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ABSTRACT

After several successful applications to aerospace industry, the modern
control theory metheds have recently attracted many control engineers
from other engineering disciplines. For advanced nuclear reactors, the
modern control theory may provide major advantages in safety,
availability, and economic aspects. This report is intended to
illustrate the feasibility of applying the linear gquadratic Gaussian
(LQG) compensator in nuclear reactor applications. The 1QG design is
compared with the existing classical control schemes. Both approaches
are tested using the Experimental Breeder Reactor II (EBR-II) as the
system. The experiments are performed using a mathematical model of the
EBR-II plant. Despite the fact that the controller and plant models do
not include all known physical constraints, the vesults are encouraging.
This preliminary study provides an informative, introductory picture for
future considerations of using modern control theory methods in nuclear
industry.

This research and development is sponsored by the Advanced Controls
Program in the Instrumentation and Controls Division of the Oak Ridge
National Laboratory.






1. INTRODUCTION

1.1 PURPOSE OF RESEARCH

The development of advanced liquid metal reactor technology involves
improving control strategies for several purposes. Recovery from
unanticipated transients requires safe operational maneuvers. Besides
handling the consequences of nonoptimal control actions, advanced
strategies may minimize control efforts and may improve system
performance in daily operation., TUsing new techniques, the control may
be less dependent on the availability of sensory information compared to
existing classical control systems. The modern controllers may prove to
be more robust than classical schemes, leading to reliable plant
operations.

The possibility of improving system performance using the modern control
theory design methods has been a subject of extensive investigation for
the last three decades. Applications in the aerospace and chemical
industries have proved the high-performance characteristics of modern
controllers. The question of feasibility of using modern controllers in
advanced reactors is yet unanswered. One of the reasons is that
conventional controllers are efficient and reliable in controlling
nuclear systems and there is no current need for the new concepts.
Another reason is related to the limitations of computational tools.
Nuclear reactors are large-scale systems, and the representation of
their dynamic behavior requires modeling with a large number of state
variables. Control design studies of large-scale systems depend
strictly on the software development. The computer-aided design (CAD)
package MATRIX," is a good example of the latest development in this
area. The objective of this study includes investigating the modern
control theory algorithms of MATRIXy, applying standard design methods
using the EBR-II model as a test bed, and evaluating the controller
performance. The objective is not to propose a new control strategy for
the EBR-II, but instead to study the capabilities of modern controllers
and thelr advantages and disadvantages with a limited comparison to
existing schemes. This approach may find further applications in the
control strategy design of advanced modular reactors.

In modern control theory, it is possible to design a compensator for any
process by placing the closed-loop poles in appropriate locations,
provided that the process is observable and controllable. An
appropriate choice of the closed-loop poles yields satisfactory
performance in general. The question of seeking an optimal solution to
the design problem may seem to be a redundant effort; however,
optimization is necessary for the following reasons. In a multiple-
input multiple-output (MIMO) system, the pole placement method may not
completely specify the controller parameters. Fortunately, attaining

"MATRIX;", Version 5.0, ©1985 by Integrated Systems, Inc., Palo
Alto, California.



the desired closed-loop pole locations can be done in many different
ways for MIMO systems. An n-th order system with m inputs has n X m
parameters to be designed for a nondynamic compensator in a full-state
feedback arrangement. This means finding the same n desired closed-
loop poles in m different ways. The abundance of adjustable parameters
can be a great benefit in terms of satisfying several design
requirements if an optimization technique is used. When an unfamiliar
process is considered, an arbitrary choice of having the closed-loop
pole locations far from the origin of the S-plane may require control
inputs too big to be generated by the process actuators. Thus,
minimization of control input can be achieved by optimizing performance.
Another reason for the use of the optimal control theory arises when
uncontrollable systems are concerned. It is possible to design a
control system using optimal control theory so that the overall system
behavior will be acceptable, provided the uncontrollable part of the
system is stable.?

1.2 BACKGROUND OF MODERN CONTROIL. THEORY

The development of the modern control theory began in the late 1950s and
has been expanding since then as new discoveries are made by control and
system engineers. The discovery of the state-space approach and
theories like Liapunov’s stability theory constituted the basis of the
modern control theory. Pontryagin'’s contribution to the optimization of
system performance using the variational calculus technique was a
remarkable achievement in the short history of the modern control
theory. Recent developments? provide an initial value solution
overcoming the classical dilemma of the two-point boundary problem of
the Pontryagin's theorem. Application of this algorithm to simple
nuclear reactor models showed the validity of the approach within the
limits of real-time implementation. For linear systems, the development
of the 1.0QG method using a state estimation technique such as the Kalman
filter design has provided the most widely used tool in control system
design during the last two decades. Recent progress in the theory has
enabled set-point tracking applications using the LQG method.?!

One of the latest efforts in advanced control strategy development has
been the focus on global control concepts of large-scale systems® in the
form of decentralized and hierarchical control structures. Using
methods such as the interaction predictiom method, a more global task
can be achieved in an optimal fashion. The nuclear reactor control
problem is a potentially open field for such applications.

1.3 SCOPE OF RESEARCH AND DEVELOPMENT STUDY

The study reported here focuses on the implementational aspects of
modern multivariable control techniques using the MATRIX, design
package. This application highlights the steam generator drum level
control for the EBR-TII. A comparison of the classical three-element
controller and the linear quadratic Gaussian (1QG) regulator design is
presented, as is the extenslon of the controller design to degraded



conditions and set-point tracking. The robustness of the LQG design to
parameter uncertainties is also discussed. Note that the EBR-II plant
is highly stable at steady state normal operations, and it does not
exhibit complex dynamic behavior from the control point of view. Thus,
the comparisons made using EBR-I1 models may not be true for systems
with more complicated dynamic behavior.

