OPERATED §Y

MARTIN MARIETTA ENERGY SYSTEMIS. INC.

OB THE UNITED STATES
DEPARTMENT 0f ENERGY

MARTIN MAREETTA ENERGY SYSTEMS LIBRARKES

T

3 445k 0315094 3 ORNL/TH-11496

A Compute-Ahead Implementation
of the Fan-In Sparse Distributed
Factorization Scheme

C. Asheoraft
C. Eisenstat
J W, H. Lig
B. W. Peyton

A. M. Sherman

s

been reproden

and DOE

froni {(G15) 576-8401, £T8 626

from

=285 Part Hoyal

diractly from t

PO Box

the Natioiiai

« best availabis copy.

Aaras As an

i'eteness, or usefuings

closed, or represents

oy its ﬂndorsn- want,

acens
P -
expressed he do not neo

CGovea

recomms ion,

tiiersef. The

ufaciure:, or otherwise,
ar favoring Ly ine
and opir-if\ns of auihor

wisaare
CiwT

Lo

eaantily state or re!!::t 0SS

of the

Uri

N
ted &St

s
[¢3
(] (l'

ORNL/TM-11496
Engineering Physics and Mathematics Division

Mathematical Sciences Section

A COMPUTE-AHEAD IMPLEMENTATION
OF THE FAN-IN SPARSE DISTRIBUTED FACTORIZATION SCHEME

C. Ashcraft 1
S. C. Fisenstat |
J. W. H. Liu }
B. W. Peyton 5
A. H. Sherman |

t Department of Computer Science
Yale University
New Haven, CT 06520

i Department of Computer Science

York University

North York, Ontario, Canada M3J 1P3
§ Mathematical Sciences Section

Oak Ridge National Laboratory

P.O. Box 2009, Bldg. 9207-A

Oak Ridge, TN 37831-8083

Date Published: August, 1990

This research was supported by the Office of Naval Research under contracts N00014-
86-K-0310 and N00014-89-J-1906, the National Science Foundation under grants DCR-
85-21451 and ASC-86-11454, the Natural Sciences and Engineering Research Council of

Canada under grant A5509, and the Applied Mathematical Sciences Research Program
of the Office of Energy Research.

Prepared by the
Oak Ridge National Laboratory AT MARETTA
Oak Rldge’ Tennessos 37831 [H ”W”H W TTAENERGYSYSTEMSUERARES'

g Tones N

Martin Marietta Energy Systems, Inec. W

for the 3 Y45L 031509y 3
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC-05-840R 21400

Contents

1 Imtroduction i 0 i it it e e e e e e e e e e e e e e e e
The Fan-in Distributed Factorization Scheme
3 Implementation of a Compute-ahead Fan-in Scheme
3.1 Types of Compute-Ahead Updates
3.2 The Detailed Algorithm,
Experimental Results o i i i
Concluding Remarkso it e e e
6 References

B

[

......................................

- jii -

A COMPUTE-AHEAD IMPLEMENTATION
OF THE FAN-IN SPARSE DISTRIBUTED FACTORIZATION SCHEME

C. Ashcraft
S. C. Eisenstat
J. W. H. Liu
B. W. Peyton
A. H. Sherman

Abstract

In this report, we consider a compute-ahead computational technique in the
distributed factorization of large sparse matrices using the fan-in parallel scheme.
Experimental results on an Intel iPSC/2 hypercube are provided to demonstrate

the relevance and effectiveness of this technique. Fortran source code is also in-
cluded in an appendix.

1. Introduction

A fan-in algorithm for distributed sparse numerical factorization of large symmetric
positive definite matrices has been proposed in [1]. This report describes an imple-
mentation of this fan-in scheme that uses a “compute-ahead” technique to improve
performance. We assume familiarity with the research area of parallel sparse matrix
factorization and refer the reader to [6] for background material.

The basic idea behind the compute-ahead technique is simple, yet effective. In
essence, when a processor is waiting for external information required by the current
column on hand, it suspends this column task and proceeds with useful work on future
columns of the matrix. The task of computing the original column is resumed as new
external data for the column arrives.

An outline of the paper is as follows. Section 2 contains a high-level description
of the basic fan-in sparse factorization scheme. Section 3 discusses how to incorporate
compute-ahead updating into the basic fan-in scheme, and it deals with some of the
issues that arise in implementing the resulting compute-ahead fan-in algorithm. Sec-
tion 4 provides performance data for our Fortran implementation on an Intel iPSC/2
hypercube. It also compares the performance of our code with that of the fan-out code
used in [6]. Section 5 contains a few closing remarks, and an appendix contains the
source listing of our Fortran code.

2. The Fan-in Distributed Factorization Scheme

The fan-in distributed sparse factorization scheme is proposed in [1]. The scheme is
best described by using the notion of aggregate update columns. For a column j, its
complete update column is defined to be

Cix
> i

An aggregate update column for column j is

Lk

Z ij »

keK Knk

where K is any subset of {k < j | £;x # 0}, i.e. any subset of the nonzero off-diagonal
locations in row 7 of L.
Assume that we are given a mapping of columns to processors, and let map[j]

denote the processor assigned to column j. For a given processor p and a column j, we
define the set

K[p,j] := {k <j| & #0 and map[k] = p},

which is simply the set of columns owned by processor p that update column j. The
internal update column for column j from processor p is defined to be the aggregate

for column j :=1to n do
compute the internal update column v for column j ;
if mapl[j] # p then
if K[p,j] # @ then send v to processor maplj] ;
else
while v is not the complete update column for column j do
receive an external update column for column j and add it to v ;
end while
Form L,; from A.; and v ;
end if
end for

Figure 1: Fan-in distributed sparse Cholesky factorization on processor p.

update column where K = K{p,j]. If processor p owns column j, then each external
update column for column j is an aggregate update column for column j that is internal
to another processor ¢ # p, and for which K|[gq,j] # 0.

Using the notation and terminology introduced above, the fan-in algorithm for
distributed sparse Cholesky factorization is stated in its simplest form in Figure 1.
The fan-in scheme is driven by the columns, which are processed in increasing order.
When processor p is computing a column j that it owns and the update column v is not
yet complete, then it is forced to wait for external update column(s) for column j to
arrive from other processor(s) before it can proceed with useful work on later columns
of L. The next section presents an implementation of a compute-ahead strategy whose
sole purpose is to help alleviate this problem.

3. Implementation of a Compute-ahead Fan-in Scheme

A processor need not remain idle while waiting for external data required by column j,
as processor p does in Figure 1. Instead, the processor can perform so-called “compute-
ahead” work on later columns ¢ > j of the matrix. The term “compute-ahead” has been
used by Heath and Romine [8] (Page 564) in studying efficient distributed algorithms
for triangular solution of dense linear systems. The algorithm in Figure 2 is a high-level
description of how we incorporate the strategy into fan-in sparse Cholesky factorization.

