

t

ORNL/TM-11512
CESAR-90/11

Engineering Physics and Mat hemat ics Division

IMPLEMENTATION OF

VALIANT’S LEARNABILITY THEORY

USING RANDOM SETS

E. M. Oblow

Date Published - August 19 9 0

Prepared by
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-840R21400

CONTENTS

ABSTRACT v

1 . INTRODUCTION 1

2 . REVIEW O F VALIANT’S APPROACH 3

2.1. RANDOM SET FORMALISM 3

2.2. VALIANT’S BOOLEAN FORMALISM 4

2.3. GENERAL SET FORMALISM 5

3 . BOUNDS ON SAMPLE SIZE 9

3.1. WORST-CASE ANALYSIS 9

3.2. LEAST UPPER BOUND 12

3.3. PRACTICAL BOUNDS 13

4 . RANDOM SET ALGORITHM 17

4.1. RANDOM SET BOUNDS 17

4.2. GPAC ALGORITHM 19

5 . MULTIPLEXOR PROBLEM 23

5.1. PROBLEM DEFINITION 23

5.2. MULTIPLEXOR RESULTS 24

6 . CONCLUSIONS 29

REFERENCES 31

...
111

ABSTRACT

Valiant’s theory of learnability is recast into random set terms and implemented
in an efficient computer learning algorithm. A theoretical and empirical analysis is
presented which improves the bounds on the number of examples needed to learn
such sets. A general purpose algorithm using these bounds is then described. This
algorithm is tested on the multiplexor problem analyzed by others as a benchmark
for decision tree and genetic algorithms. Results for this problem show that a set-
theoretic implementation of Valiant’s theory is computationally competitive with
these more established methods. Conclusions are drawn about potential further
improvements in the efficiency of Valiant’s approach.

1. INTRODUCTION

This paper describes the results of an algorithmic implementation of Valiant’s
recent theory of learnability (Valiant 1984, 1985) and the generalizations to it pub-
lished by Blumer, et al., (1987). This seminal theory has renewed interest in machine
learning by defining a theoretically acceptable basis for probabilistically approxi-
mating classes of learnable concepts. For this reason, the theory has been termed
pac-learning (Angluin 1988), an acronym for probably approximately correct learn-
ing. It has received considerable attention at recent meetings on computing and
machine learning (see e. g. Haussler & Pitt 1988; Rivest, et al., 1989) and has been
found useful in analyzing a wide range of learnability issues including those related
to neural nets (e. g. Bauin & Haussler 1989).

In its earliest published form (Valiant 1984), this theory deals primarily with
the issue of defining learnability in discrete sample spaces. The two most important
problems addressed were: 1) estimating bounds on sample size needed to insure
learning from examples to within a specified probabilistic error and 2) determining
the classes of polynomial algorithms and representations that can use such bounded
samples. Both of these problems are central to establishing, in a distribution-
free manner, the complexity order of a learning algorithm which guarantees that
a concept class can be learned to within certain specified probabilistic errors. To
make this learnability issue more concrete, Valiant (1985) concentrated on learning
the class of Boolean k-DNF and k-CNF functions.

While these two problems and the latter class have generated a great deal
of theoretical interest, large-scale implementations of Valiant’s approach have not
yet appeared. In practice, major discrete-space learning codes still rely heavily on
decision tree (Quinlan 1979; Quinlan 1985)’ genetic (Holland 1975), and stochastic
schemes (Duda & Bart 1973). Although this fact must certainly be due to the
recent nature of the theory, it is we feel, more a result of the impracticality of the
upper bounds on sample complexity which have been developed so far for Valiant’s
original algorithm. Blumer, et al., (1987) have pointed out that improving sample
complexity bounds in general and addressing learnability issues for the non-Boolean
basis of other methodologies are both important outstanding research issues.

The developments presented in this paper will, therefore, focus on two prob-
lem areas. First, we will explore more practical bounds for polynomially learnable
representations so that the current theoretical limitations of Valiant’s approach can

be removed. A random finite-set formulation of Valiant’s theory will prove useful
in meeting this end. The other area we will address is learnability for thc discrete
sample-space problems lying between Boolean and continuous functions. We will
try to meet this challenge by implementing Vdiamt’s theory in a general-purpose
discrete-space algorithmic form. Our goal in this implementation is the development

1

2

of a computer code which can successfully compete with other currently employed
learning methodologies. In pursuing both of these research goals, we have found
the more general set-theoretic approach presented in Blumer, et al., (1987) to be
quite useful.

To demonstrate the code developed in this work we will restrict our attention,
however, to a Boolean learning problem which has received thorough investigation
by Wilson (1987) and Quinlan (1988). These latter published analyses provide
detailed results which can be used to test a large-scale implementation of Valiant’s
algorithm against more applied learning methodologies.

In the following sections of this paper, Valiant’s theory will first be reviewed
in random set terms. -4 more practical approach to determining sample complexity
bounds (which are not necessarily analytic) will then be presented. The problems
of incremental versus block learning will be discussed in the context of a polynomial
algorithm which is convergent in more specific learning situations. A successfully
implemented computer code embodying this random-set algorithm will then be
outlined. Results generated by this code will be compared with other published
work on a Boolean multiplexor problem. This problem has been used as a learning
benchmark for more practical decision tree and genetic algorithms.

2. REVIEW OF VALIANT'S APPROACH

To begin, let us briefly review Valiant's learning theory. Since this formalism
has been generalized considerably in the years since its introduction, we will follow
the approaches of both Valiant (1985) and the more recent Blumer, et al., (1987) for
purposes of this review. In this exposition we will highlight the random set aspects
of this theory which were covered by Blumer, et al., but not made explicit.

2.1. RANDOM SET FORMALISM

Using the notation of Blumer, et al., (1987), we assume that we are trying to
learn a target concept T which is a member of a class of concepts C. This class
of concepts is defined over a set of sample points X which constitute tlie space of
examples from which learning will take place. In this way, C is a class of sets, each
set of which is a subset of the power set of X (i. e. C C 2x). Any T E C will
therefore be a particular subset of points T C X. The complement of T (i. e. F),
will then be the set of points !? E X - T .

A probability hstribution p (x) is assumed to be defined over X . A sample of
size m examples Y is to be randomly drawn from X for the purposes of learning T or
its complement 2". This random rn-sample, denoted by 5 = (XI,. . . , z,,), is then
an m-vector in the Cartesian product space X" (i. e.

.

E X") .
A learning algorithm A is defined as a function A(%)

A@) : [.- E x-] --+ [H E c] , (1)

which takes as its input the rn-sample 5 (a point in X m) and produces as its output
a particular subset of C called the hypothesis set H . Since this hypothesis set is
the result of a probabilistic mapping from a point in X" to a set in X, it thus
represents a random set (Kendall 1974) with a suitable measure p(x) defined in
both the domain and range of A(Z).

In a learning context, the hypothesis H is called an approximation to T with
error ~ (2) . This error is formally defined by the range probability measure of the
random set associated with the symmetric difference between H and T . That is

K(3) E p (H a T) . (2)

In general, the sample size m is specified to be m (~ , 6) , a function of two
parameters E and S, the approximation ewoT and its confidence, respectively. Both
of these parameters have values in the range [O, 11. Given fixed values for E and 6,

3

4

learnability is defined in Valiant’s formalism to be the existence of an algorithm d(5)
which produces a hypothesis H which has an error ~ (2) > E with probability 5 6.
This later probability is associated with the measure in the domain of the function
A(?). Stated another way, T is defined to be l e a r n a b k u n d e r t h e d i s t r ibu t ion p (z) ,
if A(?), using a series of randomly drawn samples of size m (~ , S), produces with
probability 1 - 6, a hypothesis H with error no more than E. The smallest sample
size m (~ , 6) which satisfies this learning criteria, denoted as L , is called the sample
complez i t y . In this context L , represents a least upper bound for learnability under
p(z) in the sampling domain X.

