by a processor p ,  the allocated work space 
is indispensible; for columns of S owned by processor p ,  the space is not required, but 
is merely a programming convenience. Also, because of the shared sparsity structure 
of columns within S ,  only a single indexing vector is required to  map each entry of 
a column k E Kb,i] to  the corresponding entry of column i for any column i E S .  
Once computation on the columns of S has begun, compute-ahead internal updates for 
columns in S are simple and natural to  perform because the required initialized work 
space and indexing information are already available. 

We now discuss more explicitly the role of supernodes in identifying the types of 
compute-ahead updates actually available in oiir implementation. As before, let p be 
the processor that owns column j and assume that it is currently working on column j. 
Let S be the siipernode containing column j and consider the situation where processor 
p is awaiting the arrival of some external update columns for column j. Relative to p 
and S ,  we can identify the following possible compute-ahead updates: 

internal updates for columns i > j ,  i S .  

e external updates for columns i > j ,  i E S.  

0 external updates for columns i > j ,  i # S. 

8 internal updates for columns i > j ,  i &r S .  

Compute-ahead external updates for any column i > j ,  whether inside or outside 
the current supernode S, will be included in our implementation. This has the desirable 
effect of clearing the message buffer, and moreover since we follow [l] in giving each 
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external update column the same sparsity structure as its target column, our imple- 
mentation can incorporate external update columns directly into factor column storage. 
Consequently, compute-ahead external updates require no additional overhead storage 
or computation to provide structural information, nor do they required additional work 
storage for their accumulation. 

Compute-ahead internal updates for columns within supernode S are also included 
in our implementation. After initializing to zero the block of work storage large enough 
to contain all the columns in S ,  our implementation computes internal update columns 
for each column in S in the provided storage. All work, compute-ahead or otherwise, 
on the internal update column for a column i E S is applied to the corresponding vector 
in work storage. Computed just before the first column of S is processed, the single 
subscript indexing vector required by S is used to apply these internal updates to the 
appropriate column in working storage. 

As noted before, the algorithm may have to toggle quite often between probing the 
message queue for external update columns for the current column j ,  and processing 
compute-ahead updates (internal or external) for a column i > j .  It is therefore im- 
portant to alternate between these tasks in a smooth and efficient manner. Compute- 
ahead external updates satisfy this requirement because no inde-uing information or 
additional work storage is required to apply an external update to its target column. 
Compute-ahead internal updates for columns within the current supernode S satisfy 
this requirement because the initialized work space and the necessary indexing infor- 
mation are already available. However, compute-ahead internal updates to columns 
outside S do not have these advantages; they require an extra block of intialized work 
storage and a new indexing vector before other useful computation can be resumed. 
Thus, we have excluded such internal compute-ahead updates from our implementation, 
and consequently, processors will generally become idle more often when processing the 
last few columns of a supernode. Indeed, when the last column of a supernode is being 
processed, no compute-ahead internal updates are possible. 

To explore the effects of limiting compute-ahead internal updates to columns in 
the currently active supernode, we developed a second code that allows compute-ahead 
internal updating to cross at  most one supernode boundary, Such a code has access 
to more compute-ahead internal updates, but at the expense of an increase in I )  the 
complexity of the program, 2) the work storage requirement, and 3) the bookkeeping 
overhead required to manage work storage. Preliminary results with that code revealed 
very little difference in performance between it and a much simpler code based on the 
algorithm given in the next subsection. 

3.2. The Detailed Algorithm 

We assume that the given sparse matrix has been properly ordered for parallel elimina- 
tion and that the supernode blocks of the ordering have been determined. The detailed 
compute-ahead algorithm is given in Figure 3. 

