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PVM : A Framework for Parallel Distributed Computing 

V. S. Sunderam 

Department of Math and Computer Science 
Emory University, Atlanta, GA 30322 

ABSTRACT 

The PVM system is a programming environment for the development and 
execution of large concurrent or parallel applications that consist of many 
interacting, but relatively independent, components. It is intended to operate on 
a collection of heterogeneous computing elements interconnected by one or more 
networks. The participating processors may be scalar machines, multiprocessors, 
or special-purpose computers, enabling application components to execute on the 
architecture most appropriate to the algorithm. PVM provides a straightforward 
and general interface that permits the description of various types of algorithms 
(and their interactions), while the underlying infrastructure permits the execution 
of applications on a virtual computing environment that supports multiple paral- 
lel computation models. PVM contains facilities for concurrent, sequential, or 
conditional execution of application components, is portable to a variety of archi- 
tectures, and supports failure detection (and certain forms of recovery) at the pro- 
cess and processor levels. 

1. Introduction 

In recent years, parallel and distributed processing have been conjectured to be the most 
promising solution to the computing requirements of the future. Significant advances in parallel 
algorithms and architectures have demonstrated the potential for applying concurrent computa- 
tion techniques to a wide variety of problems. However, most of the research efforts have concen- 
trated either upon cumputarional models [l] such as pipelining, shared variables, dataflow com- 
puting, and message passing, or upon machine architectures; relatively little attention has been 
given to software development environments or program construction techniques that are 
required in order to translate algorithms into operational programs. This aspect is becoming more 
important as parallel processing progresses from the solution of stand-alone, mathematically 



prccise, problems to larger and m o ~  complex software systems. Such systems often consist of 
many interacting components, each with its unique requirements. Unfortunately, a coherent and 
consistent framework for the s ~ c ~ ~ c a ~ i o ~ ~  and ~ e v e ~ o ~ I ~ e n t  of such systems does not exist. 

The primary reawn for this situation is the high degree of akchiteceeturc dependency exhi- 
bited by efficient parallel solutions to typical problems. Another reason i s  the fundamental. 
incompatibility between the different parallel p r o g m  ing paradigms. A third factor i s  the 
nature of the problems themselves typical applications have thus far been confined to isolated, 
well-defined problems - usually programmed in the most suitable, machine specific language. 
As applications gmw larger and more complex, however, these languages (and indeed, specific 
machines) will not be un i fody  appropriate or efficient for dl the components of a parallel sys- 
tem. Certain esmponents may he ideally suited for solution on a hypercube, for example, while 
others may require extensive vector processing. Some algorithms may be best implemented using 
the shared-memory paradigm, while the user-interface aspects of the system might require a 
graphics engine. A real example of the above i s  the Global Environment Simulation project [2], a 
large simulation effort to study contaminant concentrations and dispersal characteristics as a 
function of various cnvironmental factors. The computational requircments of this simulation are 
vector processing (for fluid flow analysis), distributcd multiprocessing (modeling contaminant 
transport), high-speed scalar computation (simulation of temperamre effects), and real-time 
graphics for user interaction. 

It should be noted that most typical computing environments already possess the hardware 
base required to solve such large, parallel applications. High speed local networks with graphics 
workstations, high-performance scalar engines, an occasional multiprocessor, and perhaps a vec- 
tor computer are the norm rather than the exception, and will continue to be over the next few 
years. However, to harness this collection of capabilities and to utilize it productively requires 
considerable efforts in coordination and reconciliation between different computation models and 
architectures - all of which has to be done m anally. The PVM (Parallel Virtual Machine) pm- 
ject is an attempt to provide a unified framework within which large parallel systems can be 
developed in a straight€orward and efficient manner. The overall objective of this project is to 
permit a collection of heterogeneous machines on a network to be vicwed as a general purpose 
concumnt. computation resource. Application algorithms are expressed using the most suitable 
paradigm; the Pvha system executes them on the most appropriate hardware available, either 
directly or by emulating the particular computation model. Furthermore, it is frequently desired 
to incorporate existing software (preferably with little or 110 modifications) into a larger systcm; 
the PVM system is designed to enable this in a convenient and natural manner. 

The PVM system provides a set of user interface primitives that may be incorporated into 
existing procedural languages. Primitives cxist for the invocation of processes, message transmis- 
sion and reception, broadcasting, synchronization via barriers, mutual exclusion, and shared 
memory. Processes may be initiated synchronously or asynchronously, and may be conditioned 
upoti the initiation or termination of another pmcess, or upon the availability of data values. 
Message transmission as well as file output may be preceded by invocations of specially provided 
primitives to ensure that data is transmitted or stnrcd in a machine independent €om. Applica- 
tion systems may be programmed using these primitives in the language of choice; different com- 
ponents may even be programmed in dirferent languages. The PVM constructs thcrefore permit 
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the most appropriate programming paradigm and language to be used for each individual com- 
ponent of a parallel system while retaining the ability for components to interact. 

The PVM system consists of support software that executes on participating hosts on a net- 
work; the network may be local, wide-area or a combination, and the host pool may be varied 
dynamically. Hosts may be scalar machines, workstations, or parallel processors - the latter 
being considered an atomic computational resource by PVM. This support software interprets 
requests generated by the user-level constructs and carries out the necessary actions in a machine 
independent manner. In addition to implementing reliable and sequenced data transfer, distributed 
consensus, and mutual exclusion, the PVM software is also responsible for the detection of pro- 
cess and processor failures (including certain forms of deadlock) and executing user-defined 
corrective actions. It should be mentioned that the PVM user-interface primitives have been partly 
derived from and are a superset of the portable programming constructs described in [3]; an appli- 
cation written using these primitives may therefore also execute directly on a specific multipro- 
cessor when necessary. 

Several projects similar to PVM have been undertaken in the past, and some are ongoing. A 
few representative examples are listed below, with comparisons to PVM. The DPUP library [4] 
emulates a loosely coupled multiprocessor on a local network, as does the dsim [SI system and 
the Cosmic environment [6] .  The two latter systems require the preconfiguration of a virtual 
machine on which applications execute and support only basic message passing mechanisms. The 
Amber project [I51 is somewhat different in that the targeted environment is a collection of 
homogeneous multi-processors. One of the operating modes within DPUP, as well as projects 
such as Marionette [7] and MSPCM [SI, uses the master-slave approach, where a central control- 
ling process is responsible for or is involved in every system event. In addition to affecting per- 
formance and being an unnatural model for cenain classes of problems, this central process is 
critical, and its failure leads to a complete collapse of the entire system. Another shortcoming 
common to all the above is the use of virtual circuits for network communication; in addition to 
overheads that may not be justifiable, practical limits on the number of connections affect the sca- 
lability of applications. In addition, failure resiliency and debugging support i s  minimal. The 
PVM system is completely distributed, supports a dynamic host pool, and assumes only that an 
unreliable, unsequenced datagram delivery mechanism is available. From the application’s point 
of view, PVM constructs are substantially more general in nature and encompass both the message 
passing and shared memory paradigms; yet, by substituting alternative libraries, unmodified pm- 
grams may execute on specific multiprocessors. 

The following section describes the user interface and the important design aspects of PVM. 

An overview of the PVM support software, with an emphasis on the protocol algorithms and key 
implementation features follows. Preliminary results and performance figures are then presented, 
and the concluding section reports on continuing and future work. 

