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ABSTRACT 

We have compared a database of rate coefficients for C& with experiments on 
PISCES-A to understand the role of carbon-based impurities in determining the fueling 
profile of carbon-dominated machines. A three-dimensional Monte Carlo model that 
embodies the Ehrhardt-Langer CH4 breakup scheme (Collisional Processes of 
Hydrocarbons on Hydrogen Plasmas, PPPL-2477, Princeton Plasma Physics Laboratory, 
September 1987) has been developed. The model has been compared with spectroscopic 
observations of the spatial variation of the hydrocarbon product decay rates, and reasonable 
agreement has been found. The comparison is sensitive to the non-Maxwellian electron 
distribution and to observed spatial inhomogeneities in the electron density and temperature 
profiles. Applications of the model to parameters characteristic of the tokamak scrape-off 
layer are presented. 
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I. INTRODUCTION 

Gas fueling in large tokamaks is mostly confined to a region within 10 cm of the last 
closed flux surface (compared with a plasma minor radius of SO to 125 cm). However, 
tokamak confinement properties are strongly influenced by conditions in the edge plasma. 
In particular, a sharp change in the electron density gradient within a few centimeters of the 
edge, accompanied by a cessation of edge turbulence, appears to be a feature of the 
puzzling L-H transition that signals the beginning of significantly improved Confinement 
during tokamak discharges. Theoretically, the edge value of the electron densj ty gradient 
has been found to be an important variable in a number of turbulence models. Thus, 
knowledge of the details of the fueling process at the edge is important for understanding 
core transport. 

Following the lead of the TEXTOR group, many fusion experimental groups have 
adopted “carbonization”1 of the plasma-facing components to enlarge the operating space 
and improve confinement properties. As a result, experiments are conducted with a plasma 
that is strongly dominated by carbon impurities. In such machines, studies have indicated 
the presence of hydrocarbon molecular species, and these are thought to play a significant 
role.2 

Thus, quantitative modeling of plasma fueling in carbon-dominated machines requires 
the construction of models for which molecular constituents such as CH4, C2H2, and 
C2H4 may be an important source of neutral hydrogen. However, the molecular data 
required for the construction of such models are very sketchy at present. 

This situation has been surveyed by Ehrhardt and Langer,3 who have compiled a 
provisional database of reaction rates for CIQ. The rates in this database are the core of our 
hydrocarbon fueling model. Many of the rates in the database are estimated by extrapolation 
from those of similar molecules, and the authors of ref. 3 stress the provisional nature of 
their compendium. 

A series of experiments on hydrocarbon breakup under typical fusion edge plasma 
conditions has been conducted on the PISCES-A facility at the University of California, 
Los Angeles. Neutral molecules were injected along the magnetic field from a nozzle into 
the PISCES axial mirror plasma, and spectroscopic observations of the spatial variation of 
the densities of the breakup products of the influx jet of molecules were 1nade.4 These 
experiments are the first to permit a detailed comparison of the Ehrhardt-Langer database 
with measurement. 

We compare the predictions of the Ehrhardt-Langer database with the results of the 
PISCES-A experiments for C ~ .  The goal is to obtain a preliminary assessment of the 
validity of the rates for application to plasma modeling. The model is then applied to typical 
parameters of tokamak scrape-off layer plasmas. 
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PI. MODEL 

The major physical processes governing Ho penetration into tokamak plasmas have 
been established for some time.5-7 Reaction rates for electron impact dissociation and 
ionization and for charge exchange with plasma ions are embodied in multidimensional 
Monte Carlo codes to calculate the expected spatial distribution of Ho in the plasma. The 
niodels used to treat the H* penetration process require a detailed description of the breakup 
of H2. The treatment needed for the C& problem is generally similar, and this discussion 
focuses OII those aspects which are novel for the treatment of the influx and breakup of the 
more complex hydrocarbon molecules in the plasma. 

The most important new requirement is the need to follow the dynamics of intermediate 
ionized stages of the molecules, since some reaction channels have ionic products. IIence, 
the straight-line paths that form the basis of Monte Carlo models for I-@ transport must be 
modified to allow for motion along a magnetic field line. 