The optimal control theory solution minimizes the error between the
actual state and the target value, but does not ensure zero error,
Modification to the controller design by augmenting an integrator
dynamics is sometimes necessary to assure that the steady state error
goes to zero. This modification is needed because the dynamic systems
under consideration are not always of type-l or higher.

The various capabilities of the computer-aided control design system,
MATRIXy, have been explored and applied to the regulation and set-point
control of the EBR-II steam generator drum level.



2. MODERN CONTROL FOR LINEAR SYSTEMS

2.1 LINEAR QUADRATIC GAUSSIAN COMPENSATOR

The 1QG compensator design problem includes designing an optimal
regulator in conjunction with an optimal observer design. The regulator
problem is concerned with the design of a control policy U(t) to take a
system from a nonzero state to zero state in which the zero state is the
steady state of the perturbed linear system. Consider the linear system
described by a set of matrix differential equations.

X(t)

If

AX(t) +Bu ; (2.1)

Y(t)

i

C X(t) . (2.2)
Define the regulator performance index,

Jlx(t),u,c] = J [«PRu + xTQx) de | (2.3)
t
0

where
R = input weighting matrix,
Q = state weighting matrix.

The problem is to find an optimal control u"(t), t, < ¢ < T, such that J
is minimized. The solution to Eq. (2.3) with a linear control law is
given by

u'(t) = Ky X(t) = ~-R7BT P X(¢) (2.4)

where Ky is the regulator gain vector which includes the solution P to
the matrix Riccati equation:*

~P(t) = P(t) A + ATP(t) — P(t) B RBIP(t) + Q . (2.5)

Equation (2.3) represents a quadratic criterion with matrices Q@ and R
wejghting appropriate state and input variables. The diagonal elements
of matrix Q reflect the relative importance of the state variable whose
steady state error is to be minimized. It is important to note that the
minimization of J does not necessarily guarantee that: the exror will be
exactly zero, but it is always possible to attain a desired errvor.

The Riccati [Eg. (2.5)] is a condition obtained as a result of the
minimization of J and the representation of the optimal input as a

linear function of the state variables (or their estimates). Very often
the steady state solution of P(t) is obtained firom

PA+AP~-PBRB'P+Q=0 . (2.6)

4



The closed-loop system is given by
X=(A-BK) X , (2.7)
which is asymptotically stable. The minimum cost function is given by

T (X (tg) , tg) = X(tg) P X(ty) . (2.8)

2.2 STATE ESTIMATION USING THE KALMAN FILTER
The compound structure of an output feedback control system can be

formed by including the state estimation features in the regulator
problem. The control law can be written as

u = - kg X(t) (2.9)

where 2(t) is the estimate of X(t). The solution to 2(t) is obtained
by solving the equation,

x>

~ A X(t) + B u(e) + Kg [Y(t) -~ C X(1)] (2.10)
~ A X(t) - B Ky X(¢t) + Kg [C X(&) - ¢ X(©)]
i(t) = [A-BKy— Kg C] X(¢) + Kz ¥ (2.11)

u'(t) = Kz X(t) (2.12)

where Ky is the estimator gain matrix. The design of Ky includes an
optimization with respect to process noise and observation noise, and it
is known as the Kalman filter design. The resulting 2n X 2n system 1s
formed in the following manner.

I -
P

A I - B Ky

(2.13)

B

KEC|A—KEC—BKR

I -

System Eq. (2.13) represents the plant and appended output feedback
compensator as shown in Fig. 2.1.

2.3 SET-POINT TRACKING 1QG DESIGN

One of the main objectives of the control design studies is to design an
optimal controller for which the closed-loop behavior can be directed
from one set point to amother. Such a controller can be used to change
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Fig. 2.1. Output feedback compensator.

the steady state value of the reactor power. The controller’s task is
to adjust the system behavior in an optimized manner so that a chosen
output reaches the desired steady state with a negligible error.

A tracking optimal controller can be designed using the following
formulation, which is based on the metastate representation of the
system.! Consider a dynamic system,

X=AX+Bu . (2.14)

Assume that the reference state is known:

X = A X (2.15)
Define an error vector,
e=X-X ., (2.16)
e=-Ae+ EX. +Bu , (2.17)
where
E = [4~ 4]

The metastate representation is given by
X=AX+Bu , (2.18)
y = CX | (2.19)

where



e A E B
X = ] A =[ B = c = [CC,]
X .1, o 0J , ol ,

The formulation of the linear, quadratic optimum control problem using
the metastate representation can be carried out as follows. An
appropriate performance integral for the problem is

vV = JI(eTQe + J*Ru) dr . (2.20)
t

For the metastate X, the state weighting matrix is

o 0
qQ - ' (2.21)
0 0

The following equation can be derived for zero steady state error:
Bu" +EX -0 . (2.22)

The total control action can be written as a combination of two
components, namely, the steady state control and the corrective control:

U=u"+v . (2.23)

The performance integral for the corrective control can be written as

v = fw (e'Qe + VvIRV) dr . (2.24)
t

Let M be the equivalent Ricatti matrix for the metastate system:

My My
M= . (2.25)
M, M,

The gain matrix G for this system is given by

My My |
G = R [BT 0] = [R* BT M, | RT BT M,] . (2.26)
My M, |
The corresponding equations for M; and M, are obtained from the
following general equation:
M =MA+AM-MBRB M+Q . (2.27)
They are:
~M, = M,A + A™, — M,B RB™M, + Q ; (2.28)

M, = M,E + [AT - M;B RTIBT] M, . (2.29)



3. PRELIMINARY PERFORMANCE EVALUATION OF MULTIVARTATE CONTROL METHODS

The following aspects of the multivariate control are studied using the
LQG design: (1) the regulation capability for low-level perturbations,
(2) robustness to modeling erxors, (3) state estimation in case of
degradation, and (4) set-point tracking capability. Section 3 describes
design considerations for using the tools of MATRIXy and for
implementing performance tests in the form of computer simulations using
mathematical models and discusses results obtained by classical and
modern methods. The conclusions of the study are based on preliminary
studies using physical models. Actual system-related information will
be added in the future.