As long as there are external update columns for column j that have not yet arrived,
the modified algorithm alternates between processing available external update columns
for column j and performing compute-ahead work on some column ¢ > j of the matrix.
To ensure that the message buffer is checked regularly for incoming data required by
coluran j, the algorithm works on only one column ¢ > j before again checking for
incoming data required by column j. This permits prompt completion of the factor
colurmn L,; once the last of its external update columns has arrived.

for column j := 1 to n do
complete the internal update column v for column j ;
if map[j] # p then
if K[p, 7] # @ then send v to processor map(j] ;
else
add to v all available external update columns for column j ;
while v is not the complete update column for column j do
perform compute-ahead updating for some column ¢ > j ;
add to v all newly-available external update columns for column j ;
end while
Form L,.; from A.; and v ;
end if
end for

Figure 2: Compute-ahead fan-in sparse Cholesky factorization on processor p.

Compute-ahead work can be performed on any column ¢ > 7. Naturally, columns
required earlier in the factorization should be given priority over those required later.
Performing compute-ahead work on columns j + 1,5 + 2,...,n in ascending order by
column number is a reasonable choice.

3.1. Types of Compute-Ahead Updates

When waiting for external data required to complete column 7, processor p will perform
one of two distinct “tasks” as a unit of compute-ahead work before resuming efforts to
complete column j.

o [Compute-ahead external update.] Receive and subtract an external update
column from some column : > 7.

¢ [Compute-ahead internal updates.] Choose some ¢ > j whose internal up-
date column has at least one indexed SAXPY operation pending, and do the
following: For every k € K|p,i] such that a) L.; has been computed, and b)
L,; has not yet been applied to the internal update column for column i, add
the appropriate multiple of L, to the internal update column for column ¢ (an
indexed SAXPY operation).

Note that the compute-ahead internal updating task is “greedy” in the sense that it
performs every needed indexed SAXPY on column ¢’s internal update column that
it possibly can with the columns of I that are currently computed. Implementing
a compute-ahead external update turns out to be simple and straightforward, as we
shall see later in this section. But implemention issues connected with compute-ahead
internal updates require more extended discussion.

-4 -

One of the key issues is management of the work storage required to accumulate
internal update columns. While the basic fan-in algorithm requires that each processor
allocate only a single column of work storage to accumulate successive internal up-
date columns (see Figure 1), the compute-ahead fan-in algorithm requires more work
storage for this purpose. The compute-ahead internal-updating task cannot complete
an internal update column that must be modified with a multiple of column j. As a
result, the compute-ahead feature requires each processor to allocate a block of storage
that can contain incomplete internal update columns for more than one column 7 > j.
Thus, we must choose a mechanism to limit and manage work storage, while retaining
sufficient access to compute-ahead work.

Our implementation does not permit the computation of all “available” compute-
ahead updates. Compute-ahead internal updates are restricted to target columns
within the currently active supernode, primarily to preserve a simple but effective over-
all implementation. A supernode is a block of contiguous columns in the Cholesky factor
whose diagonal block is full triangular and whose off-block-diagonal column structure
is the same for every column. Supernodes have been used in [3] to devise efficient
vectorized sparse factorization schemes. They are also used in the domain-separator
model [2] to study distributed sparse factorization schemes.

In our implementation, when a processor p begins work on the columns of supernode
S, it has on hand work space sufficient to hold an internal update column for each
column in S. For columns of S not owned by a processor p, the allocated work space
is indispensible; for columns of S owned by processor p, the space is not required, but
is merely a programming convenience. Also, because of the shared sparsity structure
of columns within S, only a single indexing vector is required to map each entry of
a column k € K[p,i] to the corresponding entry of column ¢ for any column i € S.
Once computation on the columns of S has begun, compute-ahead internal updates for
columns in S are simple and natural to perform because the required initialized work
space and indezing information are already available.

We now discuss more explicitly the role of supernodes in identifying the types of
compute-ahead updates actually available in our implementation. As before, let p be
the processor that owns column j and assume that it is currently working on column j.
Let S be the supernode containing column j and consider the situation where processor
p is awaiting the arrival of some external update columns for column j. Relative to p
and S, we can identify the following possible compute-ahead updates:

e internal updates for columns ¢ > j,2 € §.
e external updates for columns i > j, ¢ € S.

e cxternal updates for columns i > 5,7 ¢ S.

¢ internal updates for columns ¢ > 5,71 ¢ S.

Compute-ahead external updates for any column ¢ > j, whether inside or outside
the current supernode 5, will be included in our implementation. This has the desirable
effect of clearing the message buffer, and moreover since we follow [1] in giving each

-5-

external update column the same sparsity structure as its target column, our imple-
mentation can incorporate external update columns directly into factor column storage.
Consequently, compute-ahead external updates require no additional overhead storage
or computation to provide structural information, nor do they required additional work
storage for their accumulation.

Compute-ahead internal updates for columns within supernode § are also included
in our implementation. After initializing to zero the block of work storage large enough
to contain all the columns in §, our implementation computes internal update columns
for each column in S in the provided storage. All work, compute-ahead or otherwise,
on the internal update column for a column ¢ € § is applied to the corresponding vector
in work storage. Computed just before the first column of S is processed, the single
subscript indexing vector required by 5 is used to apply these internal updates to the
appropriate column in working storage.

As noted before, the algorithm may have to toggle quite often between probing the
message queue for external update columns for the current column j, and processing
compute-ahead updates (internal or external) for a column ¢ > j. It is therefore im-
portant to alternate between these tasks in a smooth and efficient manner. Compute-
ahead external updates satisfy this requirement because no indexing information or
additional work storage is required to apply an external update to its target column.
Compute-ahead internal updates for columns within the current supernode S satisfy
this requirement because the initialized work space and the necessary indexing infor-
mation are already available. However, compute-ahead internal updates to columns
outside S do not have these advantages; they require an extra block of intialized work
storage and a new indexing vector before other useful computation can be resumed.
Thus, we have excluded such internal compute-ahead updates from our implementation,
and consequently, processors will generally become idle more often when processing the
last few columns of a supernode. Indeed, when the last column of a supernode is being
processed, no compute-ahead internal updates are possible.

To explore the effects of limiting compute-ahead internal updates to columns in
the currently active supernode, we developed a second code that allows compute-ahead
internal updating to cross at most one supernode boundary. Such a code has access
to more compute-ahead internal updates, but at the expense of an increase in 1) the
complexity of the program, 2) the work storage requirement, and 3) the bookkeeping
overhead required to manage work storage. Preliminary results with that code revealed
very little difference in performance between it and a much simpler code based on the
algorithm given in the next subsection.

3.2. The Detailed Algorithm

We assume that the given sparse matrix has been properly ordered for parallel elimina-
tion and that the supernode blocks of the ordering have been determined. The detailed
compute-ahead algorithm is given in Figure 3.

