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PIECEWISE LINEAR MODELS OF PROCESSOR UTILIZATION 

Michael D. Vose 

Abstract 

This paper is part of a larger research effort to characterize the performance 
of parallel programs on distributed memory multiprocessors. We consider model- 
ing processor utilization data by continuous piecewise linear approximations. We 
describe interactive tools for the identification of underlying trends and for the 
suppression of superfluous detail in processor utilization graphs. 

V 





1. Introduction . 
As part of a larger research effort to  characterize the performance of parallel programs on 

distributed memory multiprocessors, we consider estimating processor utilization data by con- 

tinuous piecewise linear approximations. We eventually hope to  automate the identification 

of underlying trends in processor utilization curves and to suppress superfluous detail. This 

would become an important part of the automatic generation of scalable performance rnodels 

for parallel programs. 

Standard data modeling and statistical techniques do not seem appropriate for this goal since 

abrupt changes in program behavior frequently signal distinct execution phases which should 

be kept by the model rather than smoothed away. Moreover, since area under a utilization 

curve corresponds to work, it should be preserved to the extent possible. As a first step toward 

realization of our goal, we describe a basic tool which allows inleractive determination of the 

features of a utilization curve which are to  be preserved by its approxirnation, an3 describe an 

approximation technique particularly suited for sirriplifying utilization data while preserving 

salient detail. 

This paper is organized in three parts. In $2 and $3 we describe our approximation methods 

as abstract problems and present their analysis in general matherriatical terms. l h e  reader 

primarily interested in the motivation for and use of our algorithms will probably wish to skim 

through these sections. In $ 4  we illustrate the use of our techniques and discuss their suitability 

for our ultimate goal of automatically identifying uriderlying trends in processor utilization. 

2. Unconstrained Placement 

The general problem considered in this section is global approximation. The interit is that the 

complexity of approximation be controllable, and that overall bcliavior be represented while at  

the same time the possibility of local bias is provided for. 

Let f be a function defined over the real interval [ u , b ] .  Let Ti = ( ( ~ 0 ,  yo), . . . , (xlL, y,)} be 

a set of points from R2 satisfying 

YO = f ( u ) ,  3h = f ( b ) .  

Let I K  be the continuous piecewise linear function defined for j = 1. .  . n over the intervals 

lZ j -1 ,  zjl by 

The problem we consider is: Given f and n,  how may the set K be determined to minimize 

Ja 



2 

In general, this problem has no unique solution, the techniques of calculus do not yield 

equations which may be solved in closed form, and the surface corresponding to this minimiza- 

tion problem has local extrema. We tiirri this situation to  our advantage by noting that the usc 

of a hill climbing algorithm simultaneously provides the possibility of local bias (via the initial 

state of the search) while producing a model of the overall behavior o f f .  

2.1. Partial Derivatives 

The first step in developing a hill climbing heuristic is t o  halve the dimension of the search space. 

This is made possible by the observation that if the x were determined, then the appropriate 

choice of y is given by the solution of a diagonally dominant tridiagonal linear system. This 

follows from equating the partial derivatives with respect to  yj to  zero. We have 

where 

Setting these partials to zero and incorporating the constraints on yo and yn give rise to the 

matrix equation 

Ay = b .  

Expressing A in the form 

we have 
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b 

2 ( t j + l  - zj-1) if j = 1,. . . , YI - 1; 

if j = 0 or j = n,  Pj = 

t j + l - ~ j  i f j -  I , . . . , n - I ;  
if j = 0, 7j = 

6 ( u j + v j )  i f j =  1 , . . . , n - 1 ;  

if j = 0; 

if j = n.  

bj  = 

This linear system allows us to regard the minimization problem as a function of the 2 alone. 

However, when considering partial derivatives with respect to  xt, we must keep in mind that 

the y now depend upon the ;e. Implicitly differentiating the matrix equation with respect to x( 
yields 

Ay' = b' - A'y, 

where 

1 i f j = l ;  

-1 i f j = t + l ;  

0 otherwise, 

a; = 

2 i f j = ! - l ;  

-2 i f j = t + 1 ;  

0 otherwise, 

1 i f j d - 1 ;  

7; = { -1 if j = e;  
0 otherwise, 

and 

if j = l! - 1; 

0 otherwise. 
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Having determined the dependence of the y and y' on the x,  we can compute the partial 

derivative of our objective fnnction with respect to  zf:  

2.2. Algorithm 

In 52.1 we described how to calculate the gradient. Therefore, a standard non-linear optirriiza- 

tion routine can be used to determine the 2. ln the applications we consider, f is a piecewise 

linear function and our implementation is serial. We use a conjugate gradient niethod (Fletcher- 

IEeeves-Polak-Ribiere; Polak 1971), with a parabolic interpolatiori method (Brent 1973) for the 

required line minimizations. 

