
3 4 4 5 b 0 3 3 4 8 2 7 0

.

Engineering Physics and Mathematics Division

Mathematical Sciences Section

THE EFFECT OF MULTIPROCESSOR RADIUS ON SCALHNG

Patrick N.:. Worley

Oak Ridge National Laboratory
Mathematical Sciences Sechion

Oak Ridge, T N 37834-8083
P.Q. BOX 2U091 Rldg. 9207-A

Date Published: June, lW0

Research was supported by the
Applied Mathematical Scenms Research Program

of the Office of Energy b e a r c h ,
U.S. Departmmt of Energy.

1 I

Prepared by the
Oak Ridge Naticnal Laboratory

Oak Ridge, Tennessee 37831

Martin Marietta Energy Systems, h e .

U.S. DEPAKI'MENT OF ENERGY
under Contract No. ~ E ~ ~ - ~ ~ ~ 4 ~ ~ ~ ~ ~ 0 ~

operated by

fQP the

3 4 4 5 b 0 3 3 4 8 2 7 0

..
Contents

1 Introduction 1

2 Assumptiom
2.1 Multiprocessor assumptions .
2.2 Algorithm model .
2.3 Problem assumptions I-V .

3 Algorithm-dependent results
3.1 Information-theoretic lower bounds .
3.2 Example communication bound algorithm .

4 Problem-dependent results

4.1 Communication bound problem .
4.2 Problem-dependent bounds .
4.3 Sufficient conditions for a problem to be communication bound

5 Sealing results
5.1 Problem assumption VI .
5.2 Problemscaling bound .
5.3 Effect of r(p) Q D. the asymptotic growl. h of the pasallel cost

7
7

10

12
12
13
17

19
19
28
20

6 Condaisions

...
111

22

T H E EFFECT OF MULTIPROCESSOR R.ADIUS ON SCALING

Patrick H Worky

Abstract

In earlier work, it was established that, for a large claw of linear partid dif-
ferential equations (PDEs), increasing the problem size necwarily increases the

execution time, independent of the algorithm and the number of processors used to

salve the problem. In this paper, the analysis is extended to take into ~ C C Q U T I ~ the

effect of the radius of the multiprocmmr i nterconnection network on the growth in

the execution time.
Define r (p) to be the ~ i n i ~ ~ u ~ radius over all subsets o f p processors in a mud-

tiprocessor. An in~Qbrmation-theoTetic analysis is used to show that ~ (p) determines
a lower bound on the comunics tbn cost of a parallel dgo"rthm, and that thk
in turn determines a lower bound on the parallel execution time. Assume that
r@) 2 /3 . p7 - p for positive coaskants @, y, and p ftor a given multiprocessor. For
example, this type of lower bound on r (p) holds for a ~ ~ ~ ~ ~ ~ , ~ ~ ~ o ~ ~ ~ s ~ ~ whose inter-
connection topology is a k-dimensicma1 wray. It i s then established that, for the
given cIms of PDEs, the time spent on iuterpsocemo~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ a ~ i o ~ will be the
dominant constraint on the perforinanice ~of optimal dgorithm when th t grnblerrs
and the multiprocessor are large. arcover, as the g~obiern and the md&iprocessor
increase in aize, it, is shown that the wsyai~ptotic increase in the parallel execultinrr
time will be determined by the ~ o ~ ~ ~ ~ ~ i ? ~ ~ c ~ t ~ o n cost and not by the ccsmputatiornd
requirements. The restriction to linear P DlEs is not nec~ssilsy, and siariilar results
can be obtained for many problem in scientific comptatiorz.

V

1. Introduction

Current research into parallel processing and multiprocessors is driven by the need t o increase

computing power. Two goals are achieved by increasing computing power: more problems can

be solved in a given interval of time, and problems whow solutions have heretofore been too
costly to calculate can be solved.

In this paper we examine an issue related to how effective multiprocessors are at achieving

these goals, namely, the h u e of scaling. A rnultiproceswr scales if increasing the number of

processors enables it to solve larger problems efficiently. A lack of parallelism in the algo-

rithms or high communication cost can prevent this. In previous work [23], 1241, we established

that, for a large cfass of linear partial differential equations (PDEs), increasing the problem

size (unboundedly) necessarily increases the execution time (unboundedly), independent of the

algorithm and of the number of proceasors uaed to solve the problem. In this paper, we ex-

tend this analysis to describe the effect of the radius of the interconnection network of the

multiprocessor on this growth in the execution time.

Define r (p) to be the minimum radius over all subsets o f p processors in a multiprocessor,

and assume that r (p) 2 f l pr - p for positve constants p, 7, and p . For example, this
type of lower bound on r(pf holds for a multiprocessor whose interconnection topology is a

k-dimensional array. Then, for the given class of PDEs, we show that the time spent on

interprocessor communication will be the dominant constraint on the performance of optimal

algorithms when the problem and multiprocessor sizes are large. Moreover, we show that the

asymptotic rate of increase in the parallel execution time as the problem size and the number

of processors increase is determined by the cotnmunication c a t and not by the ~ o ~ ~ ~ ~ t a t ~ o ~

cost.

Many authors have diseuwd the effect of the intercornection xnetwork of a multiprocessor

on the communication costs incurred when using a multiprocessor [2], [3], [12], [Z5], [19]. Sim-

ilarly, other authors have discussed the effect of communication costs on the execution time of

parallel algorithm for high level descriptions of discrete problems [l]) [7]> for specific discrete

problems [9], and for ~ m p l e ? ~ e ~ t ~ ~ i o n s of specLfic algoritliiw for discrete problems [lo], [II],

[13], [14], [21], 1251. The results in this paper differ from previous work in that we derive both
upper and lower bounds on the performance of optimal algorithms for ~~~~~~~~~$ problems,

and are able to show how the performance scales as the problem size and the nurnber of

cessors scde, The restriction of this work to the given clar;s of h e a r PDEs is only for the sake

of clarity and concreteness. Sinnilax arguments hold for ntany continuous problem arising in

mat hemat ical physics.

The outline of this paper is as follows. Wz describe our multiprocessor, algorithm, and

problem assumptions in $2. In 33 we describe how the multiprocessor radius function constrains

the performance of parallel algorithms as a function of simple information-theoretic algoritltrn-

dependent parameters. In $4 we describe how the multiprocessor radius function constrains the

performance of optimal parallel algorithms for the numerical approximation of a given linear

PDE. In 55 we use these results to show how the multiprocessor radius function causes the
execution time of optimal parallel algorithm to grow as the size of ra linear PDE problem

grows. We briefly summarize our results and make concluding remarks in $6.

2

Our focus hi this paper is on MIMD multiprocwors [8] and on modelling parallelism at the level

of concurrent execution of floating point operations. This viewpoint is reflected in the following

multiprocessor and algorithm models. As with our selection of problem class, we restrict our

andysis to the following models for the make of clarity and concreteness. The result-s will be

similar for other realistic m i ~ ~ ~ ~ ~ r o c ~ ~ and algorithm models.

2.1- hl ultipmcessear ~~~~~~~~~~~

Mdtiprscessaaar ma;?deL We mdeB a m~~~~~~~~~~ B a directed graph (V , E) . Each
vertex vi E V represemts A serial pmcewor~ Each edge e j E E represents a unidirectional

communicatiow channel in the multiprocesmr. we assume that dl floating point operations

are computed by the composition of operators from some given set of primitive binary and

unary floating point operators, and that the execution of a primitive opcrator is not spread

over multiple ~ ~ O C E S Q ~ S . We also assume that addition is the fastest binary floating point

operator. The parameter t refers to the minimum time required to send a single floating point

number between two distinct processors in a given multiprocessor, which we call the miasmwn

tmn,srnission time. The pmaunetera f(+,, f(*,, and f(i1 refer to the minimum times required

to add or subtract, niultiply, and divide, respectively, two floating point nuinbcrs in a given

mu Iti~"OcCSs0r.

M u P t i p r ~ ~ e ~ ~ ~ s radius function. Define the distance from vertex v1 to vertex 102, kI(vl,v2),

to be the minimum amouct of time it t a b s to send R single floating point numbcr from the

processor represented by v1 to the processor represented by v2. Define a center of a subset

of vertices of the graph, I/' & V , to be a vertex in V' that minimizes the maximiitrr distance

betweeti itself and other vertices in the subset. That is, if e is a center of V', then

m a , D(c, w) = min max, D(v, w).
WEV UEY' W E V

Define the radius of the subset to be this distance,

For a given multiprocesssor, consider a subset of p processors with minimum radius over all such

subsets of size p . Define the function ~ (p) t o be the radius of this subset. We refer to r (p)

as the mlaltiprocessor radius function. We will use this function to establish lower bounds on

communication costs in parallel algorithms.