The compute-ahead section of the algorithm can be interpreted more informally in 
the following way: As long as there are external update columns for the current column 
j that have not yet been processed, obtain a task of highest priority and perform it, 
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for each supernode block S do 
let s, s + 1,. . . , s + k - 1 be the columns of the current supernode S ; 
initialize to zero work space for internal update columns os, w,+1,. . . , w S + ~ - 1  ; 
compute the subscript indexing vector for S ; 
for j := s to s + k - 1 do 

assume that initially L,j = A,, ; 
complete the internal update column v, for column j ; 
if map[ j ]  # p then 

else 
if K [ p , j ]  # 8 then send w j  to processor map[j]  ; 

subtract from L,j every available external update for column j ; 
while external update columns for column j remain to be processed do 

perform all pending internal indexed SAXPY’s for the first such 
column i E S ,  i > j ,  accumulating the result in wi ; 

receive any available external update column and subtract 
it from the target column L*i, i 2 j .  

if internal indexed SAXPY’s are pending for some column i E S then 

else 

end if 
subtract from L,j every newly-available external update column 
for column j ; 

end while 
subtract vJ from L,j and scale the resulting vector to  obtain column j of L.  

end if 
end for 
free the work space for future use ; 

end for 

Figure 3: Detailed version of compute-ahead fan-in sparse Cholesky factorization on 
processor p .  
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where the tasks to be done are ranked in descending order of “urgency” as follows: 

1. Receive and apply directly to column j every available external update column for 
column j (whenever at least one such update column is available in the message 
queue). 

2. [Compute-ahead internal updates.] Perform all column updates, i.e. indexed 
SAXPY’s, waiting to be incorporated into the internal update column for the first 
column i E S ,  i > j that has any such updates pending. 

3. [Compute-ahead external update.] Receive and apply any available external 
update column to its target column i 2 j .  

Thus, external data for column j is processed as long as such data are available in the 
message queue. When column j remains imcomplete and the message queue contains 
no external data for column j ,  the algorithm performs compute-ahead internal updates. 
When there are neither external update columns for column j nor internal updates for 
columns i E S, i > j ,  then, and only then, does the algorithm process any available 
external updates. Note that after all pending internal indexed SAXPY’s for columns 
in S are exhausted, only external updates for column i 2 j are available, until finally 
column j is completed. 

While processing an external update column requires little work, the compute-ahead 
internal-updating task may sometimes perform quite a few indexed SAXPY’s before the 
message queue is again checked for data required by column j. The decision to allow the 
compute-ahead internal-updating task to perform all indexed SAXPY’s pending for a 
single column i > j merits further comment. While this appears to be a natural choice, 
we were concerned that it might not permit the program to check the message queue 
often enough for data required by column j .  To investigate this question, we introduced 
into our program a parameter KTROL that limits the number of indexed SAXPY’S that 
may constitute a single compute-ahead internal-update task. We tried several widely- 
varying values of KTROL and never observed more than 2% difference in factorization 
time between the best and the worst case. The worst results were obtained with 
KTROL=l, which restricts the compute-ahead internal-update task to a single indexed 
SAXPY. This setting for KTROL evidently caused the code to waste a small amount of 
time on an excessive number of subroutine calls to perform the compute-ahead internal 
updates and on an excessive number of probes for for incoming external update columns 
for the current column j. We observed less than 1% variability in factorization time as 
long as KTROL was chosen to  allow at least a few indexed SAXPY’s. We consistently 
obtained our best timing results (by an extremely small margin) when KTROL was chosen 
large enough to allow the compute-ahead internal-updating task to compute all pending 
indexed SAXPY’s for the target internal update column. Thus we incorporated into 
our algorithm a compute-ahead internal-update task that is as “complete” as possible, 
because it is marginally more efficient, appears to be the natural choice from the start, 
and helps preserve the simplicity of the algorithm. 



- 8 -  

basic 
fan-out 
22.470 
12.545 
7.509 
5.197 
3.619 
2.639 
2.020 

80.447 
42.278 
23.291 
14.643 
9.733 
6.860 
4.976 

105.989 
57.539 
34.324 
21.042 
13.860 
9.529 

basic 
fan-in 
13.911 
7.201 
4.000 
2.460 
1.564 
0.972 
0.684 

48.388 
24.388 
13.118 
7.935 
4.815 
2.887 
1.748 

115.341 
58.488 
31.660 
18.586 
11.191 
6.459 
3.781 

compute- 
ahead 
fan-in 

13.910 
7.240 
3.747 
2.273 
1.364 
0.872 
0.659 

48.419 
24.360 
12.380 
7.307 
4.222 
2.490 
1.561 

115.350 
58.439 
30.064 
17.090 
9.484 
5.380 
3.198 

Table 1: Parallel factorization time (in seconds) on an Intel iPSC/2. 

