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T H E  EFFECT OF MULTIPROCESSOR R.ADIUS ON SCALING 

Patrick H Worky 

Abstract 

In earlier work, it was established that, for a large claw of linear partid dif- 
ferential equations (PDEs), increasing the problem size necwarily increases the 

execution time, independent of the algorithm and the number of processors used to 

salve the problem. In this paper, the analysis is extended to take into ~ C C Q U T I ~  the 

effect of the radius of the multiprocmmr i nterconnection network on the growth in 

the execution time. 
Define r ( p )  to be the ~ i n i ~ ~ u ~  radius over all subsets o f p  processors in a mud- 

tiprocessor. An in~Qbrmation-theoTetic analysis is used to show that ~ ( p )  determines 
a lower bound on the comunics tbn  cost of a parallel dgo"rthm, and that thk 
in turn determines a lower bound on the parallel execution time. Assume that 
r@) 2 /3 . p7 - p for positive coaskants @, y, and p ftor a given multiprocessor. For 
example, this type of lower bound on r ( p )  holds for a ~ ~ ~ ~ ~ ~ , ~ ~ ~ o ~ ~ ~ s ~ ~  whose inter- 
connection topology is a k-dimensicma1 wray. It i s  then established that, for the 
given cIms of PDEs, the time spent on iuterpsocemo~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ a ~ i o ~  will be the 
dominant constraint on the perforinanice ~of optimal dgorithm when th t  grnblerrs 
and the multiprocessor are large. arcover, as the g~obiern and the md&iprocessor 
increase in aize, it, is shown that the wsyai~ptotic increase in the parallel execultinrr 
time will be determined by the ~ o ~ ~ ~ ~ ~ i ? ~ ~ c ~ t ~ o n  cost and not by the ccsmputatiornd 
requirements. The restriction to linear P DlEs is not nec~ssilsy, and siariilar results 
can be obtained for many problem in scientific comptatiorz. 

V 





1. Introduction 

Current research into parallel processing and multiprocessors is driven by the need t o  increase 

computing power. Two goals are achieved by increasing computing power: more problems can 

be solved in a given interval of time, and problems whow solutions have heretofore been too 
costly to calculate can be solved. 

In this paper we examine an issue related to how effective multiprocessors are at achieving 

these goals, namely, the h u e  of scaling. A rnultiproceswr scales if increasing the number of 

processors enables it to solve larger problems efficiently. A lack of parallelism in the algo- 

rithms or high communication cost can prevent this. In previous work [23], 1241, we established 

that, for a large cfass of linear partial differential equations (PDEs), increasing the problem 

size (unboundedly) necessarily increases the execution time (unboundedly), independent of the 

algorithm and of the number of proceasors uaed to solve the problem. In this paper, we ex- 

tend this analysis to describe the effect of the radius of the interconnection network of the 

multiprocessor on this growth in the execution time. 

Define r ( p )  to be the minimum radius over all subsets o f p  processors in a multiprocessor, 

and assume that r (p )  2 f l  pr - p for positve constants p, 7, and p .  For example, this 
type of lower bound on r(pf holds for a multiprocessor whose interconnection topology is a 

k-dimensional array. Then, for the given class of PDEs, we show that the time spent on 

interprocessor communication will be the dominant constraint on the performance of optimal 

algorithms when the problem and multiprocessor sizes are large. Moreover, we show that the 

asymptotic rate of increase in the parallel execution time as the problem size and the number 

of processors increase is  determined by the cotnmunication c a t  and not by the ~ o ~ ~ ~ ~ t a t ~ o ~  

cost. 

Many authors have diseuwd the effect of the intercornection xnetwork of a multiprocessor 

on the communication costs incurred when using a multiprocessor [2], [3], [12], [Z5], [19]. Sim- 

ilarly, other authors have discussed the effect of communication costs on the execution time of 

parallel algorithm for high level descriptions of discrete problems [l]) [7]> for specific discrete 

problems [9], and for ~ m p l e ? ~ e ~ t ~ ~ i o n s  of specLfic algoritliiw for discrete problems [lo], [II], 

[13], [14], [21], 1251. The results in this paper differ from previous work in that we derive both 
upper and lower bounds on the performance of optimal algorithms for ~~~~~~~~~$ problems, 

and are able to show how the performance scales as the problem size and the nurnber of 

cessors scde, The restriction of this work to the given clar;s of h e a r  PDEs is  only for the sake 

of clarity and concreteness. Sinnilax arguments hold for ntany continuous problem arising in 

mat hemat ical physics. 

The outline of this paper is as follows. Wz describe our multiprocessor, algorithm, and 

problem assumptions in $2. In 33 we describe how the multiprocessor radius function constrains 

the performance of parallel algorithms as a function of simple information-theoretic algoritltrn- 

dependent parameters. In $4 we describe how the multiprocessor radius function constrains the 

performance of optimal parallel algorithms for the numerical approximation of a given linear 

PDE. In 55 we use these results to show how the multiprocessor radius function causes the 
execution time of optimal parallel algorithm to grow as the size of ra linear PDE problem 

grows. We briefly summarize our results and make concluding remarks in $6. 
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Our focus hi this paper is on MIMD multiprocwors [8] and on modelling parallelism at  the level 

of concurrent execution of floating point operations. This viewpoint is reflected in the following 

multiprocessor and algorithm models. As with our selection of problem class, we restrict our 

andysis to  the following models for the make of clarity and concreteness. The result-s will be 

similar for other realistic m i ~ ~ ~ ~ ~ r o c ~ ~  and algorithm models. 

2.1- hl ultipmcessear ~~~~~~~~~~~ 

Mdtiprscessaaar ma;?deL We mdeB a m~~~~~~~~~~ B a directed graph ( V , E ) .  Each 
vertex vi  E V represemts A serial pmcewor~ Each edge e j  E E represents a unidirectional 

communicatiow channel in the multiprocesmr. we assume that dl floating point operations 

are computed by the composition of operators from some given set of primitive binary and 

unary floating point operators, and that the execution of a primitive opcrator is not spread 

over multiple ~ ~ O C E S Q ~ S .  We also assume that addition is the fastest binary floating point 

operator. The parameter t refers to the minimum time required to send a single floating point 

number between two distinct processors in a given multiprocessor, which we call the miasmwn 

tmn,srnission time. The pmaunetera f(+,, f(*,, and f(i1 refer to the minimum times required 

to add or subtract, niultiply, and divide, respectively, two floating point nuinbcrs in a given 

mu Iti~"OcCSs0r. 