3.1 LINEAR EBR-II MODEL AS A TEST BED

Experimental Breeder Reactor-II is a 62.5-MWth liquid metal fast breeder
reactor located at Idaho Falls, Idaho. Initially constructed as a
prototype central station power plant with a breeding ratio greater than
unity, its purpose was shifted to provide irradiation services for the
development: of fuels and structural materials. As an engineering test
facility, EBR-II recently played a major role in the demonstration of
inherently safe characteristics of IMRs.

EBR-1I1 is an unmoderated, heterogeneous, sodium cooled, pool-type
reactor with an intermediate sodium coolant loop and a steam plant that
produces 20 MW of electrical power. Control in the plant is provided
mainly by operator action in the console room, which is supported by the
data acquisition system and a few automatic control schemes such as the
computerized power regulator and four-element and single-element
feedwater controllers. Briefly, other control mechanisms include the
feedwater temperature control, steam pressure control, level controls in
feedwater heaters, pump speed control, and turbine generator contrvol.
Existing controllers of the EBR-II are classical designs used in almost
every commercial nuclear power plant.

A previously developed linear EBR-II model’® includes primary-side and
steam generator subsystems. This model uses 57 state variables and
includes a PI controller to stabilize the drum level. The PI controller
in the model uses three signals instead of four, as in the actual plant
controller. The excluded signal, which is the blowdown flow, has a
negligible effect on steady state dynamics. Since the linear models are
valid for low-level perturbations around the steady state, the PI
controller gains are deliberately chosen big so that it performs better
than the actual controller; therefore, comparisons using new techniques
are made against a PI controller that performs at least better than the

actual plant. Several low-level perturbations are successfully
represented by linearization about steady state dynamics. This model is
used for 1QG applications, as presented in the following sections. The

new control philosophy is applied to reactor power regulation and drum



level stabilization tasks. Note that this application is valid only for
small variations (20% maximum) around the steady state.

3.2 GENERAL GUIDELINE IN DESIGNING 1QG

The LQG design includes determining the appropriate weights for the
states and for the control input in Eq. (2.3). The relationship between
the Q@ and R matrices and the dynamic behavior of the closed-loop system
dependent on the matrices A, B, and C are quite complicated. "It is
impractical to predict the effect on closed-loop behavior of a given
pair of weighting matrices."! The approach used in this study is to
solve for the gain matrices that result from a range of weighting
matrices and simulate the corresponding closed-loop responses. The gain
matrix K that produces the response closest to design objectives is
considered the best choice. Despite the fact that the design procedure
is done in a trial-and-error fashion, the following background knowledge
has been used as a guide.!

The weighting matrix Q specifies the importance of the various
components of the state vector relative to each other. 1If a
state variable changes unreasonably then that state has to be
suppressed by Increasing the corresponding weighting.

However, the choice of the input weighting matrix R can not be
established easily. The main idea is the following. With a
desire to avoid saturation and its consequences, the control
signal weighting matrix is selected large enough to avoid
saturation of the control signal under normal operational
conditions. As the control weights tend to infinity, the
gains are such that the closed-loop poles tend to open-loop
poles when the latter are stable, or to their "mirror images"
when they are unstable. In a single-input system the zeros of
the system are defined by CY(sI-A)"! b=0. If there are r such
zeros, then as the weights go to infinity r of the closed-
loop poles approach these zeros and the remaining k-r closed-
loop poles radiate outward to infinity in a configuration of a
Butterworth polynomial of order k-r.

3.3 LQR DESIGN FOR EBR-II REACTIVITY CONTROL

The first modern controller design to be considered is for the EBR-II
primary system model. The design objective is to regulate the system
behavior in an allowable range, that is, not to exceed the safety limit
of 2°F/min in reactor AT.® The design uses a single control rod as the
actuator. To avoid saturation of the actuator, the control input is
designed not to exceed 0.0l §/s reactivity limit (for a single-speed
gear train). It is assumed that all measurements are available without
any noise. The design of an optimal output feedback compensator reduces
to an optimal regulator design since there is no need for an observer
under the perfect measurement assumption. The state weights, a, in the
quadratic cost function are chosen to be equal to one for the first
state (reactor power), and the remaining states are excluded (weighted
zero). The input weighting, R, is scalar and equal to 0.0007. The
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compensator design is performed using the design routines in MATRIXy.
Closed-loop system responses to a —5-cent reactivity insertion show a
drastic improvement over open-loop system behavior. The fractional
power response to a —5-cent reactivity step perturbation is shown in
Fig. 3.1, which also includes the open-loop step response to the same
input. The temperature step response of the fuel material to the same
input is shown in Fig. 3.2. Figure 3.3 shows the reactor inlet and
outlet temperature responses of the open-loop primary system model. A
similar comparison for the closed-loop system model is shown in

Fig. 3.4. The temperature difference between reactor outlet and inlet
is changing faster than 2°F/min for the open-loop system shown in

Fig. 3.3. The closed-loop system responses shown in Fig. 3.4 indicate
that the variation in reactor AT does not exceed the allowable range,
which is in complete agreement with the EBR-II design specification. It
can also be seen from these [igures that closed-loop responses are quite
fast and steady state errors are very small compared to the open-loop
case. Figure 3.5 shows the control input generated by the optimal
control strategy. The safety limitation of 0.01 $/s is not violated,
and the control performance is achieved using approximately 50% of the
maximum rod speed. The nonzero steady state errors in the responses are
caused by the type-O structure of the closed-loop system.’ One approach
to drive the error to zero is to convert the type-O system to a type-1
system by the addition of an extra state variable that represents the
integration of the error corresponding to the variable of interest, in
this case, integration of reactor power variation.