The compute-ahead section of the algorithm can be interpreted more informally in

the following way: As long as there are external update columns for the current column
j that have not yet been processed, obtain a task of highest priority and perform it,

for each supernode block 5 do
let s,s 4+ 1,...,8+ k — 1 be the columns of the current supernode S ;
initialize to zero work space for internal update columns v, Vs41,...,Vs45-1 ;
compute the subscript indexing vector for S ;
forj:=stos+k—-1do
assume that initially L.; = A.; ;
complete the internal update column v; for column j ;
if map(j] # p then
if K[p, j] # @ then send v; to processor map[j] ;
else
subtract from L,; every available external update for column j ;
while external update columns for column j remain to be processed do
if internal indexed SAXPY’s are pending for some column ¢ € S then
perform all pending internal indexed SAXPY’s for the first such
column ¢z € §, ¢ > 7, accumulating the result in v; ;
else
receive any available external update column and subtract
it from the target column L,;, ¢ > j.
end if
subtract from L,; every newly-available external update column
for column j ;
end while
subtract v; from L.; and scale the resulting vector to obtain column j of L.
end if
end for
free the work space for future use ;
end for

Figure 3: Detailed version of compute-ahead fan-in sparse Cholesky factorization on
Processor p.

-7-

where the tasks to be done are ranked in descending order of “urgency” as follows:

1. Receive and apply directly to column j every available external update column for
column j (whenever at least one such update column is available in the message
queue).

2. [Compute-ahead internal updates.] Perform all column updates, i.e. indexed
SAXPY'’s, waiting to be incorporated into the internal update column for the first
column ¢ € S, ¢ > j that has any such updates pending,.

3. [Compute-ahead external update.] Receive and apply any available external
update column to its target column ¢ > j.

Thus, external data for column j is processed as long as such data are available in the
message queue. When column j remains imcomplete and the message queue contains
no external data for column j, the algorithm performs compute-ahead internal updates.
When there are neither external update columns for column j nor internal updates for
columns ¢ € 5, ¢ > j, then, and only then, does the algorithm process any available
external updates. Note that after all pending internal indexed SAXPY’s for columns
in § are exhausted, only external updates for column ¢ > j are available, until finally
column j is completed.

While processing an external update column requires little work, the compute-ahead
internal-updating task may sometimes perform quite a few indexed SAXPY’s before the
message queue is again checked for data required by column j. The decision to allow the
compute-ahead internal-updating task to perform all indexed SAXPY’s pending for a
single column ¢ > j merits further comment. While this appears to be a natural choice,
we were concerned that it might not permit the program to check the message queue
often enough for data required by column j. To investigate this question, we introduced
into our program a parameter KTROL that limits the number of indexed SAXPY’S that
may constitute a single compute-ahead internal-update task. We tried several widely-
varying values of KTROL and never observed more than 2% difference in factorization
time between the best and the worst case. The worst results were obtained with
KTROL=1, which restricts the compute-ahead internal-update task to a single indexed
SAXPY. This setting for KTROL evidently caused the code to waste a small amount of
time on an excessive number of subroutine calls to perform the compute-ahead internal
updates and on an excessive number of probes for for incoming external update columns
for the current column j. We observed less than 1% variability in factorization time as
long as KTROL was chosen to allow at least a few indexed SAXPY’s. We consistently
obtained our best timing results (by an extremely small margin) when XTROL was chosen
large enough to allow the compute-ahead internal-updating task to compute all pending
indexed SAXPY’s for the target internal update column. Thus we incorporated into
our algorithm a compute-ahead internal-update task that is as “complete” as possible,
because it is marginally more efficient, appears to be the natural choice from the start,
and helps preserve the simplicity of the algorithm.

compute-
grid np || basic basic ahead
problem fan-out | fan-in fan-in
50x50 1 22470 13.911 13.910
2 || 12.545 7.201 7.240
4 7.509 4.000 3.747
8 5.197 2.460 2.273
16 3.619 1.564 1.364
32 2.639 0.972 0.872
64 2.020 0.684 0.659

75x75 1 80.447 | 48.388 48.419

2| 42278 | 24.388 24.360

4 23.291 | 13.118 12.380

8 14.643 7.935 7.307

16 9.733 4.815 4.222

32 6.860 2.887 2.490

64 4.976 1.748 1.561

100x100 | 1 — 115.341 115.350

2 || 105.989 | 58.488 58.439
4§ 57539 | 31.660 30.064
8| 34324 | 18.586 17.090

16 || 21.042 | 11.191 9.484
32 13.860 6.459 5.380
64 9.529 3.781 3.198

Table 1: Parallel factorization time (in seconds) on an Intel iPSC/2.

4. Experimental Results

The compute-ahead fan-in algorithm for sparse Cholesky factorization was implemented
in Fortran and run on an Intel iPSC/2 hypercube. The test problems were nine-point
finite-difference operators on square grids. We used the nested dissection ordering [5]
since it gives optimal-order fill and well-balanced elimination trees for these problems.
We used the subtree-to-subcube mapping [7] to assign processors to columns since it
gives good load balance and reduces communication. Our code is written so that when
the parameter KTROL, discussed in the previous section, is set to zero, it becomes an
implementation of the basic fan-in algorithm shown earlier in Figure 1. When KTROL is
set to a sufficiently high value, our code becomes an implementation of the compute-
ahead fan-in algorithm shown in Figure 3 in the previous section. Until recently, the
best-known algorithm for distributed sparse Cholesky factorization was a basic fan-
out algorithm reported in [6]. We include it in our numerical results. We refer to
this version of the fan-out algorithm as basic fan-out in order to distinguish it from
the more recent domain fan-out algorithm introduced independently in [2] and in [9)].
Table 1 contains timing results for the three algorithms: basic fan-out, basic fan-in,
and compute-ahead fan-in.

-g.-

The factorization times reported in Table 1 demonstrate the large advantage of the
fan-in scheme over the fan-out scheme, thus confirming results reported in [2]. But the
primary objective of these tests is to confirm whether or not the compute-ahead tech-
nique significantly improves the efficiency of the basic fan-in algorithm. The usefulness
of the technique is adequately demonstrated by these timing results, particularly by
the factorization times obtained for the largest problem on 16, 32 and 64 processors.
On the 100x100 grid, basic fan-in is respectively 18.0%, 20.1% and 18.2% slower than
compute-ahead fan-in on 16, 32, and 64 processors.

We would like to point out that the problem set used in Table 1 includes the
problems used by Zmijewski in [9] to compare the domain fan-out algorithm with the
basic fan-out algorithm. Though he also made his runs on an iPSC/2, his timings
and ours cannot be compared directly because his machine differs from ours and/or he
selected different options when compiling his Fortran code. Because he used the same
basic fan-out code that we used, one can, with caution, make a rough comparison of
our results with his by normalizing all times against those obtained for the common
basic fan-out runs.