4. Experimental Results 

The compute-uheudfun-in algorithm for sparse Cholesky factorization was implemented 
in Fortran and run on an  Intel iPSC/2 hypercube. The test problems were nine-point 
finite-difference operators on square grids. We used the nested dissection ordering [5] 
since it gives optimal-order fill and well-balanced elimination trees for these problems. 
We used the subtree-to-subcube mapping [7] to assign processors to  columns since it 
gives good load balance and reduces communication. Our code is written so that when 
the parameter KTROL, discussed in the previous section, is set to zero, it becomes an 
implementation of the basic fan-in algorithm shown earlier in Figure 1. When KTROL is 
set to  a sufficiently high value, our code becomes an implementation of the compute- 
ahead fan-in algorithm shown in Figure 3 in the previous section. IJntil recently, the 
best-known algorithm for distributed sparse Cholesky factorization was a basic fun- 
out algorithm reported in [6]. We include it in our numerical results. We refer to 
this version of the fan-out algorithm as basic fun-out in order to distinguish it from 
the Inore recent domain fun-out algorithm introduced independently in [2] and in [9]. 
‘Table 1 contains timing results for the three algorithms: basic fan-out, basic fan-in, 
and compute-ahead fan-in. 
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The factorization times reported in Table 1 demonstrate the large advantage of the 
fan-in scheme over the fan-out scheme, thus confirming results reported in [2]. But the 
primary objective of these tests is to confirm whether or not the compute-ahead tech- 
nique significantly improves the efficiency of the basic fan-in algorithm. The usefulness 
of the technique is adequately demonstrated by these timing results, particularly by 
the factorization times obtained for the largest problem on 16, 32 and 64 processors. 
On the 100x100 grid, basic fan-in is respectively 18.0%, 20.1% and 18.2% slower than 
compute-ahead fan-in on 16, 32, and 64 processors. 

We would like to  point out that the problem set used in Table 1 includes the 
problems used by Zmijewski in [9] to compare the domain fan-out algorithm with the 
basic fan-out algorithm. Though he dso made his runs on an iPSC/2, his timings 
and ours cannot be compared directly because his machine differs from ours and/or he 
selected different options when compiling his Fortran code. Because he used the same 
basic fan-out code that we used, one can, with caution, make a rough comparison of 
our results with his by normalizing all times against those obtained for the common 
basic fan-out runs. 

5 .  Concluding Remarks 

We have described an implementation of the fan-in distributed sparse factorization 
scheme that uses a compute-ahead technique to improve performance over the basic 
fan-in scheme. We have detailed how to use supernodes to limit the amount of addi- 
tional work storage required by the compute-ahead fan-in algorithm, and to organize 
the computation in a way that enables clean and efficient access to the compute-ahead 
internal updates. We have indicated how providing access to  compute-ahead internal 
updates across supernode boundaries increases the amount of work storage required 
and makes the code more complex and difficult to write. While the improvement in 
the factorization times of either fan-in scheme over the basic fan-out scheme is by far 
the most significant demonstrated in our testing, we have shown that incorporating 
compute-ahead updates into the basic fan-in algorithm significantly improves its per- 
formance, at least under the ideal circumstances used in our tests. The source code is 
included in the appendix to show our implementation. 
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Appendix: Fortran Source Listing 

Our routines call four routines from the Portable Instrumented Communication Li- 
brary [La] (PICL), which is designed to provide a portable syntax for the message-passing 
routines used on typical distributed-memory MIMD machines. A brief description of 
these four routines is given below. 

subroutine send0 ( buf, by tes ,  type,  node 
character*(*) buf 
in teger  bytes ,  type,  node 

The subroutine send0 sends a message of length by te s  stored in buf to  processor 
node. ’The variable type is used by the receiving processor to  distinguish one “type” 
of message from another. The contents of buf need not be character data; buf can 
contain data of any valid Fortran data type. This applies to buf in subroutine recvO 
below, also. 

subroutine recvO ( buf ,  bytes ,  type 1 
characters  (*) buf 
in teger  by tes ,  type 