2. The User Interface 

The application views the PVM system as a very general and flexible parallel computation 
resource that supports common parallel programming paradigms. Application programs access 
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these resources by invoking function calls from within comm n procedural languages such as C 
or Fortran. Suc?i an interface was selected primarily for portability reasons -- most multiproces- 
sor applications are currently written in pmcedural languages with embedded, machine-specific, 
function calls that perform process spawning, message reception and transmission, and shared 
memory operations. The PW primitives have been made the same as or very similar to the union 
of these functions, thereby enabling previously wrimen applications to be ported readily to the 
PV~M environment and also permitting PVM to execute applications or components thereof on 
specific machines when possible. The PVM user interface syntax and semantics are presented in 
this section with illustrative examples using the C language interface. 

2.1. Processes and Process Initiation 

In the PVM system, an application is considered to consist of components, For example, a 
simulation application might consist of a partial differential equation component, a matrix sslu- 
tion component, and a user interface c o m ~ ~ n e ~ t ~  lit should be pointed out that this definition of a 
component is perhaps unconventional; usually, the term implies a phase or portion of an applica- 
tion that is embodied in a subroutine - such as "the forward-substitulion component of a matrix 
solver". However, the PVM system is a large-granularity environment, primarily targetcd at appli- 
cations that are collections of relatively indcpndent programs. In view of this, a Pyhl component 
corresponds not to a phase in the traditional sense, but rather to a larger unit of an application. 
From the system point of view, a component corresponds to an sbjcct file that is capable of being 
executed as a user-level process. A compiled C: program that performs LU factorization is an 
example of a component. It is the responsibility of the user to compile componcnt programs to all 
target architectures on which that component may execute. Depending upon the target machine, 
the compiled version of a component may either link against the PVM primitives, or machine 
specific libraries, or both. A component is therefore a static entity and is identified by a name; 
associations between component nmcs  and executable versions are set up as discussed in the fol- 
lowing paragraphs. 

A complete description of application components, i.e. the component name and all 
corresponding executables (each with an architecture tag), is obtained by the PVM support 
software. 734s information is gathered either from a file or from a startup process, as will be 
explained below. An example of a component description file is shown in Figure 1. This table 
illustrates that a component, identified by a name, may be manifested as several different execut- 
able files; and conversely, that multiple component names may map onto the same executable. 
The first feature permits the PVM system to execute components at the most suitable location, 
while the second allows the user to force a specific location as will be explained below. 

A process is an executing instance of a component and is identified by the component name 
and a positive instance number. Processes may be initiated from within components or from a 
"startup" process that may be manually executed on my participating host. A process is initiated 
by invoking the initiate primitive with the component name as an argument; the instance number 
of the initiated process is returned to the user. Prior to executing any PVM construct, however, a 
process must invoke the enroll function; this establishes a (machine dependent) mechanism by 
which a user process may communicate with the PYM systcm. A typical section of code executed 
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Name Location Obiect file Architecture 

factor iPSC hO/host/factor 1 ipsc 
factor msrsun hsr/alg/math/factor sun3 
factor m s m  /usr/alg4/math/factor sun4 
chol w a x 2  /usr/inatrix/chol VaX 

chol vmsvax JOE:CHOL.OBJ vms 
tool msrsun hsr/view/graph/obj sun3 
factor2 iPSC /uO/host/factorl ipsc 

Figure 1 : Example Component Description File 

by a startup process is shown in Figure 2. It should be noted in the example shown that the phy- 
sical location of the initiated processes is transparent to the invoking process; the PVM system 
determines the best machine on which to execute a process based upon the current host pool, the 
alternative architectures on which a component may execute, and the load factor on those 
machines. However, a specific location may be forced by declaring a new component name (as in 
the last line of the component description file above) and initiating that component. 

... 
enroll ("startup") ; 
for (i=O;i<lO;i++) 

instance [ i ]  = i n i t i a t e  ("factor") ; 
... 

Figure 2 : Initiation of multiple component instances 

The initiate mechanism is, by default, asynchronous. Control is retuned to the invoking 
process as soon as the instance number of the process is available. However, under certain cir- 
cumstances, it may be necessary to initiate a component only after another process has ter- 
minated. The initiateP variant allows this by permitting the user to defer initiation of a com- 
ponent until after another has terminated. For example, 

initiateP ("factor", "matml" ,3) ; 

will initiate an instance of "factor" only after instance number 3 of "matmul" has terminated. A 
third-argument value of 0 will cause "factor" to be initiated only when a12 instances of "matmul" 
terminate. In an analogous fashion, initiateD is used to execute components conditional upon the 
occurrence of a user-signaled event, normally the availability of data. Thus, 

initiateD ("chol", "dataset7") ; 

will delay the execution of "chol" until some other process signals the occurrence of the 
"dataset7" event, by invoking the ready("dataset7") primitive. All variants of initiate return a 
negative result if a process could not be initiated, thereby enabling the invoker to take appropriate 
action. The global component dependencies of the application may therefore be specified within 
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a stamp process by the use of appropriate initiate primitives or variants, embedded within corn- 
mon selection and iteration control flow constructs available in the host language. Of course, a 
component itself may be composed of several subcomponents - whose dependencies and execu- 
tion order are indicated in an analogous manner within that component. Two other constructs 
termed terminate and waitprcacess are also providedd, Both take a component name and an 

r (or 0 to mean all instances) as arguments; the first aborls the process while the 
second blocks the caller until the process completcs. 

2.2- Data Transfer and Barrier Synchronization 

Inter-process communication via message passing is one of the basic facilities supported by 
YVM. In the interest of pontability and wide applicability, the primitives to accomplish message 
transfer have been derived from existing implementations (e.g [9]), including those describcd in 
[3]. Certain aspects, however, are necessarily different; primary among them is addressing. Sirice 
the physical location of processes is deliberately transparent to user programs, message destina- 
tions are identified by a (component name, instance number) pair. Furthermore, owing to the 
heterogeneous nature of the underlying hardware that PVM executes upon, it is necessary for user 
programs to send and receive typed data in a machine independent form. To enable this, a set of 
conversion routines has heen provided - user programs invoke these routines to consmct mes- 
sage buffers and to retrieve data values from incoming messages. 

In keeping with popular messagc passing mechanisms, the PVM send and receive constructs 
incorporate a "type" argument. This is the only argument to receive, while send requires a desti- 
nation component name and instance number as additional arguments. The type parameter per- 
mits the selective reception of messages and has been found to be extremely useful in practical 
applications. It should be noted that neither the data buffer itself nor its length appear explicitly 
as arguments - owing to data representation and size differences on different machines, user 
programs should only access messages using the conversion routines. Shown in Figure 3 is an 
example of data transfer between two component processes. 

In order for a receiving process to obtain additional information about the most recently 
received message, the rewhfo  construct is provided; this returns the name and instance number 
of the sending process and the message length. In addition, two variants of the reev construct are 
provided. The first, recvl, pernits the user to specify the maximum number of messages of other 
types that may arrive in the interim (Le. while waiting for a message of the specified type). If a 
message of the anticipated type does not arrive within this window, an error value is returned to 
the program, thus enabling the detection of and possible recovery from incorrect program 
behavior or unacceptable levels of asynchrony. The second variant, recv2, allows the 
specification of a timeout value and is valuable in preventing certain forms of deadlock as well as 
in user-level detection of failed components. Also provided is the broadcast primitive that sends 
a message to all instances of a specified component. 

