ORNL/TM-11579

i

£

MARTIN MARET TA EN

3 445k 03Luae7? O

The Effect of Mulliprocessor

Radius on Scaling

k H. Worley

iric

Py

T i b P

e e ekt A

i
SN

MWERHL ¢




This report hee b2en reproduced

to DOCE and OOE oonli
Tec n-ﬂal Informetic .0, Box 82
from (815) S78-2401, FTS 8268-2401,

Available to the public from the National Technica! Inforination Service, L1 S.
Department of Conimnerce, $285 Port Royal Rd., Soringfis!a,
NTIS price codes—Printed Copy: A03 Microfiche

This report wae prepared as an zocount of work sponsored! by agency of
the Uniied States Government. Naither the Unitad Slatee Governmant nor any
agency ihersdl, nor any of thelr emgployses, makes gny werranly, SXDiDas or
implied, or assumes any legal Babilily or res iy for the gcouracy. com-
pletenses, or usefulness of any information, epparatys, product, or crocess dis-
; iz uss weu'd rot infringe pilv cwned rignis
specific conwnercial sroduct, process, or service by
trade name, frademark, manufaciurer, or oiherwise, does not negessarily consti-
tuie or imply its anﬁ@«.‘ssmeﬁt recomimendation, or favoring by ihe United Staies
Governmest or any agency therecf. The views and o

prassed herein do not nac ss»ariaz; state oF reflect those of

BEsy

-
=
5]
T
o
L& TS




ORNL/TM-11579

Engineering Physics and Mathematics Division

Mathematical Sciences Section

THE EFFECT OF MULTIPROCESSOR RADIUS ON SCALING

Patrick B. Worley

Oak Ridge National Laboratory

Mathematical Sciences Section
P.O. Box 2009, Bldg. 9207-A
(ak Ridge, TN 37831-8083

Date Published: June, 1990

Research was supported by the
Applied Mathematical Sciences Research Program
of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
(Oak Ridge Naticnal Laborstory
Oak Ridge, Tennessee 37831
operated by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC-05-840R21400

MARTIN MARIETTA EVERGY SYSTEMS (HRARIES

R

3 W45k D314827 O







Contents

1

2

Introduction

Assumptions

2.1 Multiprocessor assumptions

........

.....................

2.2 Algorithmmodel . . . . .. L L. e

2.3 Problem assumptions -V

Algorithm-dependent results

3.1 Information-theoretic lower bounds
3.2 Example communication bound algorithms

Problem-dependent results

4.1 Communication bound problems
4.2 Problem-dependent bounds

.........

........

.....................

.....................

....................

.....................

4.3 Sufficient conditions for a problem to be communication bound . . . . ... ..

Scaling results
5.1 Problem assumption VI
5.2 Problem-scaling bound

.....................

5.3 Effect of r(p) on the asymptotic growth of the parallelcost .. ... ... ...

Conclusions

it

Ot W o N

- =

10

12
12
13
17

19
i9
20
20

22






THE EF¥FECT OF MULTIPROCESSOR RADIUS ON SCALING

Patrick H. Worley

Ahbstract

In earlier work, it was established that, for a large class of linear partial dif-
ferential equations (PDEs), increasing the problem size necessarily increases the
execution time, independent of the algorithm and the number of processors used to
solve the problem. In this paper, the analysis is extended to take into account the
effect of the radivs of the multiprocessor interconnection network on the growth in
the execution time.

Define #(p) to be the minirum radius over all subsets of p processors in a wul-
tiprocessor. An information-theoretic analysis is used to show that r(p) determines
a lower bound on the communication cost of a parallel algorithm, and that this
in turn determines a lower bound on the parallel execution $ime. Assume that
r(p) > B - p¥ — p for positive constants 8, v, and p for & given multiprocessor. For
example, this type of Jower bound on r(p) holds for a muliiprocessor whose inter-
connection topology is a k-dimensional array. It is then established that, for the
given class of PDEs, the time spent on interprocessor cormmunication will be the
dominant constraint on the performance of optimal algorithms when the problem
and the multiprocessor are large. Moreover, as the problem and the multiprocessor
increase in size, it is shown that the asymptotic increase in the parallel execution
time will be determined by the communication cost and not by the computational
requirements. The restriction to linear PDEs is not necessary, and similar results
can be obtained for many problems in scientific computation.






1. Introduction

Current research into parallel processing and multiprocessors is driven by the need to increase
computing power. Two goals are achieved by increasing computing power: more problems can
be solved in a given interval of time, and problems whose sclutions have heretofore been too
costly to calculate can be solved.

In this paper we examine an issue related to how effective multiprocessors are at achieving
these goals, namely, the issue of scaling. A multiprocessor scales if increasing the number of
processors enables it to solve larger problems efficiently. A lack of parallelism in the algo-
rithms or high communication cost can prevent this. In previous work [23], [24], we established
that, for a large class of linear partial differential equations (PDEs), increasing the problem
size (unboundedly) necessarily increases the execution time (unboundedly), independent of the
algorithm and of the number of processors usad to solve the problem. In this paper, we ex-
tend this analysis to describe the effect of the radius of the interconmection network of the
multiprocessor on this growth in the execution time.

Define r(p) to be the minimum radius over all subsets of p processors in a multiprocessor,
and assume that r(p) > B -p" — u for positive constants 3, v, and g. For example, this
type of lower bound on r(p) holds for a multiprocessor whose interconnection topology is a
k-dimensional array. Then, for the given class of PDEs, we show that the time spent on
interprocessor communication will be the dominant constraint on the performance of optimal
algorithms when the problem and multiprocessor sizes are large. Moreover, we show that the
asymptotic rate of increase in the parallel execution time as the problem size and the number
of processors increase is determined by the communication cost and not by the computation
cost.

Many authors have discussed the effect of the interconnection network of a multiprocessor
on the communication costs incurred when using a multiprocessor [2], [3], [12], [15], [19]. Sim-
ilarly, other authors have discussed the effect of cormmunication costs on the execution time of
parallel algorithms for high level descriptions of discrete problems [1], [7], for specific discrete
problems [9], and for implementations of specific algorithms for discrete problems [10], [11],
[13], [14], [21], {25]. The results in this paper differ from previous work in that we derive both
upper and lower bounds on the performance of optimal algorithms for continuous problems,
and are able to show how the performance scales as the problem size and the number of pro-
cessors scale. The restriction of this work to the given class of linear PDEs is only for the sake
of clarity and concreteness. Similar arguments hold for many continuous problems arising in
mathematical physics.

The outline of this paper is as follows. Ws describe our multiprocessor, algorithm, and
problem assumptions in §2. In §3 we describe how the multiprocessor radius function constrains
the performance of parallel algorithms as a function of simple information-theoretic algorithm-
dependent parameters. In §4 we describe how the multiprocessor radius function constrains the
petformance of optimal parallel algorithms for the numerical approximation of a given linear
PDE. In §5 we use these results to show how the multiprocessor radius function causes the
execution time of optimal parallel algorithms to grow as the size of a linear PDE problem
grows. We briefly summarize our results and make concluding remarks in §6.



2. Assumptions

Our focus in this paper is on MIMD multiprocessors [8] and on modelling parallelism at the level
of concurrent execution of floating point operations. This viewpoint is reflected in the following
multiprocessor and algorithm models. As with our selection of problem class, we restrict our
analysis to the following models for the sake of clarity and concreteness. The results will be
similar for other realistic multiprocessor and algorithm models.

2.1. Multiprocessor sssumptions

Multiprocessor model. We model a multiprocessor as a directed graph (V, E). Each
vertex v; € V represents a serial processor. Each edge ¢j € E represents a unidirectional
communication channel in the multiprocessor. We assume that all floating point operations
are computed by the composition of operators from some given set of primitive binary and
unary floating point operators, and that the execution of a primitive operator is not spread
over multiple processors. We also assume that addition is the fastest binary floating point
operator. The parameter t refers to the miniroum time required to send a single floating point
number between two distinct processors in a given multiprocessor, which we call the minimum
transmission time. The parameters fyy, fia), and f(;) refer to the minimum times required
to add or subtract, multiply, and divide, respectively, two floating point numbers in a given

multiprocessor.

Multiprocessor radius function. Define the distance from vertex vy to vertex vz, D(v1, v3),
to be the minirnum amount of time it takes to send a single floating point number from the
processor tepresented by vy to the processor represented by ve. Define a center of a subset
of vertices of the graph, V' C V, to be a vertex in V' that minimizes the maximum distance
between itself and other vertices in the subset. That is, if ¢ is 2 center of V/, then

max D(c,w) = '?Eli‘gl, max D(v,w).

Define the redius of the subsct to be this distance,

radins(V') = min max D(v,w).
veEV! weV!
For a given multiprocessor, consider a subset of p processors with minimum radius over all such
subsets of size p. Define the function r(p) to be the radius of this subset. We refer to #(p)
as the multiprocessor radius funciion. We will use this function to establish lower bounds on

communication costs in parallel algorithms.