5. Concluding Remarks

We have described an implementation of the fan-in distributed sparse factorization
scheme that uses a compute-ahead technique to improve performance over the basic
fan-in scheme. We have detailed how to use supernodes to limit the amount of addi-
tional work storage required by the compute-ahead fan-in algorithm, and to organize
the computation in a way that enables clean and efficient access to the compute-ahead
internal updates. We have indicated how providing access to compute-ahead internal
updates across supernode boundaries increases the amount of work storage required
and makes the code more complex and difficult to write. While the improvement in
the factorization times of either fan-in scheme over the basic fan-out scheme is by far
the most significant demonstrated in our testing, we have shown that incorporating
compute-ahead updates into the basic fan-in algorithm significantly improves its per-
formance, at least under the ideal circumstances used in our tests. The source code is
included in the appendix to show our implementation.

6. References

(1] C. Ashcraft, S. Eisenstat, and J. Liu. A fan-in algorithm for distributed sparse
numerical factorization. Technical Report CS-89-03, Department of Computer Sci-
ence, York University, 1989. (to appear in SIAM J. Sci. Statist. Comput.).

[2] C. Ashcraft, S. Eisenstat, J. Liu, and A. Sherman. The comparison of three column-
based distributed sparse factorization schemes. Technical Report, Department of
Computer Science, York University, 1990. (in preparation).

[3] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon. Progress in sparse
matrix methods for large linear systems on vector supercomputers. Intern. J. Su-
percomputer Applic., 1(4):10-29, 1987.

- 10 -

[4] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A machine-independent
communication library. In John L. Gustafson, editor, Hypercube Concurrent Com-
puters and Applications 1989, 1990. (to appear).

[5] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal., 10:345-363, 1973.

[6] J. A. George, M. Heath, J. W. H. Liu, and E. Ng. Sparse Cholesky factorization on
a local-memory multiprocessor. SIAM J. Sci. Statist. Comput., 9:327-340, 1988.

[7] J. A. George, J. W. H. Liu, and E. Ng. Communication results for parallel sparse
Cholesky factorization on a hypercube. Parallel Computing, 10:287-298, 1989.

[8] M. T. Heath and C. H. Romine. Parallel solution of triangular systems on
distributed-memory multiprocessors. SIAM J. Sci. Statist. Comput., 9:558-588,
1988.

[9] E. Zmijewski. Limiting communication in parallel sparse Cholesky factorization.
Technical Report TRCS89-18, Department of Computer Science, University of Cal-
ifornia at Santa Barbara, California, 1989.

Appendix: Fortran Source Listing

Our routines call four routines from the Portable Instrumented Communication Li-
brary [4] (PICL), which is designed to provide a portable syntax for the message-passing
routines used on typical distributed-memory MIMD machines. A brief description of
these four routines is given below.

subroutine send0 (buf, bytes, type, node)
character*(*) buf
integer bytes, type, node

The subroutine send0 sends a message of length bytes stored in buf to processor
node. The variable type is used by the receiving processor to distinguish one “type”
of message from another. The contents of buf need not be character data; buf can
contain data of any valid Fortran data type. This applies to buf in subroutine recv0
below, also.

subroutine recv0 (buf, bytes, type)
character*(*) buf
integer bytes, type

The subroutine recv0 receives a message with type field type into a buffer buf. The
variable bytes contains the length of the buffer (in bytes). When type is —1, any
incoming message will satisfy the request. This applies to type in probe0 below, also.

integer function probe0 (type)
integer type

- 11 -

The integer function probeO returns the value 1 if the processor has received a message
of the specified type; otherwise it returns the value 0.

subroutine recvinfo0 (bytes, type, node)
integer bytes, type, node

The subroutine recvinfo0 returns information about the most recently received or
“probed for” message: bytes contains the length of the message (in bytes), type
contains the integer “type” of the message, and node contains the processor ID number
of the processor that sent the message.

- 12 -

Cus La CORBRRREFERRRRREAARBRERE RSB RRRERAR R R RRR S S RER R LR
CHud sk kb kR A d R SRR R A S A SRR AR R R AR SRR R RNARE SRS E R SRR R ERR R DR SRR R RS R AR hE &
CHneex FANIN PARALLEL SPARSE FAN-IN FACTORIZATION EEEEEERR
CHER bR kAt h ke kR Rk kR R LR R R R RR SRR R AR R ER RN RO R R R E SRR Rk
[E e P e L L I L e P T e] ERREE Ll

PURPOSE :
THIS SUBROUTINE PERFORMS A SPARSE FAW-IN DISTRIBUTED
CHOLESKY DECOMPOSITION, WITH AN OPTIONAL COMPUTE-AHEAD
TECHNIQUE TO IMPROVE PERFORMANCE.

INPUT PARAMETERS:
KTROL -~ CONTROLS NUMBER OF COMPUTE-AHEAD UPDATES:
< 1, PERFORM NO COMPUTE-AHEAD UPDATES.
>= 1, PERFORM NO MORE THAN KTROL UNINTERUPTED
COMPUTE-AHREAD INTERNAL UPDATES.

ME - NODE NUMBER OF THIS NODE PROCESSOR.

NEQNS - NUKBER OF EQUATIONS.

MAP - MAPS EACH COLUMN TO THE PROCESSOR THAT OWES IT.

XBLK - SUPERNODE PARTITION. XBLK(I) POINTS TO THE
FIRST COLUME OF THE I-TH SUPERNODE.

¥BLKS - NUMBER OF SUPERNODES.

MSGCET - MSGCHET(J) CONTAINS THE NUMBER OF EXTERNAL
HESSAGE UPDATES REQUIRED BY COLUME J.

XL¥Z - SPARSPAK’S LNZ POINTER ARRAY; USED TO

OBTAIN COLUMK LEHGTHS.

XNZSUB,NZSUB - ROW SUBSCRIPT ARRAY; SAME AS SPARSPAK.

HAXWS - MAXTMUM SIZE OF WS.

MYET -~ LOCAL ELIMINATION TREE. MYET(I) IS 1 (TRUE)
IF NODE I HAS A DESCENDANT WHICH BELUEGS TO
THIS PROCESSOR. OTHERWISE, MYET(I) IS ©
(FALSE).

OUTPUT PARAMETERS:
ERROR ~ ERROR CODE. (ERROR = 180 IF MATRIX IS NOT
POSITIVE DEFINITE.)

UPDATED PARAMETERS:
XHMYLNZ BYLEZ - OF INPUT, MY COLUMES OF A.
0N OUTPUT, MY COLUMES OF L.

WORKING PARAMETERS:

Vs ~ WORK SPACE FOR COLUMNS OF A SUPERNODE.

LINK ~ AT STEP J, CONTAINS LINKED LIST OF MY
COLUMES THAT WILL UPDATE COLUMN J.

FIRST -~ FIRST(I) POINTS TO THE TOP OF THE ‘ACTIVE’®
PORTION OF COLUME I.

UPDINX ~ UPDATE INDEX VECTOR.

