
3 4456 0335094 3

.

. .. - , ,. . . .-

ORNL/TM-11496

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A COMPUTE-AHEAD IMPLEMENTATION
OF THE FAN-IN SPARSE DISTRIBUTED FACTORIZATION SCHEME

C. Ashcraft t
S. C. Eisenstat 1
J. W. H. Liu
B. W. Peyton

A. H. Sherman t

t Department of Computer Science
Yale University
New Haven, CT 06520

Department of Computer Science
York University
North York, Ontario, Canada M3J 1P3

§ Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2009, Bldg. 9207-A
Oak Ridge, T N 37831-8083

Date Published: August, 1990

This research was supported by the Ofice of Naval Research under contracts N00014-
86-I<-0310 and N00014-89-J-1906, the National Science Foundation under grants DCR-
85-21451 and ASC-86-11454, the Natural Sciences and Engineering Research Council of
Canada under grant A5509, and the Applied Mathematical Sciences Research Program
of the Office of Energy Research.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC-05-840R21400

3 4456 0315094 3

Contents

1 Introduction . 1
2 The Fan-in Distributed Factorization Scheme 1
3 Implementation of a Compute-ahead Fan-in Scheme 2

3.1 Types of Compute-Ahead Updates . 3
3.2 The Detailed Algorithm . 5

4 Experimental Results . 8
5 Concluding Remarks . 9
6 References . 9

A COMPUTE-AHEAD IMPLEMENTATION
OF THE FAN-IN SPARSE DISTRIBUTED FACTORIZATION SCHEME

C. Ashcraft
S. C. Eisenstat
J. W. H. Liu
B. W. Peyton

A. H. Sherman

Abstract

In this report, we consider a compute-ahead computational technique in the
distributed factorization of large sparse matrices using the fan-in parallel scheme.
Experimental results on an Intel iPSCI2 hypercube are provided to demonstrate
the relevance and effectiveness of this technique. Fortran source code is also iti-
cluded in an appendix.

- v -

1. Introduction

A fan-in algorithm for distributed sparse numerical factorization of large symmetric
positive definite matrices has been proposed in [l]. This report describes an imple-
mentation of this fan-in scheme that uses a “compute-ahead” technique to improve
performance. We assume familiarity with the research area of parallel sparse matrix
factorization and refer the reader to 161 for background material.

The basic idea behind the compute-ahead technique is simple, yet effective. In
essence, when a processor is waiting for external information required by the current
column on hand, it suspends this column task and proceeds with useful work on future
columns of the matrix. The task of computing the original column is resumed as new
external data for the column arrives.

An outline of the paper is as follows. Section 2 contains a high-level description
of the basic fun-in sparse factorization scheme. Section 3 discusses how to incorporate
compute-ahead updating into the basic fan-in scheme, and it deals with some of the
issues that arise in implementing the resulting compute-ahead fun-in algorithm. Sec-
tion 4 provides performance data for our Fortran implementation on an Intel iPSC/2
hypercube. It also compares the performance of our code with that of the fan-out code
used in [6]. Section 5 contains a few closing remarks, and an appendix contains the
source listing of our Fortran code.

2. The Fan-in Distributed Factorization Scheme

The fun-in distributed sparse factorization scheme is proposed in [l]. The scheme is
best described by using the notion of aggregate updute columns. For a column j , its
complete update column is defined to be

An aggregate update column for column j is

where K is any subset of { I C < j I !j, # 0}, i.e. any subset of the nonzero off-diagonal
locations in row j of L .

Assume that we are given a mapping of columns to processors, and let map[j]
denote the processor assigned to column j. For a given processor p and a column j, we
define the set

Xk, j] := { I C < j I l j k # 0 and map[k] = p } ,
which is simply the set of columns owned by processor p that update column j . The
internal update column for column j from processor p is defined to be the aggregate

- 2 -

for column j := 1 to n do
compute the internal update column v for column j ;
if rnapb] # p then

else
if Klp,j] # 0 then send v to processor map[j] ;

while o is not the complete update column for column j do

end while
Form L,j from A,j and ‘u ;

receive an external update column for column j and add i t to o ;

end if
end for

Figure 1: Fan-in distributed sparse Cholesky factorization on processor p.

update column where K = K [p , j] . If processor p owns column j , then each external
update column for column j is an aggregate update column for column j that is internal
to another processor q # p s and for which K [q , j] # 8.

Using the notation and terminology introduced above, the fan-in algorithm for
distributed sparse Cholesky factorization is stated in its simplest form in Figure 1.
The fan-in scheme is driven by the columns, which are processed in increasing order.
When processor p is computing a column j that it owns and the update column ’u is not
yet complete, then it is forced to wait for external update column(s) for column j to
arrive from other processor(s) before it can proceed with useful work on later columns
of L. The next section presents an implementation of a compute-ahead strategy whose
sole purpose is to help alleviate this problem.

3. Implementation of a Compute-ahead Fan-in Scheme

A processor need not remain idle while waiting for external data required by column j,
as processor p does in Figure 1. Instead, the processor can perform so-called “compute-
ahead” work on later columns i > j of the matrix. The term “compute-ahcad” has been
used by Heath and R,omine [8] (Page 564) in studying eficient distributed algorithms
for triangular soliltion of dense linear systems. The algorithm in Figure 2 is a high-level
description of how we incorporate the strategy into fan-in sparse Cholesky factorization.

As long as there are external update columns for column j that have not yet arrived,
the modified algorithm alternates between processing available external update columns
for column j and performing compute-ahead work on somc column i > j of the matrix.
To ensure that the message buffer is checked regularly for incoming data required by
column j, the algorithm works on only one column i > j before again checking for
incoming data required by column j . This permits prompt completion of the factor
coliimn L * j once the last of its external update columns has arrived.