Example architectures. Most multiprocessor architectures currently in use have fairly sim-
ple graphs, with essentially homogeneous processor and communication capabilities [5], [6], {20].
The following examples are common designs, each of whose behavior is representative of a class
of architectures. All of the examples can be modeled by undirected graphs: if an edge exists



3

from v; to v;, then an edge also exists from v; to v;. Additionally, all processor and communi-
cation channel capabilities are the same.

e cligue. The graph of the architecture is a clique; that is, each processor is directly con-
nected to every other processor. The radius of any subset of the multiprocessor containing
more than one processor is t.

e k-dimensional array. The graph of the architecturs is a k-dimensional array. Each pro-

cessor is connected to up to 2 - k other processors. The multiprocessor radius function
r(p) is never smaller than & -¢ - (p'/%/2 - 1).

o hypercube. The graph of the architecture is a binary hypercube. Thus, there are P = 2k
processors, where k i8 sormne nonnegative integer, and each vertex is a corner of a k-
dimensional array. Each processor is connected to log, P other processors. The multipro-
cessor radius function is r(p) =1 - [log, pl.

2.2. Algorithm model

Serial algorithms. We define an algorithm to be a partially ordered set of instructions of
the form

y= ﬂop(zl" .. ;xn)n

where flop is a floating point operator, y is a floating point variable, and {z1,...,z,} are floating
point constants and variables. If a floating point variable is used by two different instructions,
and if one of the instructions changes the value of that variable, then the partial order specifies
a precedence relationship between them. These are the only relationships established by the
partial order.}

Denote a given algorithm by a. We define the serial cost of a to be the time spent exe-
cuting the instructions in a on some standard serial processor, where the standard processor is
assumed to satisfy the assumptions made in the previons section about the processors in the
multiprocessor. We refer to this value as C,. All sequential orderings of the instructions of
an algorithm that are consistent with the partial ordering are assumed to have the same serial
cost. Therefore, we also refer to the partially ordered set of instructions as a serial algorithm.

Parallel algorithms. A parallel implementation of an algorithin on a multiprocessor speci-
fies when and on which processor each instruction is executed, and what communication takes
place during the execution of the algorithm. We will refer to this information as the scheduling
of the algorithm. Define a scheduling to be well-defined if it is compatible with the partial or-
der’s precedence relationships, and if all demands made on the processors and communication
channels are within their capabilities. We define a parallel algorithm to be a triple consisting
of a serial algorithm, a multiprocessor architecture, and a well-defined scheduling. We refer to

1This model ignores many of the details usually found in real algorithns. In particular, integer arithmetic
and instructions controlling conditional execution are not represenied. But the time spent’ in floating poing
operations generally dominates the total execution thme of serial algorithms for solving PDEs mumerically.
Moreover, much of the other work tends to increase proportionally with the number of floating point operations,
and can be “included” in the model by increasing the execution time of the floating point operstions.



a given paralle] implementation of an algorithm a by & Conversely, a is the serial algorithm
associated with a given parallel algorithm &.

We define the parallel cost of a parallel algorithm & to be the time it takes to execute the
algorithm on the specified multiprocessor. We refer to this value by T3. There are two distinct
costs associated with a parallel algorithm: computation cost (Cz) and communication cost (Wy).
The computation cost is the amount of time during which at least one of the processors is busy
executing the instructions of the corresponding serial algorithm. If P processors are used by

a parallel algorithm to execute instructions, then the computation cost is bounded from below
by
C

Cﬁ 2 7)27 (1)
where the serial cost in this expression is based on using the “fastest” of the I processors as the
standard serial processor. The communication cost is the amount of time during which at least
one processor is actively sending or receiving a message or at least one of the communication
channels is busy transmitting a message. Both the computation cost and the communication
cost represent lower bounds on the parallel cost:

max{C;, W5} < Ts.

We define an optimal parallel implementation of an algorithm on a given multiprocessor to
be one that minimizes the parallel cost. We define an optimal parallel algorithm to be one with
an optimal parallel implementation.

Communication bound algorithms. If the communication cost of a parallel algorithm
is the dominant component of the parallel cost, then we say that the parallsl algorithm is
communication bound. We make a similar definition below for a serial algorithm & and a given
multiprocessor, which we will refer toc as M.

Consider an idealized multiprocessor M’ that is comstructed from M by replacing the in-
terconnection network of M with one that is a clique and for which the transmission time over
any commuunication channel is zero. Also assume that there is no operating system overhead in
sending or receiving a message in M. Thus, any parallel implementation of a on M’ will have
zero comraunication cost.

Consider an optimal parallel implementation of a on M, and call it 8,. Next, consider an
optimal parallel implementation of a on M’, and call it &,. If the parallel cost of &/, is less than
half the paralle! cost of &,, then we say that the serial algorithm a is communication bound
on M. If a is communuication bound, then the interprocessor communication subsystem has a
larger effect on the execution time of optimal algorithms for M than do the inherent parallelism
in the serial algorithm and the speed of floating point computation. If the parallel cost of &), is
more than half the parallel cost of &,, then we say that the serial algorithm a is computation
bound on M. If a is computation bound, then the partial order of the serial algorithm and
the speed of floating point computation are the dominant constraints on the performance of
optimal parallel implementations on M, and M is “adequate” for this algorithm.



2.3. Problem assumptions I-V

The following assumptions are comnmonly satisfied when numerically approximating the solution
of scalar linear partial differential equations {(PDEs). As stated, they also apply to a larger class
of problems.

Solution operator assumption. For any nonnegative integer k, let ®* be the k-dimensional
Euclidean vector space and let I; be the k-dimensional unit cube,

L = [0,1]x---x[0,1] C R*.
For some d > 1, let 2 be a compact subset of ¥¢.

(1) We assume that we are approximating a scalar function u(z) that is defined on {1 and
that can be represented by an expression of the form

s
u(%) = ; /fa,. ¥,(2,2)gi(z) dz (2)

for all 2 € §). The constant S is a positive integer, {d;|i € {1,...,8}} is a set of
nonnegative integers, {g:|i € {1,...,85}} is a set of functions representing the problem
data, and u(Z) is the solution function. For eachi € {1,...,5} and z € Q, ¥;(%,%) is 2
Lebesgue integrable function on I,.

If u(%) is the solution of a linear PDE, then the kernels {¥;} are linear functionals of the
Green’s function for the PDE. See Butkovskiy [4] for examples of this type of representation of
the solution operator of a PDE. We will henceforth refer to u as the solution function.

Numerical approximation assumptions. In order to numerically approximate u(z), we
first replace the possibly infinite dimensional problem with a finite dimensional problem. The
dimensionality of the problem is reduced by introducing ezror in the following sense:

o Only a finite amount of information about the solution function is calculated. Any model
of the solution based only on this information will merely approximate the true solution.

e Ounly a finite amount of information about the data functions is used to calculate the
desired solution properties. We will refer to this as the data function sampling. Unless
this information completely characterizes the data functions, the solution values that are
calculated are also approximate.

Equation (2) is replaced by a relationship between the data function samples and the informa-
tion about the solution function that is to be calculated.

For the rest of this paper, we restrict ourselves to problems where

(I1) for eack i € {1,---,5}, values of the data funclion g; sempled in its domain I, are
available to be used,



(I11) wvalues of the solution funclion ai given locations in ils domain Q are approzimated, and
(IV) the error in approzimating each solution value is bounded by o given value c.

Thus, we are specifying what type of data can be used, what solution values to approximate,
and how accurately these values are to be approximated. Note that we are not stipulating where
the data functions can be sampled. Rather, we are stipulating that ouly pointwise evaluations
of the functions can be used by any algorithm used to solve this problem.

Let Z represent the set of locations where the value of the solution function is needed,
Z = {%|j = 1,...,Ny}. For brevity, we will use u; to refer to u(Z;), and we denote the
set of solution values to be calculated by U. We can use the following notation for any serial
algorithm 2 with finite serial cost that solves a problem satisfying the above assumptions. For
each data function g;, the algorithin uses funciion values at some finite set of locations X; =
{Zix |k =1,...,Ns;} in Iy,. And, for any particular solution value u;, the approximation to
u; calculated by algorithm & depends on values of g; at some set of locations

Xii = {& x|k =1,...,Naji(x;)} C X;

in Iy,. For brevity, we will use g; ;; to refer to gi(Z; ;). The total amount of data used to

approximate u; is No(u;) = Zle Nai(u;).

Data function assumptions. In order to identify whether a given algorithm solves a prob-
lem satisfying Assumptions {I)-(IV), we must be able to determine whether the error tolerance
in approximating the individual solution values is satisfied (Assumption (IV)). The following
assumption allows us to determine & priori lower bounds on the worst case error in an approx-
imation.

Define C™(Ry) to be the set of all functions that have continucus mth order partial deriva-
tives on a set Ry ¢ RE. For g € C™(Ry), let t‘?f")g be a vector whose elements are some

ordering of the mth order partial derivatives of ¢ in R*.