The work involved grows 

quadratically with the dimension n; each component takes O(n)  time. 'I'his serves to exacer- 

bate the difficulty of minimizing a function of increasing diiriensionality. Asymptotically, this 

method is impractical, but for small n the approach works well, providing reasonable global 

approximations to functions with coniplicated behavior. Moreover, since the calciilation of each 

component of the gradient need not be tightly coupled with the calculation of other components, 

an efficient parallel implementation can extend the range of n. 

The expense of gradient and function evaluations may be lessened by pre-calculating the L2 

norm o f f ,  and the integral and first moment o f f  over the subintervals where f is linear, For 

A major source of overhead is the calculation of this gradient 
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example, let f be linear over the intervals [nj- l ,  a j ]  (for 1 _< j 5 k) where a = a0 < . . . < n ~ ,  = b ,  
and define 

Then the integrals 

may be calculated via 

and 

where jmin is the minimal a' such that xj-1 < ad, and j,,, is the maxirnal i such that a; < xj .  

The uj  and v j  may be calculated via 

and 

We refer to the method of approximation described in this section as vncousirained place- 

ment. Simple approximation methods do not typically allow the x to adapt to the ptwilisrities 

of the data; the position of the c must be fixed at the outset. Algorithms which d o  abternpt 

to  place the z include Friedman's (1988) MARS program and the dynamic prograrnrnming ap- 

proach of Rellman and R d h  (1969). The problem with methods likt: MARS is that once an 

z-coordinate is chosen, it is not allowed to change; i.e., the influence of zj for j > IC on the 

choice of xk is ignored. Consequently, the resulting rnodels can be poor for our application. 

Although this is not a problem with methods like the dynamic programming approach, they 
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are even more computationally expensive than ours.' Moreover, they do not provide a means 

of biasing the resulting model (as does our approach via a choice of the initial search state) 

except by restricting the z to  some predetermined set. 

3. Constrained Placement 

The general problem considered in this part is local approximation. The intent is that the 

overall behavior of the approximation be controllable while at the same time the resulting 

model is conservative. In particular, we want to  model a function f by a continuous piecewise 

linear function 1 that has the following properties: 

The model 1 interpolates f at some set of specified locations 

B Let {xj)  denote the endpoints (or nodes) of the intervals over which 1 is linear. Then I 
interpolates f at each z j .  

B The model I is a good approximation to f in each interval of the form [zj-l, z j ]  in the 

sense that area is preserved. 

The following paragraph formalizes thpse conditions for the case when f is itself a piecewise 

linear function. 

Let P == { P O ,  . . . pr} he a set of points in the domain of a continuous piecewise linear function 

f defined over a compact interval [a, b ] .  Let {I,} denote the endpoints (or nodps) of the intervals 

over which f is linear. A continuous, piecewise linear function 1 is an admasszble approxzmataon 

to  f if and only if: 

a) l ( z )  = f(x) for all 2 E P.  

b) 1(x)  I= f(z) for all x E N ,  where N is the set of z-coordinates of nodes of 1. 

c )  1 is the best Lz approximation to f over the intervals given by successive eleriients of N .  

These conditions imply that admissible approximations are contractions; the range of f! is a 

subset of the range o f f .  Moreover, they preserve area; if x j , zk  E N ,  then 

Admissible approxirnations exist, since f admissibly approximates itself. However, these 

approxirnations are not unique, even under the further restriction that the cardinality of N 
should be minimal. Although this additional restriction (that IN 1 be minimal) defines the 

approximation problem which we would like to solve, it is not tractable. The  method developed 

in the next section constructs an admissible approximatlion while attempting to keep the size 

of N small, but it does not guarantee the minimality of INI. 

'Efficient versions of the dynamic programming approach, such a 3  IIawkins (1972), do not yield continuous 
models. 
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3.1. Construction 

We first consider how conditions b) and c) in the definition of an admissible approximation 

may be used to locate successive nodes of e. Let the graph of f over the interval [z0,zn] be 

represented by the solid line in Fig. 1. Our initial goal is to  find z, E [zo, z1] and XI E [z ,%_l ,  zn] 

Figure 1: Graphical example of heuristic used to approximate C. 

such that the line [ that interpolates f at these two locations is also the best Lz approximatioil 

to f over [ E , ,  zf]. For now, fix x, E [zo,  211. 
Let the point (xf, y,=) on the line segment x from (zn-l ,yn-l)  to ( ~ ~ , y , ~ )  be such that the 

area under f from x5 to .rf coincides with the area under the line segment < from (x5, ys) to  

(xf, yj) (the dashed line in Fig. 1). If E exists, it is determined by the relation 

which yields 

These expressioris signal the non-existence o f t  by returning a value for z~ outside of [zn-l, z,]. 

