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AN ORTHOGONAL COLLOCATION APPROACH TO 
MODELING MULTICOMPONENT AD§ORPTIOB 

IN CARBON BEDS 

M. T. Harris 
C. H. Byers 

ABSTRACT 

A multicomponent, packed-bed, adsorption model which solves simultane- 
ously for the adsorption of any number of adsorbing components in a bed or 
slab configuration is presented €or predicting breakthrough curves of trace or- 
ganics in water. Generally it may be directly applied to interacting systems 
in which there are two interacting adsorbed species in an inert solvent. The 
model assumes isothermal conditions and that axial dispersion is negligible. It 
is also proposed that a linear rate model can be used to describe the rate of 
adsorption of material on the adsorbent, although the method has been shown 
to apply to more complex situations. The model was tested by comparing 
predicted bed exit profiles with experimental data for the adsorption of trace 
amounts of %-butanol and t-amyl alcohol on a bed of carbon. The applicability 
of the method to a broad range of adsorption problems in waste disposal and 
the process industries is discussed. 

1. INTRODUCTION 

The removal of persistent organic pollutants from drinking water, waste streams 

and hazardous wastes has assumed great importance in the past deca,de. In the 

case of waste water, some of the organic and inorganic species are not removed by 

normal biological treatment, at least to the extent which is required by the laws 

which have been enacted during this period; and therefore, carbon columns are 

employed as a tertiary treatment step. Carbon adsorption is also commonly used 

as the final stage in the treatment of drinking water. Where applicable the same 

techniques are used in dealing with hazardous wastes (Oswald, et. al. 1982; Brown, 

Harris, and Roop 1984). 



Ionic and metal species are often removed by parallel ion exchange techniques 

(Pan and David 1978, Sherman 1978, and Helfferich 1962). While the resin beds 

have an entirely different chemical basis of operation, the method of mathematical 

analysis is almost identical to those used in dilute bed sorption. 

Although the adsorption of organics on carbon and the ion exchange of ionic 

species are sometimes performed in slurry type reactors (EPA 19721, it is more 

common to adsorb these impurities by having the active granular materials ar- 

ranged in filters as beds of particles. For a given set of operating conditions and 

a given column design, the time at which breakthrough occurs i s  the most impor- 

tant figure of merit. This can be determined by performing batch slurry tests and 

by conducting bench-scale and pilot-scale packed-bed studies to allow prediction 

of full-scale column performance. However, a full series of packed-bed studies can 

be quite extraordinarily time-consuming, often requiring weeks of laboratory ex- 

perimentation. It has been shown to be advantageous to perform only batch tests 

to determine adsorption equilibria and to use correlations or mathematical mod- 

els to predict the mass transfer parameters. Packed-bed behavior is subsequently 

modeled by computer simulations, allowing the prediction of breakthrough time for 

plant-scale units in a matter of minutes, or perhaps hours for the more elaborate 

algorithms (Raghavan and Ruthven 1984, Harwell, et al. 1980; and Spaitin and 

Schlunder 1975). 

After a satisfactory number of parameters have been examined using the corn- 

piiter model, a few pilot-scale runs can be used to test the computer results against 

experimental reality. Several advantages accrue to this procedure. 

1. The parametric study can quickly identify the most relevant features of the 

system, allowing a design which takes advantage of the particular properties 
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of the species and resin. 

2. Interactive systems can be studied in detail for their overall characteristics 

in an expeditious manner. 

3. Dangerous experimentation can be minimized by the procedure, particularly 

where hazardous materials are the object of the design. 

4. A good model can be used after construction to aid in the subsequent oper- 

ation and trouble-shooting of the process. 

5. In some of the better models, the effect of a changing feed material can be 

predicted before these cause problems. 

Bearing in mind the significant number of advantages which a good model can 

bring to a project, it is critical that the robust, efficient algorithms be available to 

engineers. 

The objective of this paper is to present a new model for predicting the behavior 

of interactive multicomponent adsorption and ion exchange systems. The model 

represents a significant enhancement of previous computer algorithms, particularly 

those developed by Carta( 1986) which modeled isothermal single-component ad- 

sorption. Because this is a significant area of theoretical a,ctivity, many models 

have been presented in the past, and Ruthven (1984) gives a thorough review of 

these models. Generally they deal with adsorptively non-interactive systems OF with 

single adsorbed components. Obviously they form a subset of the current study. 

Analytical solutions, while very useful for dilute, non-interactive and noncompeti- 

tive mixtures, often fail in the real situations which are the subject of this report. 

Therefore it was our goal to produce an efficient, accessible method of predicting 

these important real situations. 
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Generally, sorption processes are analyzed with the aid of computer algorithms. 

Even the analytical solutions involve series solutions which converge slowly, making 

computer operations necessary. In the non-linear cases considered in this study, 

approximate computational methods are the only way known to solve the equations. 

A considerable number of finite difference solutions have been proposed (Ruthven 

1984), but these are generally inefficient because of the small step sizes required to 

properly simulate the steep slopes in concentration profiles. A seemingly simple 

problem can take hours of computer time. On the other hand, within the past 10 

to 15 years, interest in the methods of weighted residuals (MWR) to solve partial 

differential equations has increased (Finlayson, 1972). In particular, the use of 

orthogonal collocation in the analysis of packed-bed reactors has been studied and 

reported in a number of papers and texts, In this study, orthogonal collocation 

has been used because it offers two advantages over finite differences: relatively 

greater accuracy with fewer discrete points (and therefore with less computation), 

and a concise representation of partial derivatives as matrices, which facilitates any 

programming changes needed to accommodate different models. 