Synchronization via barriers is a common constrenct in many applications. Under PVM, bar- 
iier synchronization is accomplished using the barrier construct. An instance of a component 
invoking rhis construct will block until all instances of the component also arrive at the barrier. 
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/* Sending Process */ 
/*-------,,-,,,---- */ 
i n i t  send () ; /* In i t ia l i ze  send buffer */ 
putstting("The square root of 'l )  ; /* Store values i n  */ 
putint (2) ; /* machine independent */ 
putstring ("is I') ; /* form */ 
putfloat (1.414) ; 
send("receiver", 4199)  ; /* Instance 4; type 99 */ 

/* Receiving Process */ 
/*------------------- */ 
char mSgl[32] I msg2 [ 4 J ; 
i n t  num; f loa t  sqnum; 
recv (99) ; /* Receive msg of type 99 */ 
getstring (msgl) ; /* Extract values i n  */ 
getint  (&nun) ; /* a machine spec i f ic  */ 
getstring (msg2) ; /* manner */ 
getfloat (esqnm) ; 

Figure 3 : User process data transfer 

The PVM system attempts to detect and correct barrier deadlocks by notifying invoking processes 
if some instances of a component terminate before they reach a barrier - live processes return 
from a barrier call with a negative result value in such situations. In addition to barriers, or as an 
alternative, the waituntil construct is also provided as a means of synchronization. This construct 
(suggested in [lo]) takes an event name as an argument and blocks until another process indicates 
the Occurrence of that event by using the ready primitive mentioned earlier. 

23. Shared Memory and Mutual Exclusion 

The use of shared memory to synchnize and communicate between processes is a con- 
venient and well understood paradigm, and the PVM system provides such an interface for algo- 
rithms that are best expressed in these terms. It should be noted, however, that in most cases this 
facility is emulated on distributed memory machines and some performance degradation should 
be anticipated. The primitives provided are modeled once again after popular, existing implemen- 
tations. A shared memory segment is first allocated by invoking the shmget construct that takes 
a string valued identifier and a segment size in bytes. To acquire a shared memory segment for 
use, a user process invokes the shmat construct, specifying the segment identifier, the address 
within the process at which the segment is to be mapped, a flag indicating whether the segment is 
to be mapped read-only or read-write, and a timeout value. This construct implicitly incorporates 
a lock operation; if mutually exclusive access to the segment cannot be provided, the invoking 
process is suspended - for a period not to exceed the specified timeout value. 
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tion described above maps a contiguous, un 
st sirnations however, shared memory segm 

block of bytes at the 
ill be used to store and 

manipulate typed data. In order to permit this among dissimilar machines, typed variants of the 
attach construct are provided. For example, the s h ~ ~ ~ ~ ~ ~ ~  construct takes an integer pointer as its 
second argument, while the shnaatfloat varian for shared memory regions that hold Boat- 
ing point values. (It should be noted that t transfer between dissimilar architectures 
could lead to lass of precision or to truncation swing to wordsize differences. Both message 
passing and shared memory mechanisms are subject to this drawback. The PVM system attempts 
to minimix this by utilizing the largest size possible for typed data values.) When a process no 
longer needs exclusive acccss to a region, it invokes e shmdt construct (or a typed variant) 
whereupon the lock is released and the region unmapped. Finally, the shmfree construct is used 
to deallocate a segment of shared memory when it is no longer required. Shown in Figure 4 is an 
example of the use of these constmcts to pass an array of real numbers between two processes. 

/* Process A */ 
/*----------- */  
while 

et (Waatrx", 1024)  ) error() ; /* allocation failure */ 
/* Try to lock 6 map seg * I  

(shmatfloat ("matrx", fpl %W1', 5 )  ) ; 
f o r  (i=O;i<256;i++) *fp++ = a [ i ] ;  /* Fill in Shl@Itl siepent */ 
shmdtfloat ( I 1  /* Unlock & u m p  region */ 

/* Process E3 */ 
/*----------- */  
while /* Lock C map; note:reader*/ 

(shmatfloat ("matrx", fp,  "R", 5 )  ) ; /* may lock before writer */ 
fox (i=O;i<256;i++) a [ i ]  = *fp++; /* Read lout values */ 

float ("mitrx") ; /* Wnloek & u w p  x e  
shmSree ("mtrx") ; / I s -  Deallocate mrn se 

Fig-ure 4 : Use of shared memory for IPC 

While s h a d  mernory is perhaps the most common resource that processes require mutually 
exclusive access to, it is possible that the ~vhl environment contains other resources that 
processes must access in a similar manner. To accommodate such requirements, a generalized 
locking facility is also provided. The lock construct permits the logical locking of an entity that is 
named by a string argument; the PVM systcm blocks other processes wishing to lock this entity 
until the possessor invokes the unlock construct. For example, different components of a large 
application may wish to output results periodically to a user terminal. To avoid interfcrcnce and 
to distinguish the source of the output, components may adopt a convention that requires locking 
"terminal" before printing messages or results. Another situation where such a facility could 
be usekl may be found in the shared memory example in Figure 4. In that example, it is easy to 
see that the processcs may access the shared memory segment in an incorrect order even though 
each will have exclusive access to it. A possible rectification of this situation is to use the lock 
construct as shown in Figure 5; however. in practice it is more likely that a transmitted message 
or the waituntil facility will be used to resolve suck situations. 
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/* Process A */ 

lock ("f illmatrix", 5) ; 
/* Allocate, attach, f i l l ,  and detach shared mem segment. */ 
unlock ("fil lmatrix") ; 

/*----------- */ 

/* Process B */ 
/*----------- */ 
loop : 

lock ("fil lmatrix", 5 )  ; 
ff (shrnatfloat ( . . . ) = SEGMENT - NONEXISTENT) { 

unlock ("fil lmatrix") ; 
sleep (1) ; 
got0 loop; 

1 
/* Read values out of shared mem segment, detach, C free */ 

Figure 5 : Use of the l o c k  construct 

2.4. Miscellaneous Facilities 

In addition to the primary constructs described in the preceding sections, a few miscellane- 
ous constructs are also provided. The status construct takes a component name and instance 
number as arguments and returns status and location information regarding that component. The 
entercomp construct permits dynamic additions to the component description table. The shmstat 
construct is used to obtain information about active shared memory regions, while the lockstat 
primitive reports the status of active locks. A complete list of all the user interface constructs 
along with their argument lists and a one-line description is given in the appendix. 

3. PVM System Design and Implementation 

The PVM support software executes as a user-level process on each host in the participant 
pool. An initial set of participating hosts is statically identified; additions or deletions are possible 
during operation by means of an administration interface. The PVM system is designed to be 
implemented in a manner that requires no operating system changes or modifications, and porting 
efforts to varied operating system environments are minimal. The PVM support process (termed 
pvrnd) on a host is responsible for all application component processes executing on that host; 
however, there is no central or master instance of pvmd. Control is completely distributed (by vir- 
tue of all pvmd processes possessing global knowledge) in the interest of avoiding performance 
bottlenecks and increasing fault tolerance. The pvmd processes are initiated on each participating 
host either manually, through the administration interface, or via a machine/OS dependent 
mechanism such as inetd in the Unix environment. In this section, the key design aspects of the 
pvmd software are discussed with an emphasis on the protocol algorithms used. 
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3.1. Basic Facilities 

In terms of network capabilities, the PVM system assumes only that unreliable, unse- 
quenced, point-to-point data transfer (but with data integrity) facilities are supported by the 
hardware p l a ~ ~ o ~  on which it executes. The ~ q u i ~ d  reliability and sequencing, as well as other 
necessary operations such as broadcast, ape built into the BVM system in the interest of efficiency 
md portability. While it is me that most operating systems in existence already support reliable 
and sequenced data delivery, in most cases this is via the use of virtual circuits ----- for the pro- 
jected use of P W  the o v e r ~ e ~ ~ s  and scalability limitatio of using such a service directly did 
not warrant its adoption. In the test implementations of PW, the UDP [ l l ]  protocol was used; 
this deliberate choice of a simple datagram protocol also pernits relatively simple porting or pro- 
tocol conversion when PW is m be installed under a different operating system environment. 