M u P t i p r ~ ~ e ~ ~ ~ s  radius function. Define the distance from vertex v1 to vertex 102, kI(vl,v2), 

to be the minimum amouct of time it t a b s  to send R single floating point numbcr from the 

processor represented by v1 to the processor represented by v2. Define a center of a subset 

of vertices of the graph, I/' & V ,  to  be a vertex in V' that minimizes the maximiitrr distance 

betweeti itself and other vertices in the subset. That is, if e is a center of V', then 

m a ,  D(c, w) = min max, D(v,  w). 
WEV UEY' W E V  

Define the radius of the subset to be this distance, 

For a given multiprocesssor, consider a subset of p processors with minimum radius over all such 

subsets of size p .  Define the function ~ ( p )  t o  be the radius of this subset. We refer to r ( p )  

as the mlaltiprocessor radius function. We will use this function to  establish lower bounds on 

communication costs in parallel algorithms. 

Example aschitectaires. Most multiprocessor architectures currently in use have fairly sim- 

ple graphs, with essentially homogeneous processor and communication capabilities [5], [SI, [20]. 
The following examples are common designs, each of whose behavior is representative of a class 

of architectures. All of the examples can be modeled by undirected graphs: if an edge exists 
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, 

from Vj to Uj, then an edge also exists from vJ to v i .  Additionally, all p r o w m r  and comuni -  

cation channel capabilities are the same. 

e clique. The graph of the architecture is a clique; that is, each processor is directly con- 

nected to every other processor. The radius of any subset of the multiprocessor containing 

more than one processor is t. 

k-dimensional a m y .  The graph of the architecture is a E-dimensional array. Each pro- 

c m r  is connected to up to 2 - k other processors. The multiprocessor radius function 

r ( p )  is never smaller than k: . t  - (p1jk//2 -- 1). 

e hypercube. The graph of the architecture is a binary hypercube. Thus, there are P = 2& 

processors, where k is some nonnegative integer, and each vertex is a corner of a k- 
dimensional array. Each processor is connected to log2 P other prormmn. The multipro- 

cessor radius function is r(p) = t . Fogz pl . 

2.2. Algorithm model 

Serial algorithms. We define an algorithm to  be a partially ordered set of instructions of 

the form 

y = ffop(zl,. . . , Z * ) t  

where flop is a floating point operator, y is a floating point variable, and ($1 , . , . , zn 1 are floating 

point constants and variables. If a floating point variable is used by two different instructions, 

and if one of the instructions changes the value of that variable, then the partial order specifies 

a precedence relationship between them. These are the only relationships established by the 

partial order.' 

Denote a given algorithm by a. We defint, the serial cost of a to be the time spent exe- 

cuting the instructions in a on some standard serial processor, where the standard processor is 

assumed to  satisfy the assumptions made in the previous section about the processors in the 

multiprocessor. We refer to this value as C,. All sequential orderings of the instructions of 

an algorithm that are consistent with the partial ordering are assumed to  have the same serial 

cost. Therefore, we also refer to the partially ordered set of instructions as a serial  a ~ g ~ r ~ ~ ~ ~ .  

Parallel algorithms. A parallel imp1ement;ttion of an algorithm on a multiprocessor specf 

fies when and on which processor each instruction is executed, and what communication t a k e  

place during the execution of the algorithm. We will refer to this information as the , ~ c ~ e ~ ~ ~ z ~ ~  
of the algorithm. Define a scheduling to be wefi-defined if it is compatible with the partial or- 

der's precedence relationships, and if all dexnmds made on the processors and communication 

channels are within their capabilities. We define a ~ a ~ ~ l ~ ~  algorithm to be a triple consisting 

of a serial algorithm, a multiprocessor architecl.nre, and a well-defined scheduling. 

'This model ignores many of the details usually found in real algorithms. In particular, integer hthtnetic 
and instructions controlling conditional execution are not represented. But the time spent in floating point 
operations genwdly dominatm the totd exation t h e  of serid dgoriths for solving numeric&y. 
Moreover, much of the other work tends to increase proportiondy with the number of' floating point operaths, 
a d  can be "included" in the model by increasing the erenation time d the floating pint  operations. 
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a given parallel, implementation of M algorithm a by I Conversely, a i the serial algorithm 

associated with a given parallel algorithm 5. 

We define the parallel tost of a parallel ~ ~ ~ o r ~ t h ~  to be the time it takes to execute the 

algorithm on the specified multiprocessor. We refer to k b  value by Ta. There are two distinct 

CmtS WoCiated With B pWahl  algOrithtX1: ~~~~~~~~~~~ C Q d  ( c a )  and c o m ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ 3  Cost ( w d ) .  

The compiitation cmt ia the m o u n t  of time during which at le& one of the proce3mrs aS busy 
executing the instructions of the corresponding *r id  algorithm. If P processors are used by 

a parallel algorithm to execute instructions, then the computation cmt is bounded from below 

by 

(1) 
ca 

c a  2 y, 
where the serial cost in this erprewion is based on using the Yastesit” of the P p r o c ~ m r s  as the 

standard serial procwor. The communicatioln cost is the smouat, of time during which at least 

one processor is actively sending or receiving ;a message or at least one of the cornmimication 

channels is busy transmitting a message. Both the computation cost and the communication 

cost represent lower bounds on the parallel c a t :  

We define an optimal parallel implementation of an algorithm on a given multiprocessor to 

be one that minimizes the parailel cwt.  We define an optimal parallel algorithm to  be one with 

an optimal parallel implementation. 

Coixmunicatioas bound algorithms. If the communication cost of a parallel algorithm 

i s  the dominant component of the parallel cost, then we say that the parallel algorithm is 

communicatioa band .  We rnake a similar definition below for a serial algorithm a and a given 

multiprocessor, which we will refer to as M. 
Consider an idealized multiprocessor M’ that is constructed from M by replacing the in- 

terconnection network of M with one that is a clique and for which the transmission time over 

any communication channel is zero. Also assume that these is no operating system overhead in 

sending or receiving a message in M’. Thus, any parallel irnplementstion of R on M’ will have 

zero cornrriunication cost. 

Consider an optimal parallel implementatmion of a on ha, and call it 5,. Next, consider an 

optimal parallel implenientation of .a on M’, and call it Et.  If the parallel cost of i i b  is less than 

half the parallel coat of Elo, then we say that the serial algorithm a is conammication boaand 

on M. If a is conmunication bound, then the interprocessor comrriunication subsystem has a 

larger effect on the execution time doptimal algorithms for M than do the inherent parallelism 

in tlie serial algorithm and the speed of floatiwg point computation. If the parallel cost of is 

more than half the parallel cost of then we say that the sexid algorithm an is  comyastwtdoa~ 

bound on M. If a i s  computation bound, then the partial order of the s e d  algorithm and 

the speed of floating point computation are the dominant constrahts on the performance of 
optimal parallel implementations on M, and M is “adequate” for this algorithm. 
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2.3. Problem assumptions I-V 

The following assumptions are commonly satisfied when numerically approximating the solution 

of scalar linear partial differential equations (PDEs). As stated, they also apply to a larger class 

of problem. 

Solution operator assumption. 