The subroutine recvO receives a message with type field type into a buffer buf. The 
variable bytes  contains the length of the buffer (in bytes). When type is -1, any 
incoming message will satisfy the request. This applies to  type in probe0 below, also. 

in teger  funct ion probe0 ( type 
in teger  type 
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The integer function probe0 returns the value 1 if the processor has received a message 
of the specified type; otherwise it returns the value 0. 

subroutine recvinfoO ( bytes ,  type,  node 
integer bytes ,  type,  node 

The subroutine recvinf 00 returns information about the most recently received or 
“probed for” message: bytes contains the length of the message (in bytes), type 
contains the integer “type” of the message, and node contains the processor ID number 
of the processor that sent the message. 



- 12 - 

C*********************************************************************** 
C***************************+*+**********************~********** 
C***** FAIII ..... PARALLEL SPARSE FAI-IU FACTORIZATIOI ******** 
C*******************************************************~*************** 
C*********************************************************************** 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
c 
c 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
c 
C 
C 
c 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
THIS SUBROUTIUE PERFORHS A SPARSE F A U - I 1  DISTRIBUTED 
CEOLESKY DECOIPOSITIOB, WITH A I  OPTIONAL COUPUTE-AHEAD 
TECHNIQUE TO IHPROVE PERFORHABCE. 

IPPUT PARAHETERS: 
KTROL - COUTROLS KUHBER OF COUPUTE-AUEAD UPDATES: 

< 1. PERFORH I O  COIPWTE-AHEAD UPDATES. 
I. PHRFORH IO nom THAI KTROL UIIUTERUPTED 

COHPUTE-AHEAD IITERIIAL UPDATES. 
nE - I O D E  IUHBER OF TBIS BODE PROCESSOR. 
IEQES - IUHBEB OF EQUATIOBS. 
UAP - HAPS EACH COLUrm TO TEE PROCESSOR TEAT OYIS I T .  
XBLK - SUPEMODE PARTITIOP. XBLK(1) POIUTS TO THE 

IBLKS - PUHBER OF SUPERUODES. 
HSGCBT - HSGCUT(J) COUTAIIS TEE PUHBER OF EXTERUAL 

MESSAGE UPDATES REQUIRED BY COLUHC J. 
XLlZ - SPARSPAK’S LUZ POIPTER ARRAY; USED TO 

OBTAIU COLUHl LENGTHS. 
XNZSUB,PZSUB - ROY SUBSCRIPT ARRAY; SAHE AS SPARSPAK. 
HAXWS - HAXIHUH SIZE OF US. 
nym - LOCAL ~.IUIUATIOU TREE. WYET(1) I S  1 (TRUE) 

I F  IODE I HAS A DESCEUDAUT WHICH BELONGS TO 
TEIS PROCESSOR. OTEERWISE, UYET(1) I S  0 

(FALSE). 

FIRST COLUHP OF THE I-TE SUPERBODE. 

OUTPUT PARAHETERS: 
ERROR - ERROR CODE. (ERRUB = 180 I F  WATRIX I S  IOT 

POSITIVE DEFIPITE.) 

UPDATED PARBHETERS: 
XHYLUZ,mLBZ - OB IRIPUT, MY COLUUHS OF A. 

011 OUTPUT, HY COLUUNS OF L. 

WORKIRIG PARAHETERS: 
US - YOBK SPACE FOR COLUHNS OF A SUPERPODE. 
LIUK - AT STEP J, COUTAIUS LIUKED LIST QF UY 

COLUWllS TEAT WILL UPDATE COLUHP .I. 

PORTXOU OF COLUHB I. 
UPDIUX - UPDATE IIDEX VECTOR. 
HSGUPD - BUFFER IITO UEICE EXTERIIAL UPDATES ARE 

FIRST - FIRSTCI) POIUTS TO TEE TOP OF TEE ‘ACTIVE’ 

RECEIVED. 

PROGRW SUBROUTIUES: 
SECDO, IUTUPD, EXTUPD. 