Methods of weighted residuals (MWRs), in which the solution to one or more 

differential equations is expanded in a series of known functions with arbitrary CQ- 

eficierits, have been available since the 1940s. The use of one particular MWR, 

collocation, became popular in chemical engineering research after Villadsen and 

7) showed that solution accuracy cam be enhanced if collocation points 

are c h a m  to be the mots of an orthogonal polynomial. Articles by Finlayson in the 

early 1970s discussed the use of orthogonal collocation in the analysis of reactions in 

packed beds (Finlayson, 1971; and Ferguson and Finlayson, 1970). Later, Michelsen 

and Villadsen published an important paper detailing improved algorithms for ca1- 

culating collocation constants (Michelsen and Villadsen, 1972). A detailed descrip 
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tion of their work is collated in their later-published text (Michelsen and Villadsen, 

1980). Finlayson has published two texts on the use of MWRs. The most re- 

cent, Non-Linear Analysis in Chemical Engineering, contains extensive discussions 

on steady-state and transient modeling of reactions using orthogonal collocation 

(Finlayson, 1980). Recently, Raghavan and Ruthven (1983) have published results 

from an analysis of fixed-bed adsorption columns orthogonal collocation. Like the 

Carta(1986) study these were confined to single adsorbed components. 

Our solution expands the orthogonal collocation approach to multicomponent 

mixtures. As a specific example, we studied some experimental data for the ad- 

sorption of trace amounts of it 2-butanol and t-amyl alcohol on a bed of car- 

bon(Santacesaria et a1 1982). 

2. THEORETICAL 

2.1 PACKED BED ADSORPTION THEORY. 

A model which describes the behavior of packed beds is illustrated in Fig. 1. In 

the adsorption case, it is assumed that the fluid phase containing the components 

to be sorbed enters the bed and the sorbate fills the sites On the bed beginning 

from the entry, eventually breaking through the exit of the bed when the bed 

is filled. Typically one observes an ‘S’-shaped curve if a single-sorbed specie is 

involved. In modeling a bed, it is assumed that there is homogeneity in the bed, 

leading to concentration variations only in the axial direction ( z )  and of coiirse 

with time, t .  Mass balances are performed on each solute in the liquid phase and 

the corresponding adsorbed phase leading to the following relationship (Ruthven, 

1984) : 

a%; aq aqi aci 
- e -  + (1 - E)Pb-- + EV- . at at a2 

ED,(-  - 
az2 
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Pig. 1. Schematic diagram of a sorption bed. 
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with a solid or adsorbed phase balance given as 

a qi - at = ko,a (c, - &) 
where ko, is the effective mass transfer coefficient and K; is the equilibrium con- 

stant for component i, which may vary with concentrations of all species as well 

as the temperature. The axial dispersion, D, , ,  is generally negligible in usual liq- 

uid cases. In other cases where one has linear adsorption coefficients one may use 

the Gluekauf(1955) approximation for an overall mass transfer coefficient, which is 

given as follows. 

where 0, and D, are macropore and micropore diffusivity, k, is the fluid film mass 

transfer resistance, R, is the pore radius, r, is the micropore or crystal radius, and c, 

is the macropore void fraction. Although component subscripts are not included, 

Eq. 2 must be applied to each adsorbing specie. Ruthven(l984) has shown this 

approach to be quite effective even with significantly nonlinear isotherms. The 

liquid phase mass baIance then becomes 

aci aci 3;. 
EV-- + E-- at + (1 - +Ib-- dt = 0. 

32 (4) 

To simplify matters in the application of the solid phase material balance, it is 

often possible to replace the relationship with a linear rate expression (Clarta 1986, 

Santacesaria et al. 1982). Then adsorbed phase mass balance for component i is: 

This expression assumes that the mass transfer resistances in the liquid film, 

surface diffusion, and internal diffusion in the particle can be represented by the 
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linear rate expression (Eq. 2). In the model proposed by Carta (1986), it is assumed 

that the mass transfer in the liquid film is the controlling mechanism for adsorption. 

The mass transfer constant is, therefore, iven by the expression 

3kf 8 

RP 
k! zz -, 

It should be noted in comparing Eqs. 3 and 6 that k: is really the product of ko, 

and the equilibrium constant K i .  One would expect that this expression would 

be applicable for liquid systems containing trace impurities, since it closely follows 

the Gluekauf approximation(Eq. 3). It should be further noted that the applica- 

tion of the linear driving force expression (Eq. 6) leads to the replacement of the 

average solid phase species concentration ij8 with q: , the local equilibrium concen- 

tration. Because s f  the interactive nature of the isotherms in the system which was 

studied here, it is possible that the Gluekauf approximation does not apply. This 

conservative assumption will be made throughout the remainder of the report. 