MSGUPD - BUFFER INTO WHICH EXTERNAL UPDATES ARE
RECEIVED.

PROGRAM SUBROUTINES:
SENDO, INTUPD, EXTUPD.

e R R R R e e B R R B e e e B e e B e e e B e et e et N R R e et e s s T R Mt s e e By N e B e B o B e I

CHERRRERRER AR RRKA RS R RRR R R SRR CRRE R Rk R RN R R kR kbR AR KRRk
C
SUBROUTINE FARIN (KTROL , ME , NEQES , HAP , XBLK ,

& WBLKS , MSGCHT, XMYLEZ, MYLNZ , XLNZ |,
2 I§ZSUB, NZSUB , MAXWS , WS , LINK
Y FIRST , MYET , UPDINX, KSGUPD, ERROR)
c
CrEERexk e e RSk X REEREEERRRRERRRERRRE PR RRAKS SR ERRFRRGEERR RS KA AR R R EEFEE KRS K
c

-13 -

C PARAMETERS.

c ———————————
INTEGER ERROR , KTROL , MAXWS , ME ., NEQES ,
x ¥BLKS
INTEGER FIRST(+) , LINK(*) , MAP(+) , NSGCNT(s),
: MYET(+) , NZSUB() , UPDINX(+), XBLK(s)
& ILEZ(+) , IMYLNZ(+), XNZSUB(e)
REAL MSGUPD (%), MYLEZ(*») , WS(%)
c
C ————————————————
C LOCAL VARIABLES.
c ————————————————
INTEGER BLESZE, FSTLEK, I , IT , 1sTOP ,
:x ISTRT , ISUB , J , JSIZE , JSTOP ,
X JSTRT , JXN8 , K , KBLK , KSTOP ,
x KSTRT , KSUB , WSSIZE, WEQNS4
REAL DIAGT
c
Che ks hkkkk koK dokpkgkkkkiobkk ki kR Rk kg Rk kkrkbkdh bk k bbbk
c
EEQES4 = NEQNS + 4
DO 100 J = 1, NEQNS
LINK(I) = 0
100 CONTINUE
c -
c FOR EACH SUPERNODE KBLK ...
c -
DO 700 KBLK = 1, NBLKS
JSTOP = XBLK(KBLK+1) - 1
IF (HYET(JSTOP) .NE. 0) THEK
c
c . THAT INTERSECTS MY ELIMINATION TREE, FIND
¢ THE FIRST COLUME IN MY ELININATION TREE.
c
JSTRT = XBLK(XBLK)
200 IF (MYET(JSTRT) .EQ. O) THEX
JSTRT = ISTRT + 1
GOTO 200
ENDIF
c
c INITIALIZE WORK SPACE FOR CURRENT SUPERNODE XBLK.
c ++NOTE+* EACHE COLUMY IN WS INCLUDES THE DIAGONAL.
c
JSIZE = XLNZ(JSTRT+1) ~ XLWZ(JSTRT) + 1
BLESZE = JSTOP - JSTRT + 1
WSSIZE = JSIZE#BLKSZE - BLKSZE#(BLKSZE~1)/2
DO 300 II = 1, WSSIZE
¥S(ID) = 0.0
300 CONTIBUE
C —— -
c SET UP THE UPDATE INDEX VECTOR FOR XBLX.
c «+NOTE+» NZSUB DOES NOT INCLUDE THE DIAGOWAL.
c ——— -
KSTRT = XNZSUB(JSTRT)
KSTOP = KSTRT + JSIZE - 2
UPDINX(JSTRT) = 1
ISUB = 1
D0 400 K = KSTRT, KSTOP
KSUB = NZSUB(K)
ISUB = ISUB + 1
UPDINX(KSUB) = ISUB
400 CONTINUE
c - - -

Cc FOR EACH COLUMN J IN CURRENT SUPERNODE, DO ...

(2}

aaOa

aaoaaan

QQ

[+ N+ H TN 1]

aagaa

- 14 -

JINS = 1

DO 600 J = JSTRT, JSTOP

FORM INTERNAL UPDATE FOR COLUMN J.

FSTLEK = LIEK(J)

(FSTLEX .GT. 0) THEKN

CALL INTUPD (J, JSIZE, WS(JXWS), UPDINX, LINK,

IF

ENDI

F

FIRST, XNZSUB, ¥ZSUB, XMYLKZ, MYLNZ, J)

IF J IS NOT MINE, SEND ¥ON-ZERO INTERNAL UPDATE
TO OWNER OF J.

IF (MAP(J) .NE. ME) THEN

ELSE

IF

(F

STLNK .GT. O) THEN

CALL SEFDO (WS(JXWS), 4+JSIZE, J, MAP()))
ENDIF

IF J IS MINE ARD ITS UPDATE IS IECOMPLETE,
RECEIVE AND APPLY EXTERNAL UPDATES ...

(MSGCAT(J) .GT. 0) THEN

IF

IF

ELS

END.

ERDIF

(KTROL .GT. O) THEN

. WITH COMPUTE-ABEAD UPDATING.

CALL EXUPCA (KTROL, NEQNS4, J,
JSIZE, JIWS, WS, JSTOP, MSGCNT,
UPDINX, LINK, FIRST, XNZSUB, NZSUB,
XMYLNZ, MYLNZ, MSGUPD)

E
. WITH NO COMPUTE-AHEAD UPDATING.
(PURE FAR-IN)

CALL EXTUPD (NEQNS4, J, JSIZE,
MSGCNT()), MYLNZ(XMYLNZ(J)),
MSGUPD)

IF

APPLY INTERNAL UPDATES ACCUMULATED IN WS TO
COLUME L(+,J). MODIFY LINK(#) AND FIRST(%).

Lonl
w
()
=
pc}
1i

ISTOP =
DIAG] =
IF (DIAGJ .LE. 0.0) GOTO 800
DIAGJ = SQRT(DIAGJ)

MYL¥Z (ISTRT) = DIAGJ

IF

(G}

XNYLNZ(J)
XMYLNZ(J+1) - 1
MYL¥Z(ISTRT) - WS(JXWS)

SIZE .GT. 1) THEW

ISTRT = ISTRT + 1
FIRST(J) = ISTRT

I =

XNZSUB(J)

ISUB = EZSUB(I)

LIN
LIN

K(J) = LINK(ISUB)
E(ISUB) = J

ISUB = JXWS

DO

500 II = ISTRT, ISTOP
ISUB = ISUB + 1
MYLNZ(II) = (HMYLNZ(II)-WS(ISUB))/DIAGJ

aaa

Q

[+]

500

600

700

800

-15 -

CONTINUE
EEDIF
EEDIF

PROCEED WITH NEXT COLUMN IN SUPERNODE KBLK.

JINS = JINS + JSIZE
JSIZE = JSIZE - 1
CONTINUE
ENDIF

PROCEED WITH NEAT SUPERNODE.