C************************************************************l*+t************ 
C 

SUBRUUTIYE FAUII ( KTROL ~ HE , IEQCS , HAP , XBLK , 

It XNZSUB. UZSUB , MAXYS , US , LIUK , 
k FIRST , HYET , UPDIUX, HSGUPD, ERROR ) 

c 
C+*************************l*+t*************************~******************** 
C 
c 

k UBLKS , HSGCBT. XHYLBZ. n w z  , XLPZ , 

-- - - - - - - -- - 
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IBTEGER BLKSZE, FSTLIK, I , I1 , ISTOP , 
L ISTRT , lSUB , J , JSIZE , JSTOP , 
k JSTRT , JXUS , K , KBLK , KSTOP , 
k KSTRT , KSUB , USSIZE, IEqES4 

REAL D I A G J  

400 
C 
C 

300 
C 
C 
C 
C 

FOR EACE COLulII J III CURREUT SUPEREODE, DO ... 
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C 

C 
c 
C 

& 

C 
C 
C 

k 
& 
k 

& 
& 
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500 

C 
C 
C 

600 

C 
C 
C 
700 

C 
C 
C 

800 
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................................................................ 

................................................................ 
C****** IllTUPD . . . . .  FAE-11: IETERIAL COLulII UPDATES *****a 
C****+********************************************************** 
................................................................ 
C 
C PURPOSE : 
C THIS ROUTINE PERFORnS A COETROLLED EunSER OF IETERUAL 
C UPDATES 011 A GIVGE COLUna. 
C 
C IEPUT PAMETERS : 
C J - C O L W  TO YHICH IETEIUAL UPDATES ARE 
C TO BE APPLIED. 
C JSIZE - EUWBER OF EONZEROS I1 COLUIIJI J :  L ( * , J ) .  
C UPDIIIX - UPDATE IEDEX VECTOR FOR CDLulII J. 
C XIZSUB,MZSUB - ROY SUBSCRIPT ARRAY; SAME AS SPARSPAK. 
C XHYIAZ.MYL1Z - MY COLUMBS OF L.  
C RTROL - COBTBOLS TEE HAXIIRRI IUMBER OF C O L W  
C UPDATES. (>=J PERFORMS ALL UPDATES OB 
C COL 3) 
C 
C UPDATED PARAMETERS: 
C U - STORAGE FOR UPDATE VECTOR OF J .  
C LI1K - COBTAIBS LIEKED LIST OF #Y COLUMSS 
C THAT VILL UPDATE COLUM1 J .  
C FIRST - FIRST(1) POIETS TO THE TOP OF TEE 
C ‘ACTIVE’ PORT101 OF COLUMSI I.  
C 
................................................................ 
C 

SUBROUTINE IBTUPD ( J , JSIZE , U , UPDIIIX, LINK 
L FIRST , XEZSUB, EZSUB , XKYLEZ, MYLBZ 
k KTROL ) 

C 
................................................................ 
C 

C 
C 
C 

k 

C 
C 
C 
C 

L 

C 

REAL 

LOCAL VARIABLES. 

IETEGER I , I1 , ISTOP , ISTRT , ISUB , 

REAL LJK 

---_-I-_-------- 

K , EHOD , OFFSET 

C 
ISTRT = FIRST(X) 
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ISTOP = XHYLIZ(K+l) - 1 
LJK = XYLUZ(1STRT) 
I = UZSUB(K) + ISTRT - XWLPz(K) 

UPDATE FIRST/LIIK FOR FUTURE IIODIFICATIOI STEPS. 
[**ROTE** XHYLIZ POIUTS TO D I A G  E I T R Y  
XBZSUB POIITS TO SUB-DIAG EETRY] 

I F  ( ISTOP .GT. ISTRT ) TEEI 
FIRSTU)  = ISTRT + 1 
ISUB = nzsuB(1) 
LIEK(I0 = LIIK(1SUB) 
LIRKtISUB) = K 

EUDIF 

I F  TEE UPDATIUG A l D  UPDATED COLUHU EAYE TEE 
SBnE UUHBEB OF UOEZERO EITRIES . . .  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C****** FXUPCA ..... FAE-11: EXTERBAL UPDATES Y/CA ****** 
C*************************************************************** 
C*********~***************************************************** 
C 
C 
C 
c 
c 
C 
C 
C 
C 
C 
G 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 

C 
C 
c 
c 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 

PURPOSE: 
THIS ROUTIBE PERFOIWS EXTEREAL UPDATES OE A GIVEE 
COLulB. A COBTROLLED AHOUET OF COIIF’UTE-AUEAD UPDATIUG 
UILL BE PERFOWED WEEP TEE PROCEISOR I S  YAITIIG FOR 
EXTERBAL UPDATE COLUHES. 