Across the network, pvmd processes communicate using UDP datagrams. The "well known 
port'* approach is used for addressing; all incoming messages are received by pvnid processes on a 
predetermined port number. For user-process to user-process communication, the following 
scheme is employed. The first communication iIiscance between my two entities i s  muted 
through the pvmd processes on the source and destination machines. Location and port number 
information is appended to this exchange; the RVM routines (linked to the user process) that 
implement send and recv cache this information, thus enabling direct communication for subse- 
quent exchanges. Local user processes communicate with pvmd using the most efficient machine 
dependent mechanism available and the development of this mechanism is deemed part of the 
installation procedure. However, the generic version of pvmd may be adopted; this utilizcs UDP 
datagrams once again, via the loopback interface if one is available. The pvmd process uses a dif- 
ferent, predetermined port number for incoming messages from all local user processes. 

To achieve reliable and sequenced point-to-pint communications, the pvmd proccsses use a 
positive acknowledgment scheme and an additional header that contains sequence numbers as 
well as fragmentation and reassembly information. Unacknowledged transmissions are retried a 
parameterized number of times after which the rccipient process or processor is presumed to be 
inoperative. The sequence numbers are destination specific and are used by the message recipient 
for sequencing as well as for duplicate detection. The header is placed at the end of a UDP 
datagram to reduce copying overheads, and single datagram sizes are restricted to the smallest 
MTU (maximum transmission unit) of all participating hosts. When first initiated, pvmd 
processes determine the protocol specific addresses of all participating hosts and procced to ser- 
vice incoming requests from the network or user processes in an infinite loop. 

Each pvnrd process mairitains information concerning the location and status of all applica- 
tion component processes. A user send i s  addressed to a component name and instance number; 
the local pvmd determines the physical location of that process and forwards the message to the 
remote pvmd. As described, the user process library perfoms this translation for the second and 
subsequent messages. The source component name and instance number are appended to the 
message, enabling message delivery with an indication of the sender's identity. As mentioned, 
executing the enroll construct is a precondition to user process participation - in the UDP 
implementation, this supplies to the local pvmd the receiving port number of the user process. 
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Broadcast is a commonly performed operation in the PVM system, both because applica- 
tions desire such a facility and since it is inherent to the completely distributed nature of the PVM 

support software. All pvmd processes maintain information regarding a l l  processes, shared 
memory segments, and locks, to guard against loss of context and state in the event of failures. 
User process broadcasts are first delivered sequentially to local recipient user processes after 
which the local pvmd process broadcasts over the network to all other pvmd processes that in turn, 
deliver the message to their local user process recipients. Although most computing environments 
support a network broadcast facility, pvmd broadcast is implemented in PVM using point-to-point 
messages with recursive doubling. This decision was made in the interest of portability and 
efficiency; given that network broadcast is unreliable, acknowledgments are necessary from each 
recipient, resulting in 0 (p ) time (p -t 1 sequential steps are to be performed by the originator), 
while recursive doubling broadcast is accomplished in 0 (log2 p ) time, where p is the number of 
processors. The participating pool of hosts is logically numbered from 0 to p -1, and the origina- 
tor (or root) of the broadcast is part of the broadcast message. There is one pvmd process per host, 
which represents that processor. Broadcast proceeds in "rounds", with lhe number of processors 
contributing to the broadcast effort doubling in each round. In any round, processor i transmits 
to i -t 2' mod p and receives an acknowledgment. A processor j joins the broadcast effort at 
round rj ,  where r, = 110. of significant bits in - root) mod p .  In the event of processor 
failure, the pvmd process that first detects the failure assumes the broadcast duties of the failed 
processor. If the quantity Z(2') is less than 210gzp, failure notification is piggybacked on the 
broadcast, at the end of which the remaining processors are individually informed. Othcrwise, the 
detecting processor initiates another broadcast with failure information, at completion of the 
current broadcast. 

The pvmd processes execute a finite state machine which gives precedence to messagcs 
(requests) incoming while another activity is in progress. Such a scheme is adopted to avoid 
deadlock; two processes transmitting to each other may both wait indefinitely for each others ack- 
nowledgment if this precedence rule were not followed. It should also be pointed out that in the 
case of PVM hardware platforms where wide area networks are involved, the choice of an 
appropriate timeout value can significantly affect the performance of the data transfer mechan- 
isms and the broadcast process. Further, the present: implementation does not perform any optimi- 
zations in the broadcast scheme when a geographically distant host is at a non-leaf position in the 
broadcast spanning tree. 

Mutual exclusion is another primitive required both in response to user requests as well as 
for pvmd coordination. Examples are exclusive access to emulated shared memory, general 
resource locking, and assignment of unique instance numbers for application component 
processes. Distributed mutual exclusion is normally achieved by unanimous or majority con- 
sensus; a requesting process that receivcs permission from a certain number of processes is 
deemed to have acquired the lock. Different strategies, varying in their approach, efficiency, and 
level of failure resiliency have been proposed and representative methods are described in [12, 
13, 141. The strategy adopted in PVM is somewhat different from these approaches, but the algo- 
rithm is efficient and, more importantly, is integrated with the required distribution to all pvrnds 
of lock location information. 
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A p v d  process, either for its own purposes or on k h d f  of a local user process, attempts to 
obtain a lock by broadcasting a "claim" for the lock. Since all gvmd pimesses possess knowledge 
regarding the use (and location) of all locks, such an attempt will, of course, only be made when a 
lock is known to be free at the start of the claim. In the absence of conflicting claims (a situation 
most likely to be encountered in practice), the requester, after the broadcast has been completed, 
can assume that the lock has heen successfully ined. In the prowess, 41 other yvmds update 
their lock table information, and (implicitly) grant the requester permission for exclusive access 
to the particular msource. 

It is of course possible that two processes ay initiate claims on the same resource before 
either has received the other's request. In PVM, such situations are resolved using a heuristic that 
assumes that communication between any pair of processors takes the same amount of time. In 
particular, consider two processors (gvmd processes) A and B that wish to acquire the same lock, 
and another processor C . Note that ( B  ,C ) and IA4 ,C ) are in the broadcast spanning trees of A 
and B respectively, possibly at differcnt depths. It may be assumed without loss of generality that 
A 's processor number is less than that of e3 . Under the constant time assumption, both A and B 
will receive each others claims before their broadcast i s  completed. When B receives A 's claim, 
it computes the number of rounds that A 's broadcast has proceeded; if this number is greater than 
the number of rounds that its own broadcast h a  proceeded, B surrenders its claim to the lock. An 
identical (first-claim, first served) policy is followed by A .  If the broadcast progress metries are 
the same, the lower numbered processor is given priority and is considered to have obtained the 
lock. The passive processor C also makes the same decision since it has the capability of comput- 
ing the number of rounds of broadcast progress that each claimant has made when the second 
such broadcast arrives. 

In practice however, communication times between arbitrary pairs of processors may not be 
constant; further, intervening messages of other types may skew the propagation time of a broad- 
cast claim. For practical safety therefore, ~e originators of conflicting claims exchange a 
confirmatory message - with the claim being abandoned if their respective notions of the suc- 
cessful claimant are riot in agreement. In such a situation, the lower numbered processor broad- 
casts a "rcset lock" message, and the entire process is started afresh, but without competition from 
the "losing" processor. In case of process or processor failures, the strategy of all pvmd processes 
possessing dl information is used to avoid undesirable situations. If a process or processor hold- 
ing a lock terminates without releasing it, the particular resource is marked as "defunct"; further 
requests to tlic rcsource are denied until an explicit reset i s  performed. 