2.2. VALIANT’S BOOLEAN FORMALISM

The formalism outlined in the previous subsection is basically a random set
approach to Valiant’s original theory. To make this review complete we need to
briefly cover the more specific Boolean case discussed in Valiant (1985). In this
latter work, Valiant takes X to be the discrete set of points defined by the corners
of an n-dimensional hypercube. Each sample point 2 E X , called a b inary b i t - s t r ing
or pattern, is therefore, an n-vector in (0, l}”.

The two most important aspects of learnability for this discrete field discussed
in detail by Valiant were: 1) the estimation of sample complexities for various
learning problems and 2) the determination of classes of functions which could be
called learnable in the sense defined above. One of the more important problems
that he dealt with was learning Boolean functions f (x) E (0, l}, where z here is an
n-dimensional vector of Boolean variables a; , i = 1, . . . , n. The variables a, take on
values v; E (0,1} so that in general z E (0, l}” . This case was studied using target
concepts T from the class of either k-DNF and k-CNF Boolean functions.

Valiant defined the class k-DNF (k-CNF) to be a disjunctive (conjunctive)
normal form which contains at most k literals per term. The term n o r m a l f o r m was
defined as a Boolean function consisting of a disjunction (conjunction) of terms,
each of which is a conjunction (disjunction) of literals. A literal, here, is any one
of the n Boolean variables a; or their complements hi. The numbers of terms in
both of these normal forms are O(nk) with respect to the dimension of the sample
vector n. This polynomial order is obtained by enumerating the ways in which the
n attributes can be arranged up to k at a tinre in any individual term. This count is
equivalent to the binomial coefficient (1) which is O(nk). This latter polynomiality
is one of the properties that makes this class of functions learnable with a non-
deterministic polynomial algorithm.

For fixed IC, just such a polynomial algorithm was presented by Valiant for
learning approximations to target functions in the class Ck of k-DNF and k-CNF
functions from either positive or negative - examples. Given the two complementary
sets T E {z I 2 E X , f (x) = 1) and T z {z I x E X, f(2) = 0}, Valiant showed
that concepts (target functions) from the k-CNF class were learnable from posit ive

ezamples chosen from T , and concepts from the I;-DNF - class were learnable from
negative examples chosen from the complement set T . These samples were randomly
selected from their - respective normalized probability distributions p + (z) E p (x E 2’)
or p - (x) E p(x E T) . -4ny target function f(x) representing a T E CI, was shown to
be learnable (probabilistically approximated) to within an arbitrarily specified error
E and confidence 6. This convergence was proven by providing a distribution-free
upper bound rnv, to the number of samples needed to achieve these stated error
and confidence limits.

Valiant developed his general bound on sample complexity by analyzing a clas-
sic urn problem. In this problem, balls of at most s different types were drawn from
an urn to obtain a representative sample of the types making up at least 1 - t: of
the urn’s contents. The sampling process was formulated in terms of a succession
of Bernoulli trials each with a probability of success of at least E . Success here
was defined to be the selection of a type of ball not previously seen before. The
maximum number of successes was, therefore, less than or equal to s.

In particular, Valiant showed that L , could be estimated with sample size
bound m v given by

L,, NN m v = 2h(s + lnh) , (3)

where s = lCkl which is O (n k) and h = 1 / ~ = 1/S with h > 0.
While the class of Boolean functions Valiant discussed is quite general and

useful in a machine leasning context, the bound given above and the number of
comparison steps needed in his algorithm are rather large for most practical im-
plementations. This drawback makes Valiant’s published algorithm seem quite un-
competitive with other alternative learning schemes. To overcome this apparent
limitation, his algorithm has been formulated in terms of random sets and new
tighter bounds, more suitable for practical implementation, have been developed.

2.3. GENERAL SET FORMALISM

The computational methodology developed in this paper is best introduced by
generalizing Valiant (1985) by again using the set-theoretic formalism of Blumer, et
al., (1987). As a first step, we will extend the Boolean framework Valiant discussed
to include the kinds of representations dealt with in genetic (Holland 1975) and
decision tree (Quinlan 1985) algorithms. These representations fall between the
two extremes of Boolean functions on the one hand and continuous functions on
the other. They, therefore, serve as a vehicle for addressing the research area of
non-Boolean representations highlighted by Blumer.

To begin, we expand the definition of a sample point x E X to be a general
discrete n-attribute vector 5 = (u l , ax,. . . ,an). Here each attribute a, is now
allowed to have v, values, which for notational simplicity will be just the set of
integers (1,. . - , u t } . In this way, we then have each a, E { 1,. . . , ox) and 1x1 =

6

ny==, vi. For the Boolean case for example, vi = 2, Vi and, therefore, with shifted
values each a; E {0,1} and 1x1 = 2“. Each sample point z will again be assumed
to have a probability p (z) associated with it .

In this framework, an arbitrary concept c E C can in general be any subset of
patterns z in the sample set X. That is, c E 2x since in general C = 2x. To reduce
the exponential complexity of the concept class C to a polynomially manageable
form, we restrict the c’s to be members of the class of concepts CI, c C used in
decision tree and genetic learning algorithms. This is accomplished by using the
following notational artifice to define an allowable set of patterns e‘ E CI, in vector
form

Here, each a: takes its “value” from an augmented value set { 1,. . . , v,, # t } . The
#* symbol used in this vector represents the entire se t of v, values, so that Nz
(1,. . . 7 vz}.

In this notation, the appearance of the #, symbol at the i t h position in the
vector representation of e’ means that the attribute it replaces takes on nll the
values from 1 to v,. Such an attribute will be called inact ive . The indices of these
inactive attributes in c’ will be denoted by the set I ZE { i I a , = #*}. In a similar
fashion, those attributcs n o t replaced by a #, symbol will be called nctive and the
set of indices for them will be denoted by A E {i I a, # # z } .

If the parametcr E is now used to denotes the number of nctzve attributes in e‘,
then all combinations of the values of the n - 1 inactive attributes, a, , i E I , can
be seen to define a set of pat terns . This allows c’ to be written equivalently in set
form as

(5) c‘ = { z I z = (a l , . . . , a n) with ai = 1,. ” . ,vi, Vz E I . 1
The cardinality of this set IC’\ is clearly

lc’l = n v ; .
i € I

A simple example of one such set of patterns c’ E Ck for n = 3 and v2 = 3 is:

Since the number of ways the I active attributes can be placed in a string of n
attributes is given by the binomial coefficient (7) = n! / (n - E)! E ! , the parameter 1
can be used to define a natural polynomial ordering of the subclasses of Ck which
is O(n’) for each level 1.

For fixed I then, we now define each of the (y) combinations of I active at-
tributes to be a parti tdon of X and denote these j-partitions by ci, j = 1,. . . , (;).
Using the scripted notation Af (or 1;) to denote the set of indices of the active

(or inactive) attributes in the jth-partition of level 1, a set of bans, denoted by I(,,,
constituting the disjoint subsets of each partition can be defined as

c’ = (2, # 2 , 1) = { (271, I), (2,2, I), (273, I)}.