IllPUT PARAHETERS: 
KTROL - COETROLS TEE HAXINUH IIUHBER OF 

EEQBS4 
J - COLUHI TO UEICE EXTEREAL UPDATES ARE 

JSIZE - IO OF IOIZEROS I1 COLUU J :  L(*,J)  
JXYS - IIDEX TO US, POIETS TO TEE START OF 

LASTJ - LAST COLUW IB TEE SUPEREODE WITH 

UPDIBX - UPDATE IlDEX VECTOR FOR CURREHT 

XEZSUB,EZSUB - ROY SUBSCRIPT ARRAY; SAXE AS SPARSPAH. 

UIIlTERRUPTED IETJjXlIAL COLUHE UPDATES. - IUHBER OF EQUATIOES TIHES 4 .  

TO BE APPLIED. 

UPDATE FOR J 

COLUKE J .  

SUPEREODE 

UPDATED PARAHETERS: 
us - UORKSPACE FOR coLmms OF J’S SUPEREODE. 
HSGCBT - HSGCBT(1) COETAIlI E W E R  OF EXTEREAL 

UPDATES RMAIBIEG FOR COLUnB I. I T  I S  
DECRMEETED TO REFLECT AMY APPLIED 
EXTEREAL UPDATES. 

TEAT UILL UPDATE COLUHE J .  

‘ACTIVE’ PORTIOI OF COLUHI I .  

LIEK - COETAIES LIEKED LIST OF ‘HY’ COLUHBS 

FIRST - FIRST(1) POIETS TO TRE TOP OF THE 

XHYLEZ,HYLUZ - IFY COLUHES OF L.  

YORK PARAMETERS : 
HSGUPD - STORAGE FUR IUCOHIUG EXTEREAL UPDATE 

COLulIBS FOR J. 

PROGRAH SUBROUTIBES: 
PROBEO, RECVO, RECVIEFOO 

C*************************************************************** 
C 

SUBROUTIBE EXUPCA ( KTROL , EEQES4, J , JSIZE , JXYS 
k US , LASTJ , IISGCm, UPDIEX, LIEK , 
k FIRST , XIZSUB, 1ZSUB , XHYLEZ, HYLIZ , 
k HSGUPD ) 

C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
c 
C 
C 

k 

C 
c 
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C LOCAL VARIABLES 

IETEGER BYTES , I , I1 , ISIZE , ISUB , JSUB , 
& K , KSIZE KXUS , BODE 

c 
C 
C EXTERUPL FUPCTIOPS. 
c 

c 
C*************************************************************** 

------------------- 
------------__-____ 
IETEGER PBOBEO, RECVIPFOO 

C 
X = J + 1  
KXUS = JXUS + JSIZE 

JSUB = XMYLNZ(J) 

WHILE THERE I S  HESSAGE FOB COLUnl J, 
RECEIVE I T  AED APPLY EXTEREAL UPDATE TO L(*,J).  

KSIZE JSIZE - 1 

________________________________________------- C 
C 
C 
C _________________________________________-_-_-_ 

100 I F  ( PBDBEO(J) .GT. 0 1 TEEl 
CALL RECVO ( HSGUPD, EEQUS4, J ) 
ISUB = JSUB 
DO 200 I1 = 1, JSIZE 

m n z ( I s u B )  = HYLBZ(ISUB) - HSGUPDUI) 
ISUB = ISUB + 1 

200 COPTIUUE 
MSGCET(J) = HSGCUT(J) - 1 
I F  ( WSGCET(J) .LE. 0 1 RETURY 
GO TO 100 

EUDIF 
________________________________________--- C 

C PERFOM COKPUTE-AHEAD IUTEILUAL UPDATES ON 
C BEHAIIIIBG COLUNlS OF TEE CURREBT SUPERBODE. 
C _-__----------_--I__ll_ll____ll_________--- 