Euclidean vector space and let I t  be the C-dimensional unit cube, 

For any nonnegative integer I I . ,  let 43' be the k-dimensional 

For some d >, 1, let Q be a compact subset of 

(I) we assume that we are approximating a scahu function u(E) that k defined OD fl and 
that can be represented by an expression of the form 

for all 5 E Q .  The constant S is a pwit ive  integer, (di I i E {I,. . ,, S)) is a set of 

nonnegative integers, {si I i E {I, . . . , S } )  is a set of functions representing &he problem 
data, and u(E) is the solution function. for eacb i E (1,. . . , S }  and 5 E R, @ i ( i ,  i) is a 

Lebesgue integrable function on Idn. 

If u(5) is the solution of a linear PDE, then the kerneh (Qi) are linear functionals of the 

Green's function for the PDE. See Butkovskiy PI] for examples of this type of representation of 
the solution operator of a PDE. We will henceforth refer to a as the soht ion  furaciion. 

Numerical approximation assumptions. In order to numerically approximate u ( z ) ,  we 

first replace the possibly infinite dimensional problem with a finite dimensional problem. The 

dimensionality of the probfem is reduced by introducing error in the following sense: 

e Only a finite amount of information about the solution function is calculated. Any model 

of the solution based only on this information will merely approximate the true solution. 

e Only a finite amount of information about the data functions is used to calculate the 

desired solution properties. We will refer to this a8 the data fanction samplang. Unless 

this information completely characterizes the data functions, the solution values that are 

calculated are also approximate. 

Equation (2) is replaced by a relationship between the data function samples and the informa- 

tion about the solution function that is to be calculated. 

For the rest of this paper, we restrict ourselves to problems where 

(11) f o r  each i E ( 1 , .  , S ) ,  values of the data function gi sampled an its  do^^^^ IdI are 

available to  Be used, 
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(111) valaes of the solation fasnc-ts'on at given dacadians in  its dc~rnaira R are appmzimated, and 

(IV) the en-or in appm-ozzmating eac solution valve i s  ~ Q t ~ n ~ ~ d  by Q given vuhe e .  

Thus, we are specifying what type of data can be used, what solution values to  approximate, 

and how accurately thew values are to be approximated. Note that we are not stipulating where 

the data functions can be sannpled. Rather, we are stipulating that only pointwise evaluations 

of the functions can be used by any algorithm used to solve this problem. 

Let Z represent the set of Iscatiolas where the value of the solution function is needed, 

Z = (5, 1 j = 1 , .  . . , NW}. For brevity, we will use uj to refer to U ( T ~ ) ~  and we denote the 

set of solution vdum to be calculated by U. Wc can use the folbwing natation for any serial 

algorithm a with finite serial C Q S ~  that edvm a problem mtis€y'ying the ahove assurnptiona. For 
each data funct,ian gi, the algorithm use8 function values at some finite set of locations X i  = 
{ Z i , k  I k = 1,. . . , Na,i} in Id, .  And, for any particular sdution value u j ,  the approximation to  
uj calculated by algorithm a depends on - d u e s  of gi at some set of locations 

in  I d , .  For brevity, we will tuse g i , j , k  to refer to g i ( % i , j , k ) .  The total annannk of data. used to 

approximate uj is N a ( u j )  zi s 
N,, i (uj) .  

Data €unction assumptioz~s. In crdea to idcitify whether a given algorithm solves a prob- 

lem satisfying Assumptions (1)-(IV), we must be able to determine whether the error tolerance 

in approximating the individual solu&iosn values is  satisfied (Assumptiorn (IV)). The €allowing 
assumption allows us to determine a g n ~ ~ i  lower bounds on the worst case error in an approx- 

imation. 
Define C"(&) to be the set of all functions that have continuous rnth order partid deriva- 

tives on a set lilt C- s'. For g E cm(&), let Vim^'g be a vector whose elements are some 

ordering of the mth order partid derivatives of g in %'. 

(V) For each i E { 1, . . . , S } ,  we rassome that the data function gi is known to be S Q ~ E  member 

of a set Gi defined in the following way G; is the set of ail finu;tm'ons g satis5in.g thc 

properties 

i) g(i) E C".(Id,) 

iil l l V ~ ~ ) g ( ~ ~ l ~ ~ , ~  5 T~(z) for a~l 2: E I d ,  

where ui is a pmitive integer, 1 1 .  Il(i) is a vector ntarm, and T,(Z) is a nonnegative function. 
W e  also a~siimc: that any member of Gi is a permissible data function, and that my 

combination of data functions from the sets {Gi} generate a possible solution to the 
PDE, with the following constraint. The  inclusion o f  a given data hnction gi in a set 

of data functions may force another data function g J ,  j # i, to have given function and 
derivative valises ora the boundary of Id, .  

Assumption (V) states that the data functions are known to have a certain number of continuous 

derivatives, and that the magnitude of the largest partial derivatives is bounded by some known 
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function. This is the only information we are assuming about the data funckions. This type of 

assumption on the dat3a is similar to the aasumptions that are made on the data and solution 

functions when specifying a priori bounds on the error introduced when using finite difference 

and finite element discretizations of a PDE to approximate the solution. The particular form 

of these assumptions is similar to that used by Traub and Woiniakowski [22]. 

3. Algarithm-dependent results 

In this section, we describe the effect of the miiltiprocesacnr radius on the performance of par- 

allel algorithms as a function of simple informafGon-thearekic algorithmdependent parameters. 

We implicitly assume that all algorithms discussed in thL section solve problem8 that satisfy 

Assumptions (I)-(V), but only in the sense that we use the notation introduced in the previous 

section and use examples that do solve such problems. 

3.1. Information-t heoretic lower bounds 

Lemma 3.1. The serial cost of an algorithm 8 is bounded from below by 

Proof. For each solution value uj E U, computing uj requires that the data be reduced by a 

sequence of binary operations, and binmy addition is aammed to be the fastest binary floating 

point operator. Thus, the serial cost of calculating uj can be no smaller than the minimum 

serial cost of summing its required data. The proof follows immediately by a simple counting 

argument. (See also Lemma 1 in Kuck [IG, page 951.) U 
Consider a parallel implementation of an dgorithm I on a multiprocessor satisfying the 

assumptions of $2.1. A processor collaborates in the computation of a solution value u j  E U if 
changing the results of the floating point operations calculated by that processor can change 

the value of uj. Define p&(uj) to be the number of processors that collaborate in the calculation 

of uj for a given parallel implementation of a. 

L e m a  3.2. The computation cast o f a  parallel irnplerneatation ofan algorithm a I.i borinded 

€or any u, E U. 

Proof. Since computing uj requires that the data be reduced by a sequence of binary 

operations, the computation cost of calculating u j  on a multiprocessor can be no smaller thua 
the minimum computation cost of summing its required data on the same multiprocessor. 

