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ABSTRACT

The recent development of chemical sensor arrays promises to solve some of the
industrial, military, and domestic problems of gas detection and monitoring, but there are
many problem areas to be addressed before these types of devices become readily
available. The work presented here represents initial expeditions into a new, hybrid
discipline for chemical analysis that combines materials science, chemical sensing
techniques, and the application of pattern recognition for automatic information
extraction. Specifically, two kinds of chemical sensor array design and construction are
discussed. The nature of the outputs from these sensor arrays is examined for qualities
such as information content, stability, reliability, and accuracy. Several methods of
pattern recognition are explored for their ability to classify sensor array information.
Preliminary results indicate much promise in the use of neural networks for the analysis
of mixtures, which is a vexing problem. It is found that the most appropriate pattern
recognition technique depends to a large degree on the complexity of the sensing
problem.
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1. INTRODUCTION

1.1 THE PROBLEM OF OLFACTORY SENSING

The human sense of smell works by the identification of scent "fingerprints.”
Blindfolded, we can know a rose from a lily, Juicy-Fruit™ gum from a peppermint
variety, and some of us can distinguish our mother's beef stew from someone else's; we
do not need an organic chemist as a lifelong interpreter to guide us through life's maze of
olfactory pleasures and hazards. Few people lack the sense of smell, but the sense of
smell does deteriorate with age, and there are many hazardous compounds that we cannot
detect by our unaided senses. There may not be a compelling reason to equip the
anosmic individual with an artificial nose, but a greater understanding of this human
sense and the ability to enhance this capability or to model it, even crudely, are desirable
goals. There are many real-time (rapid response time) and/or remote olfactory sensing
problems in domestic, industrial, and military settings that could be solved with a detector
that could rapidly identify hazardous gases or by-products of interest. We can analyze a
number of compounds with mass spectrometry and gas chromatography, but the
associated instruments are cumbersome for many applications, require preparation of
samples, and cannot provide information in the required time frame. Many applications
demand portable or remotely operated devices specifically tailored to the problem at hand
to enable rapid gas analysis.

In general, many kinds of olfactory sensors have the disadvantage of not being able
to identify explicitly an unknown gas or mixture of gases because they are not inherently
selective. They may be calibrated to give an alarm or quantitative measurement only
when the gaseous species is known at the outset. This problem of cross-sensitivity is
particularly acute when dealing with hazardous industrial chemicals, CBW (chemical and
biological warfare) agents, explosives, military fuels, and so forth, because such mixtures
are chemically complex. Rapid identification of many of these compounds is desirable or
even critical for making decisions affecting the safety of personnel and equipment.

One theoretical method of synthesizing selectivity or minimizing cross-sensitivity
was proposed by Clifford.! His idea was to construct an array of sensors having
differential sensitivities to different gases. For different gases such an array would, in
principle, yield signatures with varying degrees of uniqueness. The integrated gas
analysis and sensing (IGAS) chip developed at Oak Ridge National Laboratory (ORNL)
has effectively demonstrated the creation of such a sensor array on an integrated circuit-
sized (IC-sized) ceramic chip.?2 The signature or output from the IGAS chip consists of a
histogram of resistance changes in the chip's multisensor array caused by a particular gas
or gas mixture that cannot be analyzed from first principles. This miniature sensor array
provides unique signatures for many types of simple organic compounds. Several other
approaches to the design and construction of gas sensor arrays have also successfully
displayed selectivity to gases, but few have become commercially available.

The usefulness of the IGAS chip, or any alternative gas sensor array, could be
dramatically expanded by giving it intelligence in the form of a pattern recognition
engine. Various techniques have been proposed to handle the signal processing and
pattern recognition required to convert the outputs of these arrays into useful information
such as the identities and concentrations of particular chemical species. In general,
pattern recognition techniques have not been developed as fully as have sensor arrays.



Much of the work in signature recognition has taken a gencral approach in order to prove
the principles. Gases used in signature analysis work to date are often simple compounds
and not necessarily species that would ever occur together in a real-world situation.
There is also the inherent difticulty of deconvolution of the signature from a mixture of
two or moxe compounds; up to now, very little work has been done with complex
mixtures. Some of this early work has not addressed realistic problems, but the ultimate
goal of solving a specific problem should be kept in mind. For most applications,
fortunately, we will have to contend with only a limited universe of possible or likely
chemical species, which will reduce the information processing preblem to a manageable
level. The problem can possibly be further simplified by developing applicaticn-specific
sensing elements to enhance signature differences for specific compounds expected in a
given situation. Consequently, sensor and pattern recognition developments will most
likely proceed in an iterative way.

Several materials and packaging problems have to be addressed before these gas
detection instruments can be built. Typical power consumption requirements of many
existing gas sensors are too high for realistic battery-operated designs. Some sensors are
poisoned by compounds containing sulfur, and some may also be affected adversely by
the environment. Other concerns involve the feasibility of incorporating the pattern
recognition engine into application-specific integrated circuits so that the overall device is
as small and efficient as possible. Other preblems will arise as developers become
involved in design and construction of an actual device.

The thrust of this report is to present the results of a study of chemical sensor array
design and information analysis methods, with the goal of initiating a methodology or
guide for designing useful gas detection and monitoring instruments. Included are
discussions of the design and construction of two types of sensor arrays, the nature of
their output, several approaches to data analysis, and evaluation of the different
approaches in the context of some actual olfactory sensing problems.

1.2 DESIGN AND CONSTRUCTION OF GAS SENSOR ARRAYS

In the last several years, various types of chemical sensor arrays have been designed
and constructed. Much work in the development of sensor arrays falls into two groups:
arrays made of discrete commercial sensors and integrated sensors in which the array is
fabricated as a single device. In either group the selectivity of the array can be achieved
in several ways: (1) by the use of catalysts, (2) by the use of thermal gradients, and
(3) by the use of filters. The arrays described below employ one or more of these
methods. Arrays of the first two types were constructed for this work, and a more
detailed description of each follows this section. These sensor arrays form useful test
beds to explore the responses to various substances and to evaluate the usefulness of
various signature recognition schemes.

One early example3 of an array constructed from several discrete commercial gas
sensors is shown in Fig. 1.1. This prototype consists of six commercial gas sensors of the
Taguchi type®installed on a 10-cm-diam bakelite disk and mounted in an airtight
chamber. The chamber is fitted with gas inlets and outlets for controlled gas flow.
Resistance changes of the gas sensors are monitored by a computer data acquisition

* Figaro Engineering Co., Osaka, Japan.



Fig. 1.1. Prototype sensor array containing six different gas sensing elements. Sensors'
differential sensitivities to different gases could form the basis of an intelligent system. (Photo courtesy of
M. W. Siegel, Carnegie-Mellon University.)

system. Each discrete sensor has its own internal heating element; power consumption
for the complete six-element array is ~4 W.

To reduce the size, power consumption, and manufacturing costs of a metal-oxide
gas sensor array, the IGAS chip was designed and constructed using conventional thick-
film technology.2 The IGAS chip, Fig. 1.2, achieves the effect of a multisensor array on a
single substrate by creating a continuous metal-oxide film whose catalytic properties vary
from place to place on the chip. Embedded electrodes allow us to map the responses of
the different sensing areas. The catalytic activity is varied by creating a thermal gradient
along the length of the chip, by distributing different catalysts in different areas along the
surface, or by a combination of both techniques. The IGAS chip measures 2.5 x 1.0 cm
and consumes ~2.5 W.



Fig. 1.2. Examples of two miniature sensor arrays, IGAS chips, designed and built at ORNL. Size
of the chip substrate is 2.5 X 1.0 cm.

The gas sensor chip developed by Hitachi4 is a similar thick-film implementation
with six discrete metal-oxide sensor areas on an alumina substrate (Fig. 1.3). The chip is
heated to ~400°C with a platinum heater printed on the bottom of the substrate. The
response of the Hitachi sensor to four different compounds is shown in the figure.

Much development work has focused on the pressing need to reduce the power
consumption of metal-oxide gas sensors. Because the high power consumption is a direct
consequence of the high operating temperatures required, one obvious approach is to
reduce the total size of the active sensing elements. Workers at General Motors
Research’ have created a sensor array on an ultrathin, thermally isolated silicon
membrane fabricated by chemical machining. The resulting device operates at 300°C,
requiring ~150 mW.

In addition to the approaches cited above, sensor arrays with varying degrees of
selectivity have been demonstrated that use sensing techniques other than the resistance
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change of a semiconducting metal oxide. Stetter and coworkersS have described an
instrument having four electrochemical sensors and two catalytic filaments that can be
heated separately or together to give four operating modes (Fig. 1.4). The combination of
four sensors and four modes effectively creates a 16-sensor array. The response of their
instrument, although achieved with a somewhat different physical approach, lends itself
to the same type of pattern recognition scheme as other sensor arrays.
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Other sensor array concepts being developed include the use of surface acoustic
wave (SAW) devices with chemically selective coatings,” metal-oxide semiconductor
(MOS) sensors with molecular sieves,? and palladium/silver (Pd/Ag) gate combinations
with metal-insulator semiconductor (MIS) diodes.?