3.2. Process control 

The initiation order and process dependencies of application components are described by 
the use of appropriate initiate constructs embedded within host language control flow statements 
as described in the preceding section. This implies that it is not possible to detemiine statically 
the application process flow graph as component initiations may be conditional or repeated based 
upon parameters known only at execution time. The PVM system therefore perfoms process ini- 
tiations in response to requests based upon the resources available and load conditions at the 
moment of the request - rather than by constructing a predetermined static schedule and process 
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to processor assignments. 

When an application component process makes an initiate request, the local pvmd process 
first determines a candidate pool of target hosts based upon the information in the component 
description Ne. One host is then selected from this pool based upon the following algorithm: 

(1) Select next host from pool in round-robin manner, based upon all initiations that originated 
here. 

(2) Obtain load metric (decayed average of number of processes in run queue) from this poten- 
tial target host. 

(3) If this quantity is less than a prespecified threshold, select this host. 

(4) Otherwise, repeat the process. If no host has a load factor below the threshold, the host with 
the lowest load is the selected target. 

Once the target host is identified, the local pvmd sends the initiate request to the pvmd process on 
the remote host, where the application component is initiated. The remote pvmd then broadcasts 
notification of this event to all pmcessors, simultaneously claiming an instance number for this 
initiation (by simply incrementing the last previous instance number for the Component). 
Conflicting claims for the same instance number are again resolved as in the case of multiple 
claims to a lock, with a "losing" processor using a higher value. Once again, consistent conflict 
resolution is confirmed by an exchange of messages between all claimants and reset actions are 
performed in the case of disagreement. Application process termination information is also 
broadcast to all pvmd processes. Conditional variants of initiate are saved by the local pvmd, and 
this queue is inspected and appropriate action taken when the particular event occurs. 

In the PVM system, shared memory is emulated by first creating an image of a mcmory seg- 
ment on secondary storage. A file of the requested size is created; for efficiency and failure resi- 
liency reasons, the local pvmd (the pmessor at which the creation request originated) attempts to 
locate the Ne on a device that is accessible to other processors via a network file system. Mutual 
exclusion, both for creation as well as for access, is achieved as described earlier. A pvmd process 
that has acquired a lock (on behalf of a local application process) copies the file into the requested 
address space; this is done directly if the file is accessible directly, and with the assistance of the 
remote pvmd if it is not. A user release request results in the specified memory area being copied 
back to the file unless the lock request was for read-only access. It should be noted that creation, 
locking, unlocking, and deallocation (resulting in file removal) events are broadcast lo aLl pvmds; 
given the conflict resolution rules and highest priority to incoming requests, undesirable incon- 
sistencies are avoided. 

4. Results and Experiences 

To facilitate its use and to determine ils effectiveness, the PVM system has been imple- 
mented on a variety of machines including Sun 3/50 workstations, Vax 11/785 and Sun 4/280 
servers, a 64 node Intel iPSC/2 hypercube, and a 12 processor Sequent shared-memory multipro- 
cessor. The minimal assumptions made regarding the underlying facilities available greatly 
simplified the implementation efforts; the software could be ported (from a base Sun 3 
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implementation) to to all the enviromcnas with changes necessary only in data representation 
and conversion utilities. In the implementation, the p v m f  processes %u11 independently, while the 
user level routines are supplied as a set of libraries to be linked in with application compnents. 
Initial experiences with the use of PVM are reported in this section. 

The efficiency of user-level data transfer i s  perhaps the most critical aspect of any distri- 
buted computing environment. In the PW system, low latency data transfer has been provided 
without sacrificing location transparency, and a datagram protocol is used so that overheads of 
more heavyweight protocols are avoided, It is anticipated that a large proportion of the use of 
PW will be constrained to local networks, with ody  a few applications wishing to execute com- 
ponents on geographically distant hosts. The protocols used by PvM therefore incur the overheads 
of retransmission and sequencing only when the underlying network quality is poor; more than 
95% of local network communications typically succeed on the first attempt. Table 1 shows the 
message delivery times for varying message sizes under P W  between two Sun 3/50 systems on a 
10 MB/s Ethernet. It should be noted that these figures represent elapsed time from the start of 
message transmission to the receipt of positive acknowledgment and are averages over several 
runs performed under varying host mnd network loads. 

Table 1 : IJser process data transfer times in PVM 

Broadcast, since it is used heavily within vW, is another important factor in the performance of 
the system. It was observed that for broadcast among pvmd processes, the calculated performance 
of the recursive doubling algorithm is consistent with actual behavior. Acknowledged message 
transmission on a single branch of the broadcast spanning tree required between 4 and 9 mil- 
liseconds for a (typical) 100-byte message, depending upon the speed and load on the processors 
involved. This translated to measured figures of 15, 28, 35, and 50 milliseconds for typical 
broadcasts to 3, 7, 15, and 31 hosts respectively. For user process broadcasts, the figures vary 
widely, owing to the fact that pvntd processes deliver broadcasts sequentially to local recipients. 
Thus, if a large percentage of the user process broadcast group were physically executing on one 
host, the sequential delivery time for that host would dominate the total broadcast time. Table 2 
shows typical time requirements for user broadcast, under the assumption that the broadcast 
groups are evenly distributed among participating hosts. 

Owing to the manner in which process initiation and mutual exclusion are implemented, the 
time taken for these operations are almost identical to that for 100-byte broadcasts between pvmd 
processes. In the current implementation, barrier synchronization is also performed using broad- 
casts. When a user process executes a barrier call, the local pvmd process first waits until all parti- 
cipating user components on this host also arrive at the barrier. This aggregate notification is thcn 
broadcast to the other pvmd processes. When all local and remote user proccsses are known to 
have arrived at the banicr, each pvnzd signals the processes local to its processor to proceed. The 



- 15- 

Table 2 : User process broadcast timings in PVM 

performance of the barrier PW primitive was tested using a sample application that invoked the 
barrier construct twice consecutively, with the second invocation being timed. Shown in Table 3 
are the observed measurements. When the number of participants is large, the burst of simultane- 
ous broadcasts resulted in lost messages, accounting for the disproportionate increase in time. 

Although the PVM system has not yet been used for a heterogeneous application (one in 
which different components have different requirements), two existing multiprocessor codes have 
been ported to run on the system. The first is numerical integration using the rectangle rule. The 
results from this experiment were uninterestingly predictable; on PVM, scaling in the number of 
processors or the number of rectangles resulted in a linear performance increase. Furthermore, 
the performance ratio between P W  and the iPSC/2 multiprocessor for this problem was constant 
- and consistent with the inherent processor speed differences. The second application is Chole- 
sky matrix factorization [ 161 - an application that has a relatively high communication to com- 
putation ratio. Table 4 shows the elapsed times for this problem run on a network of Sun 3/50 
machines for varying problem sizes. Shown in parentheses adjacent to each timing are the 
corresponding times for running the same program on an Intel iPSC/2 hypercube. In this experi- 
ment, no allempt was made to place more than one component process on a host; however, it 
should be noted that each participating host was also being used simultaneously for general pur- 
pose editing, compilation, etc. 
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Problem size (Order of M 

Table 4 : Times (in seconds) for Cholesky factorization 

The anonialy apparent in the first column of Table 4 was traced down to the nature of the 
Cholesky algorithm - for a small matrix, the simultaneous broadcasts of every process’s matrix 
column to a (relatively) large number of processors resulted in a high percentage of dropped 
packets, leading to retransmissions and elapscd timeouts. For larger problems however, it can be 
seen that the performance of PVM is acceptable at the least, considering that the application is a 
substantially communication oriented one and that general purpose machines on a local network 
were used. It should also be pointed out that these figures are 2 to 4 times better than those for 
other distributed multiprocessor simulators such as dsim[5]. Furthermore, the factorization pro- 
gram was built for performance measurement purposes and therefore internally generated the 
matrix elements and did not output the factorized results. Given the. usual difficulty and 
inefficiencies in I/O from within the nodes in a distributed niemory machine, it is expected that 
PVM will compare much more favorably against hardware multiprocessors when significant 
amounts of I/O are performed. 