Since addition is a binary operator, N existing summands are replaced by at most Nf2 results 

during any time interval of length f(+). These resulte and any unused summands are the 

operands for the next step of the calculation. Thus, one lower bound on the c o ~ ~ u t ~ ~ ~ o ~  
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c a t  is f(+) . peg, Na(uj)l. The other exprwion in the lemma comes imediately from (l), 

Lemma 3.1, and the definition ofpa(uj). (See abo L e m a  1 in Kuck [16, page 951). c1 
As in 52.1, let r(pa(uj)) be the radius of a p~(uj)-processor subset that has the minimum 

radius. 

PmoJ The lemma is  a consequence of the fact that information is needed from d l  pd(uj’j) 

processors in order to  cdciilate uj. Denote the subset of processors that collaborate in the 
calculation of uj by V’. Assume that a ~ ~ O C ~ S O F  v E V’ has been designated to calculate the 

final unary or binary operation that produces uj. E d  procmor in V’ yroducea a result that i s  

crutid to  the calculation. Tberefoore, ~ ~ e t h e ~  a result travels directly to w ot is used by mother 

processor to prodiice a new partial result that is  then sent on, the timc spmt communicating 

is neve: less than the distance to v from the originating processor. Therefore, the ~maxirnurn 

distance from the processors in V’ to 11 is a lower bound on the communication cost. By 
definition, this is bounded from below by r(pa(uj)). c1 

single solution value, 

Define Na,* to be the maximum amount of data required by an algorithm a to compiite a 

Theorenn 3.4. For a P-prc~cemor ~-rahiltjproce,4sor, a knver bound on the parable1 cast of any 

parallel impkmentation of an  algorithm a i s  

Proof. The parallel cost is bounded from below by xnax(Ca,Wa}. Thus, by I ~ x n n ~ ~ s  

for each uj E U .  Since Na,* = Na(tij) for some uj E U ,  and since pa(uj) is a Baaember of 

(3) 

3.2 

the 
set { 1,  . . . , P }  for any parallel implementation of algorithm a on this multiprocessor, the proof 

follows immediately. c1 

Of the three terms in (3), t(p) i s  monotonicd\y increasing, f(+,.r(Na,, .- I)/p] is monotonically 

decreasing, and f( +.) pog, Na(uj)l is constant (~FI a function of p ) .  Thus, if P 2 N,, , ,  then 
either (3) achieves its minimum when ~ ( p )  a f(+) . [(Na,* - I’j)/pl or ~ ( p )  is always less than 

f(+, . [(No,* _.- l)/p1 for p E { 1,. + . , P } ,  in which case the rniaimuni is f(+, . Fog2 Na,*l. 
On an idealized multiprocessor where r ( p )  = 0 for all p1 the lower bound on the parallel cost 

described in Theorem 3.4 i s  f(+) - [log, Na,*l for large numbers of proces§QR% If 43 2 Na,* and 

~ ( p )  5 p . [log, p1 for some finite constant p, then it follows immediately that ( 3 )  is boiaraded 

from above by 

“ 1 x ( f ( + ) , P )  * Fog, Na,*1 . 
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Since (3) is always at least as large as f(+) pog2 Na,*1, this implies that (3) ia also proportional 

to rloga Na,*l when r(p) 5 f l  . pog,p] and P irr large. For example, this type Q€ bound on 

r(p) holds when the multiprocessor is a clique or a hypercube. But, as the following theorem 

shows, the lower bound described by (3) grows: much faster (as a function of Na,*) when r(p) 
is a positive power of p .  

Theorem 3.5. For a given multiprocessor, assume that r (p )  2 P .pr - p for positive constants 

P,7,  and p .  Then, independent o f t h e  number D f  processors, a lower bound on the parallel cost 
of m y  parallel implementation of an algorithm a on this multiprocessor is 

Proof By Theorem 3.4, a lower bound on the parallel cost is 

for any finite number of processors. By assumption, r ( p )  2 p - p y  - p for positive constants p, 
y, and p .  Redefine r(p) to he equal to P . p T  - p. Then (43 is still a lower bound on the parallel 

cost since all we have done is use a worse lower bound ~n the cetrnmunicatbn cost I 

Define LR(p) to be the function 

and let p ,  denote some number that minimizes LB(p) over the domain (0,~). (1.e. LR(p,) has 
the same value as (4).) Next, consider some value p' for which 

That is. d satisfies 

By modifying the left hand side of (6) in such a way that its value is never decreased, and by 

modifying the right hand side in such a way that its value is never increased, we can replace 

(6) by the following simpler inequality that also guarantees that p' satisfies (5): 
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then p’ satisfies (5). Since ~ ( p )  increams monotonically and since f(+, [ (No , .  - l)/p1 decreases 

monotonically, if follows that LB(p) is minimized by some p .  greater than or equal to  p’. In 

particular, r(p’) 5 r(p+). Since f(+) - Fog, NO,*l is always a lower bound on the pardkl cost, 

this implies that 

L%*) 2 m={pW) 9 f(+) . peg, Na,*ll. 

In conseqiience, a lower bound on the parallel cost is 

This proves the theorem. II 

C Q P O ~ ~ ~  3.6. For m y  finite number ofprwmmm, a lower bound on the peprdlel cost of any 

parallel implementation of an algorithm a is 

if the niultiprocessor is a kr-dimensional array. 

Proof. For a k-dimensional array, r ( p )  2: k * t . ( p 1 1 k / 2 -  I). The corollary follows irninediately 

from ‘l’heorem 3.5. E! 
Thus, for a k-dimensional army multiprocesms, the communication cost, as represented by 

~ ( p ) ,  determines the fundamental behavior of the lower bound in ‘Theorem 3.4 for large P. In 

33.2, we describe an example where r ( g )  i a  the dominant factor in determining the para114 cest 

of a parallel algorithm, not just in determining a lower bound on the parallel coat. 

3.2, Example communication bound algnrithmsr 

The following example problem shows that the intrinsic c a t  represented by the multiprocessor 

radius function caw limit the performance of (good) parallel impletnentations on a k-dirnen;sioona? 

array architecture. In particular, we describe conditions for which a given parallel algorithm 

6 is communication bound. We also describe conditions for which the corresponding serial 

algorithm w i s  communication bound on a k-dimensional array architecture. 

Consider the problem of calcula.ting a single-valued solution function u that i s  defined hy 

An algcwitiim a to appsoxinrate u that uses a quadrature rule to calculate the integral has the 

form 

This algorithm contains No,* nniltiplications and Na,* - 1 additions. 