- 3 -

for column j := 1 to n do
complete the internal update column 2, for column j ;
if mapb] # p then

else
if l i lp, j] # 0 then send w to processor map[j] ;

add to w all available external update columns for column j ;
while TI is not the complete update column for column j do

perform compute-ahead updating for some column i > j ;
add to

end while
Form L,j from A,j and w ;

all newly-available external update columns for column j ;

end if
end for

Figure 2: Cornpute-ahead fan-in sparse Cholesky factorization on processor p.

Compute-ahead work can be performed on any column i > j. Naturally, columns
required earlier in the factorization should be given priority over those required later.
Performing compute-ahead work on columns j + 1,j + 2,. . . ,n in ascendiiig order by
column number is a reasonable choice.

3.1. Types of Compute-Ahead Updates

When waiting for external data required to complete column j , processor p will perform
one of two distinct “tasks” as a unit of compute-ahead work before resuming efforts to
complete column j.

0 [Compute-ahead external update.] Receive and subtract an external update
column from some column i > j.

0 [Compute-ahead internal updates.] Choose some i > j whose internal up-
date column has at least one indexed SAXPY operation pending, and do the
following: For every k E Klp,i] such that a) L*k has been computed, and b)
L,I, has not yet been applied to the internal update column for column i, add
the appropriate multiple of L*k to the internal update column for column i (an
indexed SAXPY operation).

Note that the compute-ahead internal updating task is “greedy” in the sense that it
performs every needed indexed SAXPY on column i’s internal update column that
it possibly can with the columns of L that are currently computed. Implementing
a compute-ahead external update turns out to be simple and straightforward, as we
shall see later in this section. But implemention issues connected with cornpute-ahead
internal updates require more extended discussion.

- 4 -

One of the key issues is management of the work storage required to accumulate
internal update columns. While the basic fan-in algorithm requires that each processor
allocate only a single column of work storage to accumulate successive internal up-
date columns (see Figure 1)) the compute-ahead fan-in algorithm requires more work
storage for this purpose. The compute-ahead internal-updating task cannot complete
an internal update column that must be modified with a multiple of column j . As a
result, the compute-ahead feature requires each processor to allocate a block of storage
that can contain incomplete internal update columns for more than one column i > j.
Thus, we must choose a mechanism to limit and manage work storage, while retaining
sufficient access to compute-ahead work.

Our implementation does not permit the computation of all “available” compute-
ahead updates. Compute-ahead internal updates are restricted to target columns
within the currently active supernode, primarily to preserve a simple but effective over-
all implementation. A supernode is a block of contiguous columns in the Cholesky factor
whose diagonal block is full triangular and whose off-block-diagonal column structure
is the same for every column. Supernodes have been used in [3] to devise efficient
vectorized sparse factorization schemes. They are also used in the domain-separator
model [2] to study distributed sparse factorization schemes.

In our implementation, when a processor p begins work on the columns of supernode
S , it has on hand work space sufficient to hold an internal update column for each
column in S. For columns of S not owned by a processor p , the allocated work space
is indispensible; for columns of S owned by processor p , the space is not required, but
is merely a programming convenience. Also, because of the shared sparsity structure
of columns within S , only a single indexing vector is required to map each entry of
a column k E Kb,i] to the corresponding entry of column i for any column i E S .
Once computation on the columns of S has begun, compute-ahead internal updates for
columns in S are simple and natural to perform because the required initialized work
space and indexing information are already available.

We now discuss more explicitly the role of supernodes in identifying the types of
compute-ahead updates actually available in oiir implementation. As before, let p be
the processor that owns column j and assume that it is currently working on column j.
Let S be the siipernode containing column j and consider the situation where processor
p is awaiting the arrival of some external update columns for column j. Relative to p
and S , we can identify the following possible compute-ahead updates:

internal updates for columns i > j , i S .

e external updates for columns i > j , i E S.

0 external updates for columns i > j , i # S.

8 internal updates for columns i > j , i &r S .

Compute-ahead external updates for any column i > j , whether inside or outside
the current supernode S, will be included in our implementation. This has the desirable
effect of clearing the message buffer, and moreover since we follow [l] in giving each

- 5 -

external update column the same sparsity structure as its target column, our imple-
mentation can incorporate external update columns directly into factor column storage.
Consequently, compute-ahead external updates require no additional overhead storage
or computation to provide structural information, nor do they required additional work
storage for their accumulation.

Compute-ahead internal updates for columns within supernode S are also included
in our implementation. After initializing to zero the block of work storage large enough
to contain all the columns in S , our implementation computes internal update columns
for each column in S in the provided storage. All work, compute-ahead or otherwise,
on the internal update column for a column i E S is applied to the corresponding vector
in work storage. Computed just before the first column of S is processed, the single
subscript indexing vector required by S is used to apply these internal updates to the
appropriate column in working storage.

As noted before, the algorithm may have to toggle quite often between probing the
message queue for external update columns for the current column j , and processing
compute-ahead updates (internal or external) for a column i > j . It is therefore im-
portant to alternate between these tasks in a smooth and efficient manner. Compute-
ahead external updates satisfy this requirement because no inde-uing information or
additional work storage is required to apply an external update to its target column.
Compute-ahead internal updates for columns within the current supernode S satisfy
this requirement because the initialized work space and the necessary indexing infor-
mation are already available. However, compute-ahead internal updates to columns
outside S do not have these advantages; they require an extra block of intialized work
storage and a new indexing vector before other useful computation can be resumed.
Thus, we have excluded such internal compute-ahead updates from our implementation,
and consequently, processors will generally become idle more often when processing the
last few columns of a supernode. Indeed, when the last column of a supernode is being
processed, no compute-ahead internal updates are possible.

To explore the effects of limiting compute-ahead internal updates to columns in
the currently active supernode, we developed a second code that allows compute-ahead
internal updating to cross at most one supernode boundary, Such a code has access
to more compute-ahead internal updates, but at the expense of an increase in I) the
complexity of the program, 2) the work storage requirement, and 3) the bookkeeping
overhead required to manage work storage. Preliminary results with that code revealed
very little difference in performance between it and a much simpler code based on the
algorithm given in the next subsection.