3.4 1QR DESIGN FOR EBR-II DRUM LEVEL CONTROL

The optimal regulator design for the EBR-II steam generator subsystem is
performed with a philosophy similar to that for the primary system. The
design objective is to maintain the drum level deviation in an allowable
range, that is, 4 in. above or below the steady state level.® The
closed-loop model includes an additional state variable (20th state
variable) in the form of an integrator. Since the optimal control
theory does not guarantee zero steady state errors, the addition of an
external integrator is one of the possible solutions to the nonzero
steady state error problem. The 18th and the 20th states of the model
are weighted to be equal to 10, while the rest of the states are
excluded (weights are zero). The input weighting is scalar and equal to
107, which is chosen after several trials to achieve a performance
level close to the three-element controller performance. For this
specific application, it is assumed that all measurements are available
without any noise. The detailed structure of the MATRIX, programming is
listed in Appendix A. The closed-loop responses of the steam generator
model with a three-element controller and optimal regulator but without
any control action are plotted in the same figures. The drum level
response to a +10% steam valve opening step perturbation is shown in
Fig. 3.6. As can be seen, the level is controlled efficiently by both
control strategies. Figure 3.7 compares the control signals (feedwater
flow) generated by the three-element controller and optimal regulator.
Figure 3.8 shows the drum pressure response to the same perturbation.
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Fig. 3.1. Step response of fractional reactor power to a —5-cent
reactivity perturbation (optimal compensator and open-loop models).
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The drum level step response to a +10°F inlet sodium temperature
perturbation is shown in Fig. 3.9. The control signals are compared in
Fig. 3.10. Figures 3.11 and 3.12 show the drum level step response and
the control signals for a +10°F feedwater temperature perturbation. The
results show that the controller performances using classical and modern
control design methods differ considerably. Compared to the PL
controller that uses 3 plant signals, the LQR uses 18 measurements and
exhibits better performance. The improvement is caused strictly by the
fast response characteristic of the LQR, which is due to some of the 18
signals used (obviously ones that the 3-element controller does not
use). See Sect., 3.7 for further discussions. A set of closed-loop
responses of the EBR-II subsystem models is shown in Appendix B.

3.5 TIMPROVED WEIGHTS FOR BETTER PERFORMANGE

As previously stated, an optimal regulator design includes assessing an
appropriate combination of weightings in the corresponding quadratic
cost function. A simple approach to the problem of finding the best
combination requires some knowledge about open-loop system dynamics.

The problem becomes complicated for partially uncontrollable or
unobservable systems. A basic practical method of choosing the state
weightings is to examine the open-loop system behavior and determine the
"penalties" for those states in which deviations from steady state
exceed some predefined limits. A criterion can be defined using the
standard performance features such as overshoot, steady state error,
bandwidth, or gain/phase margins. Once the starting combination is
predicted, then a finer tuning can be accomplished through several
closed-loop simulations in trial-and-error fashion. If the open-loop
system has unstable poles, then the unstable states (states causing or
contributing to overall instability) have greater importance compared to
others. In such cases, a change in the weights of the stable states may
not affect the performance significantly because the selected weights of
the unstable states are necessarily much higher than those of the stable
states. Improving the optimal regulator design also includes selecting
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the control input weights. Since we are interested in only single-
input systems, the control input weighting selection becomes less
complicated. However, an appropriate choice cannot be made easily
unless the actuator dynamics are completely known. It is very important
to design a control input such that the process actuators are not
saturated.

In light of the above discussion, the optimal controllers previously
developed for the EBR-II subsystem models are reconsidered. The primary
system model has eigenvalues widely spaced (stiff system). The reactor
power changes very rapidly for reactivity perturbations compared with
the changes in the other state variables. This change implies that the
state welght for the reactor power must be dominant. However, several
optimal regulator design applications indicate that different
combinations of state weights do not improve the system behavior as much
as the simple design (using single weight for the reactor power). An
improvement in the optimal regulator design without violating the safety
limitations is made by adjusting the control-input weight. Figure 3.13
shows the step responses of fractional reactor power to a -5 cent
reactivity insertion using three different optimal regulators. The
designs differ only in the input weights (0.007, 0.002, 0.0007). The
single state weight (reactor power) is equal to one. As shown in

Fig. 3.13, the reactor power is regulated most powerfully when the input
weight is 0.0007, which generates the fastest control input among the
others. Figure 3.14 shows the control inputs corresponding to the three
cases of input weights. Note that when the reactor power is controlled
using the fastest control input, the l-cent/s safety limitation is not
violated and the rod speed is around 50% of its maximum value.

The EBR-II open-loop steam generator model includes the level dynamics.
The previously developed optimal regulator model for controlling the
EBR-IT steam generator uses a weight only on the 18th state, which is
the drum level. The design uses feedwater valve position as the control
input with a scalar weight of 107°. A set of different combinations of
state weights is tested to improve the optimal regulator performance.
The primary task of stabilizing the drum level requires a relatively
large weight on the drum level when all the state weights are used. The
list of state weights given in Table 3.1 is found to be the best
combination after several trials. The overshoot ratios of each state
are used for the distribution of weights. Despite the fact that 17 of
the state weights are close to each other and exhibit a big contrast

(x 10%) compared to the level weighting, the controller performance is
affected by a small change in one of the weights of the 17 states. The
step responses of the drum level to a +10% steam bypass valve opening
perturbation using two different optimal controllers, (1) single weight
on drum level and (2) the combination of state weights of Table 3.1, are
shown in Fig. 3.15. The improvement in the drum level response can be
seen in Fig. 3.15. A similar comparison made for the drum pressure
response to the same perturbation is shown in Fig. 3.16,
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Table 3.1. State weights of the quadratic cost
function; LQG design for the EBR-II
drum level control