The Ehrhardt-Lacger rates have been included in a three-dimensional (general 
geometry) neutrals Monte Carlo code (GEORGE), which follows the dynamics of influx 
neutrals in a static plasma background. The code was started by G .  G .  Kelley and is 
described in refs. 8 and 9. The code includes the reactions described in these papers and 
the additional reaction processes shown in Table 1, 

Only electron collision reactions have been considered, because of their dominance in 

the PISCES-A experiments. The p+ -I- CH; reactions described in ref. 5 were not 

included. 
As discussed in ref. 3, most of the rates in the database are inferred from othcrs. 

Table I presents a comparative description of these relations. As can be seen, only about a 
quarter of the rates (7 out of 25, as indicated by asterisks) are backed by direct 
measurement in the relevant energy range. The estimates for the others (particularly those 
for CH and CHC) are indirect. Thus, accuracy within a factor of two is all that can be 
expected. 

To treat complex reaction events in the Monte Carlo code, the rates are first grouped 
by molecular type and the chance of any kind of a collision event is evaluated. If a collision 
event occurs, then the type of event is evaluated within the subgroup of reactions for that 
type. For example, with an incident C a  molecule the weighted sum of the probabilities of 
the fust three rates in Table I is evaluated arid compared with a random number. If an event 
is probable, then these three rates are compared to each other separately to dctermine which 
ouput channel is followed. 

As shown by Table I, an incoming C h  molecule can become CHfi, CH;, or 
CH3.The CH3 will continue straight-line motion according to 

xnew - - Xold I- Q t ,  
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Table 1. Rate data (based on ref. 3) 
__ - ~~ ~- __ 

Rate Reaction Product Comment 

*R1 

"R2 

"R3 

R4 

R5 

R6 

R7 

*RS 

"R9 

R1o 

R11 

R12 

R13 

*R14 

*R15 

R16 

R17 

R18 

R19 

e- +CQ 

e- +CH; 

e- +CH3 

e- + c%+ 

e- +CH2 

e- +c% 

CHI+ 2e- 

c%++ HO + 2e- 

CH3 + Ho + e- 

CH3 + H+ + e- 

C%++ Ho + e- 

CH3 -+ HO 

CH2 + 2H0 

c%++ 2e- 

c%++ HO -t- 2e- 

CH2 + Ho + e 

CH2 + H+ + e- 

C€$+ Ho+ e- 

CH2 + HO 

c$+ 2e- 

CH+ + H0 + 2e- 

CH + Ho + e- 

C H + H + + e  

CH+ + Ho + e- 

CH + Ho 

Measurement 

Measurement 

Subtracts measured dissociative 
ionization from measured total cross 
section 

No measurement, R4 

No measurement, Rs = 3/4 R1 

Total R6 + R7 measured for E < 1 eV, 
extrapolated for E > 1 eV; Rg = 1/4 

As for R6, R7 = 3/4 Rexp 

CD3 measurements extrapolated 

below c15 eV 

From CD3 measurements 

No measurement, R l o  = 3/4 R3 

No measurement, R11= 1/3 Rlo 

No measurement, R12 = 2/3 R,o 

Total measured for E e 1 eV, 
extrapolated for higher E, other 
channels neglected 

From CD2 measurement ( E  < 200 

eV) and CH4 ( E  > 200 eV) 
Measurement (CD2) 

No measurement, R16 = 1/2 R3 

No measurement, R17 = 1/2 R16 

No measurement, R18 = 1/2 R16 

Total measured for E c 1 eV, 
extrapolated for higher E,  other 
channels neglected 

= 1/4 R1 

Rex, 
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Table 1. (continued) 

Rate Reaction Product 

R20 e- +CH c1-P + 2e- No measurement, adopted CH4 data 

R2 1 

R22 

Ci- + 930 -I- 2e- 

c + H+ i- 2e- 

No measurement, total Rzl + R22 

assumed = 1/2 Kg; R21 = 1/2 total 

No measurement, total R21 + R22 
assumed = 1/2 119; 1122 = 1/2 total 

C + H0 + e- No measurement, I323 = 1/4 R3 R23 

R24 e- +CH+ C+H"+e-  No measurennent, R2.4 = 1/2 R23 

R25 No measurement, R25 = 1/2 R23 Ci + Ho -I- e- 

ynew - - yold 4- v p ,  

where the coordinates are x, y, z; the time step is 6f; and the particle velocities are vx, vu, 
vz. 