3.2. The Detailed Algorithm

We assume that the given sparse matrix has been properly ordered for parallel elimina-
tion and that the supernode blocks of the ordering have been determined. The detailed
compute-ahead algorithm is given in Figure 3.

The compute-ahead section of the algorithm can be interpreted more informally in
the following way: As long as there are external update columns for the current column
j that have not yet been processed, obtain a task of highest priority and perform it,

- 6 -

for each supernode block S do
let s, s + 1,. . . , s + k - 1 be the columns of the current supernode S ;
initialize to zero work space for internal update columns os, w,+1,. . . , w S + ~ - 1 ;
compute the subscript indexing vector for S ;
for j := s to s + k - 1 do

assume that initially L,j = A,, ;
complete the internal update column v, for column j ;
if map[j] # p then

else
if K [p , j] # 8 then send w j to processor map[j] ;

subtract from L,j every available external update for column j ;
while external update columns for column j remain to be processed do

perform all pending internal indexed SAXPY’s for the first such
column i E S , i > j , accumulating the result in wi ;

receive any available external update column and subtract
it from the target column L*i, i 2 j .

if internal indexed SAXPY’s are pending for some column i E S then

else

end if
subtract from L,j every newly-available external update column
for column j ;

end while
subtract vJ from L,j and scale the resulting vector to obtain column j of L.

end if
end for
free the work space for future use ;

end for

Figure 3: Detailed version of compute-ahead fan-in sparse Cholesky factorization on
processor p .

- 7 -

where the tasks to be done are ranked in descending order of “urgency” as follows:

1. Receive and apply directly to column j every available external update column for
column j (whenever at least one such update column is available in the message
queue).

2. [Compute-ahead internal updates.] Perform all column updates, i.e. indexed
SAXPY’s, waiting to be incorporated into the internal update column for the first
column i E S , i > j that has any such updates pending.

3. [Compute-ahead external update.] Receive and apply any available external
update column to its target column i 2 j .

Thus, external data for column j is processed as long as such data are available in the
message queue. When column j remains imcomplete and the message queue contains
no external data for column j , the algorithm performs compute-ahead internal updates.
When there are neither external update columns for column j nor internal updates for
columns i E S, i > j , then, and only then, does the algorithm process any available
external updates. Note that after all pending internal indexed SAXPY’s for columns
in S are exhausted, only external updates for column i 2 j are available, until finally
column j is completed.

While processing an external update column requires little work, the compute-ahead
internal-updating task may sometimes perform quite a few indexed SAXPY’s before the
message queue is again checked for data required by column j. The decision to allow the
compute-ahead internal-updating task to perform all indexed SAXPY’s pending for a
single column i > j merits further comment. While this appears to be a natural choice,
we were concerned that it might not permit the program to check the message queue
often enough for data required by column j . To investigate this question, we introduced
into our program a parameter KTROL that limits the number of indexed SAXPY’S that
may constitute a single compute-ahead internal-update task. We tried several widely-
varying values of KTROL and never observed more than 2% difference in factorization
time between the best and the worst case. The worst results were obtained with
KTROL=l, which restricts the compute-ahead internal-update task to a single indexed
SAXPY. This setting for KTROL evidently caused the code to waste a small amount of
time on an excessive number of subroutine calls to perform the compute-ahead internal
updates and on an excessive number of probes for for incoming external update columns
for the current column j. We observed less than 1% variability in factorization time as
long as KTROL was chosen to allow at least a few indexed SAXPY’s. We consistently
obtained our best timing results (by an extremely small margin) when KTROL was chosen
large enough to allow the compute-ahead internal-updating task to compute all pending
indexed SAXPY’s for the target internal update column. Thus we incorporated into
our algorithm a compute-ahead internal-update task that is as “complete” as possible,
because it is marginally more efficient, appears to be the natural choice from the start,
and helps preserve the simplicity of the algorithm.

- 8 -

basic
fan-out
22.470
12.545
7.509
5.197
3.619
2.639
2.020

80.447
42.278
23.291
14.643
9.733
6.860
4.976

105.989
57.539
34.324
21.042
13.860
9.529

basic
fan-in
13.911
7.201
4.000
2.460
1.564
0.972
0.684

48.388
24.388
13.118
7.935
4.815
2.887
1.748

115.341
58.488
31.660
18.586
11.191
6.459
3.781

compute-
ahead
fan-in

13.910
7.240
3.747
2.273
1.364
0.872
0.659

48.419
24.360
12.380
7.307
4.222
2.490
1.561

115.350
58.439
30.064
17.090
9.484
5.380
3.198

Table 1: Parallel factorization time (in seconds) on an Intel iPSC/2.

4. Experimental Results

The compute-uheudfun-in algorithm for sparse Cholesky factorization was implemented
in Fortran and run on an Intel iPSC/2 hypercube. The test problems were nine-point
finite-difference operators on square grids. We used the nested dissection ordering [5]
since it gives optimal-order fill and well-balanced elimination trees for these problems.
We used the subtree-to-subcube mapping [7] to assign processors to columns since it
gives good load balance and reduces communication. Our code is written so that when
the parameter KTROL, discussed in the previous section, is set to zero, it becomes an
implementation of the basic fan-in algorithm shown earlier in Figure 1. When KTROL is
set to a sufficiently high value, our code becomes an implementation of the compute-
ahead fan-in algorithm shown in Figure 3 in the previous section. IJntil recently, the
best-known algorithm for distributed sparse Cholesky factorization was a basic fun-
out algorithm reported in [6]. We include it in our numerical results. We refer to
this version of the fan-out algorithm as basic fun-out in order to distinguish it from
the Inore recent domain fun-out algorithm introduced independently in [2] and in [9].
‘Table 1 contains timing results for the three algorithms: basic fan-out, basic fan-in,
and compute-ahead fan-in.