Example aschitectaires. Most multiprocessor architectures currently in use have fairly sim-

ple graphs, with essentially homogeneous processor and communication capabilities [5], [SI, [20].
The following examples are common designs, each of whose behavior is representative of a class

of architectures. All of the examples can be modeled by undirected graphs: if an edge exists

3

,

from Vj to Uj, then an edge also exists from vJ to v i . Additionally, all p r o w m r and comuni -

cation channel capabilities are the same.

e clique. The graph of the architecture is a clique; that is, each processor is directly con-

nected to every other processor. The radius of any subset of the multiprocessor containing

more than one processor is t.

k-dimensional a m y . The graph of the architecture is a E-dimensional array. Each pro-

c m r is connected to up to 2 - k other processors. The multiprocessor radius function

r (p) is never smaller than k: . t - (p1jk//2 -- 1).

e hypercube. The graph of the architecture is a binary hypercube. Thus, there are P = 2&

processors, where k is some nonnegative integer, and each vertex is a corner of a k-
dimensional array. Each processor is connected to log2 P other prormmn. The multipro-

cessor radius function is r(p) = t . Fogz pl .

2.2. Algorithm model

Serial algorithms. We define an algorithm to be a partially ordered set of instructions of

the form

y = ffop(zl,. . . , Z *) t

where flop is a floating point operator, y is a floating point variable, and ($1 , . , . , zn 1 are floating

point constants and variables. If a floating point variable is used by two different instructions,

and if one of the instructions changes the value of that variable, then the partial order specifies

a precedence relationship between them. These are the only relationships established by the

partial order.'

Denote a given algorithm by a. We defint, the serial cost of a to be the time spent exe-

cuting the instructions in a on some standard serial processor, where the standard processor is

assumed to satisfy the assumptions made in the previous section about the processors in the

multiprocessor. We refer to this value as C,. All sequential orderings of the instructions of

an algorithm that are consistent with the partial ordering are assumed to have the same serial

cost. Therefore, we also refer to the partially ordered set of instructions as a serial a ~ g ~ r ~ ~ ~ ~ .

Parallel algorithms. A parallel imp1ement;ttion of an algorithm on a multiprocessor specf

fies when and on which processor each instruction is executed, and what communication t a k e

place during the execution of the algorithm. We will refer to this information as the , ~ c ~ e ~ ~ ~ z ~ ~
of the algorithm. Define a scheduling to be wefi-defined if it is compatible with the partial or-

der's precedence relationships, and if all dexnmds made on the processors and communication

channels are within their capabilities. We define a ~ a ~ ~ l ~ ~ algorithm to be a triple consisting

of a serial algorithm, a multiprocessor architecl.nre, and a well-defined scheduling.

'This model ignores many of the details usually found in real algorithms. In particular, integer hthtnetic
and instructions controlling conditional execution are not represented. But the time spent in floating point
operations genwdly dominatm the totd exation t h e of serid dgoriths for solving numeric&y.
Moreover, much of the other work tends to increase proportiondy with the number of' floating point operaths,
a d can be "included" in the model by increasing the erenation time d the floating pint operations.

4

a given parallel, implementation of M algorithm a by I Conversely, a i the serial algorithm

associated with a given parallel algorithm 5.

We define the parallel tost of a parallel ~ ~ ~ o r ~ t h ~ to be the time it takes to execute the

algorithm on the specified multiprocessor. We refer to k b value by Ta. There are two distinct

CmtS WoCiated With B pWahl algOrithtX1: ~~~~~~~~~~~ C Q d (c a) and c o m ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ 3 Cost (w d) .

The compiitation cmt ia the m o u n t of time during which at le& one of the proce3mrs aS busy
executing the instructions of the corresponding *r id algorithm. If P processors are used by

a parallel algorithm to execute instructions, then the computation cmt is bounded from below

by

(1)
ca

c a 2 y,
where the serial cost in this erprewion is based on using the Yastesit” of the P p r o c ~ m r s as the

standard serial procwor. The communicatioln cost is the smouat, of time during which at least

one processor is actively sending or receiving ;a message or at least one of the cornmimication

channels is busy transmitting a message. Both the computation cost and the communication

cost represent lower bounds on the parallel c a t :

We define an optimal parallel implementation of an algorithm on a given multiprocessor to

be one that minimizes the parailel cwt. We define an optimal parallel algorithm to be one with

an optimal parallel implementation.

Coixmunicatioas bound algorithms. If the communication cost of a parallel algorithm

i s the dominant component of the parallel cost, then we say that the parallel algorithm is

communicatioa band . We rnake a similar definition below for a serial algorithm a and a given

multiprocessor, which we will refer to as M.
Consider an idealized multiprocessor M’ that is constructed from M by replacing the in-

terconnection network of M with one that is a clique and for which the transmission time over

any communication channel is zero. Also assume that these is no operating system overhead in

sending or receiving a message in M’. Thus, any parallel irnplementstion of R on M’ will have

zero cornrriunication cost.

Consider an optimal parallel implementatmion of a on ha, and call it 5,. Next, consider an

optimal parallel implenientation of .a on M’, and call it Et. If the parallel cost of i i b is less than

half the parallel coat of Elo, then we say that the serial algorithm a is conammication boaand

on M. If a is conmunication bound, then the interprocessor comrriunication subsystem has a

larger effect on the execution time doptimal algorithms for M than do the inherent parallelism

in tlie serial algorithm and the speed of floatiwg point computation. If the parallel cost of is

more than half the parallel cost of then we say that the sexid algorithm an is comyastwtdoa~

bound on M. If a i s computation bound, then the partial order of the s e d algorithm and

the speed of floating point computation are the dominant constrahts on the performance of
optimal parallel implementations on M, and M is “adequate” for this algorithm.

5

2.3. Problem assumptions I-V

The following assumptions are commonly satisfied when numerically approximating the solution

of scalar linear partial differential equations (PDEs). As stated, they also apply to a larger class

of problem.

Solution operator assumption.

Euclidean vector space and let I t be the C-dimensional unit cube,

For any nonnegative integer I I . , let 43' be the k-dimensional

For some d >, 1, let Q be a compact subset of

(I) we assume that we are approximating a scahu function u(E) that k defined OD fl and
that can be represented by an expression of the form

for all 5 E Q . The constant S is a pwit ive integer, (di I i E {I,. . ,, S)) is a set of

nonnegative integers, {si I i E {I, . . . , S }) is a set of functions representing &he problem
data, and u(E) is the solution function. for eacb i E (1,. . . , S } and 5 E R, @ i (i , i) is a

Lebesgue integrable function on Idn.

If u(5) is the solution of a linear PDE, then the kerneh (Qi) are linear functionals of the

Green's function for the PDE. See Butkovskiy PI] for examples of this type of representation of
the solution operator of a PDE. We will henceforth refer to a as the soht ion furaciion.

Numerical approximation assumptions. In order to numerically approximate u (z) , we

first replace the possibly infinite dimensional problem with a finite dimensional problem. The

dimensionality of the probfem is reduced by introducing error in the following sense:

e Only a finite amount of information about the solution function is calculated. Any model

of the solution based only on this information will merely approximate the true solution.

e Only a finite amount of information about the data functions is used to calculate the

desired solution properties. We will refer to this a8 the data fanction samplang. Unless

this information completely characterizes the data functions, the solution values that are

calculated are also approximate.

Equation (2) is replaced by a relationship between the data function samples and the informa-

tion about the solution function that is to be calculated.

For the rest of this paper, we restrict ourselves to problems where

(11) f o r each i E (1 , . , S) , values of the data function gi sampled an its do^^^^ IdI are

available to Be used,

6

(111) valaes of the solation fasnc-ts'on at given dacadians in its dc~rnaira R are appmzimated, and

(IV) the en-or in appm-ozzmating eac solution valve i s ~ Q t ~ n ~ ~ d by Q given vuhe e .

Thus, we are specifying what type of data can be used, what solution values to approximate,

and how accurately thew values are to be approximated. Note that we are not stipulating where

the data functions can be sannpled. Rather, we are stipulating that only pointwise evaluations

of the functions can be used by any algorithm used to solve this problem.

Let Z represent the set of Iscatiolas where the value of the solution function is needed,

Z = (5, 1 j = 1 , . . . , NW}. For brevity, we will use uj to refer to U (T ~) ~ and we denote the

set of solution vdum to be calculated by U. Wc can use the folbwing natation for any serial

algorithm a with finite serial C Q S ~ that edvm a problem mtis€y'ying the ahove assurnptiona. For
each data funct,ian gi, the algorithm use8 function values at some finite set of locations X i =
{ Z i , k I k = 1,. . . , Na,i} in Id, . And, for any particular sdution value u j , the approximation to
uj calculated by algorithm a depends on - d u e s of gi at some set of locations

in I d , . For brevity, we will tuse g i , j , k to refer to g i (% i , j , k) . The total annannk of data. used to

approximate uj is N a (u j) zi s
N,, i (uj) .