(V) Foreachie€ {1,...,5}, we assume that the data function g; is known to be some member
of a set G; defined in the following way. G; is the set of all functions g satisfying the
properties

i) 9(2) € C*(1a,)
ii) 95, 29(2)lly < Ti(@) for all 2 € I,

where v; is a positive integer, ||-||iy is 2 vector norm, and Y;(#) is a nonnegative function.
We also assume that any member of G; is a permissible data function, and that any
combination of data functions from the sets {G;} generate a possible solution to the
PDE, with the following constraint. The inclusion of a given data function g; in a set
of data functions may force another data function g;, j # 1, to have given function and
derivative values on the boundary of Iy,.

Assumption (V) states that the data functions are known to have a certain number of continuous

derivatives, and that the magnitude of the largest partial derivatives is bounded by some known



-3

function. This is the only information we are assuming about the data functions. This type of
assumption on the data is similar to the assumptions that are made on the data and solution
functions when specifying a priori bounds on the error introduced when using finite difference
and finite element discretizations of a PDE to approximate the solution. The particular form
of these assumptions is similar to that used by Traub and Woéniakowski [22].

3. Algorithm-dependent results

In this section, we describe the effect of the multiprocessor radius on the performance of par-
allel algorithms as a function of simnple information-theoretic algorithm-dependent parameters.
We implicitly assume that all algorithms discussed in this section solve problems that satisfy
Assumptions (I}-(V), but only in the sense that we use the notation introduced in the previous
section and use examples that do solve such problems.

3.1. Information-theoretic lower bounds

Lemma 3.1. The serial cost of an algorithm a is bounded from below by

feay - (Na(u;) - 1)
for any u; € U.

Proof. For each solution value u; € U, computing u; requires that the data be reduced by a
sequence of binary operations, and binary addition is assumed to be the fastest binary floating
point operator. Thus, the serial cost of calculating #; can be no smaller than the minimum
serial cost of summing its required data. The proof follows immediately by a simple counting
argument. (See also Lemma 1 in Kuck [16, pags 95].) O

Consider a parallel implementation of an slgorithm & on a multiprocessor satisfying the
assumptions of §2.1. A processor collaborates in the computation of a solution value u; € U if
changing the results of the floating point operations calculated by that processor can change
the value of u;. Define pa(u;) to be the number of processors that collaborate in the calculation
of u; for a given parallel implementation of a.

Lemma 3.2. The computation cost of a parallel implementation of an algorithm a is bounded

from below by
e B A

for any u; € U.

Proof. Since computing u; requires that the data be reduced by a sequence of binary
operations, the computation cost of calculating u; on a multiprocessor can be no smaller than
the minimum computation cost of summing its required data on the same multiprocessor.
Since addition is a binary operator, N existing summands are replaced by at most N/2 results
during any time interval of length f(4). These results and any unused summands are the
operands for the next step of the calculation. Thus, one lower bound on the computation



cost is f(y) - [loga Na(uj)]. The other expression in the lemma comes immediately from (1),
Lemima 3.1, and the definition of pa(u;). (See alse Lemma 1 in Kuck [16, page 95]). [

As in §2.1, let r(pa(u;)) be the radius of a ps(u;)-processor subset that has the minimum
radius.

Lemma=a 3.3. The communication cost of a parallel implementation of an algorithm = is
bounded from below by r(pa(x;)) for any u; € U.

Proof. The lemma is a consequence of the fact that information is needed from all ps{x;)
processors in order to calculate u;. Denote the subset of processors that collaborate in the
calculation of u; by V’. Assume that a processor v € V’ has been designated to calculate the
final unary or binary cperation that produces u;. Each processor in V' produces a result that is
crucial to the calculation. Therefore, whether a result travels directly to v or is used by ancther
processor to produce a new partial result that is then sent on, the time spent communicating
is never less than the distance to v from the criginating processor, Therefore, the maximum
distance from the processors in V' to v is a lower bound on the communication cost. By
definition, this is bounded from below by r(pa(u;)). 0

Define N, , to be the maximum amount of data required by an algorithm a to compute a
single solution value,

Nao = max Ny(u;).

Theorem 3.4. For a P-processor multiprocessor, a lower bound on the parallel cost of any
parallel implementation of an algorithm a is

min }max { (), fiay - IV_.‘IY“J_;;.:.},] s f+) - [logy N, W] } . 3)

pe{1,...,P

Proof. The parallel cost is bounded from below by max{Cs, W;}. Thus, by Lemmas 3.2

and 3.3,

- N a(u') -1

Ts 2 max{"(ﬁa(’-‘j)) » fey [Wl » J4) - [loga Na(u;)] }
for each u; € U. Since No. = N,(u;) for some uj € U, and since ps(u;) is a member of the
set {1,..., P} for any parallel implementation of algorithm a on this multiprocessor, the proof
follows immediately. O
Of the three terms in (3), 7(p) is monotonically increasing, f1)-[(Na,« ~ 1)/p] is monotonically
decreasing, and f(4) - [log, Na(u;)] is constant (as a function of p). Thus, if P > N,.., then
either (3) achieves its minimum when r(p) & f4) - [(Nan. — 1)/p] or 7(p) is always less than
Sty - [(Napw ~1)/p] for p € {1,---, P}, in which case the minimum is fi4) - [logy Na,].

On an idealized multiprocessor where r(p) = 0 for all p, the lower bound on the parallel cost
described in Theorem 3.4 is f(4) - [logy N, ] for large numbers of processors. If P > N, . and
r(p) < B - [log, p] for some finite constant B, then it follows immediately that (3) is bounded
from above by

max{fiyy, 8} - [logy Na.] .



Since (3) is always at least as large as f(,) - [log; Na,.], this implies that (3) is also proportional
to [logy Na,.] when r(p) < B - [log,p] and P is large. For example, this type of bound on
r(p) holds when the multiprocessor is a clique or a hypercube. But, as the following theorem
shows, the lower bound described by (3) grows much faster (as a function of N, .) when r(p)
is a positive power of p.

Theorem 3.5. For a given multiprocessor, assume that r(p) > 8- p" — u for positive constants
B, v, and y. Then, independent of the number of processors, a lower bound on the parallel cost
of any parallel implementation of an algorithm a on this multiprocessor is

T/(v+1)
max { (ﬂ . (%@% -Na,-) ~(B+ l‘)) » S+ - [logz Na’,]} .

Proof. By Theorem 3.4, a lower bound on the paralle] cost is

- Ara,¢ han 1
oIin _max { r(p), fi4) [ ’ ] » f(+) - [1oga Na . ] } 4)
for any finite number of processors. By assumption, r(p) > 8- p” — p for positive constauts 3,
v, and g. Redefine r(p) to be equal to B-p? — . Then (4) is still a lower bound on the paraliel
cost since all we have done is use a worse lower bound on the communication cost.

Define LB(p) to be the function

LB(p) = max { r(p) , f(+) . [M.‘

» fiay - Nogy Na k] } ,

and let p, denote some number that minimizes LB(p) over the domain (0,00). (I.e, LB(p,) has
the same value as (4).) Next, consider some value p’ for which

Ny ~ 1'i

p (5)

() < fe {

That is, p’ satisfies
(6)

By modifying the left hand side of (6) in such a way that its value is never decreased, and by

B —p < fy- [ﬁ‘f—-,—:{‘

p

modifying the right hand side in such a way that its value is never increased, we can replace
(6) by the following simpler inequality that also guarantees that p’ satisfies (5):

(P’)7+1 .<_ éf%% ‘Na;sv

In particular, if we let

’

o = (fbtl Naw

1/(v+1)
2% )



10

then p’ satisfies (5). Since r(p) increases monotonically and since fi4y-[(Na,. — 1)/p] decreases
monotonically, if follows that LB(p) is minimized by some p. greater than or equal to p’. In
particular, r(p’) < r(p.). Since fi4) - [logz Na 4] is always a lower bound on the paralle! cost,
this implies that

LB(p.) 2 max{r(p), fi4) - [log2 Na,x1}-

In conseguence, a lower bound on the parallel cost is

¥/(v41)
rnax{ (ﬂ . (glté . Na,-) -~ {8+ ,u)) , f(+) - Nog, Nﬂ.*]} ]

This proves the theorem. [l

Corollary 3.6. For any finite number of processors, a lower bound on the parallel cost of any
parallel implementation of an algorithm a is

k- 1/(k+1)
max{-—~2~E . (({.(itl -Na,.) - 3) » fay - [log, Na,*]}

if the multiprocessor is a k-dimensional array.

Proof. For a k-dimensional array, r(p) > k-t-(p'/*/2~1). The corollary follows immediately
from Theorem 3.5. 0l
Thus, for a k-dimensional array multiprocesscr, the communication cost, as represented by
r(p), determines the fundamental behavior of the lower bound in Theorem 3.4 for large P. In
§3.2, we describe an example where r(p) is the dominant factor in determining the parallel cost
of a parallel algorithm, not just in determining a lower bound on the parallel cost.

3.2. Example communication bound slgerithms

The following exarple problem shows that the intrinsic cost represented by the nmltiprocessor
radius function can limit the performance of (good) parallel implementations on a k-dimensional
array architecture. In particular, we describe conditions for which a given parallel algorithm
& is communication bound. We also describe conditions for which the corresponding serial
algorithm a is communication bound on a k-dimensional array architecture.