For charged reaction products, however, straight-line flight is replaced by motion 
along magnetic field lines. Two different geometries are required for the results presented 
in this paper. 

For the PISCES-A experiment it is assumed that the field lines are straight and one- 
dimensional. Thus, the charged particle motion is described by 

'new - 'old + v, 6 t ,  

where z is the axial direction of the applied magnetic field and v,is the axial velocity 
component of the original cosine distribution from the nozzle, On subsequent electrori 
collisions in which an ion reverts to a neutral, the x and y velocity components are sampled 
from a random gyroangle distribution. 

To model the tokamak scrape-off layer, the charged particles are assumed to follow 
flux surfaces (which are the basis for the GEORGE code): 
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where w is the flux surface label, Q is the toroidal angle, and 0 is the poloidal angle. The v+ 
and ve components are computed from those of the neutral particle at the time of the 

collision event. The cross-surface diffusion ( G ~ a n o m a ~ o u s )  is determined by an assumed 

cross-field transport diffusivity, which is assumed to be DA = lo4 cm2/s for the tokamak 
scrape-off layer calculations. 
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111. C 0 MPARIS 0 N WITH E XPE WIMENTS 

A. Experimental setup of PISCES experiments 

A general schematic of the PISCES-A experiments is shown in Fig. 1 (details have 
been presented in refs. 10-12). The gas flow of CfI4 molecules from the nozzle is ionized 
and dissociated by the electrons in the helium plasma. Electron temperatures and densities 
are inferred from Langmuir probe measurements, and the conditions for the modeling 
calculations are shown in Table 11. Optical multichannel analysis of the emitted molecular 

ORNL-DWG 90M-2504 FED 

VIEWING 
DIRECTION 

MAG N ETlC 
FIELD 

HELIUM 
PLASMA 

- - 
b-... 100 mrn--------al 

TOP VIEW 

HELIUM 

1 0.65 rnm - 
MAGNETIC 
FIELD - 

SIDE VIEW 
Fig. 1. General schematic view of the PISCES-A experiments (further described in 

ref. 6). 
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Table 2. Plasma parameters for experiments 

13417 45 .O 8.0 2.5 39.0 
13427 36.1 13.0 3.0 86.0 
12027 44.1 - 1.6 100 

1340 1 27.2 -- 1.7 100 

spectra was made to establish the axial variation of the density of the breakup products, and 
the results of the modeling are compared with these measurements. 

The Langmuir probe measurements in the higher density cases (with parameters 
closer to typical tokamak scrape-off layer conditions) show the existence of a two- 
temperature electron energy distribution. In these cases we have identified “hot” and “cold” 
electron components and have used rate coefficients from Table I weighted by the relative 
electron density. That is, the rate coefficients used in the modeling for the reactions in 
Table I are: 

hot - hot cold R(T :Id) . + ne S Q ~ *  - t o t a l ~ ~ M  = ne - R(T, - ne 

B. Comparison 

The calculated distributions of CHq breakup products €or PISCES run 13417 are 
shown in Fig. 2. Figure 2(a) shows the distribution of neutral products ( C Q ,  CH3, 
CH2, CH) as a function of axial distance from the nozzle, and Fig. 2(b) shows the ion 

product distributions (CH;, CH;, CH;, CH’). One of the implicit predictions of the 

model described in ref. 3 is that the CHq breakup proceeds through this sequence. (The 
direct production of C from CHq has been observed in molecular beam experiments, and 
this represents an alternative reaction path not considered here.) 