Data €unction assumptioz~s. In crdea to idcitify whether a given algorithm solves a prob-

lem satisfying Assumptions (1)-(IV), we must be able to determine whether the error tolerance

in approximating the individual solu&iosn values is satisfied (Assumptiorn (IV)). The €allowing
assumption allows us to determine a g n ~ ~ i lower bounds on the worst case error in an approx-

imation.
Define C"(&) to be the set of all functions that have continuous rnth order partid deriva-

tives on a set lilt C- s'. For g E cm(&), let Vim^'g be a vector whose elements are some

ordering of the mth order partid derivatives of g in %'.

(V) For each i E { 1, . . . , S } , we rassome that the data function gi is known to be S Q ~ E member

of a set Gi defined in the following way G; is the set of ail finu;tm'ons g satis5in.g thc

properties

i) g(i) E C".(Id,)

iil l l V ~ ~) g (~ ~ l ~ ~ , ~ 5 T~(z) for a~l 2: E I d ,

where ui is a pmitive integer, 1 1 . Il(i) is a vector ntarm, and T,(Z) is a nonnegative function.
W e also a~siimc: that any member of Gi is a permissible data function, and that my

combination of data functions from the sets {Gi} generate a possible solution to the
PDE, with the following constraint. The inclusion o f a given data hnction gi in a set

of data functions may force another data function g J , j # i, to have given function and
derivative valises ora the boundary of Id, .

Assumption (V) states that the data functions are known to have a certain number of continuous

derivatives, and that the magnitude of the largest partial derivatives is bounded by some known

n
I

function. This is the only information we are assuming about the data funckions. This type of

assumption on the dat3a is similar to the aasumptions that are made on the data and solution

functions when specifying a priori bounds on the error introduced when using finite difference

and finite element discretizations of a PDE to approximate the solution. The particular form

of these assumptions is similar to that used by Traub and Woiniakowski [22].

3. Algarithm-dependent results

In this section, we describe the effect of the miiltiprocesacnr radius on the performance of par-

allel algorithms as a function of simple informafGon-thearekic algorithmdependent parameters.

We implicitly assume that all algorithms discussed in thL section solve problem8 that satisfy

Assumptions (I)-(V), but only in the sense that we use the notation introduced in the previous

section and use examples that do solve such problems.

3.1. Information-t heoretic lower bounds

Lemma 3.1. The serial cost of an algorithm 8 is bounded from below by

Proof. For each solution value uj E U, computing uj requires that the data be reduced by a

sequence of binary operations, and binmy addition is aammed to be the fastest binary floating

point operator. Thus, the serial cost of calculating uj can be no smaller than the minimum

serial cost of summing its required data. The proof follows immediately by a simple counting

argument. (See also Lemma 1 in Kuck [IG, page 951.) U
Consider a parallel implementation of an dgorithm I on a multiprocessor satisfying the

assumptions of $2.1. A processor collaborates in the computation of a solution value u j E U if
changing the results of the floating point operations calculated by that processor can change

the value of uj. Define p&(uj) to be the number of processors that collaborate in the calculation

of uj for a given parallel implementation of a.

L e m a 3.2. The computation cast o f a parallel irnplerneatation ofan algorithm a I.i borinded

€or any u, E U.

Proof. Since computing uj requires that the data be reduced by a sequence of binary

operations, the computation cost of calculating u j on a multiprocessor can be no smaller thua
the minimum computation cost of summing its required data on the same multiprocessor.

Since addition is a binary operator, N existing summands are replaced by at most Nf2 results

during any time interval of length f(+). These resulte and any unused summands are the

operands for the next step of the calculation. Thus, one lower bound on the c o ~ ~ u t ~ ~ ~ o ~

8

c a t is f(+) . peg, Na(uj)l. The other exprwion in the lemma comes imediately from (l),

Lemma 3.1, and the definition ofpa(uj). (See abo L e m a 1 in Kuck [16, page 951). c1
As in 52.1, let r(pa(uj)) be the radius of a p~(uj)-processor subset that has the minimum

radius.

PmoJ The lemma is a consequence of the fact that information is needed from d l pd(uj’j)

processors in order to cdciilate uj. Denote the subset of processors that collaborate in the
calculation of uj by V’. Assume that a ~ ~ O C ~ S O F v E V’ has been designated to calculate the

final unary or binary operation that produces uj. E d procmor in V’ yroducea a result that i s

crutid to the calculation. Tberefoore, ~ ~ e t h e ~ a result travels directly to w ot is used by mother

processor to prodiice a new partial result that is then sent on, the timc spmt communicating

is neve: less than the distance to v from the originating processor. Therefore, the ~maxirnurn

distance from the processors in V’ to 11 is a lower bound on the communication cost. By
definition, this is bounded from below by r(pa(uj)). c1

single solution value,

Define Na,* to be the maximum amount of data required by an algorithm a to compiite a

Theorenn 3.4. For a P-prc~cemor ~-rahiltjproce,4sor, a knver bound on the parable1 cast of any

parallel impkmentation of an algorithm a i s

Proof. The parallel cost is bounded from below by xnax(Ca,Wa}. Thus, by I ~ x n n ~ ~ s

for each uj E U . Since Na,* = Na(tij) for some uj E U , and since pa(uj) is a Baaember of

(3)

3.2

the
set { 1, . . . , P } for any parallel implementation of algorithm a on this multiprocessor, the proof

follows immediately. c1

Of the three terms in (3), t(p) i s monotonicd\y increasing, f(+,.r(Na,, .- I)/p] is monotonically

decreasing, and f(+.) pog, Na(uj)l is constant (~FI a function of p) . Thus, if P 2 N,, , , then
either (3) achieves its minimum when ~ (p) a f(+) . [(Na,* - I’j)/pl or ~ (p) is always less than

f(+, . [(No,* _.- l)/p1 for p E { 1,. + . , P } , in which case the rniaimuni is f(+, . Fog2 Na,*l.
On an idealized multiprocessor where r (p) = 0 for all p1 the lower bound on the parallel cost

described in Theorem 3.4 i s f(+) - [log, Na,*l for large numbers of proces§QR% If 43 2 Na,* and

~ (p) 5 p . [log, p1 for some finite constant p, then it follows immediately that (3) is boiaraded

from above by

“ 1 x (f (+) , P) * Fog, Na,*1 .

9

Since (3) is always at least as large as f(+) pog2 Na,*1, this implies that (3) ia also proportional

to rloga Na,*l when r(p) 5 f l . pog,p] and P irr large. For example, this type Q€ bound on

r(p) holds when the multiprocessor is a clique or a hypercube. But, as the following theorem

shows, the lower bound described by (3) grows: much faster (as a function of Na,*) when r(p)
is a positive power of p .

Theorem 3.5. For a given multiprocessor, assume that r (p) 2 P .pr - p for positive constants

P,7, and p . Then, independent o f t h e number D f processors, a lower bound on the parallel cost
of m y parallel implementation of an algorithm a on this multiprocessor is

Proof By Theorem 3.4, a lower bound on the parallel cost is

for any finite number of processors. By assumption, r (p) 2 p - p y - p for positive constants p,
y, and p . Redefine r(p) to he equal to P . p T - p. Then (43 is still a lower bound on the parallel

cost since all we have done is use a worse lower bound ~n the cetrnmunicatbn cost I

Define LR(p) to be the function

and let p , denote some number that minimizes LB(p) over the domain (0,~). (1.e. LR(p,) has
the same value as (4).) Next, consider some value p' for which

That is. d satisfies

By modifying the left hand side of (6) in such a way that its value is never decreased, and by

modifying the right hand side in such a way that its value is never increased, we can replace

(6) by the following simpler inequality that also guarantees that p' satisfies (5):

10

then p’ satisfies (5). Since ~ (p) increams monotonically and since f(+, [(No , . - l)/p1 decreases

monotonically, if follows that LB(p) is minimized by some p . greater than or equal to p’. In

particular, r(p’) 5 r(p+). Since f(+) - Fog, NO,*l is always a lower bound on the pardkl cost,

this implies that

L%*) 2 m={pW) 9 f(+) . peg, Na,*ll.

In conseqiience, a lower bound on the parallel cost is

This proves the theorem. II

C Q P O ~ ~ ~ 3.6. For m y finite number ofprwmmm, a lower bound on the peprdlel cost of any

parallel implementation of an algorithm a is

if the niultiprocessor is a kr-dimensional array.

Proof. For a k-dimensional array, r (p) 2: k * t . (p 1 1 k / 2 - I). The corollary follows irninediately

from ‘l’heorem 3.5. E!
Thus, for a k-dimensional army multiprocesms, the communication cost, as represented by

~ (p) , determines the fundamental behavior of the lower bound in ‘Theorem 3.4 for large P. In

33.2, we describe an example where r (g) i a the dominant factor in determining the para114 cest

of a parallel algorithm, not just in determining a lower bound on the parallel coat.

3.2, Example communication bound algnrithmsr

The following example problem shows that the intrinsic c a t represented by the multiprocessor

radius function caw limit the performance of (good) parallel impletnentations on a k-dirnen;sioona?

array architecture. In particular, we describe conditions for which a given parallel algorithm

6 is communication bound. We also describe conditions for which the corresponding serial

algorithm w i s communication bound on a k-dimensional array architecture.