7

z = (ul ,... ,u,) with ai = 1 ,...,vi, V i e I j } , v = l ,

The maximum v index of any bin is defined to be vj, given by

v'. 3 = n vz ,

, . .

with v: 4 1.
Here, the v indices of each bin are computed by a function N(x , Af) which

treats the active attributes in x as a series of digits with vi values per digit. This
function is defined as

I tl

,= 1 1 (9)
Aj 1 = (2 1 , . . . , 2 1) , i , E A i , and vi, E 1 ,

with N(x , A :) f 1.

2x can now be formally defined as

Using these definitions, the restricted polynomial class of concepts c' f CI, C

k } 1 (10) C , = { c I c = b , j , I v = l , ..., uj , I . 3 = 1 , ..., (7), I = 0 , 1 , ...,

with j-partitions defined as

Here, the order of this class is denoted by the maximum level k and its car-
dinality IC,[is O(nk) as determined by (:). Any target concept T used in the
learning algorithm to be developed will be assumed to be a member of this class of
concepts augmented by the null set #I for the sake of completeness.

We note here that each subset c: of the class CI, divides the sample set X into

v'. bins. Each of these different bins are disjoint since the active attributes which
define them take on all combinations of values none of which is repeated. In this
form there are (7) partitions at each level I of class Ck. If the subsets of patterns
so defined are restricted to be binary strings, then all j-partitions with levels I 5 k
give rise to the counterparts of the k-DNF and Ic-CNF Boolean functions used by
Valiant.

Since the j-partitions of the class of sets Ck each partition the same sample
set S in a different manner they clearly form sets of patterns which overlap. This,
together with the fact that the hypotheses formed from these sets axe probabilistic

3

8

in nature, make the h t j of these partitions suitable for defining incidence functions
(I<endall 1974) for representing the limiting random set T. In this form they are
also clearly equivalent to the schemata Holland (1975) used in formulating genetic
algorithms and can be interpreted as the rules generated in the decision tree formal-
ism of Quinlan (1985). In an even more general continuous attribute value doniain,
these partitions can also be thought of as the basic functional representation used
in neural nets. The learnability issues addressed using these sets will thus have
relevance to these other learning methodologies as well.

To clarify this notation and the concepts involved, the partitions and bins for
an n = 3 Boolean case (i. e. a 3-bit binary pattern) with levels up to k = 2
(corresponding to a 2-DNF) are given below for I = 0:

for 1 = 1:

and for 1 = 2:

At each level 1, each j-partition here divides the space X into 2' disjoint bins
b l j . As such, these partitions represent the individual terms in an LDNF (or l-CNF
depending on the label given to them). The active attributes in each partition can
be identified with the literals in these normal forms. These partitions also represent
individual urn problems like the one Valiant used to estimate the bounds on sample
complexity for target concepts in a Ic-CNF or Ic-DNF representation. As such, they
will be used in the next section to reanalyze Valiant's bounds.

3. BOUNDS ON SAMPLE SIZE

To make the formalism described in the last section part of a more practi-
cal algorithm, we must first establish bounds on the size of the samples needed
to learn an arbitrary concept in class CI;. Valiant’s seminal contribution to this
area is his determination of bounds which guarantee convergence of the hypothesis
H, generated by m examples (positive or negative), to the target concept T with
predetermined error and confidence limits E and 6, respectively.

As stated previously, the key element in Valiant’s analysis is that the bound
developed should be distribution-free so that it is independent of the probability
distribution p (z) of the patterns presented. In this sense it is supposed to represent
a worst-case for such learning problems. It is this aspect of Valiant’s analysis that
must be examined more closely if an efficient computational algorithm is to be
developed using a random set framework.

Two aspects of Valiant’s bound given in Eq. (3) will, therefore, be explored
here. The first aspect is its representation as a worst-case limit and the second,
its definition as a least upper bound L,, which was not established in Valiant’s
original papers and i s not true in any event.

3.1. WORST-CASE ANALYSIS

The first issue we will explore is finding a suitably defined worst probability
distribution for the Bernoulli trials problem Valiant analyzed. This will define a
worst-case scenario for learning any target concept. By worst-case, we mean here
finding the hardest distribution to learn from as far as sample size is concerned. This
worst-case distribution will eliminate the need for dealing with a distribution-free
problem and allow a true L, to be found.

To determine a bound, Valiant defined a classic urn problem for analysis in
terms of Bernoulli trials. The urn was assumed to contain N balls of at most s
different types, with s 5 IV. In random set notation, the urn is equivalent to a
j-partition and each type of ball corresponds to a particular bin in such a partition.
These bins will be generically denoted by b and their total number will thus be
s = (7) . To estimate the contents of the urn so defined, a random sample of balls is
drawn in order to obtain a representative sample of at least 1 - e of the balls with
different types. Here the probability for drawing any ball is taken to be l/N. The
probability for drawing a particular type b is then p (b) = nb/N, where T Z ~ is the
number of balls of type b.

This sampling process was described by Valiant as a series of Bernoulli trials,
where the definition of a successful trial was defined as selecting a ball whose type

9

10

had not been seen before. In Valiant’s analysis, each successful trial j , j = 1,. . . , s
was assumed to have a probability of success p j of at least E , the target accuracy
for learning (i . e. p j > E

Using this urn model, we are now in a position to construct a more realistic
series of trials which can then be used to define a worst-case distribution. To
accomplish this, two important facts need to be considered: 1) after each success
the probability for the next success must necessarily decrease since a ball of type b
with at least one representative is now known to reside in the urn and 2) the first
selection is by definition a success. Since we are looking for an upper bound on the
sample size needed to reach an error less than E , it is clear that the slowest rate
of decrease in probability for subsequent successes and the longest waiting times
between successes will define a worst-case scenario.

To meet these criteria, we first define a “semi-uniform” distribution for each
type bi , i = 1,. . . , s in the urn with the following parameterized form

V j) .

where Q is such that p (b 1) > p (b ;) for all 1 < i 5 s and 0 < Q 5 1 - l/s.
This distribution has one type of ball bl which is drawn with probability p (bl) =

1 -a. All the s - 1 other types axe uniformly distributed. If bl is the first one chosen,
then the Bernoulli trial success probabilities p j j = 1,. . . , s for such a distribution
are

Here, after the selection of type bl , the success probabilities decrease by the constant
a / (s - 1) after each future success is recorded. The value of the second success
probability is thus Q and no more than s successes are possible since p,+1 = 0.

While not fully rigorous, we can use this success sequence to analyze a worst-
case learning scenario which will yield useful analytic results. These results will be
tested later, but for now we only need to note the following facts about such a dis-
tribution. First, on average in a series of Bernoulli trials, the first success (choosing
type bl with success probability pl = 1) will decrease the success probability to a.
While Q remains arbitrary for the moment, it is clear that smaller a’s give rise to
longer waiting times for future succcsses. Second, the decrease in success probability
p , at each subsequent successful trial 1 < j 5 s, is minimized by having a uniform
distribution for the remaining different types of balls. This latter fact serves as one
part of the learnability bound since, as noted by Valiant (1984), sampling from a
uniform distribution defines a hardest probabilistic learning problem.

The reason we allow the first success, on average, to reduce the probability
by Q (i. e. we did not define the distribution to be totally uniform), is a result of
necessarily having the first selection be a success. As such, a small value of Q can
increase the waiting time for future successes in the remaining uniform distribution

11

considerably over that of a purely uniform distribution. In defining a worst-case
scenario, however, we now have to find a trade-off between long waiting times for
future successes and reaching the probability level E too quickly.

To find this worst case we must, therefore, determine the maximum num-
ber (with respect to the parameter cy) of samples rn needed to reach a remaining
probability level of E . The tradeoff between reaching E too quickly and decreasing
probability too slowly, on average, with the first success is what must be determined
here.