1.3 PREVIOUS WORK IN GAS SENSOR ARRAY ANALYSIS

The conventional approach to signature recognition of sensor array data is through
the application of chemometrics. Clifford describes an approach of this type in his patent
"Selective Gas Detection and Measurement System."! A system of equations is
developed, one equation per gas sensor. Clifford states that the number of gas sensors for
each system must be equal to or greater than the number of gases in the system, but this is
not a requirement in all chemometric systems.* The response of each element in the array
is measured for each selected gas to determine the constants used in the equations. In
addition, all the sensors in the array must have a response to at least one of the gases
included in that system. Other workers have evaluated several types of chemometric
approaches to determine suitability and practicality for various classification problems,!®
and have used this kind of pattern recognition to cull sensors from an array if they yield
redundant information.!!

One of the few implemented chemometric classification systems has been done at
Hitachi.* The algorithm is presented schematically in Fig. 1.5. A standard pattern is
calculated for each of seven pattern classes selected for this system. The standard patiern
has some defined range to accommodate ranges in concentration. For an unknown
sample pattern, x, similarity values are calculated by multiplying the difference between
the x pattern and the standard pattern classes, i, by a weighting factor, w;, where j
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Fig. 1.5. Hitachi algorithm for comparing sample pattern to signatures of known organics.

specifies the sensor number. The smallest similarity value, S;, identifies the unknown
sample, x, as belonging to the pattern class i. This algorithm has been implemented in an
8-bit microcomputer, which has been incorporated into an instrument with the sensor and
associated power and signal processing circuitry. Analog signals from the sensor are
converted into digital signals forming the input to the microcomputer, which calculates
the similarity values and identifies and quantifies the gas.

J. R. Stetter and coworkers® devised a recognition system noteworthy for its simple,
yet workable, solution for their sensor array instrument described above. As shown in
Fig. 1.6, for each gas, operating four sensors in each of four modes yielded 16 responses,
which are arbitrarily assigned to 16 channels. "Fingerprint" patterns for each of
19 hazardous gases were made up with the 16 data channel numbers from the sensing
device, listed in order of greatest response to the selected gas. Only 2 of the 19 gases
tested had the same fingerprint when the three channel numbers with the greatest
responses were used as the basis for the fingerprint; however, the identities of these
2 gases were determined unambiguously when the fingerprint was expanded to the five
highest response channels. The significance of this kind of identification is in its obvious
economy. No time-consuming chemometric manipulations are needed, and the system
can be coded easily in a microcomputer. In proving the principle, Stetter et al. have
designed a general-purpose instrument, but the identification principles could hold for
specific applications with smaller sets of defined gases.
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2. EXPERIMENTAL METHODS

2.1 ARRAY OF CONVENTIONAL SENSORS: DESIGN AND FABRICATION

A typical commercial gas sensor (Fig. 2.1) consists of a small ceramic tube coated
with tin (IV) oxide and a suitable catalyst. A heater coil located inside the tube maintains
the temperature at 200 to 500°C so that the tin oxide can react with combustible gases.
The electrical resistance of the tin oxide is measured between two electrodes at opposite
ends of the tube. The entire assembly is packaged in a protective housing with an open
area (covered by wire mesh) to allow gases to enter. Because the resistance change of
this sensor can be large and reasonably linear over many decades of gas partial pressure,
much work has been devoted to the creation of sensitive, inexpensive gas sensors and
alarms.

These conventional tin oxide gas sensors can be made more sensitive to specific
gases (e.g., methane or carbon monoxide) by the choice of catalyst applied to the oxide
surface.’? For example, platinum enhances the sensitivity to light hydrocarbons such as
butane, whereas palladium increases the sensitivity to hydrogen and carbon monoxide.
Figure 2.2 shows the characteristic responses of two different Figaro gas sensors to
various gases. Unfortunately, as can be seen from that figure, any one sensor cannot
distinguish between high concentrations of a less reactive gas and low concentrations of a
more reactive gas. For many applications, this cross-sensitivity or lack of selectivity,
severely limits the potential of the device as an analytical tool. It has therefore been
suggested! that, by coordinating the outputs of several different gas sensors, each of
which has characteristic responses for different gases, a signature could be derived that
would identify any particular gas and possibly give an indication of the gas concentration.
This concept was initially tested by M. W. Siegel,” who constructed the prototype sensor
array shown in Fig. 1.1.

To collect data for this work, a sensor array was constructed with nine discrete
commercial sensors of the Taguchi type. This sensor array can be configured into either
of two modes; (1) nine identical sensors can be operated at different power levels (and
hence, different temperatures), and (2) different models of sensors can be inserted into the
different positions in the array. In this way each element of the array has different
response characteristics that in general will not be identical for different gases. This
arrangement allows wide control over the range of sensitivities of the different sensing
¢lements.

The test chamber is a 1-ft3 Lucite cabinet (Fig. 2.3). The sensors are arranged on a
shelf in the middle of the cabinet with a baffle to diffuse the flow of the incoming gas.
Dc¢ power is supplied to the heater in each sensor through individual load resistors
selected to control the power applied to each sensor. The sensor array consisted of nine
Taguchi-type sensors operated at power levels ranging from 30 to 100% of the
manufacturer's recommended operating power (300 mW). Sensor 1 was operated at
100% and sensor 9 at 30%.

A Taguchi metal-oxide sensor exhibits a large change in resistance in the presence
of gases to which it is sensitive. The resistance of the model used in this work (TGS 812)

* The Robotics Institute, Carnegie-Mellon University (CMU).
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Fig, 2.1. Design of Figaro Engineering TGS™ gas sensor.

will decrease by 4 to 5 orders of magnitude when exposed to alcohol vapor, for example.
The response to the gas occurs in a matter of seconds to minutes, but recovery to its
original resistance in air can take hours. The dynamic response is not well understood,
and observations demonstrated that recovery is highly dependent on the substance to
which the sensor was most recently exposed. The steady state response of the sensor 0 a
given substance is much less sensitive to previous exposures and therefore more
reproducible. Consequently, all measurements were made after allowing the sensor array
to come to equilibrium with the sample gas (~5 min).

2.2 1IGAS CHIP: DESIGN AND FABRICATION

The author was part of a team of workers at ORNL who developed the IGAS chip.!3
This device is an example of a sensor array fabricated on a single substrate, designed to
overcome the nonselectivity of a single conventional gas sensor without being
substantially larger or more expensive, or requiring more power to operate. A detailed
discussion of this device follows.?

A natural outgrowth of the bulky, multisensor device described in the previous
section was the idea of integrating many seosors on a single substrate by varying the
catalytic properties of the tin oxide layer, either by distributing different catalysts or by
varying the temperature in the different reactive regions on the chip. We achieved a
dramatic increase in functional density by using thick-film circuit technology to create an
array of closely spaced electrodes on a refractory substrate so that the equivalent of up to
25 different sensors could be fabricated on an area of ~2 cm?. The resulting device plugs
into a 20-pin, dual in-line IC socket. The chip represents a significant advance in the
development of a "smart" chemical sensor. Although conventional thick-film technology
was used to develop this new gas sensing device, some of the design requirements
dictated the formulation of nontraditional thick-film inks. We chose the thick-film
technique because it is an inexpensive, reliable manufacturing method that provides much
flexibility to accommodate design modifications as development progresses.
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Fig. 2.3. Prototype sensor array containing nine gas sensing elements.

Development of this device was initiated with funding by Cabot Corporation.
During the period of development (~1.5 years), hybrid circuit methods were exploited to
produce a functional, rugged, miniature, and relatively inexpensive intelligent gas sensing
element. Several designs were built and tested under steady state conditions. In a related
program, workers at CMU were to study the sensor's response to transient conditions and
develop the software needed to apply the sensor to specific analytical problems. The
results obtained at CMU are published elsewhere. 4
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2.2.1 Design Specifications
The IGAS chip was designed to meet the following requirements:

1. The active area must consist of a semiconducting oxide film (e.g., SnO,, ZnO,
Fe 04) whose catalytic properties vary from place to place on the surface. The
response to various gases should be rapid, reversible, and cover a large dynamic
range. The baseline resistance of the oxide film in air should not be too high to
measure conveniently (realistically, less than ~10° ).

2. Alarge number of electrodes must be arranged so that the electrical responses of all
the different areas of the sensor can be quickly mapped by addressing the electrodes
in pairs. :

3. The interconnection between the electrodes on the chip and the measurement
equipment should be rugged, inexpensive, and compatible with standard circuit
components.

4. Anintegral heater must be able to keep the sensor at a sufficiently high temperature
for reaction with the sample gases. The heater should be available in either of two
configurations, depending on whether a uniform temperature or a thermal gradient is
desired.

5. The entire sensor should be stable with respect to thermal cycling and thermal aging.
Specifically, mechanical incompatibilities such as poor adhesion to the substrate and
spalling must be avoided. Although the present sensors have evolved with these
considerations in mind, it is important to remember that the concept is quite general
and alternative designs can be imagined for specific applications.

2.2.2 Substrate Layout

Several electrode patterns were used, as shown in Fig. 2.4. The first pattern
provides for measurement at nine points along the length of the chip by addressing
opposite pairs of electrodes. The second pattern provides for measurement at 17 points,
giving potentially greater resolution and a more complex signature. The third pattern
gives 25 measurement points and is conveniently arranged so that three strips of different
sensor materials (e.g., with different catalysts applied) can be laid out along the thermal
gradient. In each case, the photo masks were designed so that eight sensors are printed at
once on a scored alumina substrate. The conductor material was a commercial gold-
palladium (Au-Pd) frit-bonded thick-film composition, printed and fired according to
standard practice.