- 9 -

The factorization times reported in Table 1 demonstrate the large advantage of the
fan-in scheme over the fan-out scheme, thus confirming results reported in [2]. But the
primary objective of these tests is to confirm whether or not the compute-ahead tech-
nique significantly improves the efficiency of the basic fan-in algorithm. The usefulness
of the technique is adequately demonstrated by these timing results, particularly by
the factorization times obtained for the largest problem on 16, 32 and 64 processors.
On the 100x100 grid, basic fan-in is respectively 18.0%, 20.1% and 18.2% slower than
compute-ahead fan-in on 16, 32, and 64 processors.

We would like to point out that the problem set used in Table 1 includes the
problems used by Zmijewski in [9] to compare the domain fan-out algorithm with the
basic fan-out algorithm. Though he dso made his runs on an iPSC/2, his timings
and ours cannot be compared directly because his machine differs from ours and/or he
selected different options when compiling his Fortran code. Because he used the same
basic fan-out code that we used, one can, with caution, make a rough comparison of
our results with his by normalizing all times against those obtained for the common
basic fan-out runs.

5 . Concluding Remarks

We have described an implementation of the fan-in distributed sparse factorization
scheme that uses a compute-ahead technique to improve performance over the basic
fan-in scheme. We have detailed how to use supernodes to limit the amount of addi-
tional work storage required by the compute-ahead fan-in algorithm, and to organize
the computation in a way that enables clean and efficient access to the compute-ahead
internal updates. We have indicated how providing access to compute-ahead internal
updates across supernode boundaries increases the amount of work storage required
and makes the code more complex and difficult to write. While the improvement in
the factorization times of either fan-in scheme over the basic fan-out scheme is by far
the most significant demonstrated in our testing, we have shown that incorporating
compute-ahead updates into the basic fan-in algorithm significantly improves its per-
formance, at least under the ideal circumstances used in our tests. The source code is
included in the appendix to show our implementation.

6. References

[l] C. Ashcraft, S. Eisenstat, and J. Liu. A fun-in algorithm f o r distributed sparse
numerical factorization. Technical Report CS-89-03, Department of Computer Sci-
ence, York University, 1989. (to appear in SIAM J. Sci. Statist. Comput.).

[a] C. Ashcraft, S . Eisenstat, J. Liu, and A. Sherman. The comparison ofthree column-
based distributed sparse factorization schemes. Technical Report, Department of
Computer Science, York University, 1990. (in preparation).

[3] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon. Progress in sparse
matrix methods for large linear systems on vector supercomputers. Intern. J. Su-
percomputer Applic., l(4):lO-29, 1987.

- 1 0 -

[4] G. A. Geist, M. T. Heath, B. W. Peyton, and P. 11. Worley. A machine-independent
communication library. In John I,. Gustafson, editor, Iiypercube Concurrent Com-
puters and Applications 1989, 1990. (to appear).

[5] J. A. George. Nested dissection of a regular finite element mesh. SIAM J . Nurner.
Anal., 10:345-363, 1973.

[6] J. A. George, M. Heath, J. W. H. Liu, and E. Ng. Sparse Cholesky factorization on
a local-memory multiprocessor. SIAM J. Sci. Statist. Cornput., 9:327-340, 1988.

[7] J. A. George, J . W. 11. Liu, and E. Ng. Communication results for parallel sparse
Cholesky factorization on a hypercube. Parallel Computing, 10:287-298, 1989.

[8] M. T. Heath and C. 11. Romine. Parallel solution of triangular systems on
distributed-memory multiprocessors. SIAM J. Sci. Statist. Cornput., 9:558-588,
1988.

[9] E. Zmijewski. Limiting communication in parallel sparse Cholesky factorization.
Technical Report TRCS89-18, Department of Computer Science, University of Cal-
ifornia at Santa Barbara, California, 1989.

Appendix: Fortran Source Listing

Our routines call four routines from the Portable Instrumented Communication Li-
brary [La] (PICL), which is designed to provide a portable syntax for the message-passing
routines used on typical distributed-memory MIMD machines. A brief description of
these four routines is given below.

subroutine send0 (buf, by tes , type, node
character*(*) buf
in teger bytes , type, node

The subroutine send0 sends a message of length by te s stored in buf to processor
node. ’The variable type is used by the receiving processor to distinguish one “type”
of message from another. The contents of buf need not be character data; buf can
contain data of any valid Fortran data type. This applies to buf in subroutine recvO
below, also.

subroutine recvO (buf , bytes , type 1
characters (*) buf
in teger by tes , type

The subroutine recvO receives a message with type field type into a buffer buf. The
variable bytes contains the length of the buffer (in bytes). When type is -1, any
incoming message will satisfy the request. This applies to type in probe0 below, also.

in teger funct ion probe0 (type
in teger type

- 11 -

The integer function probe0 returns the value 1 if the processor has received a message
of the specified type; otherwise it returns the value 0.

subroutine recvinfoO (bytes , type, node
integer bytes , type, node

The subroutine recvinf 00 returns information about the most recently received or
“probed for” message: bytes contains the length of the message (in bytes), type
contains the integer “type” of the message, and node contains the processor ID number
of the processor that sent the message.

- 12 -

C***
C***************************+*+**********************~**********
C***** FAIII PARALLEL SPARSE FAI-IU FACTORIZATIOI ********
C***~***************
C***
C
C
C
C
C
c
C
C
C
C
C
C
C
C
c
c
C
C
C
C
C
c
C
C
C
C
c
C
C
c
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE:
THIS SUBROUTIUE PERFORHS A SPARSE F A U - I 1 DISTRIBUTED
CEOLESKY DECOIPOSITIOB, WITH A I OPTIONAL COUPUTE-AHEAD
TECHNIQUE TO IHPROVE PERFORHABCE.