Consider the problem of calcula.ting a single-valued solution function u that i s defined hy

An algcwitiim a to appsoxinrate u that uses a quadrature rule to calculate the integral has the

form

This algorithm contains No,* nniltiplications and Na,* - 1 additions.

Consider implementing this algorithm on p processors of a I>-processor E-dimensional array

11

multiprocessor, where p 5 N,,, 5 P. A near-optimal parallel implementation with respect to

the computation cost is the following. First, partition tbe data (g(zb)) into p subsets each

of which contains no more than rN,,,,/pl elements and allocate a different processor to each
subset. Next, in parallel, use the processor allocated to a given subset to calculate the portion

of the weighted sun in (7) corresponding to the subset. Finally, when all processors are finished,

sum the remaining p partial results using a parallel fan-in algorithm [lS]. The computation

cost of this parallel implementation on a homogeneous multiprocessor is

Since p processors are collaborating in such a parallel implementation, a lower bound on the

communication cost is r (p) . Assume that p = Ha,,. Then (8) is minimized, but the communi-

cation cost is at least r(Na,*). If r (N, , ,) > C'a, then this parallel algorithm is communication

bound since the communication cost is larger than the computation cost. The multiprocessor
is a E-dimensional array, so this inequality is

E . t * (+ - 1) > i(*) + f(+) * Ilog;!Na,*l

or

If we knew that

then a sufficient condition for the parallel algorithm to be communication bound would be

Using an argument similar to this, and taking inlo account all possible cases, it is straightforward

to show that this parallel algorithm will be cornmunication bound if

For example, iff(*) = f(+) = t , then this bound is Na,* > 16k. (This is an overly conservative

bound. For example, if f(*l == f(+) = t and A? 2 2, then the radius forces this algorithm to

be communication bound when N,,, > llk.) A similar analysis can be used to show that any

parallel implementation for which p oc N:,, where y > k/k -+ 1 will be communication bound if

N,,,, (and P) is large enough.

We can also show that the serial algorithm a is comniunication bound on a k-dimensional

array multiprocessor if Ma,+ is large enough and P = Na,*. First, let A4 be the given k-
dimensional array multiprocessor, and let M' be an idealized multiprocessor constructed from

M in the fashion described in 52.2. As in 52.2, let ii: be an optimal parallel implementation of

a on M'" Then expression (8) with p = N,,, k3 an upper bound on Ta; since it represents the

12

execution time of a particular parallel implementation of a on M'.
Let 5, be an optimal parallel implementation of on M. By Corollary 3.6,

Thus, Tao is larger than 2 . Tab when

or

Using a case-by-case analysis similar to that used to derive (9), it is straightforward to show

that a sufficient condition for the serial algorithm a to be communication h u n d i s that

If fc.1 = f(+) = t , then the bound is Na,* > 64'" . (k -+ 1)2'+2/k2k. (This is also an overly

conservative bound. For example, iff(*, = f(+) = t , then the radius forces this serial. algorithm

to be communication bound when Na,* > M2 for k = 1, when Nap* > 513 for E = 2, and when

Na,* > 444 for k = 3.) Similarly, if P 0: N& for some y > k/L -i- 1, then Xa0 >_ 2 . Ta; if Na,* is

large enough. Thus, the radius function of a k-dimensional array strongly limits the attainable

performance of algorithms for this example problem for large PIa,* (and P) .

By Theorem 3.5, if r (p) 2 0 . pr - p for positive constants p, y, a i d y and if the number of

processors is large, then the communication cost of a. parallel. algorithm determines the behavior

of the lower bound on the parallel cost described in Theorem 3.4. In $3.2, by restricting ourselves

to a specific algorithm, we were able to show the much stronger result that this condition on r (p)

can force both the serial algorithm and good parallel implementations to be communication

bound. In this section we show that similar results can he established for a given problem

satisfying Assumptions (I)-(V) in $2.3.

4.1. communication bound prsbllems

Previously, we defined what it means for a parallel algorithm to be communication bound, and

what it means for a serial algorithm to be communication bulnrid 011 a given multiprocessor. In

this section, we define what it means €or a problem to be communication bound. Let q be a

problem satisfying Assumptions (I)-(V) in $2.3. Let A(q) be the set of all serial algorithms that

solve problem q. Let M be a given multiprocessor, and let M' be the idealized multiprocessor

described in $2.2.

13

Let 5, be the parallel algorithm that minimizes the parallel execution time over all parallel

implementations on M of all algorithm a in A(q). We call this the optimal paralie1 algorithm

for q on M. Let i i b be the parallel algorithm that minimiztx the parallel execution time over all
parallel implementations on M' of all dgorithms a in A(q). We call this the optimal parallel

algorithm for q on M'. We say that q is communication botrnd if Tal < Taq/2. Otherwise, we say

that p is computation bound. As for the case of *rial algorithms, if a problem is communication

bound, then the interprocessor communication subsystem is the dominant constraint on the

ability of M to solve the problem. If a problem is computation bound, then the intrinsic

computational requirements of the problem and the speed of floating point computation are the

dominant constraints.

4.2. Problem-dependent bounds

The argument used in $3.2 to show that a give3 serial algorithm is communication bound can

also be used to show that a problem q is communication bound on a multiprocessor M. We

simply need to establish a lower bound on Nu,,, for all algorithms in A(q) , and an upper bound

on the computational cost for a specific algorithm a E A(q) . The lower bound on N,,, , in

conjunction with Theorem 3.4 and Theorem 3.5, can be used to calculate a lower bound on

Taq, the parallel cost of the optimal parallel algorithm for p on M. The upper bound on the

computation cost for a specific algorithm is &so an upper bound on on Ta;, the parallel cost

of the optimal parallel algorithtn for q on M'. The first two theorems in this section, proven

in [23] and [24], allow us to calculate this information.

Lower bound on Na,*. Let &(5;6) denote a closed ball in %d* centered on k with a radius

of6, 6 2 0. If di = 0, then we define 6 to be zero. Define Nq,i(uj) to be the mininium number
of data sampling locations in I d , used by algorithms in A(q) when approximating ~ (2 ,) .

Theorem 4.1. Let q be a problem satisfying A.ssumptions (1)-(V). Let E be the error bound on
the approximation to the solution values specified by the problem. Let i$ be an element of Z ,
and let uj be the corresponding element of U . Let i be an element of (I,. . S) . If there exists

a closed ball 3i(jz,;6) C I d , of positive radius 6 on which @ i (Z j , 3) is either strictly positive
or strictly negative and on which both @ i (% j , Z) and Ti(%) are bounded away from zero, then

there exists a positive constant c;,j independent of E such that

The proof of this theorem is based on how different two solution functions can be when their

data functions are identical at all of the sampling locations. See [23] or [24] for the details. The

assumptions of the theorem are satisfied by most linear YDEs arising in scientific computing,

and are used merely to ensure that u, cannot be calculated exactly with a finite amount of
data from Id , . Since Na,* 2 N,(uj) 2 N,,i(u,) 2 Nq,i(uj) for all algorithms a in A(q) , this

establishes the desired lower bound.

14

Corohry 4.2. I f the conditions of Theorem 4.1 are satisfied far some Zj E Z and some

i E {l,.-.,S}, then

Here P is the number of processors in M and c;,, is the cmstrant from Theorem

particular, if r(p) 2 /3 - p 7 - p for positive constants 8, y, and p , then
4.1. In

for any finite 8.

Proof. Since Na,* 2 Nq, i (u j) for any a E A(q), the proof follows directly from Theorem 3.4,

Theorern 3.5, and Theorem 4.1. c3

Upper h ~ u n d on minimum campantation cost. The next theorem describes an upper

bound on Na(t6j) for a particular serial algorithm a. We will use this to derive an upper bound

on the minimum computation cost over all parallel implementations of algorithm in A(q).

Consider the following algorithm for approximating a given u, E U. For each i E (1, . . . , S}
such that di = 0, compute

exactly. Call this value ii;,.j. For each i such that di > 0, approximate J
tire following way:

%,(z j ,?)g i (%)dk in
I d ,

Q) Divide I d i into cubes of the form Ci(zi,,,,; 2 - ’ 1 s J) , for some positive integer vi ; j , where

C;(Z;6) is the open di-dimensional cube centered on 2 with volume h d * . Here I is the

index for this set of cubes, I E { 1,. . . ,2”1 .~’~;}) .

b) In each subcube C;(%i,j, i;2-’isj), consider @ data sampling locations arranged on a

uniform di-dimensional mesh with mesh spacing h = 2-”n*J/(vi + 1). Let ij;,j,l(z) be the

unique polynomial of degree at mwt vi - 1 in each variable that interpolates Si(.) at the

indicated sampling locations.

c) Approximate SI, S,(t.,, z)g,(z) (1% by

Finally, approximate u, by the following expression,

s
. i i j = xiii,i.

i= 1

15

We get an algorithm for any problem q by using this technique for each uj E U and using

enough data function samples to satisfy the error bound. We refer to this type of algorithm as
a Green’s function method since it uses the Green’s function directly in the calculation.