Heater configurations are shown in Fig. 2.5. The heater material was a commercial
RuO; resistor composition. Although the heaters were not originally designed to be used
together on the same substrate, the masks for the large heater can be rotated by 180°,
allowing power for the large heater to be applied across pins 10 and 11 while power to
the small heater is applied across pins 1 and 20. The presumed benefit of a two-heater
configuration is more precise thermal management and less thermal stress on the small
heater.
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Fig. 2.4. Electrode patterns developed for the IGAS chip.2 Top: Three different patterns as
described in the text. Bottom: One complete substrate, as printed, having eight individual IGAS chip
substrates (approximately actual size).
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Fig. 2.5. IGAS substrates showing printed thick-film heaters (black strips). The large resistor (top)
heats the chip uniformly, whereas the end resistor (bottom) provides a thermal gradient along the length.2
In each case, power is applied to the heater through the first pair of electrodes. (The small dots are
alignment marks to aid in the printing steps.)

2.2.3 Sensor Material

After the electrodes and heaters are fired onto the substrates, the semiconducting
oxide layer can be deposited by either of two techniques. One approach involves insitu
decomposition of an anhydrous tin chloride/stearic acid mixture. The other method
involves the formulation of printable inks that can be applied and fired by traditional
thick-film practice.

The stearic acid method, as described by Taguchi,!s involved the following steps.
Anhydrous tin (IV) chloride, a clear liquid, was mixed with powdered stearic acid and
warmed on a hot plate until the stearic acid dissolved. Upon further heating, the mixture
became dark brown. At that point the mixture was painted on the substrate and fired at
700°C in air. This process had to be repeated several times to build up an adequate film
thickness on the substrate. The organic component was intended to be burned off,
creating desired porosity in the tin oxide layer. On top of the tin oxide layer, one or more
alcohol solutions of precious metal chlorides were then painted on selected areas and
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fired for 5 min at 700°C in air. Films with sheet resistances in the range of 5 to 30
ka/square were deposited by this technique.

Figure 2.6 shows the active layer of one sensor made by this method. The tin oxide
has a crenulated surface with a distribution of fine ruthenium catalyst particles. It will be
shown later that this type of sensor is fast and quite responsive to many organic
compounds. However, the stearic acid method had several important shortcomings.
First, it was difficult to control and reproduce in the laboratory (although the technique
can, of course, be done reproducibly with specialized manufacturing equipment). The tin
oxide layers were not sufficiently uniform, and the stearic acid mixture tended to liquefy
readily in the initial firing and partially overlap the heater strip, occasionally rendering
the first measurement point on the chip unusable. Second, the strength and adhesion of
the tin oxide layer was quite poor, and its initial resistance varied greatly from point to
point on the chip. Third, the distribution of catalyst was difficult to control; it is likely
that the sensor layer shown in Fig. 2.6 contains much more precious metal than
necessary.

To overcome these difficulties, it became clear that printable compositions were
needed. Our proprietary sensor inks contain three major components: a metal oxide,
which is the active agent; glass frit for adhesion; and organic vehicles that burn off during
firing. The catalyst can be either applied after firing, as before, or incorporated directly
into the ink.

To conduct a preliminary study of the effect of ink composition and firing
parameters, four master inks (SnO,, ZnO, Fe 03 and glass) were formulated, as shown in
Table 2.1. The same binder, dispersant, and solvent were used in each, so the three
batches could be blended in any desired proportion. The inks were formulated by the
following procedure. Each powder was milled in isopropanol to produce a fine particle
size. The oxide powders were milled in a vibratory mill in a plastic jar with zirconia
medium to break up agglomerates. The glass was pulverized in a steel mortar, ball-milled
16 hours with alumina medium, and screened to -325 mesh (<44 microns). The powders
were dried in air at 100°C.

To maximize the sensitivity, it is important for the oxide layer to be porous.
Therefore, we formulated the inks with more organic vehicle than a normal commercial
thick-film composition. To achieve a target of about 30 vol % solids in the ink, an
amount of solvent equal to twice the theoretical volume of the powder was added along
with a small amount of a proprictary dispersant. The mixture was initially quite dry and
was therefore blended by hand with a spatula until the dispersant was well distributed and
the mixture became semifluid. The slurry was then liquefied with an ultrasonic
dismembrator for 1 min at ~180 W of power.

The binder (a commercial acrylic resin) was added to the liquefied slurry in the
form of small beads supplied by the manufacturer. The mixture was stirred well,
covered, and placed in an oven for several hours at 60°C to dissolve the resin completely.
Each ink was thoroughly mixed again before each use.

Because of the lower volume fraction of solids, our inks were somewhat less
viscous than typical commercial thick-film compositions, but each of the inks had a
suitable viscosity range for screen printing onto alumina substrates. They were mixable
in all proportions. A trial printing of the glass master composition fused to the substrate
after 15 min at 925°C. Higher firing temperatures (950 and 975°C) gave slightly
smoother films, indicating greater fusion of the glass frit, as expected.
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Fig. 2.6. Scanning electron micrograph of IGAS chip TOS-3.13 A tin oxide layer was deposited by
the stearic acid/tin chloride method and fired at 700°C in air. The process was repeated approximately five
more times, then the surface was doped with RuCl3-HO/ethanol which was painted on and fired at 700°C

in air (1 cm = 10 pm).

Table 2.1. Thick-film master compositions

Tin oxide Zinc oxide Iron oxide Glass
Powder (g) 470 56.0 524 25.0
Powder analysis 99.9 SnOy 99.8 ZnO 99.0 FexO3 75.0 SiOy
12.0 Nag0O
8.0 CaO
5.0 MgO
Binder (g) 34 5.0 50 5.0
Solvent (g) 135 20.0 20.0 20.0
Dispersant (cmS) 05 0.5 0.5 0.12

Tin oxide and zinc oxide inks were each formulated with three different nominal
glass contents (11, 20, and 33 vol %, solids basis). These inks were printed on a standard
resistor test pattern that included several resistor geometries ranging from 1 x 1 mm to
1.5 x4 mm. The test pieces were leveled, dried, and then fired at 925, 950, and 975°C.
Sheet resistivities of the fired tin oxide layers were measured at 125 and 200°C
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(Table 2.2). Resistivities of the zinc oxide specimens were measured only at 200°C
(Table 2.3). Because the test pattern contains many sizes and shapes of resistors, we
believe the standard deviations of the sheet resistivities given in Tables 2.2 and 2.3
mainly reflect edge effects (such as interactions with the gold electrodes), rather than
intrinsic variations in the printed films themselves.16 The samples were exposed to
acetone vapor as a crude measure of their relative sensitivitics. Resistivities changed
rapidly and reversibly by as much as a factor of 14. Initial response to the gas took a few
seconds and recovery took about a minute.

Figure 2.7 shows typical examples of our sensor inks printed and fired according to
standard practice. Note the improved uniformity as compared to the tin oxide film
deposited by the stearic acid method. Note also the fine porosity and correspondingly
high surface areas of the printed compositions.

Cne can see from Tables 2.2 and 2.3 that the sheet resistivities of the printed
sensors were quite high. The resistivities and sensitivities of the tin oxide samples were
strongly temperature dependent, as expected. The tin oxide compositions were generally
more responsive 1o acetone vapor than were the zinc oxide compositions, suggesting that
SnQ; has greater intrinsic catalytic properties than ZnQ with respect to the oxidation of
acetone.

Because of the high resistivities of these compositions, the soda-lime glass frit was
later replaced by a more conductive vanadium oxide-based frit; however, sensors made
with these newly developed inks were not studied extensively so that pattern-recognition
work could focus on the large array with its greater flexibility to control individual
sensing elements.

2.2.4 Interconnections

Connector pins for the IGAS chip are a commercial product, duPont Connector
Systems* 75503-003 preplated brass stock, with a tin-lead (Sn-Pb) solder coating. The
connectors are supplied on a continuous roll and are designed to clamp onto the edges of
the substrate, providing a mechanical bond to supplement the adhesive or solder joint.
Initially the pins were joined to the thick-film electrodes with silver-filled polymer
adhesives (Ablebond’ 943-1 and 71-1). We found that the strength of these adhesives
was inadequate to withstand repeated handling of the sensors, and there was evidence of
deterioration at the high operating temperatures. As a result, vapor phase soldering was
later chosen as the preferred method of attachment.

2.2.5 Sensor Fabrication
The entire fabrication process is summarized as follows:
1. Substrates are prepared for printing by boiling in a cleaning solution*for 5 to 10 min.

2. The substrate is placed in the screen printer and aligned with the mask, which is
formed on a 200-mesh stainless steel screen. Standoff is adjusted to 1.0 mm.

® Formerly Berg Electronics.
¥ Ablestik Laboratories, Gardena, Calif.
Crystal Clean, Aremco Products, Ossining, N.Y.
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Table 2.2. Electrical charicteristics of printed tin oxide inks

Sheet Sheet
Glass Firing resistivity resistivity
content temperature (MS/square) Sensitivity? (M£/square) Sensitivity?
(%)* C) at125°C at 125°C at200°C - - at 200°C
11 925 82+ 40 15 1.7+ 80 13
11 950 81.0+  56.0 3.6 65+ 30 130
11 975 400 120 21 130+ 3.0 - 100
20 925 400+ 140 13 53+ 26 140
20 950 180t 7.0 13 1.6+ 09 29
20 975 100+ 40 1.0 17+ 06 33
33 925 120+ 56 10 24+ 15 31
33 950 2710+ 7.0 - 1.0 1.2+ 05 3.1
33 975 270+ 7.0 10 1.6+ 1.0 29

3Nominal volume percent of glass master ink, balance tin oxide master ink.
bResistivity in air divided by resistivity in acetone vapor, with no catalyst applied.