Q(1,J3) Weight Q(1,J) Weight
11 1.3 10 10 3.0
2 2 2.0 11 11 1.0
33 1.0 12 12 1.0
4 4 1.4 13 13 1.0
35 1.3 14 14 1.0
6 6 1.4 15 15 1.0
77 1.3 16 16 1.0
8 8 1.0 17 17 1.0
9 9 1.0 18 18 1.0D + 06
.0Q5 r
B oF
3 —.003 F
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% 008 L
~ ¥
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Fig. 3.15. Step response of drum level to a +10% steam
valve opening perturbation [optimal compensator: (1) simple
design and (2) improved design].
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3.6 ROBUSTNESS TO MODELING ERRORS

One of the most important aspects of a feedback control system is its
ability to maintain stability in the presence of any plant uncertainty.?®
"This uncertainty may arise from variations in the actual plant itself
due to changes in operating conditions, or may arise from the
differences between the actual plant and a control design model used to
represent it at any given operating point." Mathematical methods of
assessing stability robustness include matrix norms, measures, and
transformation techniques using only the design model.

A simple robustness test is considered for the three-element controller
and optimal regulator previously designed for the EBR-II steam generator
subsystem. The test includes simulation of the closed-loop systen for a
predefined plant uncertainty. Initially the three-element controller
and the optimal regulator designs are performed using the existing
EBR-II steam generator model. The controllers are then appended to a
nevw open-loop model that includes a 5% deviation in the drum geometry
calculations. We assume that the latter represents the actual plant.
The step responses of both closed-loop system models to a +10% steam
valve opening perturbation are shown in Figs. 3.17 and 3.18.

Figure 3.17 shows the drum level step responses of the three-element
controller model appended (1) to the original open-loop model and (2) to
the model with uncertainty. Figure 3.18 shows the drum level step
responses of the optimal regulator appended as (1) and (2) above. The
closed-loop results indicate that the three-element controller is more
sensitive to a plant uncertainty than the optimal regulator. Note that
an increase in overshoot is encountered in the three-element controller
case when an uncertainty is present. The drum level behavior is less
affected in the optimal regulator case. The three-element controller is
a local controller, and its performance is affected more by a local
parameter uncertainty than the full-state feedback optimal regulator
which has a global-type control behavior. This is one example of
robustness testing. Further study is necessary to establish a complete
robustness analysis including all important uncertainties.

3.7 LQG COMPENSATOR DESIGN FOR DEGRADED CONDITIONS

In a real process, all measurements will not be available, and available
measurements may contain noise. Under these conditions an optimal
output feedback controller design requires the estimation of those
states that are missing in the measurement. Constant, optimal state-
estimator gain matrices can be calculated using the Kalman filter design
routines in MATRIX; (see Appendix A). A Kalman filter design optimizes
the estimator performance with respect to measurement noise and input
disturbance. An LQG compensator design can be completed by designing an
optimal regulator and appending it to the optimal estimator, arranged as
shown in Fig. 2.1.
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The EBR-II steam generator model is used to study the LQG compensator
design under degraded conditions. It is assumed that some measurements
are not available: the subcooled height, steam quality, superheater and
evaporator tube wall temperatures and the evaporator primary sodium
temperatures (states 2, 3, 4, 5, 6, 7, 15). It is also assumed that
noise intensities on the available measurements are about 10% of the
steady state values. A small input disturbance of 1% is assumed to
exist for each state. An optimal estimator for the steam generator
model is designed with the specifications stated above, The optimal
regulator, designed as described in Sect. 3.4, is used to complete the
LQG compensator design. The step responses of the closed-loop model to
a 10% steam bypass valve opening perturbation show that the controller
performance is satisfactory. The drum level step responses of the two
closed-loop system models (one designed for degraded condition and the
other with perfect measurement assumption) are shown in Fig. 3.19. The
drum steam pressure step responses of the two same closed-lcop system
models are shown in Fig. 3.20.

As Fig. 3.19 indicates, the 1LQG performance departs from the LQR
performance when the plant measurements are not available and the state
estimation is required. Note that the response time gets larger using
the Kalman filter; however, the 1LQG still performs better than the PI
design in terms of overshoot and response time. The difference in
performances between the PI and 1QG designs is due to the number of
state variables utilized in implementing the control law. In this
application, the LQG uses tewperature and pressure signals in addition
to the three signals that the PI design uses (feedwater flow, steam
flow, and drum level). The LQG design also includes estimations of
several state variables such as the evaporator ouilet steam quality and
subcooled height. These additional state variables provide information
about the fast components of overall steam generator dynamics. Thus, a
three-element controller that does not utilize such information exhibits
a phase-lag with respect to the fast components of overall dynamics and
results in slower compensation.

The 1QG design with different combinations of observation matrix
provides very useful knowledge about the importaunce of plant signals.
After several trials, it is found that the steam-drum pressure signal
plays a dramatic role in improving the controller performance.

Figure 3.21 shows the drum-level response to 10% steam valve opening
perturbation using ILQR, 1QG and PI designs. In this application, the
10G estimates the drum pressure rather than using a direct measurement.
The time behavior of the drum level is slower in this case, compared to
the LQG design in Fig. 3.19. The feedwater flow (control input) is
shown in Fig. 3.22.

3.8 SET-POINT TRACKING LQG APPLICATIONS
The isolated EBR-I1 steam generator is considered for the reference

input tracking control problem. The design procedure using the MATRIX,
routines can be summarized in five steps.
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1. The first term in Eq. (2.26) represents the regulator gains obtained
using the standard regulator design method. Using the original
model, these steady state control gains can be calculated with the
MATRIXy commands.

2. The closed-loop system matrix is then calculated as follows:
A, = A~ B K, |, (3.1)
where

K, = Regulator gain matrix calculated by MATRIX,.