IPPUT PARAHETERS:
KTROL - COUTROLS KUHBER OF COUPUTE-AUEAD UPDATES:

< 1. PERFORH I O COIPWTE-AHEAD UPDATES.
I. PHRFORH IO nom THAI KTROL UIIUTERUPTED

COHPUTE-AHEAD IITERIIAL UPDATES.
nE - I O D E IUHBER OF TBIS BODE PROCESSOR.
IEQES - IUHBEB OF EQUATIOBS.
UAP - HAPS EACH COLUrm TO TEE PROCESSOR TEAT OYIS I T .
XBLK - SUPEMODE PARTITIOP. XBLK(1) POIUTS TO THE

IBLKS - PUHBER OF SUPERUODES.
HSGCBT - HSGCUT(J) COUTAIIS TEE PUHBER OF EXTERUAL

MESSAGE UPDATES REQUIRED BY COLUHC J.
XLlZ - SPARSPAK’S LUZ POIPTER ARRAY; USED TO

OBTAIU COLUHl LENGTHS.
XNZSUB,PZSUB - ROY SUBSCRIPT ARRAY; SAHE AS SPARSPAK.
HAXWS - HAXIHUH SIZE OF US.
nym - LOCAL ~.IUIUATIOU TREE. WYET(1) I S 1 (TRUE)

I F IODE I HAS A DESCEUDAUT WHICH BELONGS TO
TEIS PROCESSOR. OTEERWISE, UYET(1) I S 0

(FALSE).

FIRST COLUHP OF THE I-TE SUPERBODE.

OUTPUT PARAHETERS:
ERROR - ERROR CODE. (ERRUB = 180 I F WATRIX I S IOT

POSITIVE DEFIPITE.)

UPDATED PARBHETERS:
XHYLUZ,mLBZ - OB IRIPUT, MY COLUUHS OF A.

011 OUTPUT, HY COLUUNS OF L.

WORKIRIG PARAHETERS:
US - YOBK SPACE FOR COLUHNS OF A SUPERPODE.
LIUK - AT STEP J, COUTAIUS LIUKED LIST QF UY

COLUWllS TEAT WILL UPDATE COLUHP .I.

PORTXOU OF COLUHB I.
UPDIUX - UPDATE IIDEX VECTOR.
HSGUPD - BUFFER IITO UEICE EXTERIIAL UPDATES ARE

FIRST - FIRSTCI) POIUTS TO TEE TOP OF TEE ‘ACTIVE’

RECEIVED.

PROGRW SUBROUTIUES:
SECDO, IUTUPD, EXTUPD.

C**l*+t************
C

SUBRUUTIYE FAUII (KTROL ~ HE , IEQCS , HAP , XBLK ,

It XNZSUB. UZSUB , MAXYS , US , LIUK ,
k FIRST , HYET , UPDIUX, HSGUPD, ERROR)

c
C+*************************l*+t*************************~********************
C
c

k UBLKS , HSGCBT. XHYLBZ. n w z , XLPZ ,

-- - - - - - - -- -

- 13 -

IBTEGER BLKSZE, FSTLIK, I , I1 , ISTOP ,
L ISTRT , lSUB , J , JSIZE , JSTOP ,
k JSTRT , JXUS , K , KBLK , KSTOP ,
k KSTRT , KSUB , USSIZE, IEqES4

REAL D I A G J

400
C
C

300
C
C
C
C

FOR EACE COLulII J III CURREUT SUPEREODE, DO ...

- 14 -

C

C
c
C

&

C
C
C

k
&
k

&
&

- 15 -

500

C
C
C

600

C
C
C
700

C
C
C

800

- 16 -

..

..
C****** IllTUPD FAE-11: IETERIAL COLulII UPDATES *****a
C****+**
..
C
C PURPOSE :
C THIS ROUTINE PERFORnS A COETROLLED EunSER OF IETERUAL
C UPDATES 011 A GIVGE COLUna.
C
C IEPUT PAMETERS :
C J - C O L W TO YHICH IETEIUAL UPDATES ARE
C TO BE APPLIED.
C JSIZE - EUWBER OF EONZEROS I1 COLUIIJI J : L (* , J) .
C UPDIIIX - UPDATE IEDEX VECTOR FOR CDLulII J.
C XIZSUB,MZSUB - ROY SUBSCRIPT ARRAY; SAME AS SPARSPAK.
C XHYIAZ.MYL1Z - MY COLUMBS OF L.
C RTROL - COBTBOLS TEE HAXIIRRI IUMBER OF C O L W
C UPDATES. (>=J PERFORMS ALL UPDATES OB
C COL 3)
C
C UPDATED PARAMETERS:
C U - STORAGE FOR UPDATE VECTOR OF J .
C LI1K - COBTAIBS LIEKED LIST OF #Y COLUMSS
C THAT VILL UPDATE COLUM1 J .
C FIRST - FIRST(1) POIETS TO THE TOP OF TEE
C ‘ACTIVE’ PORT101 OF COLUMSI I.
C
..
C

SUBROUTINE IBTUPD (J , JSIZE , U , UPDIIIX, LINK
L FIRST , XEZSUB, EZSUB , XKYLEZ, MYLBZ
k KTROL)

C
..
C

C
C
C

k

C
C
C
C

L

C

REAL

LOCAL VARIABLES.

IETEGER I , I1 , ISTOP , ISTRT , ISUB ,

REAL LJK

---_-I-_--------

K , EHOD , OFFSET

C
ISTRT = FIRST(X)

- 1 7 -

ISTOP = XHYLIZ(K+l) - 1
LJK = XYLUZ(1STRT)
I = UZSUB(K) + ISTRT - XWLPz(K)

UPDATE FIRST/LIIK FOR FUTURE IIODIFICATIOI STEPS.
[**ROTE** XHYLIZ POIUTS TO D I A G E I T R Y
XBZSUB POIITS TO SUB-DIAG EETRY]

I F (ISTOP .GT. ISTRT) TEEI
FIRSTU) = ISTRT + 1
ISUB = nzsuB(1)
LIEK(I0 = LIIK(1SUB)
LIRKtISUB) = K

EUDIF

I F TEE UPDATIUG A l D UPDATED COLUHU EAYE TEE
SBnE UUHBEB OF UOEZERO EITRIES . . .