Consider implementing this algorithm on p processors of a I>-processor E-dimensional array 
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multiprocessor, where p 5 N,,, 5 P. A near-optimal parallel implementation with respect to 

the computation cost is the following. First, partition tbe data (g(zb)) into p subsets each 

of which contains no more than rN,,,,/pl elements and allocate a different processor to each 
subset. Next, in parallel, use the processor allocated to  a given subset to calculate the portion 

of the weighted sun in (7) corresponding to the subset. Finally, when all processors are finished, 

sum the remaining p partial results using a parallel fan-in algorithm [lS]. The computation 

cost of this parallel implementation on a homogeneous multiprocessor is 

Since p processors are collaborating in such a parallel implementation, a lower bound on the 

communication cost is r ( p ) .  Assume that p = Ha,,. Then (8) is minimized, but the communi- 

cation cost is at least r(Na,*). If r (N, , , )  > C'a, then this parallel algorithm is communication 

bound since the communication cost is larger than the computation cost. The multiprocessor 
is a E-dimensional array, so this inequality is 

E .  t * (+ - 1) > i(*) + f(+) * Ilog;!Na,*l 

or 

If we knew that 

then a sufficient condition for the parallel algorithm to be communication bound would be 

Using an argument similar to this, and taking inlo account all possible cases, it is straightforward 

to show that this parallel algorithm will be cornmunication bound if 

For example, iff(*) = f(+) = t ,  then this bound is Na,* > 16k. (This is an overly conservative 

bound. For example, if f(*l == f(+) = t and A? 2 2, then the radius forces this algorithm to 

be communication bound when N,,,  > llk.) A similar analysis can be used to show that any 

parallel implementation for which p oc N:,, where y > k/k -+ 1 will be communication bound if 

N,,,, (and P) is large enough. 

We can also show that the serial algorithm a is comniunication bound on a k-dimensional 

array multiprocessor if Ma,+ is large enough and P = Na,*. First, let A4 be the given k- 
dimensional array multiprocessor, and let M' be an idealized multiprocessor constructed from 

M in the fashion described in 52.2. As in 52.2, let ii: be an optimal parallel implementation of 

a on M'" Then expression (8) with p = N,,, k3 an upper bound on Ta; since it represents the 
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execution time of a particular parallel implementation of a on M'. 
Let 5, be an optimal parallel implementation of on M. By Corollary 3.6, 

Thus, Tao is larger than 2 .  Tab when 

or 

Using a case-by-case analysis similar to  that used to derive (9), it is straightforward to  show 

that a sufficient condition for the serial algorithm a to be communication h u n d  i s  that 

If fc.1 = f(+) = t ,  then the bound is Na,* > 64'" . ( k  -+ 1)2'+2/k2k. (This is  also an overly 

conservative bound. For example, iff(*, = f(+) = t ,  then the radius forces this serial. algorithm 

to be communication bound when Na,* > M2 for k = 1, when Nap* > 513 for E = 2, and when 

Na,* > 444 for k = 3.) Similarly, if P 0: N& for some y > k/L -i- 1,  then Xa0 >_ 2 .  Ta; if Na,* is 

large enough. Thus, the radius function of a k-dimensional array strongly limits the attainable 

performance of algorithms for this example problem for large PIa,* (and P ) .  

By Theorem 3.5, if r ( p )  2 0 .  pr  - p for positive constants p, y, a i d  y and if the number of 

processors is large, then the communication cost of a. parallel. algorithm determines the behavior 

of the lower bound on the parallel cost described in Theorem 3.4. In $3.2, by restricting ourselves 

to a specific algorithm, we were able to show the much stronger result that this condition on r ( p )  

can force both the serial algorithm and good parallel implementations to be communication 

bound. In this section we show that similar results can he established for a given problem 

satisfying Assumptions (I)-(V) in $2.3. 

4.1. communication bound prsbllems 

Previously, we defined what it means for a parallel algorithm to be communication bound, and 

what it means for a serial algorithm to be communication bulnrid 011 a given multiprocessor. In 

this section, we define what it means €or a problem to be communication bound. Let q be a 

problem satisfying Assumptions (I)-(V) in $2.3. Let A(q) be the set of all serial algorithms that 

solve problem q. Let M be a given multiprocessor, and let M' be the idealized multiprocessor 

described in $2.2. 
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Let 5, be the parallel algorithm that minimizes the parallel execution time over all parallel 

implementations on M of all algorithm a in A(q). We call this the optimal paralie1 algorithm 

for q on M. Let i i b  be the parallel algorithm that minimiztx the parallel execution time over all 
parallel implementations on M' of all dgorithms a in A(q). We call this the optimal parallel 

algorithm for q on M'. We say that q is communication botrnd if Tal < Taq/2. Otherwise, we say 

that p is computation bound. As for the case of *rial algorithms, if a problem is communication 

bound, then the interprocessor communication subsystem is the dominant constraint on the 

ability of M to solve the problem. If a problem is computation bound, then the intrinsic 

computational requirements of the problem and the speed of floating point computation are the 

dominant constraints. 

4.2. Problem-dependent bounds 

The argument used in $3.2 to show that a give3 serial algorithm is communication bound can 

also be used to show that a problem q is communication bound on a multiprocessor M. We 

simply need to establish a lower bound on Nu,,, for all algorithms in A(q) ,  and an upper bound 

on the computational cost for a specific algorithm a E A(q) .  The lower bound on N,,, ,  in 

conjunction with Theorem 3.4 and Theorem 3.5, can be used to calculate a lower bound on 

Taq, the parallel cost of the optimal parallel algorithm for p on M. The upper bound on the 

computation cost for a specific algorithm is &so an upper bound on on Ta;, the parallel cost 

of the optimal parallel algorithtn for q on M'. The first two theorems in this section, proven 

in [23] and [24], allow us to calculate this information. 

Lower bound on Na,*. Let &(5;6)  denote a closed ball in %d* centered on k with a radius 

of6, 6 2 0. If di = 0, then we define 6 to be zero. Define Nq,i(uj)  to be the mininium number 
of data sampling locations in I d ,  used by algorithms in A(q) when approximating ~ ( 2 , ) .  

Theorem 4.1. Let q be a problem satisfying A.ssumptions (1)-(V). Let E be the error bound on 
the approximation to the solution values specified by the problem. Let i$ be an element of Z ,  
and let uj be the corresponding element of U .  Let i be an element of (I,. . S ) .  If there exists 

a closed ball 3i(jz,;6) C I d ,  of positive radius 6 on which @ i ( Z j ,  3) is either strictly positive 
or strictly negative and on which both @ i ( % j ,  Z) and Ti(%) are bounded away from zero, then 

there exists a positive constant c;,j independent of E such that 

The proof of this theorem is based on how different two solution functions can be when their 

data functions are identical at all of the sampling locations. See [23] or [24] for the details. The 

assumptions of the theorem are satisfied by most linear YDEs arising in scientific computing, 

and are used merely to  ensure that u, cannot be calculated exactly with a finite amount of 
data from Id , .  Since Na,* 2 N,(uj)  2 N,,i(u,) 2 Nq,i(uj)  for all algorithms a in A(q) ,  this 

establishes the desired lower bound. 
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Corohry 4.2. I f  the conditions of Theorem 4.1 are satisfied far some Zj E Z and some 

i E {l,.-.,S}, then 

Here P is the number of processors in M and c;,, is the cmstrant from Theorem 

particular, if r(p) 2 /3 - p 7  - p for positive constants 8, y, and p ,  then 
4.1. In 

for any finite 8. 