300 I F  ( K .LE. LASTJ 1 THEE 
I F  ( LINK(K) .GT. 0 1 TEEN 

CALL IPTUPD ( X, KSIZE, US(KXUS). UPDIEX, LIPK, 
& FIRST, IBZSUB, UZSUB, XHYLUZ, 
k HYLPZ, KTROL ) 

ELSE 
K = K + 1  
KXWS = KXUS + KSIZE 
KSIZE = KSIZE - 1 
GO TO 300 

EUDIF 
GO TO 100 

EEDIF 
_-ccc--------___________________________----- C 

C PERFORH COWUTE-AJiEAD EXTEILUAL UPDATES WITH 
C IECOHIUG WESSAGES, GIVIPG PRIORITY TO UPDATES 
c FOR COLUXU 3 .  
C --_-_____-______________________________----- 
400 c o n r I n u E  

I F  ( PROBEO(J) .EQ. 1 1 TEEN 
CALL RECVO ( HSGUPD, mQUS4, J ) 
I = J  

ELSE 
CALL RECVO ( HSGUPD, lEqES4, -1 ) 
CALL RECVIUFOO ( BYTES, I, EODE 1 

EBDIF 
ISUB = XHYLHZ(1) 
ISIZE = XMYLUZ(I+I) - ISUB 
DO 500 I1 -5 1. ISIZE 
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IIYLIZ(ISUB) = HYI.~Z(ISUB) - WSGUPD(II) 
ISUB = ISUB + 1 

500 CDlTIBUE 
XSGCBT(1) = HSGCHT(1) - 1 
I F  < HSECNTT(J) . L E .  0 ) RETURB 

GO TO 400 

EaD 
C 
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................................................................ 
C*************************************************************** 
C****** EXTUPD ..... FAI-IU: EXTERUAL C O L W  UPDATES ****** 
C*************************************************************** 
C*************************************8************************* 
C 
C PURPOSE: 
C THIS BOUTIIE PERFOBIIS QTERUAL UPDATES OI A GIVW 
C COLUHE YITU BO COHPUTE-AHEAD UPDATIBG. 
C 
C IIPUT PARAHETERS: 
C BEQBS4 - W E B  OF EqUATIOlS T I E S  4 .  
C J - CDLulll TO YHICH EXTEWAL UPDATES AFtE 
C TO BE APPLIED. 

C 
C UPDATED PARAHETEES : 
C HSGCPT - HSGCBT COITAIPS EUHBER OF EXTERUAL 
C UPDATES RWAIBIIG FOR COLUnI J .  
C JBZ - OU OUTPUT, ALL UPDATES HAVE BEQ 
C APPLIED TO CLILUHI J OF L.  
C 
C YORK PARAMETERS: 
c HSGUPD - STORAGE FOR IECOMIBG EXTERYAL UPDATE 
C C O L W  OF J .  
C 
C PROGRAH SUBROUTIEES: 
C RECVO - RECEIVE A HESSAGE. 
C 
C*************************************************************** 
C 

C JSIZE - nmm OF YOUZEXOS III COLWI J :  L(*,J).  

SUBROUTIIE EXTUPD ( HEQIS4, J , JSIZE , HSGCPT, 
t JPZ , HSGUPD 1 

C 
C**************************+++,************************************ 
C 
C 
C PARAIIETGBS . 
C 

----------- 
__--------- 
IBTEGER J , JSIZE , IIEQBS4, HSGCUT 
REAL HSGUPD(*), JYZ(*) 

C 
C 
C LOCAL VARIABLES. 
C 

---------------- 
---------------_ 
IUTECER 11 

C 
C*************************************************************** 
C 

C 
C UNTIL ALL SUCK UPDATES HAVE BEEI APPLIED. 
C 

RECEIVE A3D APPLY EXTEWAL UPDATES TO L(*,J) ,  

............................................. 
100 COBTIUUE 

CALL RECVO ( HSGUPD, BEQUS4, J 1 
DO 200 I1 = 1, JSIZE 

JBZ(I1)  = JPZ( I1 )  - HSGUPD(I1) 
200 COITIIUE 

HSGCYT = HSGCET - 1 
I F  ( HSGCUT .LE. 0 RETURY 

GO TO 100 
EED 





. 
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