CONTINUE
RETURN

ERROR = 180
RETURN
END

- 16 -

CHEXREERRRERE SRR AREEAEL R ERRRARE AR AR R AR A AR RR I RS REF SRR R KRR EEREK
CHEMAIARRRAES S SRR RRRR RS S SRR RARRRER KSR EERRRI AT R TR KRR AR ®
Crases INTUPD FAE-IN: INTERNAL COLUMN UPDATES s#ss&kas
CHaxdes AR LR L L L e T e]
CHEFRZERERERS RSB RRRR SRS bd o dor Rk kSRR Rk k& ko Rk kR AR Rk

PURPOSE :
THIS ROUTINE PERFORMS A CONTROLLED NUMBER OF INTERNAL
UPDATES ON A GIVEN COLUMN.

INPUT PARAMETERS:

J - COLUMN TO WHICH INTERNAL UPDATES ARE
TO BE APPLIED.

JSIZE - NUMBER OF NONZEROS IN COLUME J: L(»,J).

UPDINX - UPDATE INDEX VECTOR FOR COLUME J.

XNZSUB,NZSUB - ROW SUBSCRIPT ARRAY; SAME AS SPARSPAK.
XMYLNZ ,MYLNZ - HY COLUMES OF L.

KTROL - COETROLS THE MAXKIMUM NUMBER OF COLUMN
UPDATES. (>=] PERFORMS ALL UPDATES 0N
COL 1)

UPDATED PARAMETERS :

U - STORAGE FOR UPDATE VECTOR OF J.

LINK ~ COETAINS LIBKED LIST OF MY COLUMNS
THAT WILL UPDATE COLUMN J.

FIRST - FIRST(I) POIRTS TO THE TOP OF THE

¢ACTIVE’ PORTION OF COLUMYN I.

oo acaoaoaono0acaoao0aaaan

[e L R T I e L s P P s T e T
C

SUBROUTINE INTUPD (J , JSIZE , U , UPDINX, LINK ,
3 FIRST , XNZSUB, NZSUB , XMYLNZ, MYLBZ ,
1 3 KTROL)

o
[oE 2R R S e L T e e P R T TP T e
Cc

c ___________
c PARAMETERS .
c ———————————
INTEGER J , JSIZE , KTROL
INTEGER FIRST(+) , LINK(s) , WZSUB(#) , UPDINX(#),
x IMYLEZ(+), XNZSUB(*)
REAL O] , MYLNZ(#)
c
c ________________
c LOCAL VARIABLES.
c ________________
IETEGER I , II , ISTOP , ISTRT , ISUB |,
s .4 , NMOD , OFFSET
REAL LIK
c

(L 2 L e s e s eI e e PP T T S T
C

NMOD = 1
OFFSET = UPDINX(J1) - 1
C = 8 o i o T o o . 2
C FOR EACH COLUMN K IE THE LINK, APPLY CHOD(J,K)
c _______ _— - 2 o e ot 2 e o
100 K = LINK(J)
IF (K .GT. O .AED. ¥MOD .LE. KTROL) THERW
LINK(J) = LIEK(K)
UMOD = ¥MOD + 1
C

ISTRT = FIRST{X)

aaaaa

aaaQa

aaaan

aQaQ

200

300

217 -

ISTOP = XMYLBZ(K+1) - 1
LJK = MYLNZ(ISTRT)
I = XNZSUB(K) + ISTRT - XMYLNZ(X)

UPDATE FIRST/LINK FOR FUTURE MODIFICATION STEPS.
[**NOTE*« XMYLEZ POINTS TO DIAG ENTRY
XKZSUB POINTS TO SUB-DIAG ENTRY]

IF

(ISTOP .GT. ISTRT) THEN

FIRST(X) = ISTRT + 1

ISUB = NZSUB(I)

LINK(X) = LINK(ISUB)
LINK(ISUB) = X
ENDIF

IF THE UPDATING AND UPDATED COLUMN HAVE THE

SAME

NUMBER OF NONZEROC ENTRIES ...

IF

ELSE

ERDI
GOTO
ERNDIF

RETURN
END

(ISTOP-ISTRT+1 .LT. JSIZE) THEN

PERFORM SPARSE (INDIRECT) COLUMN UPDATE.
[*#NOTE«* I=I-1 TO INCLUDE DIAG UPDATE.]

I=1I-1

DO 200 II = ISTRT, ISTOP
ISUB = NZSUB(I)
ISUB = UPDINX(ISUB) ~ OFFSET
U(ISUB) = U(ISUB) + MYLNZ(II)«LJK
I=1I+1

CONTINUE

OTHERWISE, PERFORM DENSE (DIRECT) COLUMN UPDATE.

ISUB = 1

DO 300 1II = ISTRT, ISTOP
UCISUB) = U(ISUB) + MYLNZ(II)*LJK
ISUB = ISUB + 1

CONTINUE

F

100

- 18 -

Cresskkb ks sEERXRERLERRRERERERARREEERV RS EEEERRRRRRERERIREE LR &

CHERREBSRAB R R AR RAASRARRREREERARREERE S L L

Chesrns EXUPCA FAR-IN: EXTERNAL UPDATES W/CA LRl
Chus kR s RERRRERAE s LI
Chex e Ll SERRREEEE LI

PURPOSE:
THIS ROUTINE PERFORMS EXTERWAL UPDATES ON A GIVER
COLUMN. A CONTROLLED AMOUNT OF COMPUTE-AHEAD UPDATING
WILL BE PERFORMED WHEN THE PROCESSOR IS WAITING FOR
EXTERNBAL UPDATE COLUMNS.

INPUT PARAMETERS :

KTROL ~ CONTROLS THE MAXTHUM WNUMBER OF
UNINTERRUPTED INTERNAL COLUME UPDATES.

NEQES4 ~ NUMBER OF EQUATIONS TIMES 4.

J - COLUMN TO WHICH EXTERNAL UPDATES ARE
TO BE APPLIED.

JSIZE - N0 OF NONZEROS IN COLUMN J: L(s,J)

JXWS - INDEX TO WS, POINTS TO THE START OF
UPDATE FOR J

LAST] ~ LAST COLUMEK IF THE SUPERNODE WITH
COLUME J.

UPDINX - UPDATE INDEX VECTOR FOR CURRENT
SUPERNODE

INZSUB,NZSUB - ROW SUBSCRIPT ARRAY; SAME AS SPARSPAK.

UPDATED PARAMETERS:
ws - WORKSPACE FOR COLUMES OF J’S SUPERNODE.
MSGCET - MSGCET(I) CONTAINS EUMBER OF EXTERNAL
UPDATES REMATNIEG FOR COLUME I. IT IS
DECREMEETED TO REFLECT ANY APPLIED
EXTERNAL UPDATES.

LIBK - CONTAINS LINKED LIST OF ‘MY’ COLUNKES
THAT WILL UPDATE COLUME J.
FIRST - FIRST(I) POINTS TO THE TOP OF THE

¢ACTIVE’> PORTION OF COLUMN I.
XMYLNZ ,MYLNZ - MY COLUMES OF L.