Theorem 4.3. Let q be a problem satisfying Assumptions (I)-(V), Let E be the error bound on

the approximation to the solution values specified by the problem. For each uj E I/, there exists

a set of finite positive constants {?id}, each of which is independent of E, with the following

property. There exists a Green’s function method a in A(q) such that for each ti, E Cr and

i E { l , . . . , S }
-5

N, , j (Uj) 5 Ej,j - € f 1.

The proof of the theorem is based on bounding the error introduced by using the interpolating

polynomials {iji,j,t} instead of the true data functions in the Green’s function method. See [23]

or [24] for the details. Since No,+ = maxUjEcI I;-& N, , , (u j) , this theorem describes an upper

bound on the size of ATa,* for the specified algorithm.

The next theorem describes an upper bound on Tal. It is derived from an upper bound

on the computation cost of a particular parallel implementation of a Green’s function method.

Note that the expression [P/IUIJ is used in the first inequality in the theorem, where IUl is

the number of solution values l o be calculated. This arises because one of the two parallel

implementations used to establish the result cakulates each solution value on a distinct subset

of processors, and the expression lP/lUlJ is an upper bound on the number of processors in

the smallest subset. Since this approach only makes sense if Ir/i 5 P, a different parallel

implementation is used to calculate a bound when IUl > $7.

Theorem 4.4. Let q be a problem satisfying Assumptions (I)-(V). Let be the error bound

on the approximation to the solution values specified by &he problem. Let IiJl be the nuniber

of solution values in U. Let M be a homogeneous P-processor multiprocessor, and let Mt be

the idealized multiprocessor constructed from M in the fmhion described in $2.2. Let { E i , j } be

the constants from Theorem 4.3. Then

P

P

i f P < IUl.
ProoJ For fixed i , j, and I , let the set { i & ~ , f , k I k = 1 , . e , v f ‘ } denote the data sampling

locations in Ci(3i , j , l ; 2-”*.3) used by a Green’s function method a. Then, in this subcube, the

16

polynomial interpolant & j , ~ call be represented by

PI :*
~ g i , j , l (~ < , j , l $) * Ai , j , l , k (g)
k= I

where {Ai , j , l , t (Z))) are Lagrange bask functions for these sampling locations. (See Prenter [18,
pages 118-1271 or Worley [23, pages 131-1341.)

Using this notation, the expression for Gi , j becomes

Each factor s&, ,,,,
precomputed. Call it ri,j,t ,k. The expression for G i , j is then

,,,. d R) 9 , (Z j , 2) . A i , j , l , k (Z) dz is independent of the data, and can be

and N a , i (l r j) = t ~ f ' . 2 Y 1 0 3 . d * . Similarly, the expression for the approximation to u (. ~ j) is now

and N,(u,) = >zds,l vf' . 2% de.

By (IO), using algorithm a to approximate t r (E j) requires N , (u j) floating point multiplica-

tions and N , (u j) - 1 floating point additions. To implement this algorithm using p processors

of a P-processor multiprocessor, use the same technique described in 53.2: partition the data

equally among the processors, calculate as much as possible in parallel, synchronize, and sum

the remaining min{N,(uj) , p} partial results using a parallel fan-in algorithm. Since computing

uj in this fashion is independent of computing any other member of U , the same approach c a n
be used for all other solution values, as !omg ips the total number of processors used does not

exceed P. Assume that lUl 5 P. Then wve can arJlocate LP/lUlJ processors to the computation

of each u j , hiit use only as many processor as i s eficient for each computation. The parallel

cost of this parallel implementation on M' is

Next, awnme that IUI > P. Then a different approach is required. Instead, partition the

17

set of solution values into P subsets each of which contains no more than [lVl/P1 elements,

and assign a distinct processor to the calculation of the solution values in each subset. The

parallel cost of this parallel implementation on M' is no more than

which is an upper bound on the serial cost of calculating a single subset of the solution values.

If a E A(q), then (11) and (12) are upper bounds on Tal, the parallel cost of the optimal

parallel algorithm for q on M'. Therefore, the statement of the theorem follows immediately

from Theorem 4.3, which describes an upper bound on N0+(uj) for some Green's function

method a E A(q). 0

4.3. Sufficient conditions for a problem to be communication bound

The following theorem describes conditions under which a problem will be commrinication

bound on a homogeneous multiprocessor whose radius function is a positive power of the

number of processors. Thus, a necessary condition for a homogeneous multiprocessor to be

"adequate" for such problems is that its radius grow more slowly than this. The theorem is

stated in the following way: There exists a constant c* that is a function of the solution oper-

ator and the smoothness of the data functions such that the problem will be communication

bound if the error tolerance c is less than and if a large number of processors are available.

Thus, to determine whether a problem is communication bound on a given multiprocessor, first
calculate E * , then compare c with c* . As long is positive, the problem is guaranteed to be

communication bound if E is small enough and the number of processors is large enough.

Theorem 4.5. Let q be a problem satisfying Assumptions (I)-(V). Let c be the error bound on

the approximation to the solution values specified by the problem. Let p, yI and p be positive

constants, and assume that r(p) 2 pep7 -1 for a given homogeneous P-processor multiprocessor

M. If, for some 5, E z and some i E { l , - . . ,S) , there exists a closed ball &(5*;6) C I d , of

positive radius 6 on which @ j (Z J , 2) is either strictly positave or strictly negative and on which

both qi(Zj,x) and 'Y i (2) are bounded away from zero, then there exists a positive constant

E * , independent oft, and a finite function P*(cJ such that q ir cornmunicatioa bound OD 1M if
c 5 and P 2 P.(c).

Proof. By Corollary 4.2, Tag is bounded from below by

Let

18

where the constants { E i j } are from Theorem 4.3. By Theorem 4.4, if P 2 P*(E), then

Since the upper bound on Tal in (15) ~FOBVS like log,(l/e) as E decreases and the lower

bound on Tfiq in (13) grows like c - ~ * ~ ~ / (~ * ' (~ + ')) a.9 E decreases, there will be some E: for which

the upper bound in (15) is less than half the lower bound in (13). Let et = rnin{e~,c~}. If
e 5 E . and P 2 P*(E), then Tal 5 Tdq/2. This proves the theorem. El
As mentioned earlier, the assumptions in Theorem 4.5 on the kernels {ski} and the functions

{Ti} will be satisfied by most linear PDEs arising in scientific computing, and they do not

constitute a significant restriction on the application of this theorem.

Note that the restriction to homogeneous multiprocessors is not neccessary. A sirriilar result

will hold for a heterogeneous multiprocessor if the ratio of f. on the slowest processor to f(+,
on the fastest processor is bounded. Also note that the conditions under which a problem will
be communication bound can be significantly tightened if given more information about the

problem. For example, for many problems there i s a great deal of shared work possible when

computing the solution values, and all processors contribute to the calculation of all solution

values for good parallel algorithms. This can significantly decrease P*(E). Also, generally all
i f {l,. . . ,S} will satisfy the problem assumptions, and this will increase c * . Both of these

changes make it more likely that a problem will be communication bound. But, even without

knowing more details, we are able to identify when a problem will necessarily be communication

bound.

'1

P

1 '9

5. Scaling results

Scaling a multiprocessor architecture increases or d e c r e e s the number of processors in the

multiprocessor while keeping certain attributes of the architecture fixeda In particular, we

define scaling for the example architectures of $2.1 in the following way. The graph of the

scaled multiprocessor architecture is of the same type as before scaling, and each type of

component has the same parameters. For example, when scaling a square k-dimensional array

multiprocessor with P processors, the graph of the new multiprocessor will still be a square

k-dimensional array. The processor and communication abilities will also be unchanged, but

the number of processors will now be Q for some P # Q. Thus, scaling defines a family of
multiprocessors with similar architectures. We will refer to a particular multiprocessor as an
instance of this architectural family and to the number of processors in an instance as its size.
We will use the term scaling up to mean increaaing the size of a multiprocessor architecture.

Scaling a problem alters the problem specifications in such a way that the serial complexity

of the algorithms used to solve it changes. The problem parameters that are normally free

to be varied are the solution values to be approximated and the error bound to be satisfied.

Therefore, to scale the problem, one or both of these parameters must be changed. Scaling the

problem defines a family of similar problems, all approximating the solution of the PDE. We

will refer to a given set of specifications as a pmblem instance. The sire of a problem instance

is the minimum serial cost of algorithms that solve the problem instance. We will use the term

scaling up to mean changing the problem specifications in such a way that its size increases.

We say that a multiprocessor architecture scales for a problem if the minimum parallel cost

when solving the problem can be bounded independent of the problem size by scaling up the

architecture. In previous work [23], [24], we showed that no multiprocessor architecture scales

for our problems when given a reasonable assumption on how the size of a problem can grow.

In this section, we briefly describe this result again, and then show how the radius function of

a multiprocessor can exacerbate the increase in the minimum parallel cost.