A solution for this problem can be found most easily by dealing with the ex-
pected sample size rn, denoted by E (m) , which first achieves the E cutoff. The
maximum value of E(nz), taken with respect to Q, will thus define the bound of in-
terest. The traditional approach to estimating waiting times in Bernoulli trials with
variable success probabilities given in Feller (1968) is the needed basis for solving
this problem. This analysis uses the geometric distribution to describe the expected
waiting times in terms of numbers of failures before the next success.

Following the analysis of Feller (1968), we find that in a sequence of Bernoulli
trials whose probability for success decreases uniformly by a / (s - 1) after the first
trial, the expected number of trials before j,, successes is achieved is given by

jm j - s - 1
= ck(s - j + 1) ’ E(n2) = c p j - 1

j = 1 j = 2

where for our purposes j , is such that

This latter condition defines the jmih success to be the one in which the success
probability pfm just equals E .

The sum in this expression can be approximated by an integral for large s to
give

s - 1 a
E (m) x 1 + - In(-) .

Q f

Differentiating this expression with respect to a and setting it equal to zero allows
the value of Q giving a maximal value of E(m) to be found as

This result gives a good approximation to the true value of cy which defines
the worst distribution for learning. While its derivation is based on an expected
sample size rather than distribution-free considerations, the use of the more realistic
condition of decreasing success probabilities, we feel, more than malies up for this
difference.

12

Substituting CY,,, into Eq. (9) gives the desired sample bound

which with E = h-’ should be compared to Valiant’s bound given in Eq. (3j.

It should be clear here that Valiant’s analysis is consistent with the one just
presented by assuming that CY,,, = E and including the additional unrealistic con-
straint that no decrease in probability occurs after each success (i. e. p j = E for
j > 1). These conditions reduce the success probability immediately to E after the
first selection and hold it constant (albeit unrealistically) for all future successes to
ensure a worst-case bound.

3.2, LEAST UPPER BOUND

Using the distributions defined in Eqs. (15) and (16), a simple computational
algorithm can be written to test Eq. (21) and also improve the estimate of LE-
given s, E , and 6. This algorithm uses stochastic samples of rn to find the smallest
value of E(m) which satisfies thc condition that the remaining probability for success
be more than c with confidence less than 6. Since this procedure is not too time
consuming, i t was coded as a subroutine in the more general learning algorithm to
be described later. Its purpose again is to compute a more exact LE^ to replace the
approximate analytic bounds derived in the last section and those distribution-free
analytic bounds derived by others. In order to generalize Valiant’s analysis, we have
included in this routine a b confidence level similar to that used in the more general
learnability theory of Blumer, et al., (1987).

Results for several selected urn problems with 2” balls of s different types,
suitable for use in Boolean problems with n-bit patterns, are given in Tables I
and 11. These tables give bounds for a target error of 0.1 and cover a range of s
values from 16 to 256 suitable for DNF problems with k values from 4 to 8. The
results in Table I are for a confidence value of 0.5 which effectively defines a mean
bound and as such wa5 used to test the analytic LE- derived in the last section.
Valiant’s bound m v is noted in parenthesis in this table because it uses E = S = 0.1
and is, therefore, not a fair comparison because of the increased confidence limit
it requires. The results in Table 11, however, are for a confidence of 0.1 and were
directly applicable to testing Valiant’s bounds. The LE^ bounds in this table are
listed in parentheses since, in this case, thesc results are for a mean error and are
not strictly applicable for this confidence limit.

13

Table I. Bounds for urn problems with E = 0.1 and 6 = 0.1.

16 56 56 (366)
32 112 115 (686)
64 227 232 (1326)

128 476 468 (2606)
256 945 939 (5166)

s Lm LE, m V

16 51 (56) 366
32 89 (115) 686
64 174 (232) 1326

128 334 (468) 2606
256 641 (939) 5166

Table IT. Bounds for urn problems with E = 0.1 and S = 0.1.

These results show cleaxly that about an order of magnitude improvenient in
Valiant’s bounds are possible for more realistic worst-case scenarios. The LE,
given in Eq. (21) is seen to be quite good as an analytic approximation to the true
values computed stochastically. The efficiency of the stochastic scheme also makes
it possible to use such a bound estimation procedure on-line in a general learning
code rather than relying on analytic estimates.

3.3. PRACTICAL BOUNDS

Despite being able to improve somewhat upon Valiant’s bound, in actual prac-
tice many problems can be expected to have much smaller upper bounds because
of simpler distributions of learning examples. Although the bounds in such cases

14

are not distribution-free or worst-case, as intended by Valiant and others, it is more
useful to have a general method for finding specific bounds for any learning problem
encountered. Some of the ideas proposed by Linial, et al., (1988) introducing the
concept of dynamic sampling form the basis for such an adaptive approach. How-
ever, the Bernoulli trials framework and the results derived in section 3.1 can he
used to construct a more practical variation on this dynamic sampling theme.

The basis for our dynamic algorithm is the fact that after the (j - l) t h suc-
cess the probability of having a string of mb failures in future selections from any
probability distribution is

p j = (1 for j > 1 , (22)

if the remaining success probability were actually E.

to find the number of samples needed to reach this bound.
If this probability is to be bouxided by 6, we can solve this equation for mb

This results in the
expression

In this scenario, if no additional successes are found in mb future selections both
the E and 5 conditions for halting a learning algorithm would be met. This test can
therefore be used in a batchwise, incremental learning algorithm as a halting test
for learnability. As an added bonus, this halting condition is independent of N and
s and thus both the total number of balls and the number of different types of balls
in the urn need not be known beforehand.

The only problem which complicates this picture, is the possible failure of this
test prematurely due to its being applied too many times. This potential problem
can be dealt with adaptively as well, by reducing the S halting criteria by the
number of times t the test has already been used. In this manner, the incremental
batch size used to test for convergence will increase as each failed test occurs and
we can expect learning to halt, on average, after the true L , is reached.

In actual practice then, the more general halting condition will be

t
mb(t) = ln(t/S)ln(l/(I - E)) Eln(&) ,

and a tighter bound on sample size can be found adaptively for each specific learning
problem encountered.

Some representative results of using this approach for the parameterized distri-
bution given in section 3.2 are given in Table I11 and IV. These tables again cover
a range of 5 values from 16 to 256 for an error of 0.1 a.nd an confidence liiiiit of 0.1.
The initial halting batch size m b for t = 1 is 22 for these parameter limits. These
results represent averages over repeated test cases. An average halting bound 61 is
thus presented along with average error and confidence values that were achieved
when the halt condition was met. The two cases considered in these tables are the

15

worst-case distribution (Table 111) and a simpler uniform distribution learning case
(Table IV).

S fii Error Conf

16 163 0.013 0.01
32 282 0.022 0.02
64 527 0.026 0.02

128 986 0.033 0.01
256 1872 0.037 0.02

Table 111. Incremental bounds for worst-case distribution with E = 0.1.

I
s fh Error Conf

16 99 0.001 0.01
32 169 0.005 0.01
64 292 0.007 0.01

128 514 0.018 0.01
256 987 0.027 0.01

I

Table IV. Incremental bounds for uniform distribution with E = 0.1.

These results show clearly that a reasonably good approximation to the L , for
the worst-case distribution given in Table 111 (i. e. Q = e €) are obtained using an
adaptive halting scheme. This conclusion can be substantiated by referring back to
the stochastically estimated exact bounds given in Tables 11. In general the halting
condition is seen to require larger numbers of samples than axe theoretically needed
but they are within a factor of two of the true least upper bound.