Consider the problem of calculating a single-valued solution function u that is defined by

w = jglg(z)dz.

An algorithm a to approximate 1 that uses a quadrature rule to calculate the integral has the
form

Nd,.
i o= ) aug(aw). ()
k=1

This algorithm contains N, , multiplications and N, . — 1 additions.
Consider implementing this algorithm on p processors of a P-processor k-dimensional array



11

multiprocessor, where p < N, . < P. A near-optimal parallel implementation with respect to
the computation cost is the following. First, partition the data {g(z:)} into p subsets each
of which contains no more than [Ny ./p] elements and allocate a different processor to each
subset. Next, in parallel, use the processor allocated to a given subset to calculate the portion
of the weighted sun in (7) corresponding to the subset. Finally, when all processors are finished,
sum the remaining p partial resulis using a parallel fan-in algorithm [16]. The computation
cost of this parallel implementation on a homogeneous multiprocessor is

Cs = [—IY;—] (fy + f)) + (Mogzp] ~ 1) - fryy. (®)

Since p processors are collaborating in such a parallel implementation, a lower bound on the
communication cost is r(p). Assume that p = Ny .. Then (8) is minimized, but the communi-
cation cost is at least v(Ng ). If r(Ny4) > Cj, then this parallel algorithm is communication
bound since the communication cost is larger than the computation cost. The multiprocessor
is a k-dimensional array, so this inequality is

1/k
E.1. ( ;’* - 1) > f) + Ja) - Nogy Nau]

or

If we knew that
2-f o 2 S
Ft 2 ki NogaNanl,

then a sufficient condition for the parallel algorithm to be communication bound would be

4.
Nf* > ........‘&1)_ .
’ k-t
Using an argument similar to this, and taking into account all possible cases; it is straightforward
to show that this parallel algorithm will be cornmunication bound if

2k k
Nyn >max{16’=, 16" - (flt*—)> ,4*-(fﬁizf-tﬁﬂ+1) } ©)

For example, if f.) = f(4) = ¢, then this bound is Ny . > 16%. (This is an overly conservative
bound. For example, if f.j = fyy =t and & > 2, then the radius forces this algorithm to
be communication bound when Nj . > 11%.) A similar analysis can be used to show that any
parallel implementation for which p o« NJ, where ¥ > k/k + 1 will be communication bound if
Ny » (and P) is large enough.

We can also show that the serial algorithm a is communication bound on a k-dimensional
array multiprocessor if Ny . is large enough and P = N,,. First, let M be the given k-
dimensional array multiprocessor, and let M’ be an idealized multiprocessor constructed from
M in the fashion described in §2.2. As in §2.2, let &/, be an optimal parallel implementation of
a on M'. Then expression (8) with p = N, , is an upper bound on Ty since it represents the



12

execution time of a particular paralle]l implementation of a on M’.
Let &, be an optimal parallel implementation of a on M. By Corollary 3.6,

E-t 1/(k+1)
T5, > max {T : ((f'g(*itl *Na,.> =3, fi4) - [logz Nan] o

Thus, T3, is larger than 2- Ty when

;. 1/(k+1)
_..2...{ . (({ﬁ% . Na,t) - 3) > 2 (fey+ feay - Noga Nanl)

or

kt l/(k"l'l) 4 .
N:}f‘i > (“j“"”) > (““E.“f—(t")‘ + 3 + ﬁ-{’ncgzNa,i]) .
(+)

Using a case-by-case analysis similar to that used to derive (9), it is straightforward to show -

that a sufficient condition for the serial algorithm a to be communication bound is that

2% E+1
k41 w2 [ f() 8- (f) + f() ) Kkt
Na. >max{(16) +1 (8% +8) ( = ) , ( ™ +86 ol

If fi) = f(4) = t, then the bound is N,. > 645+ . (k + 1)%+2/k?*  (This is also an overly
conservative bound. For example, if f(.y = f(4) = ¢, then the radius forces this serial algorithm
to be communication bound when N4 . > 56 for k = 1, when N, . > 513 for & = 2, and when
N > 44* for k = 3.) Similarly, if P < N, for some ¥ > k/k+1, then T, > 2 “Tay if N, uis
large enough. Thus, the radius function of a k-dimensional array strongly limits the attainable
performance of algorithms for this example problem for large N, . (and P).

4. Problem-dependent results

By Theorem 3.5, if r(p) > 3 - p” — p for positive constants 8, v, and g and if the number of
processors is large, then the communication cost of a parallel algorithm determines the behavior
of the lower bound on the parallel cost described in Theorem 3.4. In §3.2, by restricting ourselves
to a specific algorithm, we were able to show the much stronger result that this condition on v(p)
can force both the serial algorithm and good parallel implementations to be communication
bound. In this section we show that similar results can be established for a given problem

satisfying Assumptions (I)-(V) in §2.3.

4.1. Communication bound problems

Previously, we defined what it means for a parallel algorithm to be communication bound, and
what it means for a serial algorithm to be communication bound on a given multiprocessor. In
this section, we define what it means for a problem to be communication bound. Let q be a
problem satisfying Assumptions (1)-{V) in §2.3. Let A{g) be the set of all serial algorithms that
solve problem q. Let M be a given multiprocessor, and let M’ be the idealized multiprocessor
described in §2.2.



13

Let &, be the parallel algorithm that minimizes the parallel execution time over all parallel
implementations on M of all algorithms a in A{q). We call this the optimal paralle] algorithm
for q on M. Let ﬁ; be the parallel algorithm that minimizes the parallel execution time over all
parallel implementations on M’ of all algorithms a in A(q). We call this the optimal paraliel
algorithm for q on M’. We say that q is communication bound if Ta; < T5, /2. Otherwise, we say
that p is computation bound. As for the case of serial algorithms, if a problem is communication
bound, then the interprocessor communication subsystem is the dominant constraint on the
ability of M to solve the problem. If a problem is computation bound, then the intrinsic
computational requirements of the problem and the speed of floating point computation are the
dominant constraints.

4.2. Problem-dependent bounds

The argument used in §3.2 to show that a given serial algorithm is communication bound can
also be used to show that a problem q is communication bound on a multiprocessor M. We
simply need to establish a lower bound on N, . for all algorithms in A(q), and an upper bound
on the computational cost for a specific algorithm a € A(q). The lower bound on Ng ., in
conjunction with Theorem 3.4 and Theorem 3.5, can be used to calculate a lower bound on
Ts,, the parallel cost of the optimal parallel algorithm for q on M. The upper bound on the
computation cost for a specific algorithm is also an upper bound on on Taf, , the paralle]l cost
of the optimal parallel algorithm for q on M’. The first two theorems in this section, proven
in [23] and [24)], allow us to calculate this information.

Lower bound on N, .. Let B;(%;6) denote a closed ball in ®% centered on z with a radius
of §, § > 0. If d; = 0, then we define & to be zero. Define N, ;(u;) to be the minimum number
of data sampling locations in I, nsed by algorithms in A{q) when approximating u(Z;).

Theorem 4.1. Let q be a problem satisfying Assumptions (I)-(V). Let € be the error bound on
the approximation to the solution values specified by the problem. Let Z; be an element of Z,
and let u; be the corresponding element of U. Let i be an element of {1, -.-,S}. If there exists
a closed ball Bi(%.;6) C Iy, of positive radius § on which ¥;(Z;, %) is either strictly positive
or strictly negative and on which both ¥;(Z;,%) and T;(Z) are bounded away from zero, then
there exists a positive constant c; ; independent of ¢ such that

.
Npi(w;) 2> jeij 'f"tj .

The proof of this theorem is based on how different two solution functions can be when their
data functions are identical at all of the sampling locations. See [23] or [24] for the details. The
assumptions of the theorem are satisfied by most linear PDEs arising in scientific computing,
and are used merely to ensure that u; cannot be calculated exactly with a finite amount of
data from I,;. Since N, . > Na(uj) > Ny i(uj) > Ny i(u;) for all algorithms a in A(q), this
establishes the desired lower bound.



14

Corollary 4.2. If the conditions of Theorem 4.1 are satisfied for some Z; € Z and some
i€ {l,---,5}, then

Ty, > cij € W2 : .
i R (I I . . e
a, = pe{l{tl..[.l,l’} max { r(p), f(+) P , f(+) I'ogz(c,d € )] .

Here P is the number of processors in M and ¢;j is the constant from Theorem 4.1. In
particular, if r(p) > 8- p? — p for positive constants 8, v, and y, then

4 Yi(v+1)
Tz, 2 max {ﬂ' (Efi% eig €W - 1))

—(B+1), fiay- ylosz(c.-.j - 1)] }

for any finite P.

Proof. Since Ny . > N, i(u;) for any a € A(q), the proof follows directly from Theorem 3.4,
Theorem 3.5, and Theorem 4.1. O

Upper bound on minimum computation cost. The next theorem describes an upper
bound on N4(uj) for a particular serial algorithm a. We will use this to derive an upper bound
on the minimum computation cost over all parallel implementations of algorithms in A{g).