5.1. Problem assumption VI

Commonly, increasing the size of a problem indisates that the number of solution values and the

amount of data used increase, and that the error bound decreases. For some applications the

solution is desired at only a fixed set of locations, and only the other two parameters will vary.

But, in both cases, increasing the size of the problem results in a better approximation to the

solution function. It is simple to increase the size of a problem without suffering an increased

parallel cost if only the number of solution values is increwd and if enough idle processors are

available. But continually increasing the number of approximate solution values will not lead

to a better solution unless the error in these approximate values also decreases. We do not

consider it reasonable to increase the size of the problem unless there is some advantage gained

by doing so. This motivates the following assumption on how the size of problem is increased.

(VI) For a given problem instance, denote the set of locations when the solution is io be
approximated b y 2, and denote the error bound on these approximations b y t. Ifthe sire

'For example, see. [17] for a discussion of parameterized architectures.

20

of the problem prows and 2‘ and 8 are the corresponding parameters of the new instance,
then we assume that Z C Z‘ and

for some positive a independent of the scaling. Here (Z(represents the number of locations
in the set.

Note that this assumption is not on the problem, but rather on how we permit the problem

to grow. By this assumption the problem size is allowed to grow only if the error bound also

decreases. Moreover, if the problem size grows without bound, then the e r r o ~ bound goes to

zero. Assumption (VI) is unnecessarily restrictive, but it is sufficient to establish the results in

this section. In particular, the aesumption that Z C Z’ is made merely to keep the assumption

simple. See Worley [23, pages 65-66] for a less restrictive assumption.

5 -2 P roblem- sc ding bound

The following theorem shows that no architecture will scale for a linear PDE that satisfies

Assumptions (I)-(VI) and the assumptions of the theorem.

Theorem 5.1. Let q be a problem instance satisfying Asumptioos (I)-(V), and asselme that
all s c a h g s o f q satisfy Assumptm’on (VI). Assume that, for some i E { 1,. . . , s}, there exists a

Zj E Z with the following property: there exists B clcsed ball B;(%.,; 6) c I,.,, of pmitive radius

6 on which @ i (i j , ?) is either strictly pasitive or strictly negative and on which both @i(zj,i!)

and T;(z) are hounded away from zero. Also awurne that f(+) is positive and bounded away
from zero for all permissible multiprocessor architectures. Then, if the size o f the problem

iiicreases without bound in a fadaion consistent with Assumption (VI), so will the parallel cost,

independent of the algorithm and o f the number of processors used.

Proof. The proof follows iinniediately from Corollary 4.2 and the assurnpkion on how prob-

lems are allowed scale. As the size of a problem increases, the error tolerance decreases,

and the logarithmic term in Corollary 4.2 increases. If the problem size increases unboundedly,

then goes to zero, and the logarithmic term increases unboundedly. See also [23] and [24]. 0

5.3. Effect of r (p) on the asymptotic growth of the par

By Theorem 5.1, we usually can’t bound the parallel cost as the size of the problem increases.

But a good multiprocessor architecture won’t exacerbate this increase. In this section we

examine how the communication capabilities of a multiprocessor affect the parallel cost as
the size of both the architecture and the problem increwse. In particular, WE show that most

problems can become communication bound as the sizes increase if the multiprocessor radius
function grows it9 a positive power of the number of processors. Thus, a necessary condition

for a multiprocessor to be “adequate” in this context is that its radius grow more slowly than
a positive power of p .

21

Theorem 5.2. Let q be aproblem i n s t ~ c e s a t i s ~ j n g Asrrumptions (I)-(V), and assume that all

scalings of q satisfy Assumption (VI). Assume tbat there exists a Ej E 2 and some i E (1 , . . . , S)
such that d; # 0 and the following property holds: there exists a closed ball B i (Z * ; 5) c Id, of
positive radius 6 on which f#i(i?j, 2) is either strictly pmitive or strictly negative and on which

both @i(Zj, 2) and Ti(5) are bounded away from zero. Let p, 7, and p be pasitive constants,

and wsume that r (p) 3 p pr - p for dl scalings of a given homogeneous multiprocessor M.
Then the following conditions bold.

There exists a scaling of q and a multiprocessor instance such that the new problem

instance is communication bound on this multiprocessor. Moreover, this problem instance

remains communication bound for all sealings of the multiprocessor larger than the given

instance.

Let R(p) be the ratio T8*/Tat on a multiprocessor instance of size p . Then the limit

max,,L1 R(p) grows unboundedly as a function of the problem size.
'1

Proof The first part of this theorem is ewentially a restatement of Theorem 4.5. As a

problem scales up in size, eventually 6 will be less than the constant e* from Theorem 4.5.
Once E is smaller than this threshold, the problem instance will be communication bound on

any multiprocessor instance for which P >_ P*(c).
From (13) and (15),

if 6 5 E, and P 2 P,(E). Thus, by Assumpticln (VI), if the size of the problem increases un-

boundedly, then c goes to zero, and maxp>l R(p) grows urrboundedly. This proves the theorem.

11
As mentioned earlier, the assumption that thc multiprocessor is homogeneous is unnecessary.

Generalizing Theorem 4.5 to take into account heterogeneous multiprocessors is all that is

needed to generalize this result.

In summary, if r (p) 2 /3 -pr - p for positive constants /?, y, and p , then the comniunication

costs will eventually be the dominant constraint on the achievable parallel performance as the

problem and multiprocessor sizes are increased. In particular, the following coroliary is an
immediate consequence.

Corollary 5.3. Assume that the graph of a multiprocessor is a k-dimensional array, and that

the transmission time t is bounded away from zero. Asscame that the PDE satisfies the condi-

tions in Theorem 5.2. Then, for large problem sizes, the communication cost determines the

minimum parallel cost as the multiprocessor is scaled up.

Ultimately, the communication capabilities of any mulkiprocessor is constrained by the three

dimensionality of the physical world and by the speed of light. This motivates the next corollary.

22

C Q ~ O U F L ~ ~ 5.4. Assume that each processor in a multiprocessor is a cube with EA fixed nonzero

volume. Assume that the YDE satkfim the conditions in Theorem 5.2. Then, for large problem
sizes, the communication cost determiam the ~ ~ R ~ I I I U X I parallel cast as the multiprocessor is

scaled up.

Proof. Assume that the volume of a processor is u in some standard unit. Then a set of

g processors will take up a volunie of at lea& pv , and cover a region whose maximum width

i s at least (p ~) ' / ~ . Any message between processors must travel from a surface of the sending

processor to a surface of the receiving processor. Let the physical diameter of a set be the

maximum distance betweein the nearest surfaces of two processors in the set. Then the physical

diameter is greater than or equal to (p ~) ' / ~ - 2u'i3.

As in 32.1, let the cenZesprocesos be the o w that minimizes the m&mum distance between

itself and all of the others, where distance ia now measured between closest surfaces. Let the

physical radius be the maximum distance between the center and the other processors. Then

half the physical diameter minus half the width of the center processor is a lower bound on the

physical radius. In consequence,
(p v) ' / 3 3 . 211/3

a
is also a lower bound on the physical radius. Since no message can travel faster than the speed

of light, the radius of this set of processors is at least

where c is the speed of light in these units. If /3 = ~ ' / ~ / (2 . c) , 7 = 1/3, and p = 3 . v1j3/(2 . c > ,

then r (p) 2 p pr - p . The result then follows from Theorem 5.2. 0
Using current technologies, the speed of light is not the only restriction on transmission speed,

and r (p) 2 p . pr - p for p that is much larger than that calculated in this corollary. The

important point of this corollary is that the communication cost will eventually determine the

achievable performance for any physically-realizable multiprocessor.

6. Conclusions

The information-theoretic algornth~-dependeaat parameters introduced in $3 allowed us t o cal-

culate a lower bound on the parallel cost that included one aspect of the communication cost.

By taking into account the intent of the algorithm, to approximate the solution of a continuous

problem with a given structure, we were then able to calculate a similar lower bound on the

parallel cost of optimal parallel algorithms on a given multiprocessor. We were also able to

calculate an upper bound on the parallel cost of optimal parallel algorithms on at1 idealized mul-

tiprocessor for which the commiinication cost is a!ways zero. Using these two results, we proved

that the communication cost will be the donlinant factor in determining the performance of
optimal parallel algorithms TOP l a g e problems as multiprocessors scale up in size. These results

are a consequence of very general assumptions, and we expect the interprocessor cornmimica-

tion subsystem to be the major constraint on the perforniance for problem and multiprocessor

23

. sizes much smaller than those indicated by th? theory deacribed here. Whether this analysis

indicates a practical limitation for a given problem must be examined on a case-by-case basis.

Acknowledgements

We thank A1 Geist and Barry Peyton for their helphl suggestions on the presentation of the

material in this paper.

References

[l] G. AMDAHL, Limits of expectation, International J . Supercomputer Appl., 2 (1988),

pp. 88-97.

[2] M. J. BERGER AND S. H. BOKHARI, A pwtitioning strategy f o r nonuniform problems on
multiprocessors, IEEE Trans. Comput., C-36 (1987), pp. 570-580.