Proof. Since Na,* 2 Nq, i (u j )  for any a E A(q), the proof follows directly from Theorem 3.4, 

Theorern 3.5, and Theorem 4.1. c3 

Upper h ~ u n d  on minimum campantation cost. The next theorem describes an upper 

bound on Na(t6j) for a particular serial algorithm a. We will use this to derive an upper bound 

on the minimum computation cost over all parallel implementations of algorithm in A(q). 

Consider the following algorithm for approximating a given u, E U. For each i E (1, . . . , S} 
such that di = 0, compute 

exactly. Call this value ii;,.j. For each i such that di > 0, approximate J 
tire following way: 

%,(z j ,? )g i (%)dk  in 
I d ,  

Q )  Divide I d i  into cubes of the form Ci(zi,,,,; 2 - ’ 1 s J ) ,  for some positive integer vi ; j ,  where 

C;(Z;6) is  the open di-dimensional cube centered on 2 with volume h d * .  Here I is the 

index for this set of cubes, I E { 1,. . . ,2”1 .~’~;} ) .  

b )  In each subcube C;(%i,j, i;2-’isj),  consider @ data sampling locations arranged on a 

uniform di-dimensional mesh with mesh spacing h = 2-”n*J/(vi + 1). Let ij;,j,l(z) be the 

unique polynomial of degree at mwt vi - 1 in each variable that interpolates Si(.) at the 

indicated sampling locations. 

c) Approximate SI, S,(t.,, z)g,(z) (1% by 

Finally, approximate u, by the following expression, 

s 
. i i j  = xiii,i. 

i= 1 
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We get an algorithm for any problem q by using this technique for each uj E U and using 

enough data function samples to satisfy the error bound. We refer to this type of algorithm as 
a Green’s function method since it uses the Green’s function directly in the calculation. 

Theorem 4.3. Let q be a problem satisfying Assumptions (I)-(V), Let E be the error bound on 

the approximation to the solution values specified by the problem. For each uj E I/, there exists 

a set of finite positive constants {?id}, each of which is independent of E, with the following 

property. There exists a Green’s function method a in A(q) such that for each ti, E Cr and 

i E { l , . . . , S }  
-5 

N, , j (Uj )  5 Ej,j - € f 1. 

The proof of the theorem is based on bounding the error introduced by using the interpolating 

polynomials {iji,j,t} instead of the true data functions in the Green’s function method. See [23] 

or [24] for the details. Since No,+ = maxUjEcI I;-& N, , , (u j ) ,  this theorem describes an upper 

bound on the size of ATa,* for the specified algorithm. 

The next theorem describes an upper bound on Tal. It is derived from an upper bound 

on the computation cost of a particular parallel implementation of a Green’s function method. 

Note that the expression [P/IUIJ is used in the first inequality in the theorem, where IUl is 

the number of solution values l o  be calculated. This arises because one of the two parallel 

implementations used to establish the result cakulates each solution value on a distinct subset 

of processors, and the expression lP/lUlJ is an upper bound on the number of processors in 

the smallest subset. Since this approach only makes sense if Ir/i 5 P, a different parallel 

implementation is used to calculate a bound when IUl > $7. 

Theorem 4.4. Let q be a problem satisfying Assumptions (I)-(V). Let be the error bound 

on the approximation to the solution values specified by &he problem. Let IiJl be the nuniber 

of solution values in U. Let M be a homogeneous P-processor multiprocessor, and let Mt be 

the idealized multiprocessor constructed from M in the fmhion described in $2.2. Let { E i , j }  be 

the constants from Theorem 4.3. Then 

P 

P 

i f P  < IUl. 
ProoJ For fixed i ,  j, and I ,  let the set { i & ~ , f , k  I k = 1 , .  e ,  v f ‘ }  denote the data sampling 

locations in Ci(3i , j , l ;  2-”*.3) used by a Green’s function method a. Then, in this subcube, the 
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polynomial interpolant & j , ~  call be represented by 

PI :* 
~ g i , j , l ( ~ < , j , l $ )  * Ai , j , l , k (g )  
k=  I 

where {Ai , j , l , t (Z) ) )  are Lagrange bask functions for these sampling locations. (See Prenter [18, 
pages 118-1271 or Worley [23, pages 131-1341.) 

Using this notation, the expression for Gi , j  becomes 

Each factor s&, ,,,, 
precomputed. Call it ri,j,t ,k. The expression for G i , j  is then 

,,,. d R )  9 , ( Z j ,  2) . A i , j , l , k ( Z )  dz is independent of the data, and can be 

and N a , i ( l r j )  = t ~ f '  . 2 Y 1 0 3 . d * .  Similarly, the expression for the approximation to u ( . ~ j )  is now 

and N,(u,)  = >zds,l vf' . 2% de.  

By (IO), using algorithm a to approximate t r ( E j )  requires N , ( u j )  floating point multiplica- 

tions and N , ( u j )  - 1 floating point additions. To implement this algorithm using p processors 

of a P-processor multiprocessor, use the same technique described in 53.2: partition the data 

equally among the processors, calculate as much as possible in parallel, synchronize, and sum 

the remaining min{N,(uj) ,  p} partial results using a parallel fan-in algorithm. Since computing 

uj in this fashion is  independent of computing any other member of U ,  the same approach c a n  
be used for all other solution values, as !omg ips the total number of processors used does not 

exceed P. Assume that lUl 5 P. Then wve can arJlocate LP/lUlJ processors to the computation 

of each u j ,  hiit use only as many processor as i s  eficient for each computation. The parallel 

cost of this parallel implementation on M' is 

Next, awnme that IUI > P. Then a different approach is required. Instead, partition the 
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set of solution values into P subsets each of which contains no more than [lVl/P1 elements, 

and assign a distinct processor to the calculation of the solution values in each subset. The 

parallel cost of this parallel implementation on M' is no more than 

which is an upper bound on the serial cost of calculating a single subset of the solution values. 

If a E A(q), then (11) and (12) are upper bounds on Tal, the parallel cost of the optimal 

parallel algorithm for q on M'. Therefore, the statement of the theorem follows immediately 

from Theorem 4.3, which describes an upper bound on N0+(uj)  for some Green's function 

method a E A(q). 0 

4.3. Sufficient conditions for a problem to be communication bound 

The following theorem describes conditions under which a problem will be commrinication 

bound on a homogeneous multiprocessor whose radius function is a positive power of the 

number of processors. Thus, a necessary condition for a homogeneous multiprocessor to be 

"adequate" for such problems is that its radius grow more slowly than this. The theorem is 

stated in the following way: There exists a constant c* that is a function of the solution oper- 

ator and the smoothness of the data functions such that the problem will be communication 

bound if the error tolerance c is less than and if a large number of processors are available. 