Table 2.3. Electrical characteristics of printed zinc oxide inks

Sheet
Glass Firing resistivity o
content temperature (MS£3/square) Sensitivityb
%2 °C) at 200°C at 200°C

11 925 360+ 100 4.0
11 950 08+ 04 24
11 975 3.1+ 08 1.8
20 925 93.0+ 700 120
20 950 102 015 3.0
20 975 25 20 13
33 925 1000+ 490 2.0
33 950 1.7+ 07 1.5
33 975 190+ 790 1.7

master ink.

#Nominal volume percent of glass master ink, balance zinc oxide

bResistivity in air divided by resistivity in acetone vapor, with no
catalyst applied.
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Fig. 2.7. Scanning electron micrographs of three thick-film sensor materials, screen printed and fired
in air at 925°C.2 Top: SnO3 + 11% glass; center; ZnO + 11% glass; bottom: Fe203 + 11% glass (1 cm =

10 pum).
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Fig. 2.7 (continued).

Electrodes are printed with duPont 9910 (Au) or 9985 (Pt/Au) thick-film conductor
compositions at a squeegee speed of ~3 cm/s. They are allowed to level for 10 min
at room temperature and then dry on a hot plate at 100 to 150°C.

Firing is done in air using a belt furnace. The speed is set to give ~10 min at a peak
temperature of 925°C. Total time in the furnace is ~1 h.

Heaters are printed with duPont 1711 resistor composition, leveled, dried, and fired
as in step 4.

The liquid tin chloride/stearic acid mixture is brushed on and fired in air at 700°C for
5 min. This process is repeated several times to build up an adequate film thickness.
Alcohol solutions of precious metal chloride are then brushed on, dried, and fired in
air at 700°C (the palladium mixture was fired at 800°C). Alternatively, our
proprietary inks (containing the catalyst as a soluble organometallic compound) are
printed on and fired as in step 4.

Electrode pads are cleaned with a small fiberglass brush.

Leads are attached with conductive adhesive (silver-filled polyimide) and baked for
30 min at 150°C followed by 30 min at 275°C. Alternatively, leads are soldered
using 63/37 Sn-Pb solder cream, reflowed by a fluorocarbon vapor-phase soldering
unit (temperature of the vapor is 216°C).



22

23 SELECTION OF COMPOUNDS FOR OLFACTORY TESTING

Several compounds and mixtures of interest were tested, including water/alcohol;
hexane/alcohol and gasoline mixtures; essential oils, flavorings, and foods; moth balls
(naphthalene); and malathion, as an analog of chemical warfare agents. The mixtures
chosen are representative of a wide variety of substances encountered in chemical process
industries and particularly in food and fragrance production.!” Specifically, we examined
mixtures of water and ethanol because of their significance to the distilling and
pharmaceutical industries. Hexane/ethanol mixtures served as a paradigm for automotive
fuels. Fresh whole milk and spoiled milk were used to study the possible detection of
rancidity. Flavorings and essential oils were studied to determine the behavior of
complex phenols and esters and the complicating effect of large quantities of alcohol as a
diluent. Also, because water is such a ubiquitous substance and metal-oxide sensors are
known to be influenced by humidity, we intentionally ran some measurements with
water-saturated air as the carrier gas.

Of interest was discovering the characteristic effects of the many substances, how
sensitive the array would be for different concentrations of the water/alcohol and
hexane/alcohol mixtures, and whether the array was sensitive to the decomposition
products of dairy foods and fruits. Substances avoided were those likely to contain
mercaptans or some other form of sulphur, such as onions or garlic, which contain allyl
disulfide.!8 It is well known that sulfur is a poison to noble metal catalysts, which are
used with the Taguchi sensors and the IGAS chip and it is suspected that this
characteristic makes them inherently unsuitable for environments in which these
compounds are likely to occur.

All the examples to be discussed present some of the characteristics of sensor array
data that must be examined to determine the feasibility of applying pattern recognition
techniques for automatic identification of gaseous compounds in a system. It is therefore
desirable to characterize the ranges of response and individuality of the signatures, to
characterize the effect of water or other diluents, to define the limits of reproducibility,
and to understand the complicating effects of reactive solvents and poisoning agents.

2.4 TESTING CONDITIONS: DISCRETE SENSOR ARRAY

Most of the substances measured are volatile liquids at room temperature. Vapors
were introduced into the test chamber by passing air through a flask containing the liquid.
Air flow was nominally 340 1/h. Because of the baffle and because the system was
allowed to come to equilibrium, the response was insensitive to flow rate of the sample
gas. In the case of particularly volatile substances like alcohols, the sensors were able to
equilibrate before appreciable evaporative cooling of the vapor generator could take place
(~3 min). This characteristic is important, because temperature changes will affect the
vapor pressure and hence the concentration of the species in the gas stream.

After most exposures, the system was allowed to equilibrate with air. For most tests
this took several hours, but recovery from certain substances was incomplete after 16 h or
more. In general, tests were repeated to verify the reproducibility of the signatures. (In
some practical applications, a sensor would not normally be allowed to come to
equilibrium in air between measurements, and it is assumed that the sensor would stili be
sensitive to changes in the concentration of gases in a system).
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For the present work, we used the first configuration of the sensor array (identical
sensors operated at different power levels). We used the TGS 812 general-purpose gas
sensor, which is sensitive to a wide variety of organics and other reactive gases such as
ammonia and hydrogen cyanide. An initial bake-out of the sensors was done with all of
the sensors at full power (900 mW) for several days (Fig. 2.8). This is recommended by
the manufacturer and is related to baking off accumulated moisture and other
contaminants, %

2.5 TESTING CONDITIONS: IGAS CHIP

The test chamber for evaluating steady state response of IGAS sensor chips to
specific gases consists of a glass cell mounted to a glass-ceramic base (Fig. 2.9). The
base supports a 20-pin chip receptacle, which provides two power feedthroughs for the
chip's heater and 18 connections to a terminal box to measure the electrical resistance
between any two electrodes on the chip. Note that the terminal box is identical for both
the IGAS test cell and for the large array (Fig. 2.3). Power is supplied to the heater from
a controlled dc power supply.

The top of the glass cell is fitted with a stopper that secures the gas intake and
exhaust tubes. The intake tube is bent to the side of the chamber to avoid a direct flow of
gas across the chip, which would tend to cool it. This tube opens about 1 cm above the
base of the test chamber and provides a slow, diffused flow of the test atmosphere around
the chip to the gas exhaust near the top of the chamber.

The intake air, which constantly feeds through the chamber during testing, passes
through a dry, empty flask to establish the baseline resistance of the different areas of the
chip in air. This flask is removed and replaced with one containing a pure organic liquid
at room temperature. The air picks up vapor and carries it to the test chamber, exposing
the IGAS chip to the test gas.

To begin testing, the IGAS chip is mounted in the test chamber under an air flow
rate of 1.1 I/h. A potential of 15 to 20 V is applied to the heater on the chip, and it is left
overnight to reach thermal equilibrium and come to chemical equilibrium with the air.
The electrical resistance of the tin oxide between opposite pairs of electrodes is then
measured with a digital multimeter by addressing the appropriate points in the terminal
box.

Introduction of the test gas to the IGAS chip is accomplished by placing a flask of
pure organic liquid in line with the air intake, thereby causing the air to pick up the test
gas vapor and transport it to the chip without changing the flow rate of the air into the test
chamber. The IGAS chip is left under flowing air with gas vapor for 5 min to allow it to
come to equilibrium with the test atmosphere. The resistance between opposite
electrodes along the length of the chip is then measured.

The flask containing the pure organic liquid used for the first test is removed, and
an empty dry flask is inserted in its place. The IGAS chip is left under flowing air at the
same constant flow rate, and the power to the heater is left on throughout the test
procedure. The chip is left for ~30 minutes to return to equilibrium with air.

The resistances at the various points on the IGAS chip are measured after this
30-min recovery period, before the next sample gas is introduced and the test procedure
repeated.
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Fig. 2.8. Equilibrium values in air over time
for large sensor array. Sensors were operating at full
power (900 mW) in air. Note variability among
nominally identical sensors.

The plot of the resistance in gas divided by the resistance in air measured between
opposite points along the length of the chip is recorded for each gas tested. These
"signatures" are compared to show how well each IGAS chip can differentiate between
various similar gases (e.g., alcohols) and between gases of greater diversity (€.g., alcohols
vs ketones).

No attempt was made to determine the absolute gas concentrations, but it is likely
that relative concentrations reflect the vapor pressure of each species at room
temperature. This should be kept in mind particularly when dealing with mixtures. (For
instance, the vapor over a water-ethanol mixture will be richer in ethanol than the liguid
phase.) The reason for using this method of sample delivery was to better approximate
head space analysis in which the unknown sample is present in bulk.
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Fig. 2.9. Test cell for evaluating steady-state response of IGAS sensors to particular gases.!> The
electrical box, to measure the resistance between any two electrodes on the chip, was intentionally designed
to be compatible with any measurement system used on the large array. Power is supplied to the heater

through the coaxial cable (lower right) from a controlled dc power supply. Gases from a vapor generator
enter through the tube at the top of the flask.