3. To calculate the gain matrix corresponding to the "corrective
control":

M, =0 ;
My, = —(AHYTT M E . (3.2)

M, is obtained from the MATRIX; command REGULATOR. The corrective gain
matyix is given by

K, = R'BT M, . (3.3)

c

4. The total gain matrix is constructed:
K= [K K] . (3.4)

5. The metastate representation of the system is made by calculating E
matrix for the desired reference state. The observation matrix has
diagonal elements equal to one that enable us to observe error
outputs. It also includes an additional entry for the reference
state, which is the steady state value of the corresponding output.
This addition is done only to observe the error in the actual
output. The final stage is to form the closed-loop system using K
and the estimator gain matrix Ky in the IQG compensator design
steps. Note that all the outputs are measured without any
disturbance or noise; therefore, there is no state estimation in the
practical implementation,

An application of the reference input tracking control problem is
considered using the EBR-I1 steam generator system as an example. The
first reference input is a step change in the drum pressure (the
derivation stated above is valid for constant reference inputs). 1t is
possible to increase the power generation in nuclear reactors by
extracting more steam from the steam generator (load-following
property), which results in a steam pressure drop in the drum. It is
assumed that a 100-psi steam pressure drop is the reference input to be
tracked. The closed-loop response of the gteam pressure in the drum to
the reference input is shown in Fig. 3.23. The remaining error outputs
are found to be close to zero. It can be seen from this figure that the
reference tracking optimum control is accomplished with a small steady
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state error. A second application to the EBR-II steam generator model
is performed using a reference input of a 4-in. level increase to the
reference input. The steady state error is practically zero, as can be
seen from the Fig. 3.24. Other error outputs are also close to zero.
Note that the optimal regulator design for the steady state portion of
the total control action uses a weight (equal to one) only on the drum
level wvariable, which is presumably the reason for a relatively smaller
steady state error compared to the pressure tracking controller case.
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4. USE OF COMPUTER-AIDED DESIGN SOFTWARE MATRIXj

Engineering applications of modern control strategies involve on-line
computer usage, as in the dynamic process control and extensive off-

line usage for design purposes. Improving the capabilities of modern
controllers is, therefore, dependent on software development and
construction of fast computers with large memories. One of the latest

CAD software developments, known as MATRIXy, provides a few modern
control design routines as well as several traditional classical design
tools.® The capabilities of MATRIXy were previously studied by Jamshidi
and others,!® and several properties were compared with other
commercially available menu-driven CAD packages.

The 1QG designs in this study were accomplished using the built-in
routines of MATRIXy. Since this software also includes simulation
routines, the complete model-buildings using compensators on the
feedback loop and simulations were performed within the software
environment and without any external programming efforts. (Sece
Appendix A for programming in Matrix,). The following describes the
control design and simulation steps.

4.1 CONTROL DESIGN SCHEMES

Among the several control design routines, we concentrated our attention
on commands that are used for LQG design.

The REGULATOR command computes optimal constant gain, state-feedback

matrices for continuous-time system under the assumption of full-state
feedback. Examples of the REGULATOR command are

[EVAL,KR] = REGULATOR(A,B,RXX,RUU,RXU) ;
[EVAL,KR,P] = REGULATOR(A,B,RXX,RUU,RXU)

Inputs to the REGULATOR command include the A and B (plant and input)
components of the continuous-time system matrix,

A B

¢ D
and the design weighting matrices R,,, R,,, and R, where R, is
optional. The design weighting matrices provide weights on the states

(x) and controls (u) as defined by the quadratic cost function. R
must be positive definite, and R,, must be positive semidefinite.

uua

Qutputs from the REGULATOR command are the closed-loop eigenvalues
(EVAL), the optimal regulator state-feedback gain matrix (KR), and
optionally, the Riccati solution matrix (P). The closed-loop

eigenvalues are obtained from the closed-loop plant (A-B*KR). The
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matrix dimensions of the gain matrix, KR, are equal to the number of
system inputs by the number of system states.

The ESTIMATOR command calculates constant, optimal state-estimator gain
matrices for continuous-time systems. Examples of the ESTIMATOR command
are:

[EVAL,KE] = ESTIMATOR(A,G,QXX,QYY,QXY)
[EVAL,KE,P] = ESTIMATOR(A,C,QXX,QYY,QXY)

Inputs to the ESTIMATOR command include the A and € (plant and
observation) components of the continuocus-time system matrix,

A B
¢ D

and the noise covariance matrices Q,, Qy,, and Q. are optional. Q,, has
matrixz dimensions equal to the number of plant outputs and must be
positive definite, while Q. has matrix dimensions equal to the number
of plant states and must be positive semidefinite. In many cases the
input disturbances and output noises are uncorrelated so that Q,, = 0.

Qutputs from the ESTIMATOR command are the estimator eigenvalues (EVAL),
the optimal estimator gain matrix (KE), and optionally, the state
estimation error covariance matrix (P). The estimator eigenvalues are
obtained from (A-KE*(C). The dimensions of the gain matrix XZ are equal
to the number of system outputs.

The LQGCOMP command computes the system matrix for the optimal output
feedback compensator. The optimal compensator is a combination of the
optimal state estimator, which reconstructs the system states, and the
optimal regulator, which provides a linear state-feedback control law.
The form of the LQGCOMP command is:

[SC,NSC] = LQGCOMP(S,NS,KR,KE)

Inputs to the LQGCOMP command are the optimal regulator and estimator
gain matrices (KR and KE) and the continuous-time design system (S) with
number of states (NS5). The LQGCOMP assumes that both KR and KE were
designed from system matrix S.

Output from the LQGCOMP includes the continuous-time compensator system
matrix (SC) and the corresponding number of states (NSC):

A?. BZ
SC - )
CZ DZ

i
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By, = Kg
C, = Kg ,
D, =0,

where A,, B,, and C; are the cpen-loop system matrices.