5. Conclusions flz Future Work 

The primary motivation for the PVM project is derived from the existing and anticipated 
need for a general, flexible, and inexpensive concurrent programming environment. The success- 
h l  implementation of the system has demonstrated that such a framework can be provided and 
can execute on existing hardware bases, with lhe benefits of a procedural programming interface 
and straightforward constructs for access to various resources, The most noteworthy features of 
P W  are the support of multiple models of computation and a heterogeneous collection of 
machines; the provided framework enables interaction between application components and 
machine architectures that are normally incompatible. Anticipating that large and complex paral- 
lel systems will require error indication and failure detection capabilities, such features have been 
built into the P W  system and are likely to be valuable. From the performance point of view, PVM 

has proven to be acceptable even for applications with a high communication to computation 
ratio - although its primary intent is to support applications with much larger grainsize and less 
interaction. Perhaps of more importance in certain situations is the ability of PVM to utilize 
resources that already exist and would be wasted otherwise, not to mention its value as a proto- 
typing tool for new algorithnis or applications. The simplicity of porting the PVM system as well 
as application software also enhances its appeal and will contribute to its increased use. 
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There are, however, several aspects to PVM that require further work; some efforts are ongo- 
ing while others are planned for the future. It is evident that the data transfer, broadcast, and 
mutual exclusion protocols are the most crucial parts of the system, and work is in progress to 
improve these. Barrier synchronization should be implemented using a more effective strategy 
such as dimensional exchange to reduce message losses when a large number of processes arrive 
at a banier simultaneously. Conflict resolution in the locking algorithm presently uses a heuristic 
method - a provably correct formalization of this will be undertaken soon. From the application 
point of view, certain additional features might be desirable such as (1) the ability to coalesce 
emulated and real shared memory, and (2) to dynamically optimize message passing, locking etc., 
depending on the architecture on which a component instance is executing. Also planned for the 
future m a graphical interface for the specification of component execution order and interac- 
tions, as well as debugging and execution history trace facilities. 

Acknowledgements 

The author would like to thank M. T. Heath, G. A. Geist, T. H. Dunigan, and D. A. 
Poplawski for helpful discussions during the course of this work and for their comments on ear- 
lier versions of this paper. 

References 

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, 
New York, 1984. 

H. Narang, R. Flanery, J. Drake, Design of a Simulation Intelface for a Parallel Computing 
Environment, Oak Ridge National Laboratories Report, preprint. 

G. A. Geist, M. T. Heath, B. W. Peyton, P. H. Worley, A Machine Independent Communi- 
cation Library, Proceedings of the Hypercube Concurrent Computers Conference 1989, J. 
Gustafson ed., to appear. 

T. J. Gardner, I. M. Gerard, C. R Mowers, E. Nemeth, R. B. Schnabel, DPUP : A Distri- 
buted Processing Utilities Package, Computer Science Technical Report, University of 
Colorado, Boulder, 1986. 

T. H. Dunigan, Hypercube Simulation on a Local Area Network, Oak Ridge National 
Laboratory Report ORNL/TM-10685, November 1988. 

C. Seia, J. Seizovic, W. K. Su, The C programmer’s Abbreviated Guide to Multicomputer 
Programming, Caltech Computer Science Report, CS-TR-88- 1, January 1988. 

M. Sullivan, D. Anderson, Marionette: A System for Parallel Distributed Programming 
Using a MasterlSlave Model, Proceedings of the 9th International Conference on Distri- 
buted Computing Systems, June 1989, pp. 181-188. 

G. Riccardi, B. Traversat, U. Chandra, A Muster-Slaves Parallel Computation Model, 
Supercomputer Computations Research Institute Report, Florida State University, June 
1989. 



- 1 8 -  

[9] 

[ 101 A. Karp, Programming for Purullelism, EEE Computer, May 1987, pp. 43-57. 

[ l l ]  J. 13. Postel, User Datagram Protocol, Internet Request for Comments RFC-768, August 

[ 121 N. Maekawa, A & Algorithm for M u m 1  Exclusion in Decentralized System, ACM Tran- 
sactions on Computer Systems, May 1985, pp. 145-159. 

[13] K. Raymond, A Tree Based Algorithm for Distributed Mutual Exclusion, ACM Transac- 
tions on Computer Systems, February 1989, pp- 61-77. 

[ 141 D. Agarwal, A. E. Abbadi, An Efficient Solution to the Distributed M ~ t l ~ l  Exclusion Proh- 
lem, Proceedings of the Principles of Distributed Computing Conference, Edmonton, 
August 1989 (to appear). 

[ 151 J. S .  Chasc et. al., The Amber System: Parallel Programming on a Network of Multiproces- 
sors, to appear in 12th SOSP, Litchfield Park, November 1989. 

[ 161 G. A. Geist, M. T. Heath, Matrix Factorization on a Hypercube Multiprocessors, in Hyper- 
cube Multipmcessors 1986, S A M ,  Philadelphia, 1986, pp. 161-180. 

Intel iPSCf2 Programmer’s Reference Manual, htel  Corporation, Beaverton, OR, March 
1988. 



- 19- 

Appendix - PVM User Interface Constructs 

enroll( etame>) 
Enroll calling process as <name>. Returns instance number. 

initiate(<component name>) 

Start new process specified by <component name>. Returns instance number. 

initiateP(<namel> ,<name;?>, cinum>) 

Start new instance of 4numel> when <name2>l<inum> terminates. 

ini tia teD(<name>, <event>) 

Start new instance of <nume> when <event> occurs. 

ready( <event>) 

Inform PVM system of occurrence of <event>. 

terrninate(<name>, <inurn>) 

Terminate instance <inurn> of component <nume>. 

wai tprocess( <name>, <inurn>) 

Block caller until instance <inurn> of <name> terminates. 

send(<name> ,<inurn>, <type>) 

Send message of specified type to specified destination process. Negative return value on 
failure. 

recv( <type>) 

Receive message of specified type. 

recvl( <type> ,<other-limit>) 

Receive message of specified type; <other-Zimit> msgs of other types allowed. Negative 
return value on failure. 

recv2( <type1 > ,<timeout>) 

Receive message of specified type within <timeout> seconds. Negative return value on 
failure. 

putstring(<string>) 

Store atring> in send buffer in machine independent form. 

putint( <num>) 

Store integer in send buffer in machine independent form. 

putfloat(<fnm>) 

Store real number in send buffer in machine independent form. 

get string( <stringgtr>) 

Retreive string from receive buffer in machine dependent form. 
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ge tint( <integerjsr>) 

Retreive integer from receive buffer in mac ne dependent fonn. 

getfloat(<$oatgtr>) 

Retreive real number from receive buffer in machine dependent form. 

recvinfo( <str inggtr> ,<inumgrr>,<le~gtp>)  

Return source name, instance numbcr, and length of last received message. 

broadcast(<mrne>) 

Broadcast send buffer to al l  instances of <,kame>. Return actual number of recipients. 

barrier( ) 

Blocks caller until all instances arrive at barrier. Negative return value if some instances 
have terminated. 

wai tunti]( <event>) 

Blocks caller unFiii specified event occurs. 

shmget( <key>, <size>) 

Allocates shared memory segment of specified size identified by <key>. A negative return 
value indicates that the key value is already in use. 