Consider the following algorithm for approximating a given u; € U. For each i € {1,---,5}
such that d; = 0, compute

/ ¥i(z,2)g9:(2)dz = V(%) -9

4

exactly. Call this value #; ;. For each 7 such that d; > 0, approximate ff& ¥(Zj,%)9:(£) d% in
the following way:
a) Divide Iy, into cubes of the form C;(Z;;;27%"), for some positive integer v; j, where
C;(%;6) is the open d;-dimensional cube centered on # with volume §%. Here I is the
index for this set of cubes, { € {1,.--,2%i %},

b) In each subcube Ci(%;j;;27%"), consider v{* data sampling locations arranged on a
uniform d;-dimensional mesh with mesh spacing h = 27" /(v; + 1). Let §; ;,1(Z) be the
unique polynomial of degree at most v; — 1 in each variable that interpolates g;(Z) at the
indicated sampling locations.

c) Approximate [; Wi(Z;,%)g:(Z)dz by

o¥i,5 %
up; = z / ‘I’,‘(Zj, f)ﬁ."j,)(i) dz.
1=1 YCi(&ij27")
Finally, approximate u; by the following expression,
s

uJ- = E Ui 5.

i=1



We get an algorithm for any problem q by using this technique for each u; € U and using
enough data function samples to satisfy the error bound. We refer to this type of algorithm as
a Green’s function method since it uses the Green’s function directly in the calculation.

Theorem 4.3. Let q be a problem satisfying Assumptions (I)-(V). Let € be the error bound on
the approximation to the solution values specified by the problem. For each u; € U, there exists
a set of finite positive constants {& ib each of which is independent of ¢, with the following
property. There exists a Green’s function method a in A(q) such that for each u; € U and
ie{l,-.-,5}

Na,;(u]') < Gy Cn%:’. + L

The proof of the theorem is based on bounding the error introduced by using the interpolating
polynomials {§; ; 1} instead of the true data functions in the Green’s function method. See [23]
or [24] for the details. Since Ng W = maxycv }“-Szl Na i{t;), this theorem describes an upper
bound on the size of N, . for the specified algorithm.

The next theorem describes an upper bound on Ta;~ It is derived from an upper bound
on the computation cost of a particular parallel implementation of a Green’s function method.
Note that the expression |P/|U|] is used in the first inequality in the theorem, where |U] is
the number of solution values to be calculated. This arises because one of the two parallel
implementations used to establish the result calculates each solution value on a distinct subset
of processors, and the expression |P/|U/|| is an upper bound on the number of processors in
the smallest subset. Since this approach only makes sense if || < P, a different parallel
implementation is used to calculate a bound when |U]| > P.

Theorem 4.4. Let q be a problem satisfying Assumptions (I)-(V). Let € be the error bound
on the approximation to the solution values specified by the problem. Let |U| be the number
of solution values in U. Let M be a homogeneous P-processor multiprocessor, and let M’ be
the idealized multiprocessor constructed from M in the fashion described in §2.2. Let {&; ;} be
the constants from Theorem 4.3. Then

(E,‘J cemdifvi + 1)
1

s

T, < mi : + fo)) + (]} -1
% = e Ul pedt, SLPNUI) P Ui+ ) + (Tloga ] = 1) fia
if P> U], and
1wl s
if P < |U|.

Proof. For fixed ¢, j, and [, let the set {Z;; x|k = 1,--- ,vf‘} denote the data sampling
locations in Ci(Z;;,1;27""7) used by a Green’s function method a. Then, in this subcube, the



16

polynomial interpolant §; j ; can be represented by

v_'
Z 9i51(Zij k) - Aig1e(F)
k=1

where {A; ;1(Z)} are Lagrange basis functions for these sampling locations. (See Prenter [18,
pages 118-127] or Worley [23, pages 131-134].)
Using this notation, the expression for #%; ; becomes

d

i s 4 vl
W =y / ¥i(2,2) - | Y 0iFigan) - Aijae(@) | dz
I=1 k=1

Ci(Zi ;27 i)

d.
v, i-d; ]
24,57 % l)'-

> g9i(Zije) - / (2, %) Aijk(2) dE

I=1 k=

{1

Ci(&4,5,0;27 0%

Each factor fC;(f;,,—,;;:"”‘»i"")‘I"'(EJ'"E) - Aij1,6(2) dZ is independent of the data, and can be
precomputed. Call it r; ;; . The expression for #; j is then

..d d;
2¥i,5 d; U'-'

g o= > > riae gil&iiak)
k=1

I=1
and N, ;(uj) = vf" - 2¥.3°di Gimilarly, the expression for the approximation to u(Z;) is now

L oadg d;
S Y45 4 U'»'

wj = Z Z x ik - 9i( i k) (10)

i=1 =1 k=x1

and Ny(u;) = :le v grisdi

By (10), using algorithm a to approximate u(Z;) requires Na(u;) floating point multiplica-
tions and Ns(u;) — 1 floating point additions. To implement this algorithm using p processors
of a P-processor multiprocessor, use the same technique described in §3.2: partition the data
equally among the processors, calculate as much as possible in parallel, synchronize, and sum
the remaining min{N,(u;), p} partial results using a parallel fan-in algorithm. Since computing
u; 1n this fashion is independent of computing any other member of U, the same approach can
be used for all other solution values, as long as the total number of processors used does not
exceed P. Assume that |U] < P. Then we cau allocate | P/|U|] processors to the computation
of each u;, but use only as many processor as is efficient for each computation. The parallel

cost of this parallel implementation on M’ is

. iy Nai(uy)
Je{honlul) pefs,LPAUI)) ([_—LF*J"] e+ Je) + (logz ] - 1)'f(+)) -

Next, assume that |I/| > P. Then a different approach is required. Instead, partition the



17

set of solution values into P subsets each of which containg no more than [|U|/P] elements,
and assign a distinct processor to the calculation of the solution values in each subset. The
parallel cost of this parallel implementation on M’ is no more than

S
[1%1] el ((2 Na,e(vj)) e +f) — f(+)) ) (12)

i=l

which is an upper bound on the serial cost of calculating 2 single subset of the solution values.

If a € A(q), then (11) and (12) are upper bounds on Ty, the parallel cost of the optimal
parallel algorithm for q on M’. Therefore, the statement of the theorem follows immediately
from Theorem 4.3, which describes an upper bound on N, ;(u;) for some Green’s function
method a € A(q). O

4.3. Sufficient conditions for a problem to be communication bound

The following theorem describes conditions under which a problem will be communication
bound on a homogeneous multiprocessor whose radius function is a positive power of the
number of processors. Thus, a necessary condition for a homogeneous multiprocessor to be
“adequate” for such problems is that its radius grow more slowly than this. The theorem is
stated in the following way: There exists a constant ¢, that is a function of the solution oper-
ator and the smoothness of the data functions such that the problem will be communication
bound if the error tolerance ¢ is less than ¢, and if a large number of processors are available.
Thus, to determine whether a problem is communication bound on a given multiprocessor, first
calculate ¢,, then compare ¢ with ¢,. As long as ¢, is positive, the problem is guaranteed to be
communication bound if ¢ is small enough and the number of processors is large enough.

Theorem 4.5. Let q be a problem satisfying Assumptions (I)-(V). Let € be the error bound on
the approximation to the solution values specified by the problem. Let 3, v, and p be positive
constants, and assume that r(p) > 8-p¥ —pu for a given homogeneous P-processor multiprocessor
M. If, for some 7; € Z and some i € {1,---,5}, there exists a closed ball Bi(£.;6) C I4, of
positive radius § on which ¥;(%;, Z) Is either strictly positive or strictly negative and on which
both ¥;(%;,%) and Y;(Z) are bounded away from zero, then there exists a positive constant
€., independent of ¢, and a finite function P.(e) such that q is communication bound on M if
€< e and P > P,(e).

Proof. By Corollary 4.2, T, is bounded from below by

Ty > ﬁ.(i‘{il.(cij.e'éf_u

1/ (v+1)
2.8 )

~ (B + p)- (13)

g

Let
s
= U] -max ¥ (&; -c”%f+l
Pu(e) I wev iJ )

t2z1



18
where the constants {¢; ;} are from Theorem 4.3. By Theorem 4.4, if P > P,(¢), then

s .
Ta; < je{lll,l-?{lUl} (f(;) + fiy - ‘;ogz (;(E.'J ce v+ 1))])

s .
jegnax ((f(-) +fy) + fi4) - logy (Z(E,-,,- e+ 1)))

=1

A

IA

((f(c) + f(+)) + f(+) . ]0g2 (S . ie{nll,?fs}(g'.‘j . 6_"7: + 1)))

_ max
JE{II"'rlul}

_u
= (fmy+f) + fiy el el g log, (S Gy e+ 1)) (14)

Let

3

i

I

max max & 5.
Je{lv’llul} lE{l,,S} ’

If e < €, then & ;-e~9/¥ > 1 for some i and the following inequality can be derived from (14):

4
Tﬁ' < (f(‘) + f(+)) + f(+) JE{IlTla)?UI}JEfIllaXS} 10g2 (S "2 6i-j - € vi)

IA

max -1,
Jje{1,-lUl}ie {1, -, S} ie{1,,8} v;

(15)

< d;
(fey + f) + fiy - < max logy,(2-S-&;)+ max — -logye

Since the upper bound on Ta; in (15) grows like log,(1/¢) as € decreases and the lower
bound on T3, in (13) grows like e~%:7/(vi-(7+1)) a5 ¢ decreases, there will be some ¢, for which
the upper bound in (15) is less than half the lower bound in (13). Let €, = min{ei,c:}. If
e<e, and P > P,(¢€), then Ia; < T, /2. This proves the theorem. 0
As mentioned earlier, the assumptions in Theorem 4.5 on the kernels {¥;} and the functions
{Y;} will be satisfied by most linear PDEs arising in scientific computing, and they do not
constitute a significant restriction on the application of this theorem.