WORK PARAMETERS:
KSGUPD - STORAGE FOR INCOMING EXTERKAL UPDATE
COLUMAS FOR J.

PRDGRAM SUBROUTINES:
PROBEO, RECVO, RECVINFOO

P R R R I R R R I R B R s e R e B e e e s s e e e e s s e s s s s Ny s T By]

CHERREEREEBERRBXERTEERRERREAR AR RR AR ER R AR KRR RRSEARE R R AR R XS R KK
c

SUBROUTINE EXUPCA (KTROL , NEQNS4, J , JSIZE , JXws
% Vs , LASTJ , MSGCET, UPDINX, LINK |,
x FIRST , INZSUB, NZSUB , XMYLNZ, MYLNZ ,
% MSGUPD)

Cc
CHERBEERENERER XK XARKRRREEKERERREERTRERRKKERRRRRKEE SRR KR KERRRRRE
C

C ———————————
¢ PARAMETERS .
c ___________
INTEGER J , JSIZE , JINS , LASTJ , KTROL , NEQES4
INTEGER FIRST(+) , LINK(+) , MSGCNT(*), NZSUB(+) ,
& UPDINX(*), XMYLNZ(*), XNZSUB(»)
REAL MSGUPD(+), MYLEZ(*) , WS(*)
¢

-19 -

C LOCAL VARIABLES.
c ————————————————
TNTEGER BYTES , I » II , ISIZE , IsUB , JSUB
4 K ,» KSIZE , KXWS , NODE
C
c
[+ EXTERNAL FUNCTIOES.
€ eemreemeeceee——c—————
INTEGER PROBEO, RECVIEFDO
[
Crkdokk bk kR Rk kg kK h (23] SRk Rk SRRk
Cc
X=7J+1
KIWS = JXWS + JSIZE
KSIZE = JSIZE - 1
JSUB = XMYLNZ(J)
C
C WHILE THERE IS MESSAGE FOR COLUMN J,
C RECEIVE IT A¥D APPLY EXTERNAL UPDATE TO L({*,J).
[

100 IF (PROBEO(J) .GT. O) 'THEN
CALL RECVO (MSGUPD, NEQNS4, J)
ISUB = JSUB
D0 200 II = 1, JSIZE
NYLNZ(ISUB) = MYLNZ(ISUB) - MSGUPD(II)
ISUB = ISUB + 1
200 CONTINUE
MSGCHT(J) = MSGCNT(J) - 1
IF (MSGCNT(I) .LE. 0) RETURN
G0 TO 100
EEDIF
PERFORM COMPUTE-AHEAD INTERNAL UPDATES ON
REMATNING COLUMNS OF THE CURRENT SUPERNODE.
300 IF (K .LE. LASTJ) THEN
IF (LIEK(K) .GT. O) THEN
CALL INTUPD (K, KSIZE, WS(KXWS), UPDINX, LISK,
£ FIRST, XNZSUB, WZSUB, XMYL¥Z,
x MYLNZ, KTROL)
ELSE
K=K +1
KXWS = KXWS + KSIZE
RSIZE = KSIZE - 1
G0 TO 300
ERDIF
60 TO 100
ENDIF
PERFORM COMPUTE-AHEAD EXTERNAL UPDATES WITH
INCOMING MESSAGES, GIVING PRIORITY TO UPDATES
FOR COLUMN J.

Qa0

aaaoan

400 CONTINUE

IF (PROBEO(J) .EQ. 1) THEN
CALL RECVO (MSGUPD, WEQNS4, J)
I=1

ELSE
CALL RECVO (MSGUPD, NEQNS4, -1)
CALL RECVINFOO (BYTES, I, NODE)

EBDIF

ISUB = XMYLNZ(I)

ISTZE = XMYLNZ(I+1) - ISUB

DO 500 II = 1, ISIZE

- 90 -

MYLNZ(ISUB) = MYLNZ(ISUB) - MSGUPD(II)
ISUB = ISUB + 1
500 CONTINUE

MSGCHT(I) = MSGCHT(I) - 1
IF (MSGCET(J) .LE. 0) RETUR¥
GD TD 400

E¥D

- 921 -

C LLI PRIt S T e R e TR S e PR R s B
[e EREFREE Ee * LT
Cheexns EXTUPD FAN-IN: EXTERNAL COLUMN UPDATES ##kxx=
Cbdhdkk dohk ok L2 eRnn [ITTTS
bk ok k& ok dokok »okk L1 12
PURPOSE:

THIS ROUTINE PERFORMS EXTERRAL UPDATES OF A GIVEN
COLUMN WITH ¥O COMPUTE-AHEAD UPDATING.

INPUT PARAMETERS:

NEQNS4 - NUMBER OF BEQUATIOES TIMES 4.

J ~ COLUME TO WHICH EXTERNAL UPDATES ARE
T0 BE APPLIED.

JSIZE -~ NUMBER OF NOEZEROS IN COLUMN J: L(*,J)).

UPDATED PARAMETERS:

HSGCNT - MSGCNT CONTAINS WUMBER OF EXTERNAL
UPDATES REMAINING FOR COLUME J.
JNZ -~ ON OUTPUT, ALL UPDATES HAVE BEEN

APPLIED TO COLUME J OF L.

WORK PARAMETERS:
HSGUPD ~ STORAGE FOR INCOMING EXTERNAL UPDATE
COLUMN OF J.

PROGRAM SUBROUTIBES:
RECVO ~ RECEIVE A MESSAGE.

aaoacaoaaogaogaoooaoao0aoooaoaaoaoagoaaaaan

ok ke xkkkEk ok kk Rk kbR kR Rk Rk kR

SUBROUTINE EXTUPD (NEQES4, J , JSIZE , MSGCHET,
JRZ , NSGUPD)

o0

QOO0

ERRKKE

aaaaaaaa

100

200

(i 2 X ds] ERREEEPAERERERRRRCEREERER DR TR R E R R SRR RE R

INTEGER J , JSIZE , NEQNS4, NSGCETY
REAL MSGUPD(»), JNZ(#*)

kR kR ARk R Rk RAOR R R kR Rk Rk kxR dOoR R Rk ook ok ok &

RECEIVE ARD APPLY EXTEREAL UPDATES TO L(»,J),
UETIL ALL SUCH UPDATES HAVE BEEN APPLIED.