The model developed by Santacesaria includes b th liquid film mass transfer 

resistance and pore diffusion resistance. These resistances are proposed to act in 

parallel, following Gluekauf; therefore, the expression for the k' is given by: 

'In Santacesasia's model the term iji is related to adsorbed phase concentration, q,* , 
by the expression: 

(8) 
I 

qi = (1 - €p)q;* + € P C f .  

The adsorption equilibria, q* = f (q ,  c2 1 is represented by a Freundlich-Fritz- 

Schluender (FFS) (Fritz and Schluender 19'94 and Liapis and Rippin 1977) type 
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expression for n solutes. This expression has the form: 

The initial and boundary conditions for these models are: 

q&,o) = q ( 2 , O )  = 0, t 0. 

The conditions in Eq. 10 are for the adsorption case in which there is a step change 

from a base at  time zero. Our approach makes it possible to deal with virtually any 

boundary and initial conditions. This is important in cyclic processes and those 

where the feed concentration is not steady, as might be the case in wastewater 

adsorption simulations. However, to test the model only the conditions in Eq. 161 

were explored. 

2.2 SOLUTION OF MODEL EQUATIONS FOR PACKED BED AD- 

SORPTION. 

The method of orthogonal collocation (Michelsen and Villadsen 1972, Villadsen 

and Stewart 1967, Carta 1987) was used to simultaneously solve Eqs. 1 and 2 

for each component. This method converts the system of partial differential qua- 

tions into a system of algebraic expressions and ordinary differential equations by 

assuming that the concentration as a function of axial position in the column is 

represented by a polynomial. Finite difference methods have also been used to 

solve such equations; however, these methods usuaily require much longer com- 

puter time. Application of orthogonal collocation to the above equations resulted 

in the following set of ordinary differential equations for the collocation point z,: 
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Component 1 

Component 2 

j= 1 

These equations were written in the following form for the purpose of computer 

integration: 

Component 1 

Component 2 

j= 1 

In the present algorithm, it was assumed that the concentration as a function of 

axial position can be represented by a Jacsbi orthogonal polynomial (Carta 1987). 
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Viiladsen and Stewart (1967) established that collocation points chosen to be roots 

of Jacobi orthogonal polynomials are optimal in the sense that they maximize the 

order of the solution approximation. 

3. COMPUTER SOLUTION OF A TWO-ADSORBING 

COMPONENT PROBLEM 

A flow diagram of the computer algorithm is shown in Appendix I along with 

the computer programs. There are two programs; ADS3C.FOR, which uses Carta’s 

model, and ADSSAN.FOR, which employs Santacesaria’s model. 

The initial function of the program is to input data from the data file 

“ASMC.DAT”. An example of input data is given in Appendix I. The description 

of each data point is given for clarification and is not to be entered into the actual 

data set. 

The constant terms (Le. pb(1 - € ) / E ,  v / L ,  and k’/pb) in Eqs. 15 through 18 

are then computed from the input data. Important parameters are written to the 

output file, ”FR.DAT”. 

The main program calls the subroutine JCOBI to compute the zeros of the 3acobi 

orthogonal polynomial. These roots are subsequently stored in “FR.DAT” . The 

discretization matrix is computed by the subroutine DFOPR and is stored in the 

array EL(K,I) in the program and is represented by the term l;” (xi) in Eq. 19 and 

20. 

Initial and boundary conditions are assigned in the next portion of the maira 

program. Before proceeding with numerical integration, a flag is set SO that whcn 

the time interval, TDISP, is achieved during integration, the results are written 

to the output file “FR.DAT”. The program then calls the subroutine R.KG, which 

employs the Runge-Kutta method to numerically integrate Eq. 15 through 18. The 
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Runge-Kutta subroutine calls the subroutine DERIVS, which computes the right 

side of the time derivative Eqs. 15 through 18. Several other subroutines are called 

from DERIVS to compute the e: from ?ji by applying the equilibrium relationship 

(Eq. 6). The list of constants, A l l  through ZN21, which appears in the subroutines 

QEQUIL, CEQUIL, and NEWSUB, are defined in the following expanded version 

of Eq. 9 for each component: 

,4n important subroutine to note i s  the NEWSUB subroutine, which WEIS imple- 

mented to compute the c; by simultaneously solving the two nonlinear expressions 

for the adsorption equilibria (Eqs. 19 and 20). The NEWSUB algorithm is based 

on the mathematical formulation (Appendix 11) given by Scarborough (196 

When TDISP is achieved during integration, the program exits RKG and writes 

the time (T in program) and c,/cfi  (i.e., XOUT in the program). The program 

reenters the subroutine RKG if T is less than the time (TSTEP) specified to end 

the program, and the process is repeated. 

To test the approach against a known solution, it was decided to apply the 

Xlinkenberg (1954) solution to two components which do not interact. The as- 

sumption in the Klinkenberg solution is the same as in our case except that the 

isotherm for a single adsorbing specie is linear. As in our case, trace concentra- 

tion is assumed, which assures isothermal conditions. A linearized rate expression, 

identical to the one in Rq. 5 ,  is assumed. The general solution is given ax  

12 



where the nondimensional time, 7 ,  and distance, E ,  are defined as: 

The solution can be considerably simplified for the case where E is > 2.0. To within 

0.6 

In the limit of very large values of e,  

Since one may select the conditions under which to check the solution, obviously the 

simplicity of Eqs. 23 and 24 lead us to their application as a means of checking our 

numerical solution. Computation of concentration values at the exit of a bed using 

Eq. 23 requires a routine for calculating of erfc, the error function complement. A 

public domain subroutine for the calculation of error functions was used in a simple 

FORTRAN program to generate solutions which were used to check the orthogonal 

collocation program solutions. 