Note that the restriction to homogeneous multiprocessors is not neccessary. A siruilar result
will hold for a heterogeneous multiprocessor if the ratio of f, on the slowest processor to f)
on the fastest processor is bounded. Also note that the conditions under which a problem will
be communication bound can be significantly tightened if given more information about the
problem. For example, for many problems there is a great deal of shared work possible when
computing the solution values, and all processors contribute to the calculation of all solution
values for good parallel algorithms. This can significantly decrease P,(¢). Also, generally all
i € {1,---,S} will satisfy the problem assumptions, and this will increase ¢,. Both of these
changes make it more likely that a problem will be communication bound. But, even without

knowing more details, we are able to identify when a problem will necessarily be communication

bound.



5. Scaling results

Scaling a multiprocessor architecture increases or decreases the number of processors in the
multiprocessor while keeping certain attributes of the architecture fixed.? In particular, we
define scaling for the example architectures of §2.1 in the following way. The graph of the
scaled multiprocessor architecture is of the same type as before scaling, and each type of
component has the same parameters. For example, when scaling a square k-dimensional array
multiprocessor with P processors, the graph of the new multiprocessor will still be a square
k-dimensional array. The processor and communication abilities will also be unchanged, but
the number of processors will now be Q for some P # Q. Thus, scaling defines a family of
multiprocessors with similar architectures. We will refer to a particular multiprocessor as an
instance of this architectural family and to the number of processors in an instance as its size.
We will use the term scaling up to mean increasing the size of a multiprocessor architecture.

Scaling a problem alters the problem specifications in such a way that the serial complexity
of the algorithms used to solve it changes. The problem parameters that are normally free
to be varied are the solution values to be approximated and the error bound to be satisfied.
Therefore, to scale the problem, one or both of these parameters must be changed. Scaling the
problem defines a family of similar problems, all approximating the solution of the PDE. We
will refer to a given set of specifications as a problem instance. The size of a problem instance
is the minimum serial cost of algorithms that sclve the problem instance. We wil] use the term
scaling up to mean changing the problem specifications in such a way that its size increases.

We say that a multiprocessor architecture scales for a problem if the minimum parallel cost
when solving the problem can be bounded independent of the problem size by scaling up the
architecture. In previcus work [23], [24], we showed that no multiprocessor architecture scales
for our problems when given a reasonable aSsumption on how the size of a problem can grow.
In this section, we briefly describe this result again, and then show how the radius function of
a multiprocessor can exacerbate the increase in the minimum parallel cost.

5.1. Problem assumption VI

Commonly, increasing the size of a problem indizates that the number of solution values and the
amount of data used increase, and that the error bound decreases. For some applications the
solution is desired at only a fixed set of locations, and only the other two parameters will vary.
But, in both cases, increasing the size of the problem results in a better approximation to the
solution function. It is simple to increase the size of a problem without suffering an increased
parallel cost if only the number of solution values is increased and if enough idle processors are
available. But continually increasing the number of approximate solution values will not lead
to a better solution unless the error in these approximate values also decreases. We do not
consider it reasonable to increase the size of the problem unless there is some advantage gained
by doing so. This motivates the following assurnption on how the size of problem is increased.

(V1) For a given problem instance, denote the set of locations where the solution is to be
approzimated by Z, and denote the error bound on these approzimations by €. If the size

2For example, see [17] for a discussion of parameterized architectures.



20

of the problem grows and Z' and ¢ are the corresponding paramelers of the new instance,
ther we assume that Z C 7' and

¢ <e-(121/12')°

for some positive o independent of the scaling. Here |Z| represents the number of locations
in the set.

Note that this assumption is not on the problem, but rather on how we permit the problem
to grow. By this assumption the problem size is allowed to grow only if the error bound also
decreases. Moreover, if the problem size grows without bound, then the error bound goes to
zero. Assumption (VI) is unnecessarily restrictive, but it is sufficient to establish the results in
this section. In particular, the assumption that Z C Z’ is made merely to keep the assumption
simple. See Worley [23, pages 65-66] for a less restrictive assumption.

5.2. Problem-scaling bound

The following theorem shows that no architecture will scale for a linear PDE that satisfies
Assumptions (I)-(VI) and the assumptions of the theorem.

Theorem 5.1. Let q be a problem instance satisfying Assumptions (I)-(V), and assume that
all scalings of g satisfy Assumption (VI). Assume that, for some i € {1,...,S}, there exists a
z; € Z with the following property: there exists a closed ball Bi(z.;6) ¢ I, of positive radius
6 on which W;(Z;,Z) is either strictly positive or strictly negative and on which both ¥;(z;, )
and Y;(Z) are bounded away from zero. Also assume that f(y is positive and bounded away
from zero for all permissible multiprocessor architectures. Then, if the size of the problem
increases without bound in a fashion consistent with Assumption (VI), so will the parallel cost,

independent of the algorithm and of the number of processors used.

Proof. The proof follows immediately from Corollary 4.2 and the assumption on how prob-
lemns are allowed to scale. As the size of a problem increases, the error tolerance decreases,
and the logarithmic term in Corollary 4.2 increases. If the problem size increases unboundedly,
then € goes to zero, and the logarithmic term increases unboundedly. See also [23] and {24]. O

5.3. Effect of r(p) on the asymptotic growth of the parallel cost

By Theorem 5.1, we usually can’t bound the parallel cost as the size of the problem increases.
But a good multiprocessor architecture won’t exacerbate this increase. In this section we
examine how the communication capabilities of a multiprocessor affect the parallel cost as
the size of both the architecture and the problem increase. In particular, we show that most
problems can become communication bound as the sizes increase if the multiprocessor radius
function grows as a positive power of the number of processors. Thus, a recessary condition
for a multiprocessor to be “adequate” in this context is that its radius grow more slowly than
a positive power of p.



Theorem 5.2. Let q be a problem instance satisfying Assumptions (I)-(V), and assume that all
scalings of q satisfy Assumption (VI). Assume that thereexistsa Z; € Z andsomei € {1,...,5}
such that d; # 0 and the following property holds: there exists a closed ball B;(Z.;6) C I4, of
positive radius 6 on which ¥;(Z;, ) is either strictly positive or strictly negative and on which
both ¥;(%;,%) and Y;(Z) are bounded away from zero. Let 8, v, and p be positive constants,
and assume that r(p) > B - pY — p for all scalings of a given homogeneous multiprocessor M.
Then the following conditions hold.

1) There exists a scaling of q and a multiprocessor instance such that the new problem
instance is communication bound on this multiprocessor. Moreover, this problem instance
remains communication bound for all scalings of the multiprocessor larger than the given
instance.

2) Let R(p) be the ratio T; /Ty on a multiprocessor instance of size p. Then the limit
9
maxp>1 R(p) grows unboundedly as a function of the problem size.

Proof. The first part of this theorem is essentially & restatement of Theorem 4.5. As a
problem scales up in size, eventually ¢ will be less than the constant ¢, from Theorem 4.5.
Once ¢ is smaller than this threshold, the problem instance will be communication bound on
any multiprocessor instance for which P ZVP..( €).

From (13) and (15), .

f & 7/(v+1)
8- (2(_-2 (e € v —1) —(B+4)
R(p) 2 T
. : D.6.8: == ~1
(Fy + f) + Jia (J.E o e %y 1082(2- 5 Gj) 4| max = -logy ¢ )

if ¢ < e, and P > P.(¢). Thus, by Assumption (VI), if the size of the problem increases un-
boundedly, then € goes to zero, and max,»1 R(p) grows unboundedly. This proves the theorem.
O

As mentioned earlier, the assumption that the multiprocessor is homogeneons is unnecessary.
Generalizing Theorem 4.5 to take into account heterogeneous multiprocessors is all that is
needed to generalize this result.

In summary, if #(p) > B - p” — p for positive constants 3, v, and j, then the communication
costs will eventually be the dominant constraint on the achievable parallel performance as the
problem and multiprocessor sizes are increased. In particular, the following corollary is an
immediate consequence.

Corollary 5.3. Assume that the graph of a multiprocessor is a k-dimensional array, and that
the transmission time t is bounded away from zero. Assume that the PDE satisfies the condi-
tions in Theorem 5.2. Then, for large problem sizes, the communication cost determines the
minimum parallel cast as the multiprocessor is scaled up.