Thus, to determine whether a problem is communication bound on a given multiprocessor, first 
calculate E * ,  then compare c with c* .  As long is positive, the problem is guaranteed to be 

communication bound if E is small enough and the number of processors is large enough. 

Theorem 4.5. Let q be a problem satisfying Assumptions (I)-(V). Let c be the error bound on 

the approximation to the solution values specified by the problem. Let p, yI and p be positive 

constants, and assume that r(p) 2 pep7 -1 for a given homogeneous P-processor multiprocessor 

M. If, for some 5, E z and some i E { l , - . . ,S ) ,  there exists a closed ball &(5*;6) C I d ,  of 

positive radius 6 on which @ j ( Z J ,  2) is either strictly positave or strictly negative and on which 

both qi(Zj,x) and 'Y i (2)  are bounded away from zero, then there exists a positive constant 

E * ,  independent oft, and a finite function P*(cJ such that q ir cornmunicatioa bound OD 1M if 
c 5 and P 2 P.(c). 

Proof. By Corollary 4.2, Tag is bounded from below by 

Let 
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where the constants { E i j }  are from Theorem 4.3. By Theorem 4.4, if P 2 P*(E),  then 

Since the upper bound on Tal in (15) ~FOBVS like log,(l/e) as E decreases and the lower 

bound on Tfiq in (13) grows like c - ~ * ~ ~ / ( ~ * ' ( ~ + ' ) )  a.9 E decreases, there will be some E: for which 

the upper bound in (15) is less than half the lower bound in (13). Let et = rnin{e~,c~}. If 
e 5 E .  and P 2 P*(E),  then Tal 5 Tdq/2. This proves the theorem. El 
As mentioned earlier, the assumptions in Theorem 4.5 on the kernels {ski} and the functions 

{Ti} will be satisfied by most linear PDEs arising in scientific computing, and they do not 

constitute a significant restriction on the application of this theorem. 

Note that the restriction to homogeneous multiprocessors is  not neccessary. A sirriilar result 

will hold for a heterogeneous multiprocessor if the ratio of f. on the slowest processor to f(+, 
on the fastest processor is bounded. Also note that the conditions under which a problem will 
be communication bound can be significantly tightened if given more information about the 

problem. For example, for many problems there i s  a great deal of shared work possible when 

computing the solution values, and all processors contribute to the calculation of all solution 

values for good parallel algorithms. This can significantly decrease P*(E).  Also, generally all 
i f {l,. . . ,S} will satisfy the problem assumptions, and this will increase c * .  Both of these 

changes make it more likely that a problem will be communication bound. But, even without 

knowing more details, we are able to identify when a problem will necessarily be communication 

bound. 

'1 

P 
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5. Scaling results 

Scaling a multiprocessor architecture increases or d e c r e e s  the number of processors in the 

multiprocessor while keeping certain attributes of the architecture fixeda In particular, we 

define scaling for the example architectures of $2.1 in the following way. The graph of the 

scaled multiprocessor architecture is of the same type as before scaling, and each type of 

component has the same parameters. For example, when scaling a square k-dimensional array 

multiprocessor with P processors, the graph of the new multiprocessor will still be a square 

k-dimensional array. The processor and communication abilities will also be unchanged, but 

the number of processors will now be Q for some P # Q. Thus, scaling defines a family of 
multiprocessors with similar architectures. We will refer to a particular multiprocessor as an 
instance of this architectural family and to  the number of processors in an instance as its size. 
We will use the term scaling up to mean increaaing the size of a multiprocessor architecture. 

Scaling a problem alters the problem specifications in such a way that the serial complexity 

of the algorithms used to solve it changes. The problem parameters that are normally free 

to be varied are the solution values to be approximated and the error bound to be satisfied. 

Therefore, to scale the problem, one or both of these parameters must be changed. Scaling the 

problem defines a family of similar problems, all approximating the solution of the PDE. We 

will refer to a given set of specifications as a pmblem instance. The sire of a problem instance 

is the minimum serial cost of algorithms that solve the problem instance. We will use the term 

scaling up to mean changing the problem specifications in such a way that its size increases. 

We say that a multiprocessor architecture scales for a problem if the minimum parallel cost 

when solving the problem can be bounded independent of the problem size by scaling up the 

architecture. In previous work [23], [24], we showed that no multiprocessor architecture scales 

for our problems when given a reasonable assumption on how the size of a problem can grow. 

In this section, we briefly describe this result again, and then show how the radius function of 

a multiprocessor can exacerbate the increase in the minimum parallel cost. 

5.1. Problem assumption VI 

Commonly, increasing the size of a problem indisates that the number of solution values and the 

amount of data used increase, and that the error bound decreases. For some applications the 

solution is desired at only a fixed set of locations, and only the other two parameters will vary. 

But, in both cases, increasing the size of the problem results in a better approximation to the 

solution function. It is simple to increase the size of a problem without suffering an increased 

parallel cost if only the number of solution values is increwd and if enough idle processors are 

available. But continually increasing the number of approximate solution values will not lead 

to a better solution unless the error in these approximate values also decreases. We do not 

consider it reasonable to increase the size of the problem unless there is some advantage gained 

by doing so. This motivates the following assumption on how the size of problem is increased. 

(VI) For a given problem instance, denote the set of locations when the solution is io be 
approximated b y  2, and denote the error bound on these approximations b y  t. Ifthe sire 

'For example, see. [17] for a discussion of parameterized architectures. 
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of the problem prows and 2‘ and 8 are the corresponding parameters of the new instance, 
then we assume that Z C Z‘ and 

for some positive a independent of the scaling. Here (Z( represents the number of locations 
in the set. 

Note that this assumption is not on the problem, but rather on how we permit the problem 

to grow. By this assumption the problem size is allowed to grow only if the error bound also 

decreases. Moreover, if the problem size grows without bound, then the e r r o ~  bound goes to  

zero. Assumption (VI) is unnecessarily restrictive, but it is sufficient to establish the results in 

this section. In particular, the aesumption that Z C Z’ is made merely to keep the assumption 

simple. See Worley [23, pages 65-66] for a less restrictive assumption. 

5 -2 P roblem- sc ding bound 

The following theorem shows that no architecture will scale for a linear PDE that satisfies 

Assumptions (I)-(VI) and the assumptions of the theorem. 

Theorem 5.1. Let q be a problem instance satisfying Asumptioos (I)-(V), and asselme that 
all s c a h g s  o f  q satisfy Assumptm’on (VI). Assume that, for some i E { 1,. . . , s}, there exists a 

Zj E Z with the following property: there exists B clcsed ball B;(%.,; 6) c I,.,, of pmitive radius 

6 on which @ i ( i j ,  ?) is either strictly pasitive or strictly negative and on which both @i(zj,i!) 

and T;(z) are hounded away from zero. Also awurne that f(+) is positive and bounded away 
from zero for all permissible multiprocessor architectures. Then, if the size o f  the problem 

iiicreases without bound in a fadaion consistent with Assumption (VI), so will the parallel cost, 

independent of the algorithm and o f  the number of processors used. 