4. RESULTS AND DISCUSSION 

In checking our solution against an analytical solution, two series of tests were 

performed. The first, shown in Fig. 2, shows the effect of changing the number of 

collocation points on the fit. It would appear that five collocation points (three 

internal and two external collocation points) give an adequate match to the analyt- 

ical data. The good agreement between the orthogonal collocation solution, even 

with a small number of collocation points, is strong indication that our approach is 

a valid one. 
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Fig" 2* A comparison of an analytical solution of a non-interacting two- csmps- 
nent bed adsorption with the orthgonal collocation solution using different numbers 
of collocation points. 
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The second test is to increase the amount of interaction between the two adsorb- 

ing components by increasing the influence of the denominator terms in a binary, 

Freundlich-type isotherm, which is a reduction of Eq. 9 to the case where all the 

concentration exponents are as shown in the following expression: 

where 

a, = 6.0, a2 = 24., bll  = b, ,  = b21 = b22 = 1.0 

By increasing the c2 from zero, interaction and non-linearity are increased. A series 

of four runs were made increasing the c,-values. Figure 3 shows the results. 'Et is 

important to note that there is an orderly progression from one level of interaction 

to the next, and that the number of collocation points needed to arrive at a steady 

solution did not increase significantly with interaction. Based on these two results, 

it is assumed that the solutions presented in this report are valid approximations 

to the truth, and that the remaining solutions may be trusted. 

The modified version of Carta's program for two components adsorption was 

tested by simulating the adsorption of %butanol and t-amyl alcohol in a carbon 

bed. The experimental data were extrapolated from Fig 5 in a paper by Eiapis 

and Rippin (1978). Values of k,, = k,, = 0.002cm/s, DPl = 7.77 x 10-6cm2/s, 

D,, = 13.03 x 10-'cm2/s, rp = 0.05 cm, V = 0.14 cm/s, L I= 41 em, E = 0.5, and 

fp =r 0.94 were used in the column calculations. These values were taken from the 

paper by Liapis and Rippin (1978). The values for Dpl and Dp2 were estimated by 

modeling the adsorption kinetics during batch studies (Liapis and Rippin 1977). 

Figure 4 shows the results of a simulation where Carta's model was used, where 

K was computed using Eq. 6, where ?ji = q,? and where six collocations points (four 
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internal and two external) were used. The model is qualitatively correct in that it 

predicts correctly that the &butanol begins to exit the column before t-amyl alcohol. 

The experimental data confirms this behavior. Futhermore, the model predicts that 

a maximum appears in the %butanol breakthrough curve. The model predicts a 

maximum value for ci/cf; (where i=2-butanol) of 1.5. An experimental value of 

1.1 is observed. The model does predict that the time at which this maximum 

occurs is approximately 8000 s, which agrees very well with experimental data. The 

experimental &amyl alcohol data does not show a maximum value, which is also 

predicted by the model. Thus the disagreements are probably caused by incorrect 

values of the constants rather than a completely inapplicable model. 

The initial breakthrough of each component as predicted by Carta’s method of 

predicting k‘, tends to lag the experimental data. This would indicate that adsorp- 

tion of these components on the carbon particles is not controlled by mass transfer 

in the liquid film, thus suggesting that internal pore diffusion in the particles is 

the controlling parameter. Internal pore diffusion has been found to be the most, 

important resistance in the adsorption of trace organics from liquids and especially 

wastewater (Westermark 1975). To correct for internal pore diffusion resistance, 

Carta’s assumption concerning the model was slightly modified by replacing the 

constant,k,’, derived from the fluid film model (Eq. 3) with one predicted by Eq. 

7. The latter prediction includes the effect of macropore diffusion as well i ~ s  the 

fluid film resistance. In this case, xcl, = 0.031s-’ and k; = 0.046s-l. The result of 

this change is illustrated in Fig. 5 where 6 collocation points were also used, Them 

is a significant improvement in agreement between the predicted and experimental 

breakthrough curves for both ,%butanol and t-amyl alcohol. Another area of consib 

erable improvement is in the comparison between the predicted and experimental 

maximurn point for the %butanol breakthrough curve. This model indicates that 
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they are within 10% of each other. 

The question of the proper number of collocation points was resolved in Fig. 6. 

It shows that when eight collocation points are used, the results are substantially 

unchanged from the six-point solution. Therefore, six collocation points are suffi- 

cient for convergence. It is possible that fewer points may be sufficient, but areas 

of large change in slope would show oscillatory behavior, and further testing would 

be required in that area. Typical run time on a Definicon 780+ Board operating at 

20MHz is approximately 45 minutes. It is about 2.5 times faster on a \'AX 8600. It 

is possible that considerable reductions in run time could be gained by improving 

the algorithms for solving the ODES. 