For the easier uniform distribution learning problem given in Table IV (i. e.
Q = 1 - l/s), the true L, bound is clearly decreased substantially. It should be
clear that only an adaptive bound estimation procedure can take advantage of this

16

easier learnability to halt learning at saiiiple sizes considerably smaller than those
required by analytic estimates. Since even a uniform distribution is not a really
simple learning case, much greater improvements are additionally possible for much
simpler distributions.

4. RANDOM SET ALGORITHM

While improved sample bounds were derived in the last section using Valiant's
urn model, we still have not dealt with the full complexity of such a model in
random set terms. In particular we must deal with the h c t , neglected so far in
the Bernoulli trials framework, that severd balls of &&rent types are being drawn
from the urn in each trial. This added factor is a result of a sampled pattern being
a member of each and every j-partition at any level 2. This amounts to drawing
(7) balls from an urn in each Bernoulli trial. The selection of multiple balls has
both positive and negative effects on learnability. On the positive side this added
consideration should speed tip the learning process. This speed-up is a direct result
of having the possibility of more successes per trial than Valiant postulated in his
Bernoulli trials analysis. This added success rate should allow the contents of the
urn to be learned more quickly.

On the negative side, however, is the fact that multiple selections per trial
complicates the theoretical analysis needed to determine tighter bounds. This lat-
ter effect is a result of the correlated nature of the selection process for multiple
balls. These additional balls are not simply additional random selections, they are
determined strictly by the sample pattern 5 which is chosen in the urn model. What
we will find by looking more closely at this problem, is that only the halting con-
dition holds any promise of making a significant impact on more general random
set learning problems. This is true both in trying to find a theoretical L, and in
practical problems with unknown but easier learning distributions.

4.1. RANDOM SET BOUNDS

To appreciate the added problem dimension arising from a correlated ball se-
lection procedure, let us first look at a full random set formulation for the Boolean
learning case. Using the notation of Section 2.1, what we have in set terms is a
series of urn-like subproblems indexed by level 2 and partition j . Each of these sub-
problems is equivalent to the simple urn model analyzed by Valiant. In particular,
for each level 0 2 1 2 k (where I; is the order of the DNF), we have (7) separate
j-partitions of the pattern space X of the form

The j-partition here breaks the pattern space into 2' bins, each of which defines
a concept set (type of ball) bLj . These bins are disjoint within each partition but

17

they overlap other bins in each of the (7) other partitions for all I > 1. The
partitions thereby give rise to a series of correlated individual urn problems.

In this set formulation, each trial pattern z can be seen to be a member of
o n e and o n l y o n e of the b‘ . bins in each of the (7) partitions. Since each bin

y?
corresponds to a ball of a different type in the urn model, this pattern selection
process is equivalent to drawing (7) balls from the urn. A successful trial must
now be defined in this context to be a trial in which a n y of the balls (bins in each
partition) is one that has not been seen before. Since each of the partitions covers
the whole space X , a pattern may produce anywhere from 0 to (7) successes in any
single trial.

After rn trials, a hypotheses H consistent with all the trial patterns can be
formed by taking the union of the concept sets (bins) in each partition which have
not been recorded in any successful trial. Due to the probabilistic nature of the
sampling process, H is the funda.menta1 random set of interest in learning. It has
measure p (H) , which represents the probability of choosing an as yet unseen concept
set b‘yj in the next trial (i. e. H is the set of as yet unseen types of balls in the urn).

Clearly then in this scenario, the first trial records exactly (7) successes and in
all future trials, up to (7) successes per trial are possible, depending on the particu-
lar pattern x chosen. The use of s = lCkl for the total possible number of successes
in Valiant’s analysis assumes that all the partition bins in Ck can individually be
recorded as a success at some trial. More importantly, it also assumes that only
one success is possible per trial. Valiant’s bound, therefore, greatly overestimates
the number of trials needed for learning even in the worst case.

An alternate rigorous analysis of learnability bounds can be made for this
random set case if one uses the set formulation of Blumer, et al., (1987). Here,
the so-called Vapnik-Chervonenkis (VC) dimension d of the concept space can be
used in place of s. For the Boolean problem being analyzed here, the best available
bound which can be placed on the sample complexity L , using such a VC dimension
formalism is given by Blumer, et al., (1987) as

E

Unfortunately, other than adding the 6 parameter to expression for this bound,
it is still O (n k) since d is estimated by Blumer to be O(nk). Although a better
estimate can be made by actually computing the VC-dimension from its definition,
this estimate would still not be a true L,. This fact again appears to make this
analytic approach impractical even for the Boolean problem at hand.

An additional complication which also arises in this analysis, is the fact that
even though (7) successes are recorded in the first trial, the union of the remaining
concept sets can easily be shown to have measure

19

where x1 is the first pattern chosen.
In this case, only t h e p a t t e r n .TI chosen in the first trial is eliminated from tlie

concept space in forming the hypothesis H from the union of the remaining unseen
concept sets. This again is a direct result of tlie overlapping nature of the partitions
of X used in such a set representation. Since it is also possible to have (7) successes
in each of many future trials (e. g. if each of the z’s are separated from one another
by a Hamming distance of Z), these trials might also only eliminate single points
from the hypothesis set H . Thus while (7) successes per trial, versus only one,
eventually will increase learnability, it may not speed learning in the initial stages
of sampling.

What one can conclude from these comments, is that while more successes are
possible and will occur in many trials, the early stages of learning may be very
hard indeed despite this increased success rate. The use of single batch bouiids
on learnability will, in any event, greatly overestimate the sample complexity con-
siderably. Such bounds, while theoretically useful, are thus impractical for most
practical learning problems. It appears then that a much more pragmatic approach
to computer implementation of learnability theory would be to use the previously
defined halting approach in a batchwise incremental algorithm. This is indeed the
course taken in the algorithm we present in the next section.

4.2. GPAC ALGORITHM

To compete with existing practical learning methods, such as genetic and de-
cision tree algorithms, we have, therefore, chosen to develop a C-language imple-
mentation of the general, batchwise-incremental random set methodology discussed
in the last few sections. This algorithm called GPAC, uses a halting condition
approach to guamntee learnability.

In this learning code, the sarnples x E X are the general n-attribute pattern
vectors with arbitrary numbers of values per attribute described in Section 2.1.
The target concept space consists of all the subsets bLj of the class Ck. Examples x
from the space X are generated randondy. They are labelled T and calledgositive
examples if x E T and labelled ? and called negative examples if z E T by an
orucle subroutine. Positive examples of T are thus be generated from the probabil-
ity distribution p + (x) and negative examples of !? will come from the distribution
p - (x). Several target concepts T I , Tz , . . . , Tj can be learned simultaneously each us-
ing positive, negative or both positive and negative examples. An initial hypothesis
set H is defined by labelling all the subsets b l j with all the target labels and their
complements. As learning examples are cbosen, this hypothesis space is updated by
eliminating all subsets with labels that are inconsistent with the samples chosen.

The updating phase of this algorithm is carried out within a series of (fi)
subproblems corresponding to the j -partitions at level I defined previously as

c . = { 1 c I c = b v j ~ b V , I v = l , ..., v j } .
3

20

,4t this representation level, learning can be accomplished with a routine sim-
ilar to the one described in Valiant (1985). This is done invoking the following
procedures: 1) select a randoin pattern z from either p+(x), p - (x) or p (x) , 2)
invoke the oracle to label each pattern with either a T , if it is, or a T, if it is not,
a member of the target concept T E CI;, 3) find the subset which the chosen pat-
tern is a member of and 4) eliminate from the labelled hypothesis space a.ny subset
containing x that does not have the same label as that of the pattern chosen.