3. RESULTS AND DISCUSSION

The bulk of experimental results was the generation of many signatures using a
wide variety of substances and several sensor arrays. These were tested under various
conditions, including complicating effects of mixtures. The signatures were evaluated in
terms of their uniqueness and reproducibility, which can be verified by inspection in
some cases. Various pattern recognition techniques were then applied to signatures that
superficially met these criteria. The goals of this task were: (1) to evaluate these
methods for their ability to satisfactorily distinguish different patterns and (2) to gain a
better understanding of just how "different” the patterns need to be. A related issue is
how different (or noisy) the same pattern can be and still be recognized by the algorithm.
It is clear that different algorithms are more appropriate for different problems and that
the complexity of the problem can be reduced if the universe of possible outcomes is
limited.

A study of the current literature dealing with sensor array development? indicates
what one expects to find, namely, that different sensors have different responses to a
particular gas. Algorithms used by Kaneyasu et al.% and Stetter et al.5 successfully
distinguished certain pure substances, but no attempt was reporied by these workers to
analyze mixtures. Also, in these studies few groups of similar compounds were analyzed,
so it is difficult to know how these algorithms might perform if they were expected to
distinguish among several ketones, for example. The reports also do not discuss day-to-
day variability or reproducibility of the signatures. Specific test cases are discussed
below to illustrate how these complications arise and their impact on the pattern
recognition problem.

3.1 ORGANIZATION OF DATA

Sensor array data were plotted in two ways. The discrete sensor array data were
usually plotted as a set of resistance measurements, one for each sensor. The resistances
are plotted along the y axis and the sensor number or position is plotted along the x axis.
(When looking at the graphs, it is important to remember that a low resistance
corresponds with a strong sensor response.) Typically, the resistance measurement was
taken after the system came to equilibrium (~3 to 5 min). For reference, ranges of "air"
values of sensors before the gas was introduced to the system are shown on some of the
plots. IGAS chip data were usually plotted as a set of ratios of resistance in gas to
resistance in air. Because the response of the discrete sensors in the large array covered
as much as four decades of resistance, it was appropriate to plot the data logarithmically.
Because of its lower operating temperature, the response of the IGAS chip was less
dramatic, and signature differences were better seen in a linear plot. (In the design of an
application-specific instrument, the particular sensor responses will largely determine the
front-end signal processing scheme of a detector circuit.) Examples of actual signatures
will be examined in the following sections to illustrate the important attributes of sensor
array data and evaluate the applicability of particular algorithms. The following
algorithms were examined: K-means and maximin-distance cluster analysis algorithms,
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and the Hamming, Hopfield, and Boltzmann machine paradigms on the ANSim ™"
artificial neural simulator. A discussion of these algorithms and data conversion methods
is located in Appendix A. A complete tabulation of the performance of each neural
network is presented in Appendix B in a form designed to show at a glance the relative
successes of individual algorithms.

3.2 CROSS-SENSITIVITY

Probably the most important questions to be answered about a sensor array are
whether it is selective and whether it can distinguish substances of interest in a mixture.
Many sensor arrays described in the literature have unique signatures for various
compounds, but most have no information about their abilities to identify compounds in
mixtures. Both sensor arrays used in this project were subjected to mixtures, and both
sensor arrays had some successes with mixtures. The large array of discrete sensors was
tested more extensively with mixtures, so more of the results described below are from
those tests.

An extreme example of cross-sensitivity or interference can be seen in the series of
tests in which the large sensor array was exposed to flavor extracts (Fig. 3.1). Initially,
most of the flavor extracts tested contained a relatively large amount of alcohol (36 to
88% in the samples examined). The alcohol matrix dominates the signatures;
consequently, the signatures of three commercially prepared flavor extracts (almond,
peppermint, and lemon) are very similar to that of ethanol, although there are some
secondary differences that may indicate a degree of uniqueness in the signature of each
mixture. Given the fact that the TGS 812 sensor was intentionally designed to be highly
sensitive to alcohol, it might be possible to magnify the differences with a different
combination of sensors or operating conditions. This situation serves to illustrate that no
one sensor array is sufficiently general that it can resolve all identification problems.

At the other end of the cross-sensitivity spectrum is the relatively benign effect of
water when a much more reactive substance such as alcohol is present (Fig. 3.2). In this
test the discrete sensor array was exposed to lemon extract (88% alcohol) carried in dry
air and the same extract carried in moist air (created by passing the air stream through a
flask containing water and then through a flask containing lemon extract). For all
practical purposes the resulting signatures are the same, indicating that the presence of
water vapor has little effect on the signature if one or more of the constituents of the
mixture is substantially more reactive than water. This result is encouraging, given the
ubiquity and variability of water vapor in most environments.

Between the two extremes of cross-sensitivity presented above are hexane/ethanol
and gasoline/ethanol mixtures. In our previous work we discovered, surprisingly, that
relatively small amounts of ethanol or methanol affected the signature of gasoline
(Fig. 3.3). The effect was relatively insensitive to the amount of alcohol present but was
different for each of the two alcohols.

In Fig. 3.4, a mixture of 2% ethanol in hexane was tested to compare with pure
ethanol and pure hexane. The resulting signature shows a resemblance to hexane at the
higher temperature sensors at which hexane gives the greater response and a resemblance
to ethanol at the lower temperature sensors at which ethanol gives the greater response.

*Science Applications International Corporation (SAIC), San Diego, Calif.
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This response is not unexpected; the response of any one sensor is the sum of its
responses to the individual components, and, because these responses are exponential,
they are dominated by the most reactive component at that temperature. Notice that the
response is nonlinear; at the lower temperatures (sensors 4 to 9) the response to
hexane/2% ethanol is very close to that of pure ethanol.

This interesting behavior suggests the possibility that enough information is present
in the combined signature to enable a pattern recognition scheme to be developed that
could identify both the hexane matrix and the small amount of alcohol by their individual
dominance of different parts of the signature.

Tests were performed on a set of hexane, ethanol, and hexane/2% ethanol signatures
using cluster analysis and neural network algorithms. Both cluster analysis programs
were able to sort ethanol and hexane signatures, but they were not able to form separate
clusters for the group of hexane/2% ethanol signatures (Tables 3.1 and 3.2)). (Note:
These data were taken at different times, and control of the actual mixture was not
performed, so it is possible that at longer times the ethanol had selectively evaporated,
leaving a residual mixture that would behave more like pure hexane.) In the main,
hexane/2% ethanol signatures taken after a longer time tended to be classed with the
hexanes, and signatures taken after only 1 min were classed with the ethanols. The most
successful neural algorithm for this problem was the Hamming network using derivative
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Table 3.1. Classification of hexane and ethanol signatures® by the
K-means algorithm

Composition of clusters
Hexane/
Ethanol Hexane 2% ethanol
No. of clusters = 2
Cluster 1 11 1
2 15 2 4
No. of clusters =3
Cluster 1 4
2 9 1
3 15 4
No. of clusters = 4
Cluster 1 4
2 7 1
3 2 1
4 15 3
No. of clusters = 5
Cluster 1 7 1
2 4 1
3 2 1
4 11 2
5 4

T otal number of ethanol signatures was 15; total number of hexane
signatures was 13; total number of hexane/2% ethanol signatures was 5.

data sets (Table 3.3). A network trained with representative signatures from three
alcohols (ethanol, methanol, and isopropanol) and two alkanes (hexane and heptane)
consistently recognized all ethanol signatures and all hexane signatures. Of five
hexane/2% ethanol signatures presented to this network, two were classed with ethanol,
two with hexane, and one was classed as both hexane and ethanol. The Hamming
network, trained on magnitude data, also easily classed pure ethanols and hexanes but
was confused by the hexane/2% ethanol signatures. The Boltzmann network, trained
with derivative data, performed reasonably well with classification of pure hexane and
ethanol signatures, but also confused the hexane/2% ethanol signatures with other
compounds.

It must be kept in mind that in a real sensing problem, if the possibilities are quite
limited and known at the outset, the problem might not require pattern recognition at all.
Consider again the signatures of gasoline and alcohol mixtures (Fig. 3.3). If a sample is
taken at the gas pump, it must be one of these three substances (it cannot possibly be
water, ammonia, etc.). For this problem, a nine-element array is not necessary; if the
curves are reproducible, any two sensors ought to be enough. Sorting the possible
responses into at least two or three categories can be done with a simple analog or digital
circuit (Fig. 3.5). (Sorting into more than two categories will depend on the customer's
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Table 3.2. Classification of hexane and ethanol signatures? by the distance
maximin-algorithm

Composition of clusters
Hexane/
Ethanol Hexane 2% ethanol
Threshold = 0.50
Cluster 1 15 9 5
2 4
Threshold = 0.33
Cluster 1 15 4
2 1
3 3
4 8 1
5 1
Threshold = 0.25
Cluster 1 15 3
2 1
3 3
4 7 1
5 1
6 1 1

#Total number of ethanol signatures was 15; total number of hexane
signatures was 13; total number of hexane/2% ethanol signatures was 5.

Table 3.3. Classification of hexane and ethanol signaturcs? by
the Hamming network

Network assignment
Hexane/
Ethanol Hexane 2% ethanol
Input Pattern:
Ethanol 15
Hexane 12
Hexane/

2% ethanol 2 2 1
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Fig. 3.5. Gasahol detector circuit in its most elemental form. It might be
necessary to amplify bridge output to light LEDs; likewise, it might be necessary o
add sensor circuit(s) for redundancy and to compensate for concentration.

goal: One might want to avoid any fuel containing alcohol, whereas another might
tolerate ethanol but not methanol in the gasoline.)