Figure 7 shows the result of using Santacesaria's model. There are no significant 

improvements by applying Santacesaria's model over the result in using the model 

which was employed in Fig. 5.  The computational time is about the same (w 45 

min for six collocation points). 

It is evident that a large number of runs are possible which would improve the 

prediction. However, empiricism was not our objective so we did not attempt a "best 

fit" of the data. Rather, the objective was to establish an efficient multicomponent 

adsorption program which could be used in a number of applications. Extensions 

to this work might include the introduction of dispersion, and mircopoire diffusion. 

These changes would be relatively easy and could give a considerably improved 

simulation of the data. Of course, the extension of the program to n components 

is feasible. Times associated with solution would increase proportionately; but, 

with the accelerating pace of speed increases in computation that will not pose a. 

significant problem in the near future. 
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6.  CONCLUSIONS 

The multicomponent bed adsorption model has been formulated to account for 

the interactions between components. The current application was to three-compo- 

nents systems, of which one is an inert carrier. A linear adsorption rate equation 

was used to model the dynamic characteristics of the adsorbed phase material. The 

orthogonal collocation routine, based on a single component program by Carta, 

simulated the behavior of the species in the bed with six collocation points. 

The model was tested on experimental data for the adsorption of trace amounts of 

2-butanol and t-amyl alcohol in water on a bed of carbon. A simple film resistance 

controlled model does not adequately model the adsorption of these organics from 

water. Previous investigators determined that internal pore diffusion was the most 

significant resistance in this system; hence, this effect was incorporated into the 

model. This approach gave a significantly improved rendition of the data. The 

model proposed by Santacesaria was tested and was not significantly different from 

the model proposed in this study. There wits some indication that our solution 

converged much more quickly. 

Future work should include the development of an algorithm which incorporates 

a detailed model of the internal pore diffusion resistance as described by Liapis 

and Rippin (1978). Improvements may also be realized if the concentration driving 

force, (ci - cf ) ,  in the linear rate model proposed by Carta and Santacesaria were 

replaced by (q: - &). The numerical integration routines should also be upgraded 

to more efficient algorithms (i.e. fourth- or fifth- order Runge-Kutta method or 

DGEAR). Streamlining of the code for easier user a,ccess to variables such as the 

constants in Eqs. 19 and 20 and the plotting of the exit concentration profiles are 

needed, 
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7.  NOTATION 

YP 

t 

xi 

z 

E 

PE 

constants (Eq. 9) 

constants (Eq. 9) 

liquid-phase concentration of component i, g/cm3 a 

liquid-phase feed concentration of component i, g/cm3. 

equilibrium concentration of component i, g/cm3 

equilibrium concentration of component i, g/cm3. 

concentration of component i at collocation point j ,  g/cm3. 

equilibrium concentration of component i at collocation point j, g./ti7i3. 

pore diffusion coefficient of component i, cmz / s .  

mass transfer constant of component i, s- ’. 
film mass transfer coefficient of component i, cm/s. 

discretization matrix. 

total length of packed column, cm. 

constants (Eq. 9). 

constants (Eq. 9). 

equilibrium sorbate concentration, g /cm3. 

average sorbate concentration, g /cm3. 

radius of particles, cm. 

time, s. 

velocity of bulk fluid, cm/s. 

dimensionless axial position in column, z / L ,  at coliocation point i .  

axial position in column, cm. 

bed porosity. 

particle porosity. 

density of sorbent, g/cm3. 
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APPENDIX 1: COMPUTER PROGRAM LISTINGS 

This appendix lists the two main computer programs which are used to solve the system of 
equations described in Sect. 3 of the main body of this report. All of the programs are written in 
FORTRAN 77 and have been shown to operate on a wide variety of computers, including a VAX 
8680, a SUN Model 3, and a Definicon 780-t plug-in board for an IBM PC-AT. A flowsheet of 
the two main programs is given in Fig. 6. The first FORTRAN program1 is for the solution of the 
two- component problem with interactive multicomponent F'ruendlich igothernis. The resistance 
to m a s  transport is assumed to be in the form of an effective fluid film which is modeled by 
a single constant for each component. The program waa originally written by Giorgio Carta, 
University of Virginia, and was substantiany modified by Michael Harris. 
C*************************************************************** 
C TWO-COMPONENT ADSORPTION 
C MICBAEL T. HARRIS - MODIFICATION IN NOVEMBER '87 
C GIQRGIO CARTA - ORIGINAL PROGRAM 8/14/86 
C*********************************************~******************* 

C ADSSC.FOR - EFFECTIVE FLUID FILM RESISTANCE - 2 COMPQNENT 
C************************************************~****~*********~**~ 
C PROGRAM SOLVES FIRST ORDER PDE'S FOR WAVE PROPAGATION IN 
C *  
C FIXED BED ADSORPTION 
C *  
C CONSTANT FLUID VELOCITY 
C *  
C FLUID FILM MASS TRANSFER RESISTANCE 
c *  
C SOLUTION BY ORTHOGONAL COLLOCATION 
C *  
C RKG USED TO SOLVE RESULTING ODE'S 
c *  
C FREUNDLlCH ADSORPTION ISOTHERM 
c *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