The modeling results are compared with the measured CH2 distribution for this case 
in Fig. 3. The decay rate predicted by the model for CH2 is approximately a factor of two 
larger than the measured rate. The position of the peak in the CH2 density is also 
discrepant, with the model maximum shifted downstream by about 5 nm. As discussed in 
Sec. III.C, the position of the peak is sensitive to the assumed ambient plasma profiles, 
especially the sheath conditions at the nozzle. 
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Fig. 2. Density variation along the axis of the breakup products from CM, incident 

from a nozzle to the left. (a) The neutral products. (b) The ion products. 
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Fig. 3. Model results for CH2 distribution for PISCES run 13417 compared with 
the spectroscopically measured distribution. 
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The results for CH and CH+ are shown in Figs. 4(a) and 4(b). Here the decay rates 
are more nearly in agreement, but the CH+ rise rate is lower than measured. The position of 
the peak density is shifted downstream, but this is a consequence of the discrepancy for 
CH2. 

ORNL-DWG 90M-2507 FED 

1 .o 
h - 
i?? 
v 

>. 
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I 
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PISCES 13417 

0 0 
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Fig. 4. Model and measured results for (a) the CH distribution and (b) the CH+ 
distribution. 

C. Discussion 

An estimate of the effect of the assumed p lasm sheath profile is shown in Fig. 5. 
The model results are shown for both the nominal case with uniform density and 
temperature profile and for a case with density and temperature rising by 20% toward the 
nozzle position. This effect can account for a shift in the predicted position of the peak by 
up to 1.5 cm. Note, though, that the decay rate is unaffected. 

The possible effect of uncertainties in the hot electron component of the plasma has 
been tested. Shifts in the predicted peak position of up to 1 cm have been fclund when 

comparing model calculations with T,hor within * 20 eV of the nominal value (45 eV). 
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AXIAL LENGTH (cm) 

Fig. 5. Effect on the CH axial density profile of an assumed variation in sheath 
electron density and temperature profiles. 

IV. APPLICATION TO PLASMA FUELING 

To estimate the effect of hydrocarbon molecular fueling on typical tokamak scrape-off 
layer plasmas, we assume plasma profiles: 

where h = 2 cm, T e LCFS = 50 eV, and ne LCFS = 1013 ~1x1-3; LCFS refers to the last closed 

flux surface. In this case the magnetic field direction is almost perpendicular to the influx 
direction of C&, so that the breakup dynamics are compressed in the radial direction, in 
comparison with those of the PISCES-A experiments. The ion breakup products are 
wansported along the field lines with slower radial motion. 



1.1. 

We compare the hydrogen density produced in the edge plasma region by hydrogen 
molecular fueling ( 5-eV Franck-Condon atoms emitted from the wall) and by hydrocarbon 
fueling (H atoms emitted in the successive breakup of CH4). Figure 6(a) shows the radial 
distribution of ion products and exhibits the longer lifetime of the ions with respect to radial 
transport compared with Fig. 2(b). Figure 6(b) shows that the penetration of hydrogen is 
actually improved with hydrocarbon fueling, and the penetration depth is increased by a 
factor of five (measured by the relative positions of one e-folding length fimm the maximum 
hydrogen density). 

1 .o 

0.8 

77j 0.6 

0.4 

h - 
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z 
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0 

ORNL-DWG 90M-2509 FED 
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z 5 0.6 
z w 
C3 0.4 
I 

cn 

h - 
v 

0 

6 0.2 

0 
0 0.05 0.1 0 0.1 5 0.20 

DISTANCE FROM WALL (cm) 
Fig. 6. Comparison of hydrogen density in the scrape-off layer for Franck-Condon 

and CH4 fueling processes, assuming typical tokamak scrape-off layer parameters. 
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V. DISCUSSION 

The data presented in ref. 3 have been incorporated in a 3-D Monte Carlo transport 
model and tested against measured CH4 breakup rates in the PISCES-A device. Agreement 
is within the factor of two accuracy stated in ref. 3. Uncertainties in the background 
plasma distributions {both spatial and energy) may contribute to this discrepancy. In light 
of the provisional nature of the rate data used {see Table I), the overall agreement can be 
considered quite good. Application of this model to typical tokamak edge parameters shows 
that there can be a significant difference in the edge fueling source when hydrocarbon and 
molecular hydrogen fueling processes are compared 
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