3.3 UNIQUENESS

Implicit in any pattern recognition scheme is the assumption that signatures are
unique. But because this is a catalytic oxidation process, 1’ it is reasonable to expect
families of related organic compounds to have similar signatures. This proposition was
tested with the IGAS chip in both the thermal gradient (Fig. 3.6) and the distributed
catalyst (Fig. 3.7) designs.2 Not surprisingly, similar compounds do indeed have similar
signatures. This phenomenon can also be observed in the large sensor array with hexane
and heptane (Fig. 3.8).

The neural network algorithms often confused signatures of chemically similar
substances, such as heptane and heptane or ethanol, methanol, and isopropanol, but they
almost always at least classified all members of one group together (refer to Appendix B).
The Hamming network always correctly identified the normal hydrocarbons as normal
hydrocarbons, and in most cases successfully distinguished hexane from heptane. It was
slightly more successful identifying individual alcohols. The Boltzmann network usually
grouped the alcohols successfully as alcohols, but it had difficulty with the normal
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hydrocarbons, although with water as part of a derivative training set, normal
hydrocarbon group classification was reasonably successful. The Hopfield network
performed poorly with one particular data set, but could recognize the alcohol group with
the magnitude data sets.

When training vectors included water signatures, some unhappy consequences were
observed in the Boltzmann and Hopfield networks trained with magnitude data. Water
signatures, though dramatically different from those of the other substances, were not
identified as successfully. In the same tests, the Boltzmann network failed miserably
with the normal hydrocarbons—it could not even identify all of its own training vectors.
One explanation for the poor performance is that the addition of the water vector, with its
much greater magnitude, looked a lot different from the collective alcohol and normal
hydrocarbon signatures, which share many of the same bits; consequently, differences
between their signatures were reduced in significance to the network. This factor
suggests the importance of training the network with equally "different” patterns as much
as possible. ‘

Although uniqueness of signatures is considered desirable, there might be
situations in which the signature of an unknown substance has some similarities to a
known substance that could provide some chemical information. The signatures of both
oil of clove and oil of wintergreen show an interesting increase in sensor array response
at the middle temperature zones (Fig. 3.9). Perhaps this response is due to the benzene
ring present in both compounds. In fact, the signature of naphthalene, another aromatic
compound, also parallels oils of clove and wintergreen in the intermediate temperature
range (sensors 5 to 7) (Fig. 3.10). This fact suggests the possibility that one part of a
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signature is more important or contains more chemical information in some cases than
another. One might, therefore, consider analyzing only certain parts of the signatures or
possibly weighting some points. Although these kinds of sensors would not have the
distinguishing power of a mass spectrometer or a gas chromatograph, there are
applications in which their ability to sense a trend, such as that described above with the
phenolic compounds, would be very useful.

3.4 EFFECTS OF CONCENTRATION

In many chemical engineering situations it is important to know quantitatively the
concentration of one or more components when the identities of all components are
known. It has already been shown that the signatures of hexane/ethanol mixtures do not
follow a rule-of-mixing behavior. To explore further the behavior of two component
mixtures over a wider concentration range, water/alcohol solutions (0, 10, 20, 50, and
100% ethanol) were tested (Fig. 3.11) in the large sensor array. It was observed that the
signature of each mixture had virtually the same shape, but the absolute value of the
responses was nonlinear with composition. The 50% and the 100% ethanol gave
virtually identical responses; concentrations of ethanol between 50% and 100% would
therefore be difficult to distinguish. The response to the 10% ethanol mixture is about

aThe network was trained with derivative data sets of three different alcohols, and
two different normal hydrocarbon signatures.one-fourth the response to pure ethanol
(relative to the response to water), and the response to 20% ethanol is about one-half the
response to pure ethanol.

Generally, the cluster analysis algorithms gave expected results for the data; that is,
the more variable and distant water signatures formed groups opposed to one or two
groups of signatures containing any ethanol (Tables 3.4 and 3.5). Without selectively
tuning the threshold value of a particular grouping by the maximin-distance algorithm,
the nonlinear response of the array poses a problem for distinguishing smaller
concentration differences. The K-means algorithm with five clusters performs better, as
shown by the separation of pure alcohols (and the high-concentration ethanol/water
signature) from the lower-alcohol signatures. One of the 10% ethanol/water patterns is
grouped with pure ethanol, but the reading for this particular signature was taken earlier
than the other 10% readings and is considered a transient response. Better results might
be achieved by converting the data to logarithms before processing, although the metal-
oxide sensors that were used will always exhibit a more variable and less sensitive
response to high concentrations of water, and special techniques might have to be
employed to deal accurately with mixtures at the less-reactive end of the spectrum. This
insensitivity leads to the consideration of replacing some of the sensors in the array by
others that handle water vapor measurements with consistency.

Little attention was given to applying the neural network algorithms to this kind of
data because it was felt that the curve shapes of mixtures between the pure water and pure
ethanol curves were too similar to provide useful information. Success was declared if
the signature was classed as water when the input pattern was more water than alcohol
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Table 3.4. Classification of water and ethanol signatures®by the
K-means algorithm

Composition of clusters

100% 50% 20% 10% 100%
Ethanol Ethanol Ethanol Ethanol Water

No. of clusters = 2

Cluster 1 2 1 1 4
2 5
No. of clusters = 3
Cluster 1 2 1 1 4
2 3
3 2
No. of clusters = 4
Cluster 1 2 1 1
2 1 3
3 2
4 3
No. of clusters = 5
Cluster 1 1 1
2 1 1
3 2
4 3
5 1 4

¥nput patterns consisted of 2 each 100% ethanol, 1 each 50% ethanol, 1 each
20% ethanol, 5 each 10% ethanol, S each 100% water.

and classed as alcohol when the input pattern was 50% alcohol or greater. In this
approach, the networks trained with derivative data sets were more successful than the
ones trained with the magnitude data. This fact might indicate that the neural networks
can successfully distinguish subtle changes in slope caused by changes in mixture
concentration.

A suggested approach for increasing the success of using neural networks for
concentration analysis is to train the networks with patterns for specific concentrations
and to use a training vector, which is as large as practical, to increase resolution of
individual patterns. A characteristic of the Boltzmann and Hopfield networks as
implemented on the ANSim™ program, namely the intermediate “gray” scale candidates
that appear as next likely choices, might be exploited to interpolate the concentration
value.

3.5 REPRODUCIBILITY

Another implicit assumption is that the sensor array is stable enough over the long
term so that once a known signature is learned, the array can produce that signature any
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Table 3.5. Classification of water and ethanol signatures? by
the maximin-distance algorithm

Composition of clusters

100% 50% 20% 10% 100%
Ethanol Ethanol Ethanol Ethanol Water

Threshold = 0.50

Cluster 1 2 1 1 5 2
2 3
Threshold = 0.25
Cluster 1 2 1 1 5
2 1
3 3
4 1
Threshold = 0.10
Cluster 1 2 1 1 5
2 1
3 1
4 1
5 1
6 1

Anput patterns consisted of 2 cach 100% ethanol, 1 each 50% ethanol, 1 each
20% ethanol, 5 each 10% ethanol, 5 each 100% water.

time it is exposed to the same substance. Signatures of ethanol collected sporadically
over 9 months' time (Fig. 3.12) seem at first glance to have significant differences.
However, examination of this series of patterns with some of the derivative data networks
yielded surprising results. When the signatures were converted to a more useful form
(Appendix A), the network, after training with randomly selected signatures, consistently
recognized them as ethanol.

Reproducibility can also be looked at with regard to pattern recognition behavior.
In some of the Boltzmann and the Hopfield networks, the final response does not
converge to the same answer every time. This disparity occurred most often within
groups of like compounds; for example, sometimes when confronted with a hexane
signature, the Hopfield network would converge to hexane, other times to heptane, and
convergence to both at once also occurred. This is a known feature of neural network
behavior,2!especially when the network becomes saturated or the training vectors have
too many similarities. This might be an indication that the training vectors or the sensor
array need to be redesigned or that the front-end signal processor should be altered to
give more distinct signatures for the different substances.
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3.6 DYNAMIC BEHAVIOR

All signatures presented so far represent steady state conditions in which the
measurement is made after the sensor array has been exposed to the test atmosphere long
enough for the signature to become reasonably stable. The dynamic response to a
changing atmosphere is generally not well understood but is, nonetheless, quite important
for real applications. First, one would like to know how long it takes the array to form a
recognizable signature upon exposure to a sample. Second, Siegel® suggested that
dynamic measurements might supplement the steady state signatures of compounds that
are similar structurally and allow them to be distinguished. A limited number of dynamic
measurements were done primarily to explore the first of these two issues. Training
vectors consisting of patterns assumed to be steady state responses were tested against
series of readings taken at prescribed times. The Hamming network consistently
performed well for both derivative data and magnitude data when only alcohols and
normal hydrocarbons formed the training vectors. The Boltzmann network, trained with
the five hydrocarbon training vectors, did fairly well using the derivative data, and it also
performed well with magnitude data when trained with the additional water signature.
Usually the true identity of the signature was determined by the fourth or fifth minute that
the air stream carrying the gas had been flowing through the sensor array. With the
Hamming network, there was very little confusion during the entire time period.