@* 
C FPSI==VOIDAGE FRACTION ROB=BED SORBENT DENSITY 
c *  
C %=BED LENGTH U=SUPERFIGIAL VELOCITY 
c *  
C AK=MASS TRANSFER PARAMETER. CF=FEED CONCENTRATION 
C *  
6= 60-INITTAE CONCENTRATION CREF=REFERENCE CON@. 
C "  
'2 DTP=-:FEED PULSE DURATION X=CQUT/@REF 
6 "  
C TSTEP-STEP DURATION 
C *  
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ORNL DWG 88-20BR 

BLOCK FLOW DIAGRAM FOR ADSBC. FOR AND AQSSAN. FOR 1 ADS3C. FOq- HTOdrj 
MAIN PROGRAM INPUT' 

INPUT DATA 

DISCRETIZATION MATRIX 

1 

I 1 

I DERIVS- 
c AL CUKXFO D E a s 

NUMERICAL 
INTEGRATION NEW SU 6-SOLVE 

Fig. 8.  Block Diagram for the orthogonal collocation solution of the adsorption of two 
components on a resin bed. 
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C 
IMPLICIT REAE*8 (A-H,Q-Z) 
COMMON/LAGR/EL(40,40) ,NT,AKEl,AKE2,AKRB1,AKRB2,VZ,AM,YOI, 
1Y02 
COMMON/QEl/QM,QK,CREF 
COMMON/ULK/CFl,CFZ 
DIMENSION Y(80) 
DIMENSIQ N DIF 1 (40), DIF2 (401, DIF3 (40), RQOT(40) ,VECT( 40) 
c 
c 
C INPUT COLUMN PARAMETERS 
e 
OPEN(UNIT=5,FILE='ASMC.DAT7, STATUS='OLD') 
REWIND 5 

READ(S,*) U,AKl,AKP,Z 
READ(5,*) EPS1,ROB 

C 
C ASSIGN EQUILIBRIUM PARAMETERS QM AND QK 
C FOR FREUNDLICH ISOTHERM: Q=QK*(C**QM) 
c 
QM=0.5 
QK=0.6 

C 
READ ( 5 , * )  CFl,CF2,COl,C02,CREFl ,CREP2 
READ(5,*)TSTEP 
e 
C 
AKEf=AKl/EPSI* (1-EPSI) 
AKE2=AK2/EPSI* (1-EPSI) 
AKRBl=AKP/ROB 
AKRBB=AKP/ROB 

READ(5,*) N 
READ(5,*) H 
READ(5,*) TDISP 
oPElv(UNIT=6,FILE='FR.~AT', STATUS='NEW') 
W RITE(6 500) 
500 FORMATI' *** ESEB PROGRAM TO COMPUTE OUTPUT 
1 ~ ~ O ~ ~ ~ E  * * * I )  

501 FORMAT(' ****** >> INPUT INFORMATION << *****') 
WRITE(6,502) Z,AKl,AK2,U 

V==U/EPSI 

vz=v/z 

WRHTE(6,50P) 

502 FORMAT(' BED DEPTH =', F10.4, ' CM - BED 
PAREA = ',FI0.4,' CM - BED AREA = ',F10.4, 

31 



2'CM**2 - SUPERFICIAL VELOCITY = ', F10.4,' CM/SEC') 
C WRITE(6,503) EPSI, ROB 
C 503 FORMAT[ ' BED VOID FRACTION =',F6.4, 
C 1' BED DENSITY = ',F10.4,' @RAM/LITER') 
C WRITE(6,504) CFl,CF2,COI,C02,CREFl,CREF2 
C 504 FORMAT(' CONCENTRATIONS - FEED1 = ',ElDA,'MOLES/L 
C 1-FEED2 = ',E10.4,'MOLES/L-INITIAL2 = ',ElO.4,'MOLES/L 
C 1-INITIAL1 zz ',E10.4, 'MOLES/L - REFl=',ElO.4,' MOL/L' 
C l,'MOLES/L - REF2 =',E10.4,' MOL/L') 

C 505 FORMAT(' FREUNDLICH CONSTANTS - PRE 
C WRITE(6,505) QM,QK 

c I'EXPONENT = ',F10.7) 
',F10.7, 

WRITE(6,506) TSTEP, H,TDISP,N 
506 FORMAT(' TIMES =',3E10.4, 
1' ##- OF COLLOCATION PT =',I2) 
NO= 1 
N1=l 
AL=Q. 
BE=(). 
NT=N+NO+Nl 
NEQ=2* (NTt-NT-1) 

WRITE( 6,114) 

DO 200 I=l,NT 
WRITE(6,115) I,ROOT(I) 
115 FORMAT('X( ',12,' ) = ',F7.4) 
200 CONTINUE 
WRITE(6,120) 

ID=1 
DO 10 I-1,NT 

C WRITE(6,125) I 
CALL DFOPR (N,NO,N1,I,ID,DIF1,DIF2,DIF3,ROOT,VECT) 
DO 5 K-1,NT 
EL(K,I)= VECT[K) 

C WRITE( 6,13O)K,EL( K,I) 
5 CONTINUE 
10 CONTINUE 
125 FORMAT(/,'COLLOCATION POINT I == ',12) 
130 FORMAT(' L[l](  ',12,' ) 7: ',E12.6) 

CALL JCOBI (N,NO,Nl,AL,BE,DIFl,DIF2,DIF3,ROOT) 