[3] F. BERMAN AND 1,. SNYDER, On mapping p a r d e l algorithms into parallel architeciures,
J. Par. Dist. Comp., 4 (1987), pp. 439-458.

[4] A. G. BUTKOVSKIY, Green’s Functions and Dansfer Functions Handbook, Ellis Horwood

Limited, Chichester, West Sussex, United Kingdom, 1982.

[5] R. DUNCAN, A survey o fpaml le f computer architectures, iEEE Computer, 23 (1990),

pp. 5-16.

[SI T. FENG, A survey of interconneclion netruods, IEEE Computer, 14 (1981), pp. 12-27.

[7] D. C. FISHER, Your favorite parallel algorithm may not Be as fast as you Ihink, IEEE
Trans. Comput., 37 (1988), pp. 211-214.

[8] M. J. FLYNN, Some compvter organizations and their eflectiveness, IEEE Trans. Cornput.,

21 (1972), pp. 948-960.

[9] D. GANNON AND J . VAN ROSENDALE, On the impact of commvnication completity on the
design of pamilel numerical algorithms, IEEE Trans. Comput., (2-33 (19841, pp. 1180-1194.

[lo] G. A. GEIST ANI) c. II. ROMINE, /,u fiactorzzation algo&hms on distributed-memory

multiprocessor archiiectures, S I A M J . Sci. Statist. Cornput., 9 (1988), pp. 639-649.

[ll] W. M. GENTLEMAN, Some complezity results for matrix computations on parallel proces-

sors, Journal of the ACM, 25 (1978), pp. 112-115.

[12] w. D. G R o P P AND D. E. KEYES, Comp1er:’ty of paralkl implementation of domain decona-

position techniques for elliptic partial dtflerential eguataons, SlAM J . Sci. Statist. Cornput.,

9 (1988), pp. 312-326.

[13] M. T. HEATH AND C. N. ROMINE, Pamlld solution of triangular systems on distn‘bzlted-

memory multiprocessors, S I A M J . Sci. Statist. Comput., 9 (1988), pp. 558--588.

24

[14] S. L. JOHNSSON, Communication eficieni basic h e a r algebm cumpalations on hypermbe

a~hatectures, J . Par. Dist. Cornp., 4 (1987), pp. 133-1721.

[15] -, SoJving tridiagonal systems on ensemble a ~ ~ g ~ e c ~ ~ ~ s , S I A M J . Sci. Statist. Corn-
put., 8 (1987), pp. 354-392.

[16] D. J . KUCK, The Stmclvre of Computers and Computations, vol. 1, John Wiley, New

York, 1978.

[17] G. J. LIPOVSKI AND M. MALEK, PoraXLI Computing, John Wiley, New York, 1987.

[18] P. M. PRENTER, Splines and V ~ ~ ; i a i i ~ n a l ~ ~ ~ h o ~ s , Pure and Applied Mathematics, Johii

Wiley, New York, 1975.

[19] n. A. REED, L. M. ADAMS, AND M. L. PATRICK, stencds and problem partitionin

their influence on the performance of multiple processor systems, IEEE Trans. Comput.,

C-36 (1987), 845-858.

[20] D. A. REED AND D . C. GRUNWALD, The perfomaance of muMicompPrter interconnection
networks, IEEE Computer, 20 (1987), pp. 63-73.

[21] J. II. SALTZ, V. M. NAIK, AND D. M. NICOL, Reduction o f the eflects of the commund-

cation delays in scientific algorithms OPE message passing mimd architectures, S I A M J. Sci.

Statist. Cornpiit., 8 (1987), pp. ~ 1 1 8 4 3 8 .

[22] J. F. TRAUB A N D H . WO~WIAKOWSKI, A General 7 l e o y of Optimal Algorithms, ACM

Monograph Series, Academic Press, New York, 1980.

[23] P . H . WORLEY, Infomation Requirements and the Implications for Parallel Computation,
Ph.D. thesis, Stanford University, Stanford, CA, June 1988.

~ 4 1 - , Limits on parallelism in the n~men'cal solution of linear pdes, Tech. Rep.

ORNL/TM-10945, Oak Ridge National Laboratory, Oak Ridge, TN, October 1988; SIAM
J . Sci. Statist. Comput., accepted.

[25] P. W. WORLEY AND R. SCHREIBER, Nested dissection on a mesh-connected pmcessor

a m y , in New Computing Environments: Parallel, Vector, and Systolic, A. Wouk, ed.,

Philadelphh, PA, 1986, Society for Industrial aiid Applied Mathematics, pp. 8-38.

25

ORNL/TM- 11579

INTERNAL DISTRIBUTION

1.
2.
3.
4.
5.
6.
7.
8.

9-10.
11.
12.
13.

1418.
19.
20.
21.
22.

B. R. Appleton
E. F. D’Azevedo
J. J. Dongarra

J. B. Drake
T. R. Dunigan

R. E. Flanery
G. A. Geist
L. Gray
R. F. Harbison
M. T. Heath
E. R. Jessup
M. R. Leuze
F. C. Maienschein
E. G. Ng
C. E. Oliver
G . Ostrouchov
B. W. Peytsn

23.
2428.

29.
30-34.
3539.

40.
41.
42.
43.
44.
45.
46.
47.
48.

w. M. Post
S. A. Raby
C. R . Romine
R. C. Ward
F’. €3. Worley
J. J. Doming (EPMD Advisory Committee)

R. M. Hardick (EPMD Advisory Committee)
J. E. Leks (EPMD Advisory Committee)
M. F. Wheeier (EPMD Advisory Committee)
N. Moray (EPMD Advisory Committee)
Central Research Library
ORNL Patent Office
#-25 Plant Library
1’-12 Technical Library
/Document hference Station
Laboratory Records - RC
Laboratory Records Department

49.
50-51.

EXTERNAL DISTRIBUTION

52. Dr. Loyce M. Adams, Department of Applied Mathematics, University of Washington,

Seattle, WA 98195

53. Dr. Christopher R. Anderson, Department of Mathematics, University of California, Los

Angeles, CA 90024

54. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Graduate

Center, 19600 N.W. Walker b a d , Beaverton, OR 93006

55. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,

University Park, PA 16802

56. Dr. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia

National Laboratory, Albuquerque, N M 87185

57. Dr. Dov S. Bai, Department of Mathematics, Utah State University, Lagan, U T 84322-
4125

58. Dr. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet

Field, CA 94035

26

59. Dr. Robert E. Bennes, Parallel Processing Division, 1413, Sandia National Laboratories,

Albuquerque, NM 87185

60. Dr. Marsha J. Berger, Courant Institute of Mathematical. Sciences? 251 Mercer Street,

New York, NY 10012

61. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping 58183,
Sweden

62. Dr. John B. Bolstad, L-16, Lawrence Livermore National Laboratory, P. 0. Box $08,
Livermore, CA 94550

63. Dr. James @. Browne, Department of Computer Sciences, University of Texas, Austin,

TX 78712

64. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric Re-
search, 1'. 0. Box 3000, Boulder, CO 80307

65. Dr. Donald A. Calaban, Department of Electrical and Computer Engineering, University

of Michigan, Ann Arbor, MI 48109

66. Dr. John Cavallini, Acting Director, Scientific Computing Staff", Applied Mathematical

Sciences, Office of Energy Research, U .S. Department of Energy, Washingtoil, DC 20545

67. Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles, 405
Hilgard Avenue, Los Angeles, CA 90024

68. Dr. Jagdish Chandra, Army Research Ofice, P. 0. Box 12211, Research Triangle Park,

North Carolina 27709

69. Dr. Melvyn Ciment, National Science Foaxidation, 1800 G Street, NW, Wmhinglon, DC

20550

'70. Prof. Tom Coleman Department of Computer Science, Cornell University, Ithaca, NY