The resulting C-language algorithm is given schematically as follows:

LEARN() {
while (1 5 I C) {

spat: Select r n b patterns from examples (x) ;

Put patterns into hypothesis bins bLj ;
Eliminate inconsistent bins from H ;
Check for new non-empty bins ;
Increment j ;

while (j 5 (7)) {

1
Check halt -condi t ion (hc , E , 6) ;
if (hc = fuls e)

goto spat ;
else

Increment l ;
1
H = U empty-bins (b L j) ;
Output H ;

1

Here, the basic subproblems given in Eq. (28) are solved in a loop over levels
l up to 1 = I C . (23) is
partitioned into cf classes forming the hypothesis H C X . Each partition bin bLJ
that has a pattern in the batch as a member is recorded for elimination from the
consistent hypothesis set H . No comparisons are needed in partitioning a batch in
this procedure. Only the bin index v for each pattern needs to be calculated for
the elimination step. This index is computed from the previously defined function
n/(x, Af).

After all patterns have been processed and all the inconsistent bins in the
hypothesis set have been eliminated the halting condition is tested. If it is satisfied
in all the subproblems at the current level, then learning at the level is terminated

At each level the batch of mb samples defined in Eq.

21

and the next level is processed. If the halting condition is not satisfied, a new batch
of samples of size mb is chosen and the entire learning procedure at the current level
is repeated. When the halting condition has been satisfied at all levels or I = I ;
(whichever comes first), the hypothesis consisting of the union of all remaining
empty subsets is output.

In this series of cf subproblems, a scoring table, which records the number of

patterns 72, which are members of each subset b, ZE b z j , will be generated. This
table is used by a consistency testing routine to eliminate bins from the hypothesis
set H . A typical table will have the following form:

... . . bl b2 b3

. T 0 0

. 0 722 0

Figure 1. Hypothesis bins for CI;.

In Valiant’s terms, the top row of this figure represents a partition of the class
Ck in which each bin b, has label T . This row serves as a starting hypothesis set
for concepts b, labelled T. A similar interpretation can be made - for the bottom
row in terms of a starting hypothesis set for concepts labelled T .

If only patterns labelled T are randomly sampled, then any individual pattern
will be a member of a subset bin b, labelled which can then be eliminated from
the consistent hypothesis set of concepts to be labelled T . There will be only one
such bin in each partition for each pattern. The union of all the empty subsets
b, remaining in each partition c: after all the r n b patterns have been processed is
then a random set approximation to the target concept T derived from negative
examples. In the Boolean function problem considered by Valiant, this procedure
can be considered equivalent to learning a k-DNF from negative examples.

In a similar fashion, r n b random patterns labelled T can be used to eliminate
bins labelled from each c i class as inconsistent. This procedure will result in

a random set hypothesis H for patterns labelled ?. It will be the counterpart of
learning a k-CNF from positive examples.

Both of these procedures can also conceptually be carried out together using
m b positive and negative examples, since the two labelled rows are complements

u

22

of each other. Probabilistic or counting measures can be used in this formalism
to determine when to eliminate concepts as inconsistent for problems which allow
noisy data to be sampled.

It should be pointed out here that the individual hypothesis approximations
resulting from positive and negative example also represent upper and lower ap-
proximation sets for all patterns consistcrit with all the mb examples. As such, they
are equivalent to Mitchell’s version space approach (Mitchell 1982) for this problcm.

In the actual GPAC algorithm, all the consistent concepts at each level I that
will be used to forin the hypothesis H are checked to see whether they are subsets of
any concepts learned at a lower level. If any b f j c bl; for 1’ < I, these redundant sub-
sets are eliminated from H . This latter procedure allows a minimal representation
to be found in set form and reduces storage requirements considerably.

Using the halting test for the whole learning procedure up to 1 = k, we find
that the algorithm either halts and returns the approximate concept H given by
the union of all unique consistent concepts or a new batch is sampled. In this way,
the algorithm uses of order

operations to partition a batch by level and class. For fixed k, this algorithm is
thus polynomial in R, E and 6.

The net result of all these operations is an algorithm which is equivalent to an
exhaustive search of the concept space for all the b t j concepts that are consistent
with the sample data. In this manner it is also equivalent, in the decision tree
format, to finding all consistent trees, not just the one with the highest information
content.

The algorithm just outlined was implemented with a capability to handle both
exact or noisy pattern examples. This noise was allowed to occur in either the
bit patterns or the classification process. The procedure for handling classification
noise in problems with separate positive or negative examples is the same as that
given in Valiant (1985). As such, a concept bLj is eliminated only after a specified
number of counts are accumulated. In problems with both positive and negative
examples and either bit or classification noise, the elimination step was taken only
if a probability bound was satisfied for each concept individually. For the purposes
of the next section, however, only noise-free data will be discussed.

5. MULTIPLEXOR PROBLEM

To test the general algorithm just described, a classification benchmark prob-
lem studied by Quinlan (1988) and Wilson (1987) was used. This example provides
a somewhat difficult nonlinear Boolean function which must be learned in order to
classify binary bit patterns. The function is nonlinear in that no single hyperplane
separates all positive and negative examples. It can be computationally difficult
to learn in that it is formulated in terms of a parameter which scales up quickly
enough to easily tax the powers of even the largest supercomputers.

5.1. PROBLEM DEFINITION

The so-called 7nultiplexor family of problems which Wilson (1987) first de-
scribed, can be generically defined by a Boolean function f (x) which embodies the
rule

0 if a,+j+l = 0; for j E { o ~ I ~ . . . , ~ ~ - I } .
1 if a,+j+1 = 1,

where the at’s are the attributes of a n-attribute binary bit string 2 and 72 = 7’ + 2‘
for a given fixed value of r .

In this form, the bit patterns x from which this function must be learned define
two membership types negative (0) and posit ive (l), corresponding to the function
values f E {071}. The first r bits of these patterns represent a binaiy address
j E {0,1,. . .2‘- 1) which acts as pointer to the (r + j + l) t h bit of the pattern. The
class the pattern belongs to is determined by the value of this pointer bit. That
is, the Boolean function value is taken to be the value of the (r + j + l) th bit. For
fixed r , this scheme uses bit patterns with a total length of n = r + 2‘. The order
of the multiplexor class of problems is then denoted by this parameterized length n
and each member of the class is called an n-mult iplexor.

This class of learning problems has been explored by both Quinlan (1987) using
a decision tree formalism (DT) and Wilson (1987) using a genetic algorithm (GA).
In Quinlan’s DT methodology, the bit patterns containing representatives of both
positive and negative members of a multiplexor class are subdivided recursively
by attribute until all subsets of the class contain only patterns of a single type.
The record of these subdivisions is stored as a decision tree which can be used to
classify any new patterns encountered (Quinian 1986). The code Quinlan used in
his studies was C4 (Quinlan 1957) which is a member of a larger class of decision
tree codes termed the TDIDT family (Quinlan 1986). The C4 version of this code
class allows production rules to be generated from a decision tree by removing all

23

24

redundant information from the tree. Each rule corresponds to a single term in a
k-DNF representation of the Boolean function to be learned.

In Wilson’s GA scheme, the rules representing sets of patterns and their class
are learned directly using the genetic learning model of Holland (1975). Here, an
initial set of rules is tested recursively against the pattern examples. This results
in probabilistic weights being assigned to each rule based on its classification per-
formance. These rules are then modified by eliminating those with low weights and
forming new ones by mutation and cmssozIe:T operations similar to those found in
biologically rcproducing systems. The resulting set of rules learned are thus those
with the highest classification performance for the learning examples seen.