- 18 -

.

.
C****** FXUPCA FAE-11: EXTERBAL UPDATES Y/CA ******
C***
C*********~***
C
C
C
c
c
C
C
C
C
C
G
C
C
C
C
c
C
C
C
C
C
C
C

C
C
c
c
c
C
C
C
C
C
C
C
C
C
C
c
C
C

PURPOSE:
THIS ROUTIBE PERFOIWS EXTEREAL UPDATES OE A GIVEE
COLulB. A COBTROLLED AHOUET OF COIIF’UTE-AUEAD UPDATIUG
UILL BE PERFOWED WEEP TEE PROCEISOR I S YAITIIG FOR
EXTERBAL UPDATE COLUHES.

IllPUT PARAHETERS:
KTROL - COETROLS TEE HAXINUH IIUHBER OF

EEQBS4
J - COLUHI TO UEICE EXTEREAL UPDATES ARE

JSIZE - IO OF IOIZEROS I1 COLUU J : L(*,J)
JXYS - IIDEX TO US, POIETS TO TEE START OF

LASTJ - LAST COLUW IB TEE SUPEREODE WITH

UPDIBX - UPDATE IlDEX VECTOR FOR CURREHT

XEZSUB,EZSUB - ROY SUBSCRIPT ARRAY; SAXE AS SPARSPAH.

UIIlTERRUPTED IETJjXlIAL COLUHE UPDATES. - IUHBER OF EQUATIOES TIHES 4 .

TO BE APPLIED.

UPDATE FOR J

COLUKE J .

SUPEREODE

UPDATED PARAHETERS:
us - UORKSPACE FOR coLmms OF J’S SUPEREODE.
HSGCBT - HSGCBT(1) COETAIlI E W E R OF EXTEREAL

UPDATES RMAIBIEG FOR COLUnB I. I T I S
DECRMEETED TO REFLECT AMY APPLIED
EXTEREAL UPDATES.

TEAT UILL UPDATE COLUHE J .

‘ACTIVE’ PORTIOI OF COLUHI I .

LIEK - COETAIES LIEKED LIST OF ‘HY’ COLUHBS

FIRST - FIRST(1) POIETS TO TRE TOP OF THE

XHYLEZ,HYLUZ - IFY COLUHES OF L.

YORK PARAMETERS :
HSGUPD - STORAGE FUR IUCOHIUG EXTEREAL UPDATE

COLulIBS FOR J.

PROGRAH SUBROUTIBES:
PROBEO, RECVO, RECVIEFOO

C***
C

SUBROUTIBE EXUPCA (KTROL , EEQES4, J , JSIZE , JXYS
k US , LASTJ , IISGCm, UPDIEX, LIEK ,
k FIRST , XIZSUB, 1ZSUB , XHYLEZ, HYLIZ ,
k HSGUPD)

C
.
C
c
C
C

k

C
c

- 19 -

C LOCAL VARIABLES

IETEGER BYTES , I , I1 , ISIZE , ISUB , JSUB ,
& K , KSIZE KXUS , BODE

c
C
C EXTERUPL FUPCTIOPS.
c

c
C***

------------__-____
IETEGER PBOBEO, RECVIPFOO

C
X = J + 1
KXUS = JXUS + JSIZE

JSUB = XMYLNZ(J)

WHILE THERE I S HESSAGE FOB COLUnl J,
RECEIVE I T AED APPLY EXTEREAL UPDATE TO L(*,J).

KSIZE JSIZE - 1

__------- C
C
C
C ___-_-_-_

100 I F (PBDBEO(J) .GT. 0 1 TEEl
CALL RECVO (HSGUPD, EEQUS4, J)
ISUB = JSUB
DO 200 I1 = 1, JSIZE

m n z (I s u B) = HYLBZ(ISUB) - HSGUPDUI)
ISUB = ISUB + 1

200 COPTIUUE
MSGCET(J) = HSGCUT(J) - 1
I F (WSGCET(J) .LE. 0 1 RETURY
GO TO 100

EUDIF
__--- C

C PERFOM COKPUTE-AHEAD IUTEILUAL UPDATES ON
C BEHAIIIIBG COLUNlS OF TEE CURREBT SUPERBODE.
C _-__----------_--I__ll_ll____ll_________---

300 I F (K .LE. LASTJ 1 THEE
I F (LINK(K) .GT. 0 1 TEEN

CALL IPTUPD (X, KSIZE, US(KXUS). UPDIEX, LIPK,
& FIRST, IBZSUB, UZSUB, XHYLUZ,
k HYLPZ, KTROL)

ELSE
K = K + 1
KXWS = KXUS + KSIZE
KSIZE = KSIZE - 1
GO TO 300

EUDIF
GO TO 100

EEDIF
_-ccc--------___________________________----- C

C PERFORH COWUTE-AJiEAD EXTEILUAL UPDATES WITH
C IECOHIUG WESSAGES, GIVIPG PRIORITY TO UPDATES
c FOR COLUXU 3 .
C --_-_____-______________________________-----
400 c o n r I n u E