shmat(<key> ,<ptr>, <$ag>, <timeout>) 

Locks shared memory segment identified by <key> and maps segment at caller's address 
space starting at pbr>. "R" or "RW" are possible flag values; a negative value is returned if 
the attach does not succeed within <timeout> seconds. A 0 timeout value causes the caller 
to block until successful. 

skmatin t( <key>, <integergtr>, <fig> , <timeout>) 

Variant of shmat that maps segment in typed form as integer may. 

shmatfloat( <key>, <$oaigtr>, <flag>, <timeout>) 

Variant of shmat that maps segment in typed form as float array. 

shmdt(<key>, < p a > )  

Unlocks and unmaps specified shared memory segment from process' address space indi- 
cated by < p r o .  

shmdtint( <key >,<integergtr>) 

Unlocks and unmaps specified shared memory segment in a typed form from process' 
address space indicated by <inregergtr>. 

shmdtfloat(<key> ,<floargtr>) 

Unlocks and unmaps specified shared memory segment in a typed form from process' 
address space indicated by <$oargtr>. 

shmfree(<key>) 

Deallocates specified shared memory segment. 
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lock( <resource-me>, <timeout>) 

Permits exclusive access to abstract resource identified by string-valued cresource-me>. 
Negative retun value indicates resource could not be acquired within specified timeout 
period. 

unlock( <resource-name>) 

Releases lock on previously acquired resource. 

s t a t u s ( < c o m p o n e n t _ n e > , ~ ~ n ~ ~ ,  cstatgtr>,clocgtr>) 

Takes string valued component name and an instance number and returns the status 
(enonexistent, l=active) and location (processor number in the range 0 - p) of that com- 
ponent instance. 

en tercomp( cname > , <loc-mac him > , cobjfi le>, cafch>) 

Permits a component description to be added; specifying the component name, the object 
file name and the machine on which it is located, and the type of arehitecture that the object 
will execute on. 

shmstat(ckeygrrgtr>,<statgtr>) 

Obtains information about shared memory regions. Array of strings holds the key values; 
array of integers holds status (*free, l=locked) information. Return value specifies total 
number of active regions. 

lockstat( <keygng t r>)  

Returns total number of active locks with array of strings holding the key values. 

Notes: 

Among the PVM constructs described above, those concerned with machine dependent data 
representation are to be implemented as part of the installation procedure for architectures 
not represented in the generic distribution of the software. Also deemed part of this pro- 
cedure are constructs to handle other data types such as double precision, boolean, 
enumerated types, etc. 





- 23 - 

ORNLdTM-11375 

INTERNAL DISTRIBUTION 

1. 
2. 
3. 
4. 

5-6. 
7. 
8. 

9-13. 
14. 
15. 
16. 

17-21. 

B. R. Appleton 
J. J. Dongarra 
J. 3. Drake 
G. A. Geist 
R. F. Harbison 
M. T. Heath 
M. R. Leuze 
F. C. Maienschein 
E. G. Ng 
C. E. Oliver 
G.  Ostrouchov 
S. A. Raby 

22. 
23. 
24. 
25. 
26. 
27. 
28. 

29. 
30-3 1. 

C. H. Romine 
R. C.  Ward 
P. H. Worley 
Central Research Library 
ORNL Patent Office 
K-25 Plant Library 
Y-12 Technical Library/ 

Document Reference Station 
Laboratory Records - RC 
Laboratory Records Department 

EXTERNAL DISTRIBUTION 

32. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research, 
ER-7, Germantown Building, U.S. Department of Energy, Washington, DC 20545 

33. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Gra- 
duate Center, 19600 N.W. Walker Road, Beaverton, OR 97006 

34. Lawrence 3. Baker, Exxon Production Research Company, P.O. Box 2189, Houston, 

35. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University, 
University Park, PA 16802 

36. Dr. Edward H. Barsis, Computer Science and Mathematics, P.O. Box Box 5800, San- 
dia National Laboratory, Albuquerque, NM 87 185 

37. Dr. Chris Bischof, Mathematics and Computer Science Division, Argonne National 
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 

38. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping 
58 183, Sweden 

39. Dr. James C. Browne, Department of Computer Sciences, University of Texas, Aus- 
tin, TX 78712 

40. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric 
Research, P.O. Box 3000, Bouldcr, CO 80307 

41. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer- 
sity of Michigan, Ann Arbor, MI 48109 

TX 77252-2 189 



42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58 .  

59. 

60. 

Dr. Tony Clan, Bpartment of Mathematics, University of California, Los Angeies, 
405 Hilgard Avenue, Los Angeles, CA 90024 

Dr. Jagdish Chandi;i, A m y  Rcseaach Office, 33.0. Box 1221 1, Research Office, P.O. 
Box 122 1 1, Resczrch Triangk Park, NC 2'9909 

Dr. Eleanor Chu. L-pamen t  of Computer Science, IJniversity of Waterloo, Ontario, 
Canada N2E 3G I 

Prof. Torn Coleman, Department of Computer Science, Cornell University, Ithaca, 
NY 14853 

Dr. Paul Concus, Mathematics and Uompting, Lawrence Berkeley L,aboratory, 
Berkcley, CA 94720 

Prof- Andy Conn, Ikpament  of Combinatorks, and Optimization, University of 

Dr. Jane K. Cullum, IBM T.J. Watson Rcsearch Center, P.O. Box 218, Yorktown 
Heights, NY 10598 

UP. George Cybenko, Computer Science Department, University of Illinois, IJrbana, 
IL 61801 

Dr. George J. Davis, Department of Mathcmatics, Georgia State University, Atlanta, 
GA 30303 

Prof. John J. Doming, Department of Nuclear Engineering and Physics, 'Thornton 
Hall, McComick Road, University of Virginia* Charlottesville, VA 22901 

Dr. Iain Duff, CSS Division, Hamell Laboratory, Didcot, Oxon OX1 1 ORA, England 

Prof. Pat Eberkiai, Depaatmene of Computer Science, SUNY/Ruffalo, Buffalo, NY 
14260 

Dr. Stanley Eisenstat, Depanment of Computer Science, Yale University, P.O. Box 
2158 Yale Station, New Haven, CT 06520 

Dr. Lars Eldcn, Department of Mathcmatics, Linkoping University, 58 183 Ldnkoping, 
Sweden 

Br. IPoward C. Elman, Computes Science Depamcnt, University of Maryland, Col- 
lege Park ME) 20'742 

Dr. Albert M. Erisman, Boeing Csmputer Services, 565 Andover Park West, Tukwila, 
WA 98188 

Dr. Pctcr Fenyes, Gencaal Motors Research Laboratory, Department 1.5, GM Techni- 
cal Center, Warrcn, MI 48090 

Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Claremont, 
CA 9171 1 

Dr. Geoffrey C. Fox, Booth Computing Center 158-79, CalifoPnia Institute of Tech- 
nology, Pasadena, CIA 91 125 

atedos, Waterloo, Ontario, Canada N2L 3G1 



- 25 - 
Dr. Paul 0. Fderickson, Computing Division, Los Alamos National hbordtory, Los 
Alamos, NM 87545 

Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence Livermore 
National Laboratory, P.O. Box 808, Livermore, CA 94550 

Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State 
University, Raleigh, NC 27650 

Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming- 
ton, IN 47405 

Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 

Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana, 
IL 61801 

Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research 
Council, Building M-SO, Room 344, Montreal Road, Ottawa, Ontario, Canada K1A 
OR8 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

77. 

78. 

79. 

Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of 
Waterloo, Waterloo, Ontario, Canada N2L 3G1 

Dr. John Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road Palo Alto, 
CA 94304 

Dr. Jacob D. Goldstein, The Analytic Sciences Corporation, 55 Walkers Brook Drive, 
Reading, MA 0 1867 

Prof. Gene H. Golub, Department of Computer Science, Stanford University, Stan- 
ford, CA 94305 

Dr. Joseph F. Grcar, Division 833 1, Sandia National Laboratories, Livermore, CA 
94550 

Dr. Per Christian Hansen, Copenhagen University Observatory, @rzr@ster Voldgade 
3, DK-1350 Copenhagen K, Denmark 

Prof. Robert M. Haralick, Boeing Clairmont Egtvedt Prof., Department of Electrical 
Engineering, Director, Intelligent Systems Laboratory, University of Washington, 402 
Electrical Engineering, Building, FT- 10, Seattle, Washington 98 195 

Dr. Don E. Heller, Physics and Computer Science Department, Shell Development 
Co., P.O. Box 481, Houston, TX 77001 

Dr. F. J. Heiton, GA Technologies, P.O. Box 81608, San Diego, GA 92188 

Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 4 10, Bolling 
Air Force Base, Washington, DC 20332 

Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National 
Laboratory, P.O. Box 808, Livermore, CA 94550 

Dr. Use Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 
Yale Station, New Haven, CT 06520 



- 2 6 -  

Ms. Elizabeth Jessup, Uepamnent of Computer Science, Yale University, P.O. Box 
2158, Yale Station, New Haven, CT 06520 

Prof. Barry Joc, Department of Computer Science, University of Alberta, Edmonton, 
A l k r t ~ ,  Canada T6G 2H1 

Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of 
Colorado, Boulder, CO 803Q9 

Dr. Bo Kagstrom, Iixtitute of Information Processing, University of Umea, 5-901 87 

Dr. Hans Kaper, Mathematics and Computer Science Division, Argomie National 
Laboratory, 9700 South Cass Avenue, Argonne, IL 601139 

Dr. Linda Kaufman, EeU Laboratories, 600 Mountain Avenue, Murray Mill, NJ 07974 

Dr. Robert 9. Kw, Applied Mathematics Division 8331, Sandia National Laboratories, 
Livermom, CA 94550 

Dr. Kenneth Kemredy, Department of Computer Science, Rice University, P.O. Box 
1892,Ilsuston,TX77001 

Ms. Virginia Klema, Statistics Center, E40-131, MIT, Cambridge, MA 02139 

Dr. Richard Lau, Office of Naval Research, 1030 E.Crecn Street, Pasadena, CA 91 101 

Dr. Nan J. Lauh, Department of Electrical and Computer Engineering, IJniversity of 
Califomia, Santa Barbara, CA 93106 

Dr. Robert L. Lamer, Army Research Office, P.O. Box 12211, Research Triangle 
Park, NC 27709 

Dr. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive, 
Pasadena, CA 91 109 

Prof. Peter D. Lax, Director, Courant Institute of Matliematical Sciences, New York 
University, 251 Mercer Street, New York, NY 10012 

Dr. James E. Leiss, 13013 Chestnut Oak Drive, Gaithersburg, MD 20878 

Dr. John G. Lewis, Roeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, 

Dr. Heather M, Liddell, Director, Center for Parallel Computing, Department of Com- 
puter Science and Statistics, Queen Mary Collegc, University of London, Mile End 
Road, London El 4NS, England 

Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele 
Street, Downsview, Ontario, Canada M3J 1P3 

Dr. Frranlklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY 
14853 

James 6. Malone, General Motors Research Laboratories, Warren, MI 48090-9055 

Dr. Thomas A. Manteuffd, Computing Division, Los Alamos National Laboratory, 
Los Alarnos, NM 87545 

WA 98124-0346 

80. 

81. 

82. 

83. 

84. 

85. 

86. 

87. 

88. 

89. 

90. 

91. 

92. 

93. 

94. 

9s. 

96. 

97. 

98. 

99. 

100. 



- 27 - 

101. Dr. Bernard McDonald, National Science Foundation, 1800 G Street, NW, Washing- 
ton, DC 20550 

102. Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808, 
Livennore, CA 94550 

103. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena, 
CA 91125 

104. Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086 

105. Prof. Neville Moray, Department of Mechanical and Industrial Engineering, Univer- 
sity of Illinois, 1206 West Green Street, Urbana, IL 61801 

106. Dr. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755 

107. Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col- 
lege Park, MD 20742 

108. Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia, 
Charlottesville, VA 22903 

109. Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher- 
brooke Street W., Montreal, Quebec, Canada H3A 2K6 

110. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, A 2  85284 

11 1. Prof. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson, 

112. Pmf. Beresford N. Parlett, Department of Mathematics, University of California, 
Berkeley, CA 94720 

113. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham, 
NC 27706 

114. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, North 
Carolina State University, Raleigh, NC 27650 

115. Dr. Alex Pothen, Department of Computer Science, Pennsylvania State University, 
University Park, PA 16802 

116. Dr. John K. Reid, CSS Division, Building 8.9, AERE Haswell, Didcot, Oxon, Eng- 
land OX1 1 ORA 

117. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette, 
IN 47907 

118. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livcrmore Laboratory, 
Livermore, CA 94550 

119. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC 
27706 

120. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Urbana, 
IL 61801 

SC 29634-1906 



- 2 8 -  

121. 

122. 

123. 

124, 

125. 

126. 

127. 

128. 

129- 133. 

134. 

135. 

136. 

137. 

138. 

139. 

140. 

141. 

142. 

Dr. Michael SaundeB, Systems Optimiza?ion Laboratory, Operations Research 

Dr. Robert Schreitper, Department of Coniputer Science, Rensselaer Polytechnic Insti- 
tute, Troy, IVY 112180 

Dr. Martin PI. Schdtz, Depament of Computer Science, Yale University, P.O. Box 
2158 Yale Station, New Haven, CP 06520 

Dr. David S .  Scott, htel Scientific Computers, 15201 N.W.Greenbrier Parkway, 
Reaverton, OR 97006 

Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist University, 
Dallas, TX 75275 

Dr. Kcrmit Sigmon, Department of Mathematics, University of Florida, Gainesville, 
1t;Z 3261 1 

Dr. Danny C. Sor-ensen, Mathematics and Computer Science Division, Argonne 
National Laboratory, 9780 South Cass Avenue, Argonne, IL 60439 

Prof. G. W. Stewart, Computer Science Department, IJniversity of Maryland, College 
Park, M B  20742 

Dr. V. S .  Sunderam, Department of Mathematics arid Computer Science, Emory 
University, Atlanta, GA 30322 

Dr. Kosmo D. Tatalias, Atlantic Aerospace Electronics Corporation, 6404 Ivy Lane, 
Suite 300, Brcenbelt, MD 20770-1406 

Prof. Charles Van Loan, Department of Computer Science, Cornel1 Universily, Ithaca, 
NY 14853 

Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, 
VL4 23665 

Prof. Mary F. Wheeler, Mathemalics Department, University of Houston, 4800 
CaUioun, Houston, TX 77204-3476 

Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los 
Alamos, NM 87545 

Dr. Arthur Wouk, A m y  Rescarch Office, P.Q. Box 1221 I ,  Research Triangle Park, 
NC 27709 

Dr. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 
07974 

Dr. A. Yeremin, Department of Numerical Mathematics of the USSR Academy of 
Sciences, Gorki Street 11, Moscow, 183905, USSR 

Office of Assistant Manager for Energy Research and Development, US. Department 
of Energy, Oak Ridge Qprations Office, P.O. Box 2001 Oak Ridge, TN 37831-8600 

Stanford IJnxvePsity, Stanford, CA 94305 

143-152. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831 