Ultimately, the communication capabilities of any multiprocessor is constrained by the three
dimensionality of the physical world and by the speed of light. ‘This motivates the next corollary.



22

Corollary 5.4. Assume that each processor in a multiprocessor is a cube with a fixed nonzero
volurne. Assume that the PDE satisfies the conditions in Theorem 5.2. Then, for large problem
sizes, the communication cost determines the minimum parallel cost as the multiprocessor is
scaled up.

Proof. Assume that the volume of a processor is v in some standard unit. Then a set of
p processors will take up a volume of at least pv, and cover a region whose maximum width
is at least (pv)'/3. Any message between processors must travel from a surface of the sending
processor to a surface of the receiving processor. Let the physical diameter of a set be the
maximum distance between the nearest surfaces of two processors in the set. Then the physical
diameter is greater than or equal to (pv)!/3 — 201/3,

Asin §2.1, let the center processor be the one that minimizes the maxiroumn distance between
itself and all of the others, where distance is now measured between closest surfaces. Let the
physical radius be the maximum distance between the center and the other processors. Then
half the physical diameter minus half the width of the center processor is a lower bound on the

physical radius. In consequence,
(pv)ll3 ~3. v1/3
2

is also a lower bound on the physical radius. Since no message can travel faster than the speed

of light, the radius of this set of processors is at least

(pv)ll.'! ~3- vl/s
2-c ’

where ¢ is the speed of light in these units. If 8 = v1/3/(2-¢), v = 1/3, and u = 3-v/3/(2 - ¢),
then »(p) > B - p¥ — p. The result then follows from Theorem 5.2. 0

Using current technologies, the speed of light is not the only restriction on transmission speed,
and r(p) > B -p¥ — p for 7 that is much larger than that calculated in this corollary. The
important point of this corollary is that the communication cost will eventually determine the

achievable performance for any physically-realizable multiprocessor.

6. Conclusions

The information-theoretic algorithm-dependent parameters introduced in §3 allowed us to cal-
culate a lower bound on the parallel cost that included one aspect of the communication cost.
By taking into account the intent of the algorithm, to approximate the solution of a continuous
problem with a given structure, we were then able to calculate a similar lower bound on the
parallel cost of optimal parallel algorithms on a given multiprocessor. We were also able to
calculate an upper bound on the parallel cost of optimal parallel algorithms on an idealized mul-
tiprocessor for which the communication cost is always zero. Using these two results, we proved
that the communication cest will be the dominant factor in determining the performance of
optimal parallel algorithms for large problems as multiprocessors scale up in size. These results
are a consequence of very general assumptions, and we expect the interprocessor communica-

tion subsystem to be the major constraint on the performance for problem and multiprocessor



sizes much smaller than those indicated by the theory described here. Whether this analysis
indicates a practical limitation for a given problem must be examined on a case-by-case basis.

Acknowledgements

We thank Al Geist and Barry Peyton for their helpful suggestions on the presentation of the
material in this paper.

References

[1] G. AmpaHL, Limits of expeciation, International J. Supercomputer Appl, 2 (1988),
pp. 88-97.

{2] M. J. BERGER AND S. H. BOKHARI, A partitioning strategy for nonuniform problems on
mulliprocessors, IEEE Trans. Comput., C-36 (1987), pp. 570-580.

[3] F. BERMAN AND L. SNYDER, On mapping parallel elgorithms into parallel architectures,
J. Par. Dist. Comp., 4 (1987), pp. 439-458.

[4] A. G. BuTkovskiy, Green’s Functions and Transfer Functions Handbook, Ellis Horwood
Limited, Chichester, West Sussex, United Kingdom, 1982.

[5] R. DUNCAN, A survey of parallel computer architectures, IEEE Computer, 23 (1990),
pp- 5-16. ‘

[6] T. FENG, A survey of interconnection networks, IEEE Computer, 14 (1981), pp. 12-27.

[7] D. C. FisHER, Your favorite parallel algorithm may not be as fast as you think, IEEE
Trans. Comput., 37 (1988), pp. 211-214.

[8] M. J. FLYNN, Some computer organizations and their effectiveness, IEEE Trans. Comput.,
21 (1972), pp. 948-960.

[9] D. GANNON AND J. VAN ROSENDALE, On the impact of communication complezity on the
design of parallel numerical algorithms, TEEE Trans. Comput., C-33 (1984), pp. 1180-1194.

[10] G. A. GeisT aNDp C. H. ROMINE, LU factorization algorithms on distributed-memory
mulliprocessor architectures, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 639-649.

[11] W. M. GENTLEMAN, Some complezity resulis for mairiz computations on paralle! proces-
sors, Journal of the ACM, 25 (1978), pp. 112-115.

[12] W. D. Groprp aND D. E. KeYEs, Complezily of paralicl implementation of domain decom-
position techniques for elliptic partial differential equations, SIAM J. Sci. Statist. Comput.,
9 (1988), pp. 312-326.

[13] M. T. HeaTtH AND C. H. ROMINE, Parallel solution of triangular systems on distributed-
memory multiprocessors, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 558--588.



24

[14] S. L. JouNssoN, Communication efficient basic linear algebra computations on hypercube
architectures, J. Par. Dist. Comp., 4 (1987), pp. 133-172.

(15] , Solving tridiagonal systems on ensemble archilectures, SIAM J. Sci. Statist. Com-

put., 8 (1987), pp. 354-392.

[16] D. J. Kuck, The Structure of Computers and Computations, vol. 1, John Wiley, New
York, 1978.

[17] G. J. LipovsKI AND M. MALEK, Parallel Computing, John Wiley, New York, 1987.

[18] P. M. PRENTER, Splines and Variational Methods, Pure and Applied Mathematics, John
Wiley, New York, 1975.

{19] D. A. Reep, L. M. Apams, aND M. L. PATRICK, Stencils and problem partitionings:
their influence on the performance of multiple processor systems, IEEE Trans. Comput.,
C-36 (1987), pp. 845-858.

[20] D. A. REED AND D). C. GRUNWALD, The performance of multicomputer interconnection
networks, IEEE Computer, 20 (1987}, pp. 63-73.

[21] J. H. SavTz, V. K. NAIK, AND D. M. NicoL, Reduction of the effects of the communi-
cation delays in sctentific algorithms on message passing mimd architectures, STAM J. Sci.
Statist. Comput., 8 (1987), pp. s118-s138.

[22] J. F. TrRAUB AND H. WOZNIAKOWSKI, A General Theory of Optimal Algorithms, ACM
Monograph Series, Academic Press, New York, 1980.

(23] P. H. WORLEY, Infermation Requiremenis and the Implications for Parallel Computation,
Ph.D. thesis, Stanford University, Stanford, CA, June 1988.

[24] ———, Limits on parallelism in the numerical solution of linear pdes, Tech. Rep.
ORNL/TM-10945, Oak Ridge National Laboratory, Oak Ridge, TN, October 1988; SIAM
J. Sci. Statist. Comput., accepted.

[25] P. H. WORLEY AND R. SCHREIBER, Nested dissection on a mesh-connected processor
array, iIn New Computing Environments: Parallel, Vector, and Systolic, A. Wouk, ed.,
Philadelphia, PA, 1986, Society for Industrial and Applied Mathematics, pp. 8-38.



ORNL/TM-11579

INTERNAL DISTRIBUTION

1. B. R. Appleton 23. W. M. Post
2. E. F.D’Azevedo 24-28. S. A. Raby
3. J.J. Dongarra 29. C. H. Romine
4. J. B. Drake 30-34. R.C. Ward
5. T. H. Dunigan 35-39. P. H. Worley
6. R.E. Flanery 40. J.J. Dorning (EPMD Advisory Committee)
7. G. A. Geist 41. R. M. Haralick (EPMD Advisory Commitiee)
8. L. Gray 42. J. E. Leiss (EPMD Advisory Committee)
9-10. R.F. Harbison 43. M. F. Wheeler (EPMD Advisory Committee)
11. M. T. Heath 44. M. Moray (EPMD Advisory Committee)
12. E. R. Jessup 45. Central Research Library
13. M. R. Leuze 46. ORNL Patent Office
14-18. F. C. Maienschein 47. K-25 Plant Library
19. E. G. Ng 48. Y-12 Technical Library
20. C. E. Oliver /Document Reference Station
21. G. Ostrouchov 49. Laboratory Records - RC
22. B. W. Peyton 50-51. Laboratory Records Department
EXTERNAL DISTRIBUTION
52. Dr. Loyce M. Adams, Department of Applied Mathematics, University of Washington,

53.

54.

55.

56.

57.

58.

Seattle, WA 98195

Dr. Christopher R. Anderson, Department of Mathematics, University of California, Los
Angeles, CA 90024

Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Graduate
Center, 19600 N.W. Walker Road, Beaverton, OR 97006

Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Dr. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

Dr. Dov S. Bai, Department of Mathematics, Utah State University, Logan, UT 84322-
4125

Dr. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet
Field, CA 94035



59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

76.