Proof. The proof follows iinniediately from Corollary 4.2 and the assurnpkion on how prob- 

lems are allowed scale. As the size of a problem increases, the error tolerance decreases, 

and the logarithmic term in Corollary 4.2 increases. If the problem size increases unboundedly, 

then goes to zero, and the logarithmic term increases unboundedly. See also [23] and [24]. 0 

5.3. Effect of r ( p )  on the asymptotic growth of the par 

By Theorem 5.1, we usually can’t bound the parallel cost as the size of the problem increases. 

But a good multiprocessor architecture won’t exacerbate this increase. In this section we 

examine how the communication capabilities of a multiprocessor affect the parallel cost as 
the size of both the architecture and the problem increwse. In particular, WE show that most 

problems can become communication bound as the sizes increase if the multiprocessor radius 
function grows it9 a positive power of the number of processors. Thus, a necessary condition 

for a multiprocessor to be “adequate” in this context is that its radius grow more slowly than 
a positive power of p .  
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Theorem 5.2. Let q be aproblem i n s t ~ c e s a t i s ~ j n g  Asrrumptions (I)-(V), and assume that all 

scalings of q satisfy Assumption (VI). Assume tbat there exists a Ej E 2 and some i E (1 ,  . . . , S )  
such that d; # 0 and the following property holds: there exists a closed ball B i ( Z * ;  5 )  c Id, of 
positive radius 6 on which f#i(i?j, 2) is either strictly pmitive or strictly negative and on which 

both @i(Zj, 2) and Ti(5) are bounded away from zero. Let p, 7, and p be pasitive constants, 

and wsume that r ( p )  3 p pr - p for dl scalings of a given homogeneous multiprocessor M. 
Then the following conditions bold. 

There exists a scaling of q and a multiprocessor instance such that the new problem 

instance is communication bound on this multiprocessor. Moreover, this problem instance 

remains communication bound for all sealings of the multiprocessor larger than the given 

instance. 

Let R(p) be the ratio T8*/Tat on a multiprocessor instance of size p .  Then the limit 

max,,L1 R(p)  grows unboundedly as a function of the problem size. 
'1 

Proof The first part of this theorem is ewentially a restatement of Theorem 4.5. As a 

problem scales up in size, eventually 6 will be less than the constant e* from Theorem 4.5. 
Once E is smaller than this threshold, the problem instance will be communication bound on 

any multiprocessor instance for which P >_ P*(c). 
From (13) and (15), 

if 6 5 E, and P 2 P,(E). Thus, by Assumpticln (VI), if the size of the problem increases un- 

boundedly, then c goes to  zero, and maxp>l R(p) grows urrboundedly. This proves the theorem. 

11 
As mentioned earlier, the assumption that thc multiprocessor is homogeneous is unnecessary. 

Generalizing Theorem 4.5 to take into account heterogeneous multiprocessors is all that is 

needed to  generalize this result. 

In summary, if r ( p )  2 /3 -pr - p for positive constants /?, y, and p ,  then the comniunication 

costs will eventually be the dominant constraint on the achievable parallel performance as the 

problem and multiprocessor sizes are increased. In particular, the following coroliary is an 
immediate consequence. 

Corollary 5.3. Assume that the graph of a multiprocessor is a k-dimensional array, and that 

the transmission time t is bounded away from zero. Asscame that the PDE satisfies the condi- 

tions in Theorem 5.2. Then, for large problem sizes, the communication cost determines the 

minimum parallel cost as the multiprocessor is scaled up. 

Ultimately, the communication capabilities of any mulkiprocessor is constrained by the three 

dimensionality of the physical world and by the speed of light. This motivates the next corollary. 
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C Q ~ O U F L ~ ~  5.4. Assume that each processor in a multiprocessor is a cube with EA fixed nonzero 

volume. Assume that the YDE satkfim the conditions in Theorem 5.2. Then, for large problem 
sizes, the communication cost determiam the ~ ~ R ~ I I I U X I  parallel cast as the multiprocessor is 

scaled up. 

Proof. Assume that the volume of a processor is u in some standard unit. Then a set of 

g processors will take up a volunie of at lea& pv ,  and cover a region whose maximum width 

i s  at least ( p ~ ) ' / ~ .  Any message between processors must travel from a surface of the sending 

processor to a surface of the receiving processor. Let the physical diameter of a set be the 

maximum distance betweein the nearest surfaces of two processors in the set. Then the physical 

diameter is greater than or equal to ( p ~ ) ' / ~  - 2u'i3. 

As in 32.1, let the cenZesprocesos be the o w  that  minimizes the m&mum distance between 

itself and all of the others, where distance ia now measured between closest surfaces. Let the 

physical radius be the maximum distance between the center and the other processors. Then 

half the physical diameter minus half the width of the center processor is a lower bound on the 

physical radius. In consequence, 
( p v ) ' / 3  3 .  211/3 

a 
is also a lower bound on the physical radius. Since no message can travel faster than the speed 

of light, the radius of this set of processors is at least 

where c is the speed of light in these units. If /3 = ~ ' / ~ / ( 2 .  c ) ,  7 = 1/3, and p = 3 .  v1j3/(2 . c > ,  

then r ( p )  2 p pr - p .  The result then follows from Theorem 5.2. 0 
Using current technologies, the speed of light is not the only restriction on transmission speed, 

and r ( p )  2 p . pr - p for p that is much larger than that calculated in this corollary. The 

important point of this corollary is that the communication cost will eventually determine the 

achievable performance for any physically-realizable multiprocessor. 

6. Conclusions 

The information-theoretic algornth~-dependeaat parameters introduced in $3 allowed us t o  cal- 

culate a lower bound on the parallel cost that included one aspect of the communication cost. 

By taking into account the intent of the algorithm, to approximate the solution of a continuous 

problem with a given structure, we were then able to calculate a similar lower bound on the 

parallel cost of optimal parallel algorithms on a given multiprocessor. We were also able to  

calculate an upper bound on the parallel cost of optimal parallel algorithms on at1 idealized mul- 

tiprocessor for which the commiinication cost is a!ways zero. Using these two results, we proved 

that the communication cost will be the donlinant factor in determining the performance of 
optimal parallel algorithms TOP l a g e  problems as multiprocessors scale up in size. These results 

are a consequence of very general assumptions, and we expect the interprocessor cornmimica- 

tion subsystem to  be the major constraint on the perforniance for problem and multiprocessor 
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. sizes much smaller than those indicated by th? theory deacribed here. Whether this analysis 

indicates a practical limitation for a given problem must be examined on a case-by-case basis. 
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