In their published results, Quinlan and Wilson both use a single batch of sam-
ples patterns to learn how to classify the different types of patterns. The patterns
in these batches were chosen randomly from a uniform distribution of n-attribute
vectors. While incremental approaches can also be used for this problem (see e. g.
Utgof€ 1990), we will concentrate on the batch results for comparison purposes. We
will also use uniform distributions of patterns to highlight our halting approach to
Valiant’s methodology.

It is useful to note here that the multiplexor class of problems can easily be
generalized to test the full random set methodology as well as more general DT and
G A schemes. This can be done by letting the n-attribute vectors have arbitrary
numbers of values per attribute. The addresscs needed in this format can be defined
by any r bits in the pattern and the resulting function value will then be the value v,
of the attribute so addressed. Multiple classification problems can easily be studied
within this framework. Such a generalization has been investigated but will not be
discussed in this paper.

5.2. MULTIPLEXOR RESULTS

Tables IV and V summarize the results of several typical runs of the GPAC
code for multiplexor problems of varying complexity. In these cases GPAC was
set up to learn from positive examples only. A fixed set of halting criteria were
used for all these runs and performance levels were recorded at each batch stage for
comparison purposes. Results of the previously published GA and DT analyses of
the same problems (Quinlan 1988) are also tabulated in these tables for comparison
purposes. Both positive and negative examples were used in the learning modes
for these latter two methodologies and single batches of the sizes noted were used
to compile performance statistics. DT results are, in addition, given for both the
simple decision tree algorithm and the more elaborate rule generation approach.
Table IV summarizes the comparisons for an ll-multiplexor problem while Table
V covers the more complex 20-multiplexor.

25

Met hod-Computer Examples Accuracy(%)

C4-Sun 3/50 100 63(72)
Decision tree (Rule) 200 78(98)

400 93(100)

GPAC-286/PC 107 83
187 98
219 100

Table IV. Results for ll-multiplexor.

Met hod-Computer Examples

GA-Sul 3/50 1600

C4-SWl 3/50 200
Decision tree (Rule) 400

600
800

GPAC-286/PC 361
369
449
638

Accuracy(%)

90

69(69)
82(88)
87(97)
92(98)

79
88
98
100

Time(min)

55

n.a.
n.a.
n.a.
13(63)

10
12
17
20

Table V. Results for 20-multiplexor.

The results in Table IV show that the C4 methodology and GPAC produce
comparable results for similar sample sizes. C4 requires about 200 samples to find
a, decision tree with 78% predictive accuracy. Further pruning of this tree gives rise
to production rules that increase the accuracy to 98%. A comparable GPAC sample

26

size of 187 examples also gives 98% predictive accuracy. An increase in the sample
size to 219 allows the GPAC methodology to achieve a perfect 100% accuracy.

The more complete set of comparisons given in Table V show again that C4
and GPAC achieve comparable accuracies with sample sizes that are within a factor
of two of each other. For this 20-multiplexor case, C4 needs about 800 examples to
produce a tree which has predictive capabilities of about 92%. Pruning to obtain
rules again increases the predictive capabilities to about 98%. Similar results are
achieved with about 449 examples using GPAC. The GA algorithm of Wilson on
the other hand needs about 1600 examples to produce about 90% accuracy (similar
to that achieved by just the decision tree found with C4).

The timing estimates provided by Quinlan (1987) for the 20-multiplexor prob-
lem indicate that in order to achieve comparable 90% accuracies, Wilson’s GA
requires about one hour and a C4 decision tree requires about 13 minutes of Sun
3/50 cpu time. To incrcase the accuracy of the C4 results to about 98% with tree
pruning, requires an increase in run time by about a factor of five. This later timing
was estimated from the results Quinlan reported for the G-multiplexor (not shown).
GPAC appears to be somewhat faster in these comparisons. Accuracies of better
than 98% is achieved in 17 minutes on a 286/PC compared to the estimated 70
minutes on the Sun 3/50 for an C4 rule based run. Since the 286/PC is about a
factor of 3 slower than the Sun 3/50 used by Quinlan, the comparable GPAC results
thus appear to require possibly an order a magnitude less time.

While these timing comparisons are somewhat rough, it appears that a Valiant
based algorithm has some computational advantages over the already well estab-
lished speed and versatility of the TDIDT class of codes represented by C4 and a
GA. Some of this advantage is a result of GPAC requiring only positive examples as
opposed to the use of both positive and negative examples in C4 and the GA. Since
a uniform distribution of examples was sampled from in these multiplexor prob-
lems, half the examples are positive and the other half are negative. To be strictly
comparable we might assume that GPAC actually sees twice as many examples
when using only positive examples to learn from. Although this is not exactly true
since negative examples can also be uscd for learning in GPAC, some of the speed
increases do result from this effect. One strength of Valiant’s approach is, however,
this ability to learn from positive or negative examples separately and this strength
should not be underestimated.

In discussing computational efficiency, howevcr, it is more important to realize
that while C4 produces a single decision tree, GPAC is producing all trees as its
solution. The GPAC algorithm is in essence an exhaustive search of all possible
trees which are consistent with the learning problem at hand. For example, C4
generates an exact set of 8 rules to learn the ll-multiplexor with 100% accuracy.
GPAC produces 21 rules comprising all trees for this same problem. If C4 were
required to produce comparable results it would need almost an order of magnitude
more search time to generate all 11 initial nodes trees. The exhaustive search in

27

GPAC is thus quite efficient in this case and should prove useful in more general
learning problems.

As a final note, we must be fair to Wilson’s GA by pointing out that the
genetic algorithm is iterative in nature and more suited to noisy sample problems.
A strictly comparable problem for all three methodologies should include such a
noisy environrnent. In this case we might see an order of magnitude more examples
required by GPAC and C4 to achieve comparable performance. Some of the GA’s
poorer performance might be made up for in such a comparison. Again, however,
the versatility of being able to deal with both noisy and noise-free problems is a
distinct advantage of the GPAC approach.

6. CONCLUSIONS

The rnajor conclusion that can be drawn from this work is that the implementa-
tion of Valiant’s theory is both computationally feasible and Competitive with other
existing approaches. The bounds required by the theory can be computed incremen-
tally for each individual problem being solved rather than analytically estimated
from worst-case or distribution-free arguments. This improves practical problem
solving capabilities by orders-of-magnitude in many cases while still retaining the-
oretical rigor. Running times for this approach were found to be either shorter or
certainly comparable to existing niethods even without much in the way of cod-
ing optimization. Future implementations should allow significant improvements in
both speed and storage requirements making this methodology quite competitive
in practical learning problems.

.

29

REFERENCES

1. Angluin, D. (1988). Queries and concept learning. M a c h i n e Learning, 2, 319-
342.

2. Baum, E.B. & Haussler, D. (1989). What size net gives valid generalization?
Neura l C o m p u t a t i o n , 1, 151-160.

3. Blumer, 44., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1987).
Learnability and the Vapnik-Chervonenkis dimension (Technical Report UCSC-
CRL-87-20). Santa Cruz, CA: University of California, Santa Cruz, Baskin
Center for Computer Engineering 8z Information Sciences.

4. Duda, R.O. & Hart, P.E. (1973). P a t t e r n classif ication and scene analysis. New
York: John Wiley & Sons.

5. Feller, W. (1968) An in t roduc t ion t o probability t heory and i t s applications,
Volume I, Third Edition. New York: John Wiley & Sons.