114 FORMAT(/,'COLLOCATION POINTS',/,'*******************' 3 /I 

1 120 FORMAT(/,'******************' 

C 
C ASSIGN INITIAL CONDITIONS 
C 
T=O.O 

DO 20 I=l,NT-1 
CALL QEQUIL (COl,C02,QSTARl,QSTARZ) 
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Y[I)=CQl 
Y(Z*PdT-l+I)=CO2 

Y(3*NT-l+I)=$STAR2 
Y(NT-t-I)=QSTARl 

20 CONTINUE 
Y (NT)=QSTARI 
Y{3*NT-P)=QSTAR2 
c 
C ASSIGN BOUNDARY CONDITION 
YOl=CFl 
YO2 = C F2 

WRITE(G,lZ3) 
123 FORMAT(/,' RESULTS OF NUMERICAL ~ ~ T E ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ' ~  

ENDT-TDISP 
IFLAG==Q 
30 CONTINUE 
IF(ENDT.LT.TSTEP.OR.IFLAG.EQ.1) GQTO 35 
ENDT=TSTEP 
IFLAG= I 
35 CONTINUE 

C 
CALL RKG (NEQ,H,T,ENDT,Y) 

C 
IF(lIFLAG.EQ.1) YOl=C01 
IF( 1FLAG.EQ. 1) Y02=C02 

C 

C 

XQUT1=Y (NT- 1)/CREF1 
XOUT2=Y(3*NT-Z)/CREF2 

e print *,t,xout 
WRITE(6,40)T,XOUTl,XOUT2 
40 FORMAT(F12.4,' ',F10.7,' ',F10.7) 

C WRITE(6,4lj)YQ1,Y(NT),Y02,Y/3*Na"-l) 
C45 FORMAT(/,'ENTRANCE CONCENTRATION = ',E12.6,6 Y(NTj  :: ', 
C > El2.6) 
C 
IF(BOUTF.EQ.1) WRITE(5,*)T,XOUT1,XOUT2 
ENDT-ENDT+TDISP 
JF(T.GE.TSTEP) GOTO 510 
~ ~ ~ ~ ~ L ~ ~ . E ~ . l ~  GOT0 510 
GOT0 30 
510 ~~~~~~~~~ 

E N D  
c 
c; 
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C 
C SUBROUTINE TO CALCULATE DERIVATIVES OF ODE'S 
C 
SWBROUTINE DERIVS (NEQ,X,V,YP) 

COMMON/LAGR/EL(40,40) ,NT,AKEl,AKE2,AKRBl,AKRBZ,VZ, 
lAM,YOl,YOZ 
DIMENSION V(80) ,YP(80) 
CALL CEQUIL (V(NT),V(3'NT'-l),CSTARP,CSTARZ) 

YP(3*N'I'-l)=AKRB2*(Y02 - CSTARZ) 

YSUMl==YOl* EL ( 1,I+ 1) 
YSUMZ=YOZ*EL( 1,1+1) 

YSUM1-YSUMl+EL(K+ 1,1+1) *V(K) 

15 CONTINUE 

YP(I)=-akel*(v(i)-cstar1)-vz*ysunl 
YI9( 2*NT- I+I) =-akeZ* (v(Z*nt- l+i)-cstar2)-vr*ysumZ 

IMPLICIT REAL*8 (A-H,O-Z) 

YP(NT)=AKRBl*(YOl -CSTARl) 

DO 10 I=I,NT-l 

DO I5 K=l,NT-1 

YSIJM2=YSUMZ+EL(K+ I,I+l)*V(Z*NT-l-t-K) 

CALL CEQTJIL (V(NT+I),V(3*NT-l-tI),CSTARl,CSTARZ) 

YP(NT-tI)=AKRBl* (V(1)-CSTAR1) 
YP(3*NT-1+I)=A4KRB2* (V(Z*NT-l+I)-CSTAR2) 
10 continue 
RETURN 
END 

C 
C 
SUBROUTINE QEQUIL (X,Y,Ql,QO) 
IMPLICIT REAL*8 (A-H,O-Z) 
COMMON/QEl/QM,QK,CREF 

C 
C SUBROUTINE CALCULATES QSTAR GIVEN C FROM THE 
C EQIJIJ,IBRIUM ISOTHERM: Q=f(C) 
C 

A1 1-- 1.6 
ZNll=1.27 
A12=1.0 
ZN12=0.812 
B11=O.626 
ZMll=0.76 
8 2  1 ::= 1.07 
ZM21=1.254 
R22-1.0 
ZM22=0.906 
A2 P=0.045 
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ZN21--0.634 

1F(XALT.1.0&12] X=DABS(X) 
~ F ( Y . L ~ . l ~ O E 1 2 ~  Y=DABS(Y) 
IFIY.EQ.O.ANIP.X.EQ.0) GOT0 2111 
Q1 = A11*X**ZNll/(A12*X**ZN12 +- Bll*Y**ZMll) 
Q2 =: B21*Y**ZM21/(B22*Y**ZM22 + A21*X**ZM21) 
GOTO 2112 
2111 &I = 0 
Q2 = 0 
2112 CONTINUE 