The potential usefulness of Siegel's proposition is shown by the dynamic responses
of the large array to methanol and isopropanol (Figs. 3.13 and 3.14). Although the
signatures of these two compounds have many similarities and are misidentified by some
of the neural networks, their dynamic responses are much different. Note that for
isopropanol the resistance of sensor 4 decreases with time during the first 4 min, whereas
for methanol, the resistance of sensor 7 increases over the entire 20 min of exposure.
Obviously, the dynamic behavior is a potential source of additional information to
enhance the uniqueness of the signatures.
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4. CONCLUSIONS

It was found that methodologies from several disciplines can be combined to form a
new field of development devoted to solving some important and potentially wide-
ranging gas sensing problems. The determination of concentrations and, more
importantly, the analysis of mixtures by using metal-oxide sensor arrays coupled with
pattern recognition schemes were shown to be feasible. The conclusions in this study can
serve as a basis for the development of a selective chemical detection instrument that
does not pretend to replace sensitive and general-purpose instruments such as gas
chromatographs and mass spectrometers, but discovers its niche in specific problem areas
where small size, low cost, portability, field operation, low power, and/or rapid response
time are desirable characteristics.

Specific conclusions can be summarized as follows:

1. An array of different chemical sensors can provide significantly more detailed
information about its environment than can a single sensor.

2. A simple experimental sensor array can be constructed with discrete conventional
sensors operated at different temperatures. Because different compounds react on
catalytic surfaces with different characteristic activation energies, the collection of
responses for a given substance can form a recognizable signature.

3. A miniature sensor array can be constructed by hybrid circuit or other techniques to
minimize the overall size and power consumption. This concept was demonstrated
in a small device with a continuous gas sensing film with varying surface catalytic
properties. By measuring responses at different points along the film with an array
of electrodes, one can obtain electrical signatures characteristic of particular gases.
Variations in catalytic properties from point to point on the miniature sensor can be
achieved by establishing a thermal gradient, by distributing several different
catalysts, or both.

4. Gas-sensitive film can be deposited by several methods, including by screen
printing of fritted oxide mixtures or the decomposition of tin chloride. The relative
effectiveness of the catalysts with respect to oxidation of organic compounds
studied here, in decreasing order of effectiveness, are: platinum, rhodium >
ruthenium > palladium > iridium, osmium.

5. Much work remains to be done in the development and optimization of the sensor
arrays themselves, particularly with regard to power consumption, thermal
management, and materials stability.

6. No matter what technique is used to physically manufacture the sensor array, to be
useful the output of the array must be deconvoluted by matching the pattern of
responses to those produced by known substances.

7. In sensors examined thus far, the resulting signatures were similar within the
functional group; that is, the ketones exhibited similar responses that were distinct
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from alcohols and normal hydrocarbons, and the hydrocarbons and alcohols had
similar responses within their groups. The behavior of these compounds is more
strongly influenced by the presence or absence of reactive groups such as CO or OH
than by the hydrocarbon chain length. Signatures of other substances, such as
phenolic compounds, have similar features that appear to be related to the chemical
structures they have in common.

The signature of a mixture appears to be the superposition of the signatures of its
constituents, but because the effect is exponential, the signature of the more reactive
component will dominate. Therefore, if the substance that we seek to detect is the
more reactive component, we will enjoy enhanced sensitivity (e.g., alcohol in
gasoline). On the other hand, diluents such as alcohol can completely mask more
subtle components such as essential oils.

Water has a relatively weak effect on the sensor array. This characteristic has two
implications: first, humidity has little effect if we are looking at substances that are
much more reactive than water; and second, if the array is properly configured, it
might be possible to study flavor notes in coffee or tea.

Several pattern recognition approaches have been examined to determine their
applicability to gas sensor arrays. Each technique was found to have its inherent
strengths and weaknesses. No one technique was the best for all cases studied. The
difficulty of the analysis is directly related to how much is known at the outset
(number of possible species present, expected concentrations, ranges of responses,
etc.).

Neural networks, as used in this study, have been successfully applied to the
identification of gas signatures. The poorer performance of the Hopfield network
was probably due to the small size of the pattern vectors, which shared many bits in
common. This problem might be overcome by increasing the number of bits in the
patterns. The Boltzmann network, a better performer, not only returns a "best”
choice, but also indicates which patterns are "next best" by gray-scale shading.
These intermediate values might be useful in interpolating gas concentrations. The
Hamming network was the best performer for signatures input more or less directly
(magnitude data). This performance is encouraging because it means a much
simpler front-end signal processor for an actual device. This network also had some
success with the correct identification of more than one compound in a mixture
(using derivative data), and this fact indicates some exciting prospects for the future
analysis of mixtures. Much more work is required in data conversion approaches
and network tuning to realize the full potential of neural networks for olfactory
analysis.

The clustering techniques had success in separating hexane signatures from ethanol
and high concentrations from low concentrations in ethanol/water mixtures. These
tests, too, were of a preliminary nature, and much remains to be done to fully
appreciate their power in gas signature analysis. Either algorithm could be
successfully applied to the analysis of concentration.



13.

14.

47

Preliminary tests on alcohol/gasoline mixtures hold the promise that this technology
can indeed be applied to important industrial problems. In fact, the problem of
detecting alcohol in gasoline can be solved by a two-sensor array in which each
sensor has a different set of responses to the possible gasoline/alcohol
combinations.

Both the sensors themselves and the pattern recognition engines must ultimately be
application specific. No one system will be general enough to classify completely
unknown mixtures from an infinite universe of possibilities; conversely, if relatively
simple problems can be identified, the classification procedure can be more easily
developed. Each algorithm studied can conceivably be implemented as an
application-specific integrated circuit.
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APPENDIX A
PATTERN RECOGNITION METHODOLOGY

Much of the historical and current effort in pattern recognition design! has focused
on image processing and speech and language analysis, not olfactory problems.
However, the observer must make sense of gas sensor data through measurement
comparisons and graphical means, and these do, in fact, constitute "scenes"” of
information. In light of this fact, many pattern recognition schemes become likely
candidates for automatically processing these data, and the underlying chemical or
physical principles of the gas sensor response are of no consequence 1o their design or
operation. Collectively, the mathematical and technical approaches to chemical data
analysis are called "chemometrics."? Many of these are intensely statistical probabilities
and can involve lengthy computation time,? so the use of these for this study was rejected
on the grounds that they would be impractical for eventual use in application-specific
hardware.

The approach in this study was to initiate the development of a general
methodology based on the theory that selected pattern recognition techniques can be
applied to any array that gives signatures. It is assumed that the sensor input to the
pattern recognition system would be standardized in some way so that a general pattern
recognition test bed could be used to define the parameters of an application-specific
identification system. A coordinating function of the test bed would be to help eliminate
or add sensors to get a "good" solution for a selected classification problem. (Hopfield*
says that from an engineering or economic standpoint what we really desire is not the
"best" solution, but a "good" one that works.) The defined parameters could then be used
in real-time software-controlled systems, embedded microprocessors, or in an
application-specific integrated circuit.

As with any chemical analysis system that relies on pattern recognition, the
approach requires that the sensor array be "calibrated" by exposing it to known
compounds, thereby developing a library of signatures. Unknown samples would then be
identified by the signature recognition capabilities of the network, which would be
chosen for its ability to analyze such signatures in real time. The application-defined
system or network of the necessary size could be implemented as a single very large-scale
integration (VLSI) chip or programmed in a microprocessor.

Just as one sensor array will not satisfy all applications, that one pattern recognition
method likely will not work for every sensing problem or every sensor array; the
recognition system will have to be customized, too. However, it will be easier to make
successive models once the first one has been made.

Some existing pattern recognition tools were examined for their usefulness in
resolving signatures collected from the gas sensor arrays. Two cluster analysis
techniques, the K-means and maximin-distance algorithms were chosen to compare with
results given by Hamming, Hopfield, and Boltzmann machine neural network simulation
algorithms. (No claim is made that these techniques are the only ones applicable or that
they are necessarily the best solutions for this data.) Resistance readings from the sensor
arrays could be input directly in the cluster analysis techniques, but the neural networks
required a scene, or binary picture, as input, and so a preliminary transformation of the
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data had to be devised. Descriptions of the pattern recognition algorithms and data
conversion methods follow.

A.1 CLASSICAL METHODS: CLUSTER ANALYSIS

Once plotted, the signatures of gas sensor data appear to be separable by clustering
techniques (refer to Tables 3.1, 3.2, 3.4 and 3.5). Cluster analysis techniques are not
unknown to the analysis of chemical data.’ Also, Allgoodé suggested that the gas sensor
array data would be easily processed by either the K-means or the maximin-distance
algorithms.

For this study, several data sets were processed by K-means and the maximin-
distance algorithms as implemented by Allgood.S These tests were of a preliminary
nature intended to demonstrate the ability of the algorithms to separate the data into
logical groups.

The K-means algorithm (pp. 94-97 of ref. 7) forces the data sets into the number of
groups specified by the designer. That is, if the designer specifies four groups, the
algorithm iteratively processes the data sets so that the members of each group are closer
to their calculated cluster center than to the cluster center of any other group. Results of
the K-means processing for the hexane/ethanol data and the water/ethanol data are given
in Tables 3.1 and 3.4. One situation that occurs as a result of the relatively large variation
of the water responses is that some of the water signatures will be grouped by themselves.
The designer of a system might wish to scale the data logarithmically to minimize this
situation, or to recognize that certain groups will have to be lumped together as one. In
an actual application, a test bed could define the cluster centers for the possible outcomes,
and these could be programmed into the application-specific hardware; alternatively, the
K-means algorithm could be implemented as part of a calibration procedure in the
instrument, so that any effects of sensor drift could be minimized.