Moreover, if the denominator (of the expression giving xf) is zero, then (XI ~ y,=) may be taken 
as any point on x provided that the numerator is also zero. In this case we take ( z ~ f , y j )  equal 

The importance oft  is the sense in which it approximates 1, the best linear Lz approximation 
to  (%,Yn). 

to f over [z8, zj]. If a and /3 are the coefficients of e, then 
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-& pf(4 - (ffx + p>>”d2 = -2 I:’ (f(x) C(x)) dz = 0 

and 

In particular, the area under f over [zs, zj] also coincides with the area under C. It follows that 

if the slope of < is a, then [ and t are the same line segment (since then their slopes and areas 

match). Helice < either approximates from above in the sense that [ has slope greater than 

or equal to  a, or from below in the sense that [ has slope less than or equal to  a .  

The utility of this approximation follows from the monotonic dependence of z j  on x,. Since 

(os,ys) lies on the line segment from (z0,yO) to  (zl,yl), the quotient rule gives the numerator 

of the derivative of xj with respect to  c, as 

(Y1 - YO)(”l - 2,-1 - 1) + yn - yn.-l 
Yn-1 - y1 -t 

*n - 2,-1 21 - 2 0  

Recause this expression is independent of z8,  it follows that IE~ is a nionotonic function of x, 

on [20,tl]. This implies that if I, and z: in [ZO, zI] have corresponding points (~j,yf) and 
(z;,y;) on x, then every z: in the interval determined by z, and z: has its corresponding 

point (~;~y;) on the line segment from (.,,yf) to (z;,y;). This fact justifies the following 

bisection algorithm to  locate a point I, (if it exists) for which [ and C are identical: 

I) Determine points I, and x: in [ZO, z l ]  such that the corresponding [ approximates f from 

below and <’ approximates from above. 

11) Let z: = (xs + xi)/2 
111) If the corresponding [* approximates t* from below, redefine z, to be E : ,  otherwise re- 

define x: to be x:. 

IV) If I, and xi are sufficiently close then stop, otherwise go to step 11). 

Although in presenting the analysis we have considered the existence of [ by regarding it 

as being determined by its left endpoint (xs,ys), we could have instead proceeded from its 

right endpoint (xf , yf ). This observation, together with the fact that one endpoint of [ varies 

monotonically with the other, leads to  the following heuristic for determining step I) above: 

D Determine [o (if it exists) corresponding to its left endpoint (I,, ys) = (20, yo). 

c Determine (2 (if it exists) corresponding to its left endpoint ( E ~ ,  ys) = (21, yl). 

a Determine [n-l (if it exists) corresponding to its right endpoint (I,, y,) = ( ~ ~ - 1 ,  yn.-l). 

e Determine (if it  exists) corresponding to its right endpoint (zj,yj) = (zn,yn)~ 
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If there does not exist a pair of approximations from { < O , & , < n - l , & + l }  one member of which 

approximates from above, and the other from below, then instead of searching further, we 

assume that step 1 is impossible. It turns out that the property o f t  being a lower (or upper) 

approximataon of does not depend monotonically on an endpoint of (, and thererore this 

heuristic is imperfect. 

3.2. Algorithm 

In order to satisfy condition 1) in the definition of an admissible approximation, we consider the 

functions fj defined by restricting f to  the interval k k - l , p k ]  (for k = 1,. . . , r ) .  Note that if l k  

is an admissible approximation to  f k ,  then the function defined locally by l k  will admissibly 

approximate f .  We may therefore a s u m e  without loss of generality that P = 0. 
A simple greedy algorithm may now be used to produce admissible approximations. Ti1 what 

follows, we assume that the ( r i , yd)  are defined by Fig. 1. 

1. Let A = a and B = b.  

2. Let zo = A and z, = B (note that this implicitly defines n and ( z i , u i )  for i # 1,n) .  

3. Determine [ (if it  exists) as outlined in steps I) - TV) above. 

4. Tf ( was not found, then replace B by t,-l and goto step 2. 

5.  4 is defined locally by f over [zo, 2.1 and by 6 over [za, zj]. 

G .  If zj = h then stop, otherwise let A = zf, €3 = b ,  and goto step 2. 

The avidity of this greedy algorithm may be limited by restricting the domain of search from 

[ A , B ]  (as initialized by step 2 above) to [A,&] .  Letting Q = A +  ( h  - .)/A, where X is a 

user-specified parameter, provides some control over the detail of approximation. 

We refer to the method of approximation described in this section as constrained placement. 