26

Dr. Robert E. Benner, Parallel Processing Division, 1413, Sandia National Laboratories,
Albuquerque, NM 87185

Dr. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 10012

Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping 58183,
Sweden

Dr. John H. Bolstad, 1-16, Lawrence Livermore National Laboratory, P. Q. Box 808,
Livermore, CA 94550

Dr. James C. Browne, Department of Computer Sciences, University of Texas, Austin,
TX 78712

Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric Re-
search, P. O. Box 3000, Boulder, CO 80307

Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, University
of Michigan, Ann Arbor, MI 48109

Dr. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC 20545

Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles, 405
Hilgard Avenue, Los Angeles, CA 90024

Dr. Jagdish Chandra, Army Research Office, F. O. Box 12211, Research Triangle Park,
North Carolina 27709

Dr. Melvyn Ciment, National Science Foundation, 1800 G Street, NW, Washingion, DC
205650

Prof. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

Dr. Jane K. Cullum, IBM T. J. Watson Research Center, . O. Box 218, Yorktown
Heights, NY 10598

Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley,
CA 94720

Dr. George Cybenko, Center for Supercomputing Rescarch & Development, 104 South
Wright Street, Urbana, IL 61801-2932

Ms. Helen Davis, Computer Science Department, Stanford University, Stanford, CA 94305

. Professor Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,

TN 37235

Dr. Iain Duff, CSS Division, Harwell Laboratory, Didcot, Oxon OX11 ORA, ENGLAND



7.

78.

79.

80.

81.

82.

83.
84.

85.

86.

87.

88.

89.
90.

91.
92.
93.

94.

27

Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P. O. Box 2158
Yale Station, New Haven, CT 06520

Dr. Howard C. Elman, Computer Science Department, University of Maryland, College
Park, MD 20742

Dr. Peter G. Eltgroth, L-298, Lawrence Livermore National Laboratory, P. O. Box 808,
Livermore, CA 94550

Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Claremont, CA
91711

Professor Geoffrey C. Fox, Physics Department, MS 356-48, California Institute of Tech-
nology, Pasadena, CA 91125

Dr. Chris Fraley, Department of Mathematics and Statistics, Utah State University, Lo-
gan, UT 84322-3900

Dr. Paul O. Frederickson, RIACS, NASA Ames Research Center, Moffet Field, CA 94035

Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State Univer-
sity, Raleigh, NC 27650

Professor Dennis B. Gannon, Computer Science Department, Indiana University, Bloom-
ington, IN 47401

Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana, L
61801

Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research Council,
Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada K1A OR8

Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

Dr. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

Prof. John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,
Ames, TA 50011-3020

Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA 94550
Dr. Eric Grosse, 2C 471, 600 Mountaip Avenue, Murray Hill, NJ 07922

Dr. William D. Gropp, Mathematics and Computer Science Division, Argonne National
Laboratory, 3700 South Cass Avenue, Argonne, IL 60439

Dr. Gerald W, Hedstrom, L-71, Lawrence Livermore National Laboratory, P. O. Box 808,
Livermore, CA 94550



95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.
107.

108.

109.

110.

111.

112.

28

Di. Don E. Heller, Physics and Computer Science Department, Shell Development Co.,
P. O. Box 481, Houston, TX 77001

Dr. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

Dr. N. 1. Higham, Department of Mathematics, University of Manchester, Gtr Manch-
ester, M13 9PL, ENGLAND

Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling Air
Force Base, Washington, DC 20332

Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National Lab-
oratory, P. 0. Box 808, Livermore, CA 94550

Dr. Ilse Ipsen, Department of Computer Science, Yale University, P. O. Box 2158 Yale
Station, New Haven, CT 06520

Dr. Lennart S. Johnsson, Department of Computer Science, Yale Universiiy, P. Q. Box
2158 Yale Station, New Haven, C'T 06520

Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

Professor Malvyn Kalos, Courant Institute for Mathematical Sciences, New York Univer-
sity, 251 Mercer Street, New York, NY 10012

Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National Labo-
ratory, 9700 South Cass Avenue, Argonne, IL 60439

Dr. Alan H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304
Br. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Dr. Robert 1. Kee, Applied Mathermatics Division 8331, Sandia National Laboratories,
Livermore, CA 94550

Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77001

Dr. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staft,
Office of Energy Rescarch, Gffice G-437 Germantown, Washington, DC 20545

Prof. Clyde P. Kruskal, Departient of Computer Science, University of Maryland, College
Park, MD 20742

Prof. Michael Langston, Department of Computer Science, University of Tennessec,
Knoxville, TN 37996-1301



113.

114.

115.

116.

117.

118.

119.

120.

121,

122.

123.

124.

125.

126.

127.

128.

129.

29

Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

Dr. Robert L. Launer, Army Research Office, P. O. Box 12211, Research Triangle Park,
North Carolina 27709

Dr. Scott A. von Laven, Mission Researct. Corporation, 1720 Randolph Road, SE, Albu-
querque, NM 87106-4245

Prof. Tom Leighton, Lab for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139

Dr. Robert Leland, Oxford University Computing Laboratory, 8-11 Keble Road, Oxford,
0X1-3QD, ENGLAND

Dr. Randall J. LeVeque, Department of Mathematics, University of Washington, Seattle,
WA 98195

Dr. John G. Lewis, Boeing Computer Services, P. 0. Box 24346, M/S 71.-21, Seattle, WA
98124-0346

Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department of Com-
puter Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E1 4NS, ENGLAND

Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
Downsview, Ontario, Canada M3J 1P3

Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

Dr. Thomas A. Manteuffel, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

Dr. Anita Mayo, IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights,
NY 10598

Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box 808,
Livermore, CA 94550

Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena, CA
91125

Dr. Cleve B. Moler, MathWorks, 325 Linficld Place, Menlo Park, CA 94025

Dr. William A. Mulder, Koninklijke Shell Exploratie en Produktie Laboratorium, Postbus
60, 2280 AB Rijswijk, THE NETHERLANDS

Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland, College
Park, MD 20742



130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

146.

30

Dr. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

Professor James M. Crtega, Department of Applied Mathematics, Thornton Hall, Uni-
versity of Virginia, Charlottesville, VA 22901

Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

Dr. James C. Patterson, Boeing Computer Services, P.(. Box 24346, MS 71-21, Seattle,
WA 98124-0346

Dr. Peter C. Patton, Patton Associates, Inc., 101 International Plaza, 7900 International
Drive, Minneapolis, MN 55425

Dr. Linda R. Petzold, L-316, Lawrence Livermore National Laboratory, P. O. Box 808,
Livermore, CA 94550

Dr. Robert J. Plemmons, Departiments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

Professor Daniel A. Reed, Computer Science Department, University of Illinois, Urbana,
IL 61801

Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon OX11 ORA,
ENGLAND

Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette, IN
47907

Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Lab-
oratory, Livermore, CA 94550

Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Dr. Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

Dr. Jorge Sanz, IBM Almaden Research Center, Department K53/802, 650 Harry Road,
San Jose, CA 95120

Dr. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA
94035

Dr. Martin H. Schultz, Department of Computer Science, Yale University, P. O. Box 2158
Yale Station, New Haven, CT 06520

Prof. Robert B. Schnabel, Department of Computer Science, University of Colorado at
Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, Colorado 80309-0430



147,

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.
158.

159.

160.

161.

162.

163.

164.

31
Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-

ton, OR 97006

The Secretary, Department of Computer Science and Statistics, The University of Rhode
Island, Kingston, RI 02881

Prof. Charles L. Seitz, Department of Computer Science, California Institute of Technol-
ogy, Pasedena, CA 91125

Dr. Horst D. Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA
94035

Dr. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

Dr. Burton Smith, Teracomputer Company, 400 North 34th Street, Suite 300, Seattle,
WA 98103

Dr. Marc Snir, IBM T.J. Watson Research Center, Department 420/36-241, P. O. Box 218,
Yorktown Heights, NY 10598

Prof. Larry Snyder, Department of Computer Science, FR-35, University of Washington,
Seattle, WA 98195

Dr. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. O.
Box 1892, Houston, TX 77251

Prof. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

Mr. Steven Suhr, Computer Science Department, Stanford University, Stanford, CA 94305

Dr. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N21 3G1

Dr. Joseph F. Traub, Department of Computer Science, Columbia University, New York,
NY 10027

Dr. Lloyd N. Trefethen, Department of Mathematics, Massachusetts Institute of Technol-
ogy, Carmbridge, MA 02139

Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA
23665

M:. Bi R. Vona, Center for Numerical Analysis, RLM 13.150, University of Texas at
Austin, Aunstin, TX 78712

Dr. A. J. Wathen, School of Mathematics, University Walk, Bristol BSB 1TW, ENG-
LAND



32

165. Dr. Andrew B. White, Los Alamos National Laboratory, P. O. Box 1663, MS-265, Los
Alamos, NM 87545

166. Office of Assistant Manager for Energy Research and Development, U.S. Department of
Energy, Oak Ridge Operations Office, P. O. Box 2001, Oak Ridge, TN 37831-8600

167-176. Office of Scientific & Technical Information, P. O. Box 62, Oak Ridge, TN 37831