14853

71. Dr. Jane K. Cullum, IBM 'I'. J . Wa.tson Research Center, P. 0. Box 218, Yorktown

Heights, N Y 10598

72. Dr. Paul COIICUS, Mathematics and Computing, Lawrenee Berkeley Laboratory, Berkeley,

CA 94720

73. Dr. George Cybenko, Center for Supercomputing Research & l'kvelopmcnt, 104 South

Wright Street, Urbana, IL 61801-2932

74. Ms. Helen Davis, Computer Science Department, Stanford TJniversity, Stanford, CA 94305

75. Professor Larry Dowdy, Computer Science Department, Vanderbilt TJniversity, Nashville,

T N 37235

76. Dr. Iain Duff, CSS Division, Barwell Laboratory, Didcot, Oxon OX11 ORA, ENGLAND

27

77. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P. 0. Box 2158

Yale Station, New Haven, CT 06520

78. Dr. Howard C. Elman, Computer Science Department, University of Maryland, College
Park, MD 20742

79. Dr. Peter G. Eltgroth, L-298, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

80. Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Claremont, CA
91711

81. Professor Geoffrey C. Fox, Physics Department, MS 356-48, California Institute of Tech-

nology, Pasadena, CA 91125

82. Dr. Chris Fraley, Department of Mathematics and Statistics, Utah State University, LCF
gan, U T 84322-3900

83. Dr. Paul 0. Fkederickson, RIACS, NASA Ames Research Center, Moffet Field, CA 94035

84. Dr. Robert E. finderlic, Department of Computer Science, North Carolina State Univer-
sity, Raleigh, N C 27650

85. Professor Dennis B. Gannan, Computer Science Department , Indiana University, Bloom-
ington, IN 47401

86. Dr. 6. William Gear, Computer Science Department, University of Illinois, Urbana, IL
61801

87. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research Council,

Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada K1A OR8

88. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of

Waterloo, Waterloo, Ontario, Canada N2L 361

89. Dr. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

90. Prof. John L. Gustafwn, Ames Laboratory, 236 Wilhelrn Hall, Iowa State University,

Ames, IA 50011-3020

91. Dr. Joseph F. Grcar, Division 8331, Saadia National Laboratories, Livermore, CA 94550

92. Dr. Eric Grosse, 2C 471, 600 Mountain Avenue, Murray Hill, NJ 07922

93. Dr. William D. Gropp, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

94. Dr. Gerald W. Bedstrom, L-71, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

28

95. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development Co.,
F. 0. Box 481, Houston, TX 77001

96. Dr. John L. Wennessy, CIS 208, Stanford University, Stanford, CA 94305

97. Dr. N. J . Higbam, Department of Mathematics, University of Manchester, 6 t r Manch-

ester, M13 9PL, ENGLAND

98. Dr. Charles J. Holland, Air Force Ofice of Scientific Research, Buildin 410, Bolling Air

Force B a e , Washington, DC 20332

99. Dr. Robert E. Muddleston, Computation Department, 1,awreiice Livermore National Lab-

oratory, P. 0. Box 808, Livermore, CA 94550

100. Dr. Ilse Ipsen, Department of Computer Science, Yale University, P. 0. BOX 2158 Yale

Station, New Haven, CT 06520

101. Dr. Lennart S. Johnsson, Department of Computer Science, Yale University, P. 0. Box

2158 Yale Station, New Haven, CT 06520

102. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of

Colorado, Boulder, GO 80309

103. Dr. Bo Kagstrorn, Institute of information Processing, University of Urnea, 5-901 87
Urnea, Sweden

104. Professor Malvyn Kalm, Courant Institute for Mathenlatical Sciences, New York Univer-

sity, 251 Mercer Street, New York, NY 10012

105. Dr. Hans Kaper, Mathematics and Computer Science Division, Argoxrne National L a b s

ratory, 9700 South Cam Avenue, Argonne, IL 60439

106. Dr. Alan H. Karp, IRM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

107. Dr. Linda Kaufman,

108. Dr. Robert J . Keel Applied Mathematics Division 8331, Sandia National Laboratories,

ell Laboratories, 600 Mountain Avenue, Murray TIiII, NJ 07974

Livermore, CA 91550

109. Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.0. Box 1892,

NOUStQn, TX 77001

110. Dr. Torn Kitchens, EX-7, Applied Mathematical Sciences, Scientific Computing Staff,

Office of Energy Research, Ofice G-437 Germantown, Washington, DC 20545

11 1. Prof. Clyde P. Kruvkal, Departrrnent of Computer Science, University of Maryland, College

Park, MI) 20742

112. Prof. Michael Langston, Department of Computer Science, University of 'fennessee,

Knoxville, T N 37996-1301

29

113. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

114. Dr. Robert L. Launer, Army Research OEce, P, 0. Box 12211, Research Triangle Park,

North Carolina 27709

115. Dr. Scott A. volp Laven, Mission Researck Corporation, 1720 Randolph Road, SE, Alba-
querque, NM 87106-4245

116. Prof. Tom highton, Lab for Computer Fkience, Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139

117. Dr. Robert Leland, Oxford University Computing Laboratory, 8-11 Keble h a d , Oxford,

OX1-3QD, ENGLAND

118. Dr. Randall J . CeVeque, Department of Mathematics, University of Washington, Seattle,

WA 98195

119. Dr. John 6. Lewis, Boeing Computer Services, P. 0. Box 24346, M/S 7L-21, Seattle, WA

98124-0346

120. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department of Com-

puter Science and Statistics, Queen Mary College, University of London, Mile End Road,

London E l 4NS, ENGLAND

121. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,

Downsview, Ontario, Canada M3J 1P3

122. Dr. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY
14853

123. Dr. Thomas A. Manteuffel, Computing Division, LOH Alamos National Laboratory, Los
Alamos, NM 87545

124. Dr. Anita Mayo, ZRM T. J. Watson Research Center, P. 0. Box 218, Yorktown Heights,

NY 10598

125. Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,

Livermore, CA 94550

126. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena, CA
91125

127. Dr. Cleve B. Moier, Mathworks, 325 Linfield Place, Pvlenlo Park, CA 94025

128, Dr. William A. Mulder, Koninklijke Shell Exploratie e:? Produktie Laboratorium, Postbus

60, 2280 AB Rijswijk, T H E NETHERLANDS

129. Dr. Dianne P. O'Leary, Computer Science Department, University of Maryland, College
Park, MD 20742

30

130. Dr. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA

94305

131. Professor James M . Brtega, Department of Applied Mathematics, 'T'hornton Hall, Uni-

versity of Virginia, Charlottesville, VA 22901

132. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

133. Dr. James C . Patterson, Boeing Computer Services, P.0. Box 24346, MS 7L-21, Seattle,

WA 98124-0346

134. Or. Peter C. Patton, Patton Associates, Inc., 101 International Plaza, 7900 Interiiational

Drive, Minneapolis, M N 55425

135. Dr. Linda 18, Petzold, G316, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94350

136. Ur. Robert J . Pleinrnons, Departments of Mathematics and Computer Science, North

Carolina State TJniversity, Raleigh, NC 27650

137. Professor Daniel A. Reed, Computer Science Department, University of Illinois, Urbana,

IL 61801

138. Dr. John K. h i d , CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon 0 x 1 1 ORA,

ENGLAND

139. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette, IN

47907

140. Dr. Gamy Rodriglie, Numerical Mathematics Group, Lawrence Livermore National Lab-

oratory, Livermore, CA 94550

141. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
29786

142. Dr. Ahrned H . Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,

University of Illinois, Urbana, IL 61801

143. Dr. Jorge Sam, IBM Almaden Research Center, Department K53/802, 650 IIarry b a d ,

San Jose, CA 95120

144. Dr. b b e r t Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA

94035

145. Dr. Martin H. Schidtz, Department of Computer Science, Yale University, P. 0 . Box 2158

Yale Station, New IIa,vven, CT 06520

146. Prof. Robert B. Schnabel, Department of Computer Science, University of Colorado at

Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, Colorado 803040130

31

147. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-

ton, OR 97006

148. The Secretary, Department of Computer Science and Statistics, The University of Rhode

Island, Kingston, RI 02881

149. Prof. Charles L. Seitz, Department of Computer Science, California Institute of Technol-

ogy, Pasedena, CA 91125

150. Dr. Horst D. Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA
94035

151. Dr. William C. Sbmarock, 3973 Escuela Court, Boulder, CO 80301

152. Dr. Burton Smith, Teracomputer Company, 400 North 34th Street, Suite 300, Seattle,

WA 98103

153. Dr. Marc Snir, IBM T.J. Watson &search Center, Department 420/36-241, P. 0. Box 218,

Yorktown Heights, NY 10598

154. Prof. Larry Snyder, Department of Computer Science, FR-35, University of Washington,

Seattle, WA 98195

155. Dr. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0.
Box 1892, Houst,on, TX 77251

156. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College

Park, MD 20742

157. Mr. Steven Suhr, Computer Science Department, Stimford University, Stanford, CA 94305

158. Dr. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada N21 3G1

159. Dr. Joseph F. Traub, Department of Coniputer Science, Columbia University, New York,

NY 10027

160. Dr. Lloyd N. Trefethen, Department of Mathematics, Massachusetts Institute of Technol-

ogy, Cambridge, MA 02139

161. Prof. Charles Van Loan, Department of Computer Science, Cornell University, Itbaca,

NY 14853

162. Dr. Robert C. Voigt, TCASE, MS 132-C, NASA Langley Research Center, Harnpton, VA
23665

163. MI. Bi Et. Vons, Center for Numerical Analysis, RLM 13.150, University of Texas at

Austin, Austin, TX 78712

164. Dr. A. J . Wathen, School of Mathematics, University Walk, Bristol BSB ITW, ENG-
LAND

32

165. Dr. Andrew B. White, Los Alarnos National Laboratory, P. 0. Box 1663, MS-265, Lm
Alamos, NM 87545

166. Office of Assistant Manager for Energy Research and Development, U.S. Department of

Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N 37831-8600

167-176. Office of Scientific & Technicd Information, P. 0. Box 62, Oak Ridge, T N 37831