There does not seem t o  be any discussion in the literature of the approximations which we have 

termed admissible. 

4. Applications 

The algorithms described in the previous sections are intended for different purposes and are 

designed to work together in determining a model for a continuous piecewise linear function f .  

The suitability of constrained placement for approximating utilization ciirves follows from the 

following design decisions: 

0 Constrained placement is a conservative method in that i t  interpolates the behavior of 

f (every node of the resulting model is a point on the graph of f). Interpolation is 

important, since a utilization model should never indicate that a negative number of 

processors are in use, nor should it indicate that more processors are active than the 

system provides. 



10 

e Because the intended application is to approximate process utilization curves, and since 

area under a utilization curve corresponds to  work, a natural and useful requirement of 

any model is that it preserve area over each interval of interpolation. 

a Our requirement that constrained placement produce a continuous model is for simplicity. 

We believe that continuous models are easier to  look at and interpret. 

e Finally, the ability of constrained placement to preserve a set 1' of user-defined points 

allows the model to  reflect important features of the original data. Moreover, automatic 

identificatioii of underlying trends in processor utilization graphs may rely on using this 

set P as a collection of pararnekers with which to  control the model. 

In contrast, unconstrained placement does not interpolate, preserve area locally, or iiiaintain 

a set of user defined points.2 It is a global approxiination technique whose main purpose is 

to rnodel overall behavior and control complexity. While constrained placement attempts to  

minimize the number of nodes, it is a local approximation technique which riiakes no guarantee 

that the resulting model will be simple. Unconstrained placement, however, is designed with 

the complexity of the model as a controllable parameter. This makes it particularly useful for 

investigating a complicated graph with a simple model to  bring out global behavior. 

We next demonstrate how these two methods [nay be used interactively in developing a 

model which is both theoretically sound (in the sense that area is preserved) and reflects 

the judgement of the user concerning what the important features of f are. We believe our 

approximation techniques are particularly well suited for this task. 

The graph in Fig. 2 illustrates the ability of unconstrained placement to model global 

behavior. We took an equal spacing of the 2: in the interval [a,  b] as our iiiitial configuration. 

The dotted function is the input f which represents the utilization curve of a large time- 

step algorithm for solving a hyperbolic partial differential equation. The solid function is the 

resulting approximation 1~ for n = 25. While this global approximation may look pleasing, 

e it does not interpolate, 

e it indicates both the utilization of a negative number of processors and the utilizathn of 

more processors than are in the system, 

e and it does not preserve area over intervals corresponding to  successive nodes. 

For these reasons, constrained placement will be nsed to  obtain the final model. IIowevcr, 

this approximation is useful in that it reveals the basic structure of initialization, three time 

steps (main computatiorial phase), followed by a degenerate phase and data collection. This 
approximation also suggests that if high processor utilization is interesting, then there are four 

clear regions where this takes place. Letting P be a set of points from the graph o f f  reflecting 

thc beginning and ending of these regions, and setting A = 1 to encourage the elimination of 

other detail, constrained placement results in the following approximation displayed in Fig. 3 

This graph illustrates a typical feature of constrained placement; spikes are formed by its greedy 

2A user can szlggesl A ,set of points by making it the initial configuration for the bill climbing algorithm. 
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. .  . , .  . I .. . , . .  - ~ . .  , .. 

Figure 2: Example fit to  processor utilization data using unconstrained placement algorithm. 

/ 

\ 

/ i 
Figure 3: Example fit to processor utilization data using constrained placemeiit algorithm. 
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algorithm. It is tempting to use unconstrained placement over the intervals surrounding these 

spikes to smooth them away, but doing so would sacrifice both interpolation and prescrvation 

of area. Instead, we use the following idea which requires us only to  give up interpolation. 

Let f be an integrable function defined over the real interval [a,  b] and let w E [a ,  b ] .  Consider 

the continuous piecewise linear function .!? determined by the set of nodes 

If Z preserves area, then we have 

1 rw 

Eliminating y and rearranging gives 

f ( ~ )  d. + 2 ( ~  - b )  f ( ~ )  dZ = ( T U  - n ) ( b  - ~ ) ( f ( b )  - f(~)). 

This equation can be Solved to  determine k'. Choosing the intervals [a,  b] to  siirround the spikes 

in the previous graph and using this method to  smooth them away yields the approximation 

displayed in Fig. 4. This approximation represents our model of processor utilization. We would 

like to  point out that the structure indicated by this model was later verified by examination 

of the code. 

We believe to  have developed tools particularly appropriate for modeling processor utiliza- 

tion. The automation of their application is our current focus of research. 
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Figure 4: Example fit to  processor utilization data using modified constrained placement a l p  
rithm. 
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