The closed-loop dynamic system can be constructed with the FEEDBACK,
APPEND, and CONNECT commands or with the SYSTEM-BUILD graphical modeling
and simulation tool. Using the FEEDBACK command, the components of the
closed-loop system matrix (SCL) are as follows:

Al mBch | Bl
|
SscL = | By, 4, | O
—_— e - — _|._ —
2 0 |

4.2 SIMULATION CAPABILITIES
Consider the following linear system,

X

=

- Bu

y = X + Du

wvhere X is a vector of state variables, y is a vector of measurements,
and u is a forcing function. A, B, ¢, and D are the constant system
matrices. The above state-space representation of a linear dynamic
system can be loaded to the computer using the following MATRIXy syntax,

o

where 5 is a matrix representing the overall system. The number of
states should be specified by an arbitrary variable.

The representation of systems in the transfer function domain is also
possible. Consider the following transfer function:

2 4
a; 8% + a, s + a,

G(s) =
b, s + b, s2 + by s + b,
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where

a

;0 1=1,..,3 numerator coefficients,

b

i, 1i=1,..,4 denominator coefficients,

G(s)

i

transfer function in Laplace domain.

The MATRIXy syntax for the representation of this transfer function can
be made as follows:

NUM

ff

[O a1 aZ a3] ’

DEN

i

[bl bZ b3 b4] ’

where NUM and DEN are arbitrary variable names. The order of the
transfer function should be specified by an arbitrary variable.

A transformation from one type of representation to another is also
possible with MATRIX,.

Once the linear system representation in MATRIXy is completed, the
transient simulations can be performed using the following commands:

[T,Y] = STEP(S,NS,TMAX,NPTS)
oY
[T,Y] = STEP(NUM,DEN, TMAX,NPTS)

The outputs of this command are the time vector 7 and the Y matrix which
are the step responses of the linear system. Y matrix has the number of
columns equal to the number of states and the number of rows equal to
the number of time points.

The inputs of the simulation commands are the overall system
representation, either in state-space form or in transfer function form.
TMAX specifies the length of time and NPTS specifies the number of
points to be calculated. The default integration algorithm is the
"variable Kutte-Merson,"? an explicit, fourth-order, one-step method.
The integration step is optimized to provide the largest step while
remaining within the local error tolerances. The maximum step size is
equal to the time increment. The choice of NPTS determines the time
increment, and this integration technique retains the stability of the
solution regardless of any arbitrary choice of NPTS.
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5. SUMMARY AND RECOMMENDATIONS

5.1 SUMMARY OF WORK

In this study the modern control theory design algorithms are examined.
Design effort is concentrated mainly on the linear, quadratic Gaussian
compensator design, which includes an optimal regulator design and an
optimal estimator (Kalman filter) design.® A full-state feedback
optimal regulator is designed for the EBR-II primary system model for
which measurement noise and input disturbance are assumed to be zero.
The fractional reactor power is weighted in the corresponding quadratic
cost function. The design uses reactivity as the control input with a
small scalar weight. Closed-loop step responses to several
perturbations show improvement in system behavior. The safety
limitations of 2°F/min reactor AT change and 1 cent/s control rod speed
are not violated.

A similar design is devised to control the drum level in the EBR-II
steam generator model. The control input for this case is the feedwater
flow. The states corresponding to the drum level and the dummy variable
are welghted in the quadratic cost function. The design also uses all
the measurements without noise or input disturbance. The closed-loop
step responses to several perturbations show consistently high
performance. Comparison with the three-element controller results
indicates that both strategies are favorable. The drum level design
requirements of 3 in. above and 4 in. below the center line drum level
variation limit are not exceeded.

When control input and system disturbance units are the sawme, the
optimal regulator controller exhibits a global control behavior. This
is the case when the main steam valve is used as an actuator to control
the system for a steam bypass valve-opening perturbation (or when
control rods are used to control the primary system for small rod-drop
pexrturbations). Note that the closed-loop system model construction in
the MATRIXy; algorithms is made in a pole-placement fashion using the
optimal gains when the closed-loop system with the three element-
controller includes the actuator dynamics as an additional state. The
nonzero steady state errors encountered in modern control design
applications are related to the type-0 structure of the closed-loop
systems. That observation is explicitly detailed in this study. Thus
it cannot be assumed that the LQG compensator will result in a zero
steady state error. However, an error less than a specified value can
be achieved by the LQG design. Theoretically the LQG design does not
guarantee a zero error for a step perturbation, 1f the corresponding
transfer function is of type-0. The problem can be solved, however,
using a dummy state variable in the form of an integrator. The
implementation of the LQG design for the EBR-II drum level controller
includes this modification.
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A simple robustness test is applied to the controllers of the EBR-IT
steam generator model. Instead of assessing robustness stability by
analytical methods, a practical method is considered in determining the
robustness levels of each controller. The test method includes
controller models that are developed using the open-loop model and a
"plant” model that includes several uncertainties in the systenm
parameters. It is assumed that the drum geometry parameters of the
open-loop model are 5% different from actual dimensions. The optimal
regulator and the three-element controller are appended to the "plant"
model (one at a time). The closed-loop step responses te a +10% steam
bypass valve-opening perturbation show a large degradation in the drunm
level using the three-element controller. The closed-loop model with an
optimal regulator responds to the same input in a more favorable manner.
The zero steady state error in the drum level is practically unchanged;
consequently, the optimal regulator is more robust to plant
uncertainties.,

The closed-loop system performance using an optimal regulator design is
related to the state and control input weights in the corresponding
quadratic cost function. The best combination of the state weights is
selected for the EBR-II steam generator controller in a trial-and-error
fashion. A starting combination is predicted using the knowledge of the
open-loop system dynamics. The drum level is suppressed by a relatively
large weight when the other states are weighted based on the overshoot
ratios (open-loop case vs simple optimal regulator design case). The
closed-loop step responses to a +10% steam bypass valve-opening
perturbation show that a drastic improvement can be achieved. However,
the controller performance evaluation does not include the limitations
on the control signal. The actuator constraints bring certain
limitations to the control input weight as well as to the state weights.