I F (PROBEO(J) .EQ. 1 1 TEEN
CALL RECVO (HSGUPD, mQUS4, J)
I = J

ELSE
CALL RECVO (HSGUPD, lEqES4, -1)
CALL RECVIUFOO (BYTES, I, EODE 1

EBDIF
ISUB = XHYLHZ(1)
ISIZE = XMYLUZ(I+I) - ISUB
DO 500 I1 -5 1. ISIZE

- 20 -

IIYLIZ(ISUB) = HYI.~Z(ISUB) - WSGUPD(II)
ISUB = ISUB + 1

500 CDlTIBUE
XSGCBT(1) = HSGCHT(1) - 1
I F < HSECNTT(J) . L E . 0) RETURB

GO TO 400

EaD
C

- 21 -

..
C***
C****** EXTUPD FAI-IU: EXTERUAL C O L W UPDATES ******
C***
C*************************************8*************************
C
C PURPOSE:
C THIS BOUTIIE PERFOBIIS QTERUAL UPDATES OI A GIVW
C COLUHE YITU BO COHPUTE-AHEAD UPDATIBG.
C
C IIPUT PARAHETERS:
C BEQBS4 - W E B OF EqUATIOlS T I E S 4 .
C J - CDLulll TO YHICH EXTEWAL UPDATES AFtE
C TO BE APPLIED.

C
C UPDATED PARAHETEES :
C HSGCPT - HSGCBT COITAIPS EUHBER OF EXTERUAL
C UPDATES RWAIBIIG FOR COLUnI J .
C JBZ - OU OUTPUT, ALL UPDATES HAVE BEQ
C APPLIED TO CLILUHI J OF L.
C
C YORK PARAMETERS:
c HSGUPD - STORAGE FOR IECOMIBG EXTERYAL UPDATE
C C O L W OF J .
C
C PROGRAH SUBROUTIEES:
C RECVO - RECEIVE A HESSAGE.
C
C***
C

C JSIZE - nmm OF YOUZEXOS III COLWI J : L(*,J).

SUBROUTIIE EXTUPD (HEQIS4, J , JSIZE , HSGCPT,
t JPZ , HSGUPD 1

C
C**************************+++,************************************
C
C
C PARAIIETGBS .
C

__---------
IBTEGER J , JSIZE , IIEQBS4, HSGCUT
REAL HSGUPD(*), JYZ(*)

C
C
C LOCAL VARIABLES.
C

---------------_
IUTECER 11

C
C***
C

C
C UNTIL ALL SUCK UPDATES HAVE BEEI APPLIED.
C

RECEIVE A3D APPLY EXTEWAL UPDATES TO L(*,J) ,

...
100 COBTIUUE

CALL RECVO (HSGUPD, BEQUS4, J 1
DO 200 I1 = 1, JSIZE

JBZ(I1) = JPZ(I1) - HSGUPD(I1)
200 COITIIUE

HSGCYT = HSGCET - 1
I F (HSGCUT .LE. 0 RETURY

GO TO 100
EED

.

- 23 -

ORNL/TM- 11 496

IN TERN A L DIS TRIB UTI0 N

1.
2.
3.
4.
5.

6-7.
8.
9.

10.
11-15.

16.
17.
18.

19-23.
24-28.

29.
30-34.

35.

B. R. Appleton
E. F . D’Azevedo
J. J. Dongarra
J . B. Drake
G. A. Geist
R. F. Warbison
M. T. Heath
E. R. Jessup
M. R. Leuze
F. C. Maienschein
E. G. Ng
C. E. Oliver
G. Ostrouchov
B. W. Peyton
S. A. Raby
C. H . Romine
R. C. Ward
P. H . Worley

36. J . J . Dorning (EPMD
Advisory Commit tee)

37. R. M. Haralick (EPMD
Advisory Commit tee)

38. J. E. Leks (EPMD Advisory
Commit tee)

39. N. Moray (EPMD Advisory
Commit tee)

40. M. F. Wheeler (EPMD
Advisory Committee)

41. Central Research Library
42. ORNL Patent Office
43. K-25 Plant Library
44. Y-12 Technical Library /

45. Laboratory Records - RC
Document Reference Station

46-47. I, ab oratory Records Department

EXTERNAL DISTRIBUTION

48-52. Mr. Clew Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 71,-21, Seattle,
WA 98124-0346

53. Dr. Donald M. Austin, Executive Director, High Performance Research Center, Uni-
versity of Minnesota, Minneapolis, MN 55455

54. Lawrence J . Baker, Exxon Production Research Company, P.O. Box 2189, Houston,
TX 77252-2189

55. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State Univer-
sity, University Park, PA 16802

56. Dr. Edward H . Rarsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratory, Albuquergue, NM 87185

57. Dr. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, 1L 60439

58. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, S-58183 Linkop-
ing, Sweden

59. Dr. Jean R. S. Blair, Departrnent of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

60. Dr. James C. Browne, Department of Computer Sciences, University of Texas,
Austin, T X 78712

- 24 -

61. Dr. Rill I,. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

62. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, Uni-
versity of Michigan, Ann Arbor, MI 48109

63. Dr. John Cavallini, Office of Scientific Computing, Office of Energy Research, ER-7,
Germantown Building, U S . Department of Energy, Washington, DC 20545

64. Mr. Ian Cavers, Dcpartment of Computer Science, University of British Columbia,
Vancouver, British Columbia, Canada V6T 1W5

65. Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

66. Dr. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

67. Dr. Eleanor Chu, Department of Computer Science, University of Waterloo, Water-
loo, Ontario, Canada N2L 3G1

68. Dr. Melvyn Cirnent, National Science Foundation, 1800 G Street NW, Washington,
DC 20550

69. Prof. Tom Coleman, Department of Computer Science, Cornell University, Ithaca,
N Y 14853

70. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory,
Berkeley, CA 94720

71. Prof. Andy Conn, Department of Combinatorics and Optimization, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

72. Dr. Jane K. Cullum, IBM T. J . Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

73. Dr. George Cybenko, Computer Science Department, University of Illinois, Urbana,
IL 61801

71. Ur. George J . Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

75. Dr. Iain Duff, Numerical Analysis Group, Central Cornputing Department, Atlas
Centre, h ther ford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