6. Haussler, D. & Pitt, L. (Eds.) (1988). Proceedings of t h e 1988 W o r k s h o p on
C o m p u t a t i o n a l Learning Theory . Boston, MA: Morgan Iiaufmsnn.

7. Holland, J.H. (1975). A d a p t a t i o n in natural and arti f icial s y s t ems . Ann Arbor,
MI: University of Michigan Press.

8. Kendall, D.G. (1974). Foundations of a theory of random sets. In Harding, E.F.
& Kendall, D.G. (Eds.), Stochast ic Geomet ry . New York: John Wiley St. Sons.

9. Linial, N., Mansour, Y., & Rivest, R.L. (1988). Results on learnability and
the Vapnik-Chervonenkis dimension. Proceedings of t h e 1988 W o r k s h o p o n
C o m p u t a t i o n a l Learning T h e o r y (pp. 56-68). Boston, MA: Morgan Kaufmann.

10. Mitchell, T.M. (1982). Generalization as search. Arti f ic ial Intel l igence, 18, 203-
226.

11. Quinlan, J.R. (1979). Discovering rules by induction from large collections of
examples. In D. Mitchie (Ed.), Exper t s y s t e m s in t h e m i c r o electronic age.
Edinburgh University Press.

12. Quinlan, J.R. (1986). Induction of decision trees. M a c h i n e Learning, 1, 81-106.

13. Quinlan, J.R. (1988). An. empirical comparison of genetic and decision-
tree classifiers. Proceedings of the F$h In te rna t iona l Conference o n M a c h i n e
Learning (pp. 135-141). ,41111 Arbor, MI: Morgan Kaufrnann.

31

32

14. Rivest, R., Haussler, D., & Warmuth, M.K. (Eds.) (1989). Proceedings of the
1989 Workshop on Computational Learning Theory. Santa Cruz, CA: Morgan
K aufmann.

15. Utgoff, P.E. (1990). Incremental induction of decision trees. Machine Learning,
4 , 161-186.

16. Valiant, L.G. (1984). A theory of the learnablee. Comm. ACM, 2'7, 1134-1142.

17. Valiant, L.G. (1985). Learning disjunctions and conjunctions. Proceedings of the
Ninth International ,Joint Conference on Arti6cial Intelligence (pp. 560-566).
Los Arigeles, CA: Morgan Kaufniann.

18. Wilson, S.W. (1987). Quasi-Darwinian learning in a classifier system.
Proceedings of the Fourth International Workshop o n Machine Learning. Irvine,
CA: Morgan Kaufmann.

ORNL/TM-115 1 2
CESAR-90/ 11

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. M. Beckerman
3. G. de Saussure
4. J . R. Einstein
5. E(. Fujiniura
6. C. W. Glover
7. J. P. Jones

8-12. H. E. Knee
13. G. E. Liepins

14-18. F. C. Maienschein
19-23. R. C. Mann

29. F. G. Perey

35. V. Protopopescu
36. D. B. Reister
37. J. C. Schryver
38. P. Spelt

24-28. E. M. Oblow

30-34. F. G. Pin

39. V. R. Uppuluri
40. J. J. Dorning (Consultant)
41. R. M. Haralick

42. J. E. Leks (Consultant)
43. N. Moray (Consultant)
44. M. F. Wheeler

45. EPMD Reports Ofice

(Consultant)

(Consultant)

46-47. Laboratory Records
Department

48. Laboratory Records,

49. Document Reference

50-51. Central Research Library
52. ORNL Patent Office

ORNL-RC

Section

EXTERNAL DISTRIBUTION

53. Office of Assistant Manager, Energy Rcseasch and Development,
DOE-ORO, Oak Ridge, T N 37831

54. Dana Angluin, Computer Science Department, Yale University, P. 0.
Box 2158, New Haven, Conecticut 06520

55. J. A. Barhen, Jet Propulsion Laboratory, MS 198/330, California
Institute of Technology, 4800 Oak Grove Drive, Pasadena, California
91109-so99

56. Anselm Blumer, Department of Mathematics 9t Computer Science, Tufts
University, Medford, Massachusetts 02155

57. Peter Cheeseman, NASA Ames Research Center, Mail Stop 244-17,
Moffett Field, California 94035

S8. Jie Cheng, Department of Electrical Engineering & Computer Science,
The University of h/Iichigan, Ann Arbor, Michigan 48109-2122

59. Andrzej Ehrenfeucht, University of Colorado, Boulder, Colorado 80309
GO. I. R. Goodman, Naval Ocean Systems Center, San Diego, CA 92152
61. John J . Grefenstette, Navy Center for Applied Research in Artificial

Intelligence, N a r d Research Laboratory, Washington, D. C. 20375-5000
62. David Haussler, Department of Computer 6t Information Sciences,

University of California, Santa Criiz, California 95064

33

63. Haym Hirsh, Computer Science Department, Stanford University,
Stanford, California 94305

64. Michael Icearns, iliken Computation Laboratory, Harvard University,
Cambridge, Massachusetts 02138

65. M. 1-1. Kalos, Courant Institute of Math Science, New York University,
251 Mercer Street, New York, NY 10012

66. Philip D. Laird, NASA Ames Research Center, Moffett Field, California
94035

67. Pat Langley, Department of Information & Computer Science, University
of California, Irvine, California 92717

68. Nick Littlestone, Department of Computer & Information Sciences,
University of California, Santa Cruz, California 95064

69. 0. P. Manley, U.S. Department of Energy, Division of Engineering,
Mathematical and Geosciences, Office of Basic Energy Sciences,
Germantown, MD 20545

70. A. Myrowitz, Office of Naval Research, Naval Research Laboratory,
Washington, D. C. 20375-5000

71. 13. I<. Natarajan, The Robotics Institute, Carnegie Mellon University,
Pit, tsburgh, Pennsylvania 152 13

72. J. Pearl, Computer Science Department, University of California, 405
Hilgard Ave., Los Angeles, CA 90024

73. J. R. Quinlan, Basser Department of Computer Science, University of
Sydney, Sydney, New South Wales 2006, AUSTRALIA

74. Zbigniew W. Ras, Department of Computer Science, University of North
Carolina, Charlotte, North Carolina 28223

75. Ronald L. Rivest, MIT Laboratory for Computer Science, Cambridge,
Massachusetts 02139

76. George S hackelford, Department of Information & Computer Science,
University of California, Irvine, California 92717

77. Robert Sloan, MIT Laboratory for Computer Science, Cambridge,
Massachusetts 02139

78. Richard S. Sutton, GTE Laboratories, Inc., 40 Sylvan Road, Waltham,
Massachusetts 02254

79. Paul E. Utgoff, Department of Computer & Information Science,
University of Massachusetts, Amherst, Massachusetts 01003

80. L. G. Valiant, Aiken Computation Laboratory, Harvard University,
Cambridge, Massachusetts 02138

81. Jeffrey S. Vitter, Department of Computer Science, Brown University,
Providence, Rhode Island 02912

82. Manfred I<. Warmuth, Department of Computer & Information Sciences,
University of California., Santa Cruz, California 95064

34

$3. C. R. Weisbin, Jet Propulsion Laboratory, MS 198/330, California
Institute of TechIiology, 4800 Oak Grove Drive, Pasadena, California
91109-8099

84. Lotfi A. Zadeh, Computer Science Division, University of California,
Berkeley, CA 94720

85. Maria Zemankova, Department of Computer Science, University of
Tennessee, Knoxville, Tennessee 37996-1301

86. -95. Office of Scientific and Technical Information, Department of
Energy, Oak Ridge, T N 37831

35