A complete LQG compensator design that includes an optimal estimator
(Kalman filter) design is considered for the EBR-II steam generator
system. The measurement set is assumed to be incomplete, and available
measurements are assumed to contain nolse. A small input disturbance on
the states is also considered. An optimal estimator is designed and
appended to a previously designed optimal regulator. The 1QG
compensator synthesis is the final form of the modern controller. The
closed-loop step responses to a +10% steam bypass valve-opening
perturbation show that the linear observer design yields high
performance in terms of estimating the states and regulating the closed-
loop behavior in an optimal manner. Study also showed that the drum
steam-pressure is an important state variable and its measurement or its
estimation must be used in order to improve the coutroller performance,

The last task presented in this study is an optimal reference-tracking
controller design which has a major importance in plant cperation. The
analytical methods® are studied, and an optimal tracking contreller is
designed using the metastate representation of the EBR-I1 steamn
generator model. It is assumed that the measurements are complete and
perfect. The closed-lcop responses to the given step reference inputs
such as drum level increase and drum pressure drop indicate that the
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optimal tracking controller is efficient in set-point tracking. Steady
state errors are negligible and response times are short.

MATRIXy is one of the most advanced members of the MATLAB CAD package
family. All of the simulations in this work are performed using the
special features of MATRIXy;. The modern control theory design
algorithms, such as the optimal regulator design (or the LQG design)
routines, are very powerful design tools. The classical methods such as
root-locus or Bode plots are also available in MATRIXy. Using the menu-
driven System-Build option, a number of modules can be coupled
regardless of the complexity of input-output relationships.

5.2 RECOMMENDATIONS

It is the authors’ belief that each of the control design studies
presented in this work must be investigated in more detail. The
selection of the best combination of weights in an optimal regulator
design is one of the issues to be investigated. Despite the fact that
finding the best weights can be done intuitively, provided the designer
is familiar with the open-loop dynamics, an analytical method based on
system matrices A and B would be very useful. I1QG compensator design
applications to the EBR-II model shows that such controllers are quite
efficient. A comparison between the full-state feedback compensator
results and the estimator results assures that the practical
implementation of the 1.QG compensators can nandle the control problem,
even under degraded conditions. The applications of the optimal
estimator design should be extended to more general cases of measurement
degradation. The optimal tracking design problem can be incorporated
with the estimator design problem. An optimal tracking controller
design study under degraded conditions would be a topic for future
study. When the closed-loop system structure has a type-0 form, the
steady state errors can bhe driven to zero by appending an additional
integrator to the system.
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APPENDIX A

MATRIXy MACROS FOR CONTROL DESIGN

LQG Design

BI=[BFPD;DD],...

[EVAL, KR]=REGULATOR(A20, 820 ,RXX,RUU) , . ..
[EVAL,KE]-ESTIMATOR(A20,C20,QXX,QYY), . ..
[SC,NSC]=LQGCOMP(S20,20,KR,KE), . ..
[SCL,NSCL]=FEEDBACK(S20,20,SC,NSC), ...
[AA,BB,CG,DD]=SPLIT(SCL,NSCL), ..
PLANT=[AA,BI;CC,DD], ...
[T,Y]=STEP(PLANT,NSCL, 400), ...

1=18; ]MP1[, ...

1=19; |MP3[, ...

BI=[1,...

A20= System matrix listed in Table 4.5 with one modification,...
The last row elements are equal to zero, except the 18th column,
which is equal to 1. (dummy state),...

B20= 20x1 vector all zerocs except the 19th row equal to 1,...

BFPD=Forcing vectors of Table 5.2 extended to row number 20,...

€20 =20x20 unity matrix,...

D20 =B20*0, ...

S$20 =System matrix~[A20,B20;C20,D20}, ...

MP1 =Graphic macro,...

MP2 =Graphic macro,...

Tuning Three-Element Controller Gains

> M(20,18)=-K1, ...
M(20,10)=~K2%0,05371, ...
M(20,19)=K2, ...
N(20,18)=KI*K1,...
N(20,10)=K2+*KI*0.05371, ...
N(20,19)=—K2*%KI, ...
AFIN=INV(M)*N, ...
EIG(AFIN), ...
KI1K2KI=[K1,K2,K1],...
(if the eigenvalues have negative real parts then:),...
SFIN=[AFIN,BF;CF,DF],...
(testing the controller performance),...
[T,YFIN]=STEP(SFIN, 20, TMAX), ...
Y=YFIN, ...
IMPL[, . ..
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Optimal Tracking Design

<> MA=[A,E;Z1], ...
[EVAL,KR,P|=REGULATOR(A,B.RXX,RUU),. ..
AC=A-B*KR, . ..
AC=AC’', ...
M2=~INV(AC)*P*E, ...
KR2=INV(RUUL)*B’'*M2, ...
MKR=[KR,KR2],...
MS=[MA,MB;MC,MD], ...
[EVAL,KE]=ESTIMATOR (MA,MC,MQXX,MQYY), ...
[SC,NSC]=LQGCOMP (MS,NMS ,MKR ,KE), . ..
[SCL,NSCL]=FEEDBACK (MS,NMS,SC,NSC), ...
[T,MY]=STEP(SCL,NSCL,TMAX), . ..
Y=MY, . ..
]MPL[, ...

Graphics

<> [MP1[,I=T1+1;]MP2[,T=I+1;]MP3[,T=I+1;]IMP4T, ...

(macro MP), ...

PLOT(T,Y(:,I),'UPPER LEFT/NOGRID'),...

(macro MP2),...

PLOT(T,Y(:,I),'LOWER LEFT/NOGRID'),...

(macro MP3),...

PLOT(T,¥Y(:,I), 'UPPER RIGHT/NOGRID’),...
(macro MP4), ...

PLOT(T,Y(:,I1), ' LOWER RIGHT/NOGRID'),...
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