76. Prof. Pat Eberlein, Department of Compiiter Science, SUNY/Buffalo, Buffalo, NY
14260

Ur. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
21.58 Yale Station, New IIaven, C T 06520

Dr. Lars Elden, Department of Mathematics, Linkoping TJniversity, 581 83 Linkop-
ing, Sweden

83. Dr. Howard C. Elrnan, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

84. Dr. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21,
Seattle, WA 98124-0346

85. Ilr . Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Tech-
nology, Pasadena, CA 91125

77-81

82

- 25 -

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

Dr. Paul 0. Frederickson, NASA Ames Research Center, RIACS, M/S 230-5, Moffett
Field, CA 94035

Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence 1 .ivermore *

National Laboratory, P.O. Box 808, Livermore, CA 94550

Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University, Raleigh, NC 27650

Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Bloom-
ington, IN 47405

Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana,
Illinois 61801

Dr. Alan George, Vice President, Academic and Provost, Needles Ball, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Dr. John Gilbert, Xerox Palo Alto Research Center, 3333 Coyote IIill Road, Palo
Alto, CA 94304

Prof. Gene H. Golub, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA
94550

Dr. Per Christian Bansen, UCI*C Lyngby, Building 305, Teclinical University of
Denmark, DK-2800 Lyngby, Denmark

D r . Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, T X 77001

Dr. Nicholas J . Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Uolling
Air Force Base, Washington, DC 20332

Dr. Robert E. Iiuddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Dr. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06.520

Dr. Harry Jordan, Department of Electrical and Computer Engineering, TJniversity
of Colorado, Boulder, CO 80309

Prof. Barry Joe, Deparlmetit of Computer Science, University of Alberta, Edmonton,
Alberta, Canada T6G 2H1

Dr. Bo Icagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

Prof. Malvyn Kalos, Courant Institute for Mathematical Sciences, New York Uni-
versity, 251 Mercer Street, New York, NY 10012

Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South C a s Avenue, Argonne, IL 60439

- 26 -

107. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

108. Dr. Robert J . Kee, Applied Mathematics Division 8331, Sandia National Laborato-
ries, Livermore, CA 94550

109. Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

110. Dr. Richard Lau, Of& of Naval Research, 1030 E. Green Street, Pasadena, CA
91101

111. Dr. Alan J . Laub, Department of Electrical and Computer Engineering, University
of California, Santa Barbara, CA 93106

112. Dr. Robert I,. Lamer, Army Research Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

113. Dr. Charles Lawsan, M S 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 31109

114. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012

115. Dr. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

116. Dr. Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Rlvd., Houston,
TX 77042

117. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department of
Computer Science and Statistics, Queen Mary College, University of London, Mile
End Road, London E l 4NS, England

118-122. Dr. Joseph I iu , Department of Computer Science, York University, 4700 Keele
Street, North York, Ontario, Canada M3J 1P3

123. Dr. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca,
NY 14853

124. Dr. Thomas A. Manteuffel, Computing Uivision, Los Alamos National Laboratory,
Los hlamos, NM 87545

125. Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

126. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena,
CA 91125

127. Dr. Clew Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 91086

128. Dr. Brent Morris, National Security Agency, Ft. George G. Meade, MI> 20755

129. Dr. Dianne P. O'Leary, Computer Science Department, University of Maryland,
College Park, MD 20712

130. Dr. .James M. Ortega, Department of Applied Mathematics, University of Virginia,
Charlottesville, VA 22903

131. Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher-
brooke Street W., Montreal, Quebec, Canada H3A 2K6

- 27 -

132. Prof. Roy P. Pargas, Department of Computer Science, Clemson University, Clern-
son, SC 296341906

133. Prof. Beresford N. Parlett, Department of Mathematics, University of California,
Berkeley, CA 94720

134. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,
NC 27706

135. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

136. Dr. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

137. Dr. John K . Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

138. Prof. Werner C. Rheinboldt, Department of Mathematics and Statistics, TJniversity
of Pittsburgh, Pittsburgh, PA 15260

139. Dr. John R. Rice, Computer Science Department, Purdue University, West Eafayette,
IN 47907

140. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Labora-
tory, Livermore, C h 94550

141. Dr. Donald J . Rose, Department of Computer Science, Duke University, Durham,
NC 27706

142. Dr. Ahmed H . Sameh, Computer Science Department, University of Illinois, Urbana,
11, 61801

143. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

144. Dr. Robert Schreiber, HACS, Mail Stop 230-5, NASA Ames Rmearch Center, Moffet
Field, CA 94035

145. Dr. Martin H . Schultz, Department of Computer Science, Yale TJniversity, P.O. Box
2158 Yale Station, New Haven, C T 06520

146. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Beaverton, O R 97006

147. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist Univer-
sity, Dallas, T X 75275

148-152. Dr. Andrew €1. Sherman, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, C T 06520

153. Dr. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

154. Dr. Horst Simon, Mail Stop 258-5, NASA Ames Research Center, hloffett Field, CA
04035

155. Dr. Danny C. Sorensen, Rice University, Department of Mathematical Sciences,
P. 0. Box 1892, Houston, TX 77251

156. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

- 28 -

157. Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

158. Prof. Jim Varah, Centre for Integrated Computer Systems Research, University
of British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia,
Canada V6T 1W5

159. Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Harnpton,
VA 23665

160. Dr. Phuong Vu, Cray Research Inc., 1345 Northland Dr., Mendota IIeights, MN
55120

161. Dr. Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Clemson, SC 29631

162. Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los
Alamos, N M 87545

163. Dr. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray IIi11, N J
07974

164. Prof. David Young, University of Texas, Center for Numerical Analysis, RT,M 13.150,
Austin, T X 78731

165. Office of Assistant Manager for Energy Research and Development, U.S. Department
of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N 37831-8600

166-175. Office of Scientific AL 'Technical Information, P.O. Box 62, Oak Ridge, T N 37831