The maximin-distance algorithm (pp. 92-94 of ref. 7) as implemented by Allgoods
determines the number of clusters formed by use of a threshold value, which gives a
maximum distance that an individual member of the group can be from the calculated
cluster center. The designer specifies the threshold value to be tolerated, and the
algorithm iteratively processes the data sets until all groups are defined. Results of using
this algorithm with the hexane/ethanol and the water/ethanol data are given in Tables 3.2
and 3.5. Effects of the larger variation of water signatures and to a lesser extent the
hexane and alcohol signatures are noticed in the formation of more than one group
containing different signatures of the same compound (the same thing is noticed with the
K-means algorithm). This technique could be incorporated into an instrument design in
the same way as the K-means algorithm. Depending upon the chemical substances
involved, clusters might be assigned different threshold values to accommodate variable
shifts in sensor responses to a particular compound.

A.2 NEURAL NETWORK DESIGNS

It seems reasonable to apply the concept of neural networks as a means of pattern
classification for gas sensor arrays. Several features of neural networks, summarized
recently by Jorgensen and Matheus,? promise advantages over the chemometric approach.
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1. Recall of information learned by the system is highly resistant to hardware failure
(loss of a memory bit or two in traditional computers can be catastrophic).

2. The abstraction of data occurs automatically as a byproduct of learning.
3. Pattern recognition occurs in parallel and reconstructively.

4. The neural networks can exhibit adaptive features, which select and generate their
own pattern features from exposure to the inputs.

5. Neural networks can capture patterns occurring both in time and space and operate in
discrete or continuous representation modes.

The attributes mentioned above could lead to features in a pattern recognition system that
are not possible now. The reconstructive capability of a neural network should be much
more forgiving of sensor drift and missing information in a gas signature; alternatively, or
in addition, the neural network, programmed to behave dynamically, could overcome the
drift problem and information loss. Also, an analog neural scheme, because of its ability
to handle parallel computations rapidly,* might successfully address the identification
problem in the overlapping patterns of gas mixtures.

Another reason for choosing neural networks as the basis of a pattern recognition
system is because many workers, such as Verleysen et al.,?are designing and building
neural networks in VLSI chips. This type of signal processing device is precisely the sort
of component needed in a low-power and portable gas sensing system. It is a small, fast,
and low-power device. (A Hopfield network, implemented in a VLSI chip, was proposed
by Verleysen and co-workers. The chip is 64 mm?, consists of 128 neurons that converge
to a stable state in 150 ns, and dissipates ~100 mW.)

Several paradigms are available for testing and evaluation in the SAIC ANSim™
Artificial Neural Systems (ANS) Simulation program, version 2.3. The program consists
of two parts, the ANSpec™* compiler for developing application code of the supplied
ANS paradigm, and the ANSim™ graphics-oriented, menu-based program for the user to
develop ANS models based upon ANS paradigms. The ANSim™ program allows for
network training, monitoring, and storing for later use. Available paradigms include
Adaptive Resonance Theory-Gray Scale, Back Propagation, BP Shared Weights,
Hopfield, Boltzmann, and Hamming networks. The ANSim™ system hardware used in
the present work consists of an IBM AT clone with an SAIC Delta Floating Point
Processor™t (22 MFlop AT bus compatible processors). Microsoft Windows™#is
required for the operation of the user interface.

The Hopfield, Boltzmann, and Hamming networks were chosen because they work
as autocorrelators that retrieve the patterns most like the input pattern presented to them.
The operation of these networks also most closely fits the conception of how a real-time
gas sensor array detector would work; that is, the stored patterns would be the possible
choices with which the input pattern would be compared. All of these networks are
trained with a set of training vectors that consist of bit patterns. Individual bits are valued

*Science Applications International Corporation, San Diego, Calif.
*Science Applications International Corporation, San Diego, Calif.
Microsoft Corporation, Redmond, Wash.
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at either 0.5 or 0.5. In this study, the three networks were trained with the same sets of
training vectors.

Each of the networks has slightly different characteristics that might render one or
another more appropriate for a specific kind of gas sensor data, but this difference had to
be determined experimentally. The basic network is the Hopfield network,!° which
consists of units (neurons) that are connected to other units by weights determined during
the training session by autocorrelating the input patterns. The state of the neuron is
affected by its hard threshold nonlinearity interacting with its weighted connections to the
other neurons. When trained, the network responds to an (unknown) input pattern by
synchronously updating the connections made by the input in the weighted network until
the network converges to a minimum energy state. The final state may not depict one of
the original training patterns if the training patterns share too many bits in common. The
Hopfield network requires the most care in training pattern configuration to ensure a
stable and accurate network.

The Boltzmann machine network!0 represents an improvement to the Hopfield
network by an annealing process analogous to the method of strengthening metals. A
temperature is identified during each cycle through the network. A unit has an energy
value equal to the weighted sum of all its connections to other neurons and will remain
stable according to the Boltzmann probability if its energy is very high or very low at
high temperature cycles of the system. It switches states if the cycle temperature is high
and it has a midrange energy state. As the system goes toward lower temperatures, the
fluctuations become infrequent and a minimum energy state is achieved. An annealing
schedule consists of several cycles run at different temperatures to drive the network into
a deep local minima.

The Hamming network!9 is also an improvement to the Hopfield network. The
Hamming distance is used to compute a score between the input to the network and each
of the training vector sets in the network. The network is then cycled until it converges
on one of the training set patterns. This network always returns one of the patterns of the
training set, unlike the Boltzmann and Hopfield networks.

A.3 DATA CONVERSIONS FOR NEURAL NETWORK PROGRAMS

The main strategies of data conversion were to (1) make the patterns different
enough to be distinguished by the network and (2) keep the pattern size fairly small (to
minimize processing time and system size). Upon examination of the raw data,
differences are fairly obvious to the observer, but to the neural networks, the general
trends between one signature and another might not appear all that different. The neural
networks used require the input in the form of a bit pattern of -0.5 and 0.5 values. Size of
the bit pattern matrix is defined by the user.

Two types of data conversions were performed. In the first, called magnitude data,
the base-ten logarithms of the resistance values were plotted ina 9 x10ora 9 x 16 grid
(Fig. A.1). Columns were ordered by sensor number, left to right; rows corresponded to
sensor response, as indicated. In general, only one block per column was filled in,
although in training vectors several patterns were added together in hopes that variation
and drift in signatures could be better accommodated. In the second type of data
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Fig. A.1. Magnitude data plots for four ethanol signatures (left) and one ethanol signature (right).

conversion, called derivative data, the bit pattern was determined by calculating the
slopes between adjacent sensor responses and plotting the base-ten logarithm of these in
8 x 10 or 8 x 14 grids (Fig. A.2). If the slope is negative, the signature is plotted as a
histogram beginning at the middle of the grid and extending down a length equal to its
magnitude. If positive, the histogram will start in the middle and extend upward.

Four sets of training vectors were constructed. The first two are of magnitude data,
shown in Figs. A.3 and A.4. The first of these has isopropanol, methanol, ethanol,
heptane, hexane, and water training vectors; the second is a scaled-down version of the
first that does not include the water vector. There are two sets of training vectors
containing derivative data, shown in Figs. A.5 and A.6. As with the magnitude training
sets, one includes the water profile and the other does not. (Note that water signatures, as
seen in Sect. 3, can be 2 to 3 decades higher than those of alcohols and normal
hydrocarbons, and the resulting bit patterns are dramatically different from those of the
other substances.) As much as possible, the training vectors were selected from
signatures that appeared to be representative of the particular compound.
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APPENDIX B

NEURAL NETWORK RESPONSE DATA

Figures B.1 through B.12 give results of each neural network for each of the four
training sets. One can consider two levels of success: Complete success would be
indicated by all correct identifications of the actual compound (all points would lie along
the diagonal), whereas partial success would be indicated by correct placement of an
unknown into at least its correct chemical class (all points are within the large bold boxes
on the diagonal). Correct identification of the network for its own training vectors is
probably a minimal expectation of performance. For this reason the box corresponding to
the training vectors is also highlighted.

The solid-black circles in the boxes represent the network's classification of an input
pattern every time that pattern was presented to the network. Open circles indicate that
the classification was sometimes chosen, but not always. (The network converged to
different answers when presented with the same signature more than once.) The dashes
represent a less-than-positive classification, and this was indicated in the network
simulation program by an intermediate gray-scale value. (The gray-scale value had to lie
closer to a "yes" response for the identification in question than a "no" response.) Some
network classifications simultaneously returned more than one positive response to an
input pattern. (For this reason, the number of solid circles in some horizontal rows is
greater than the number of different signatures for those compounds.)

The number of input patterns for a particular compound is shown in parentheses to
the right of the compound name.

The first three figures (Figs. B.1, B.2, and B.3) show the responses of each network
trained with the five-element magnitude data set. The second three (Figs. B.4, B.5, and
B.6) give the responses of each network to the six-clement magnitude data set. The third
three figures (Figs. B.7, B.8, and B.9) are the responses of each network to the five-
element derivative data set, and the last three (Figs. B.10, B.11, and B.12) indicate the
network's response to the six-clement derivative data set.
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