C 
RETURN 
END 
c 

IMPLICIT REAL*8 (A-H,O-Z) 
SUBRQUTINE CEQUIL (Ql,Q2,Cl,CZ) 

CsMh.loN/QEl/QM,QK,CREF 
c: 
C SUBRB'IJTINE CALCULATES CSTAR GIVEN Q FROM THE 
C ~ ~ ~ ~ L ~ ~ ~ ~ I U ~  ISOTHERM: C=f(Q) 
c 
Al l= l .B  
ZNll=8.27 
A12=1.0 
ZN12=0.812 
Bll=0.626 
ZM11=0.76 
B21=1.07 
ZM21=1.254 
B22=1.0 
ZM22=0.906 
A2 1-= .045 
ZN21=.634 
IF(Q 1.LT. L O E L  12) Q l=DABS (Ql) 
IF(Q2.LT.P.OE-12) QZ=DABS(Q2) 
CALL MEWSTTB (QI,Q2,61,CZ) 

C C==fQ/QK) ** (I.O/QM) 
c 
RETURN 
END 
c 
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c 
C FIRST EVALUATION OF COEFFICIENTS IN RECURSION FORMULAE 
C RECURSION COEFFICIENTS ARE STORED IN DIF1 AND DIF2 
c 
C SUBROUTINE FROM MICHELSEN AND VILLADSEN, P. 418 
c 
SUBRQUTINTC JCOBI(N,NO,N1,AL,BE,DIFl,DIF2,DIF3,RQQT) 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION DIFl(40) ,DIF2(40) ,DIF3(40) ,ROQT(40) 

C 
AB=AL+BR 
AD=REAL 
AP=BE*AL 
DlFl(1) =(AD/ (AB+2.)+1.)/2. 
DIF2 (1) =O.O 
IF(N.LT.2) GO TO 15 
DO 10 I=2,N 
z 1-1: I- 3 .  
Z=AB+2.*Z1 
DIF I( I) = (AB* AD/Z/ (Zt-2.) + 1.) /2. 
IF (I.NE.2) GO TO 11 
DIE'2(I)=(AB+AP+Zl)/Z/Z/(Z+l.) 
11 Z=Z*Z 
Y =Zl*(AB-i-Zl) 
Y=Y* (AP+Y) 

10 CONTINUE 
15 X=O. 
DO 20 I=1,N 
25 XD=O.O 
XN-1.0 
XD1=-0.0 
XNl=O.O 
DO 30 J-l ,N 
XP-.(DIFl( J)-X)*XN-DIF2( J)*XD 
XP1= (DIF1 (J)-X) *XNl-DIFZ( J) *XD 1-XN 
XD=XN 
XDl=XNl 
XN=XP 
30 XN1=XP1 
%C=1.0 

IF(1.EQ.L) GO TO 21 

DIF2( I)-Y/Z/ (Z-1.) 

Z=XM/XNl 

22 zC=aC-z/(X-ROoT(J-l)) 
2 1  Z=Z/ZC> 

DO 22 J=2,I 

X=X-Z 
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IF(DABS(Z).GT.l.OD-l2) GO TO 25 
ROOT (I) =X 
x-x+.ooo1 
2Q CONTINUE 
c 
C ADD INTERPOLATION POINTS ,4T X=O AND X=l  IF RE 
c 
NT==N+NO+N1 
~ F ~ ~ ~ . E ~ . O )  68 T O  35 
DQ 31 I=1,N 

31 ROQT(J+1)=ROOT(J) 

35 IF(Nl.EQ.l) ROOT(NT)=l.O 
C 
C EVALUATE DERIVATIVES OF NODAL POLYNOMIAL 
c 
DO 40 I-1,NT 

S=N+1-I 

ROOT(1)=0. 

X-ROOT(1) 
DXF1(I)=P. 
DIF2(I)=O. 
DIF3(I)=O. 
DO 40 J=l,NT 
XF(J.EQ.1) GO TO 40 
Y=X-ROOT( J) 
DIF3(I)=Y*DIF3(1)+3.*DIF2(I) 
DIF'2(I)=Y*DIF2(1~+2.*DIFl(I) 
DIFl(I)=Y *DEF1(If 
40 CONTINUE 
RETURN 
END 

C 
c 
C SUBROUTINE DFOPB 
C FINDS DISCRETIZATION MATRICES AND GAUSSIAN ~ U A ~ ~ A T ~ ~ ~ ~  

G SUBROUTINE JCOBI MUST BE EXECUTED FIRST TO FIND ZEROS A ?  ? 
C DERPVATIVED OF NODAL POLYNOMIAL 
c: 
SUBROUTINE DFQPR j r s , N Q , N l , I , I u , n X F z , D T F 2 , n I F 3 , ~ ~ ~ ~ , V E  
IMPLICIT REAL*8 (A-H,O-Z) 
~ r ~ E ~ ~ ~ ~ N  ~1~~~~~~ ,DIF2(4O) ~ ~ I F 3 ~ ~ ~ ~  ~~~~~~~~~ , ~ ~ ~ ' ~ ~ 4 ~ ~  

Sg GAUSSIAN WEIGHTS ~ ~ R ~ ~ ~ I ~ ~ ~  TC) SUM I 

C WEIGHTS FOR GENERA J, COLLOCATION A