COBTIRUE
CALL RECVO (MSGUPD, NEQNS4, J)
DO 200 IX =1, JSIZE
JEZ(IX) = JENZ(II) - MSGUPD(II)
CONTIRUE
MSGCHNT = MSGCET - 1
IF (MSGCET .LE. 0) RETURK
G0 TO 100
END

- 23 -

ORNL/TM-11496

INTERNAL DISTRIBUTION

1. B. R. Appleton 36. J.J. Dorning (EPMD
2. E. F. D’Azevedo Advisory Committee)
3. J. J. Dongarra 37. R. M. Haralick (EPMD
4. J. B. Drake Advisory Committee)
5. G. A. Geist 38. J. E. Leiss (EPMD Advisory
6-7. R. F. Harbison Committee)
8. M. T. Heath 39. N. Moray (EPMD Advisory
9. E. R. Jessup Committee)
10. M. R. Leuze 40. M. F. Wheeler (EPMD
11-15. F. C. Maienschein Advisory Committee)
16. E. G. Ng 41. Central Research Library
17. C. E. Oliver 42. ORNL Patent Office
18. G. Ostrouchov 43. K-25 Plant Library
19-23. B. W. Peyton 44. Y-12 Technical Library /
24-28. S. A. Raby Document Reference Station
29. C. H. Romine 45. Laboratory Records - RC
30-34. R. C. Ward 46-47. Laboratory Records Department
35. P. H. Worley

EXTERNAL DISTRIBUTION
48-52. Mr. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

53. Dr. Donald M. Austin, Executive Director, High Performance Research Center, Uni-
versity of Minnesota, Minneapolis, MN 55455

54. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Houston,
TX 77252-2189

55. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State Univer-
sity, University Park, PA 16802

56. Dr. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratory, Albuquergue, NM 87185

57. Dr. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, 1L 60439

58. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, 5-581 83 Linkop-
ing, Sweden

59. Dr. Jean R. 8. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

60. Dr. James C. Browne, Department of Computer Sciences, University of Texas,
Austin, TX 78712

61.

62.

63.

64.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

T7-81.

82.

83.

84.

85.

-4 .

Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, Uni-
versity of Michigan, Ann Arbor, MI 48109

Dr. John Cavallini, Office of Scientific Computing, Office of Energy Research, ER-7,
Germantown Building, U.S. Departiment of Energy, Washington, DC 20545

Mr. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia, Canada V6T 1W5

. Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles,

405 Hilgard Avenue, Los Angeles, CA 90024

Dr. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

Dr. Eleanor Chu, Department of Computer Science, University of Waterloo, Water-
loo, Ontario, Canada N2L 3Gl

Dr. Melvyn Cirnent, National Science Foundation, 1800 G Street NW, Washington,
DC 20550

Prof. Tom Coleman, Department of Computer Science, Cornell University, Ithaca,
NY 14853

Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory,
Berkeley, CA 94720

Prof. Andy Conn, Department of Combinatorics and Optimization, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

Dr. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

Dr. George Cybenko, Computer Science Department, University of Illinois, Urbana,
IL. 61801

Dr. George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

Dr. Tain Duff, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Prof. Pat Eberlein, Department of Computer Science, SUNY/Buffalo, Buffalo, NY
14260

Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Dr. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkop-
ing, Sweden

Dr. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

Dr. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S TI.-21,
Seattle, WA 98124-0346

Dr. Geoffrey C. Fox, Booth Computing Center 1568-79, California Institute of Tech-
nology, Pasadena, CA 91125

86.

87.

88.

89.

90.
91.

92.

93.

94,

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

- 25 -

Dr. Paul O. Frederickson, NASA Ames Research Center, RIACS, M/S 230-5, Moffett
Field, CA 94035

Dr. Fred N. Fritsch, 1-300, Mathematics and Statistics Division, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550

Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University, Raleigh, NC 27650

Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Bloom-
ington, IN 47405

Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana,
Ilinois 61801

Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Dr. John Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304

Prof. Gene H. Golub, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

Dr. Joseph F. Grear, Division 8331, Sandia National Laboratories, Livermore, CA
94550

Dr. Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of
Denmark, DK-2800 Lyngby, Denmark

Dr. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

Dr. Nicholas J. Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Dr. Tlse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

Dr. Harry Jordan, Department of Electrical and Computer Engineering, University
of Colorado, Boulder, CO 80309

Prof. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta, Canada T6G 2H1

Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

Prof. Malvyn Kalos, Courant Institute for Mathematical Sciences, New York Uni-
versity, 251 Mercer Street, New York, NY 10012

Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118-122.

123.

124.

125.

126.

127.
128.
129.

130.

131.

- 96 -

Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laborato-
ries, Livermore, CA 94550

Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

Dr. Richard Lau, Offic of Naval Research, 1030 E. Green Street, Pasadena, CA
91101

Dr. Alan J. Laub, Department of Electrical and Computer Engineering, University
of California, Santa Barbara, CA 93106

Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

Dr. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012

Dr. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

Dr. Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,
TX 77042

Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department of
Computer Science and Statistics, Queen Mary College, University of London, Mile
End Road, London E1 4NS, England

Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele
Street, North York, Ontario, Canada M3J 1P3

Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca,
NY 14853

Dr. Thomas A. Manteuffel, Computing Division, Los Alamos National Laboratory,
Los Alamos, NM 87545

Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena,
CA 91125

Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086
Dr. Brent Morris, National Security Agency, Ft. George (. Meade, MD 20755

Dr. Dianne P. OQ’Leary, Computer Science Department, University of Maryland,
College Park, MD 20742

Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia,
Charlottesville, VA 22903

Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher-
brooke Street W., Montreal, Quebec, Canada H3A 2K6

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148-152.

153.

154.

297 -

Prof. Roy P. Pargas, Department of Computer Science, Clemson University, Clem-
son, SC 29634-1906

Prof. Beresford N. Parlett, Department of Mathematics, University of California,
Berkeley, CA 94720

Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,
NC 27706

Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

Dr. Alex Pothen, Department of Computer Science, Pennsylvania State University,

University Park, PA 16802

Dr. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Prof. Werner C. Rheinboldt, Department of Mathematics and Statistics, University
of Pittsburgh, Pittsburgh, PA 15260

Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Labora-
tory, Livermare, CA 94550

Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham,
NC 27706

Dr. Ahmed H. Sameh, Computer Science Department, University of Illinots, Urbana,
1L, 61801

Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

Dr. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

Dr. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Dr. David 5. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Beaverton, OR 97006

Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist Univer-
sity, Dallas, TX 75275

Dr. Andrew H. Sherman, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Dr. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

Dr. Horst Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA
94035

. Dr. Danny C. Sorensen, Rice University, Department of Mathematical Sciences,

P. O. Box 1892, Houston, TX 77251

. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College

Park, MD 20742

157.

158.

159.

160.

161.

162.

163.

164.

165.

166-175.

.98 -

Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

Prof. Jim Varah, Centre for Integrated Computer Systems Research, University
of British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia,
Canada V6T 1W5

Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

Dr. Phuong Vu, Cray Research Inc., 1345 Northland Dr., Mendota Heights, MN
85120

Dr. Daniel D. Warner, Department of Mathematical Sciences, O-104 Martin Hall,
Clemson University, Clemson, SC 29631

Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

Dr. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

Prof. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

Office of Assistant Manager for Energy Research and Development, U.S. Department
of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN 37831-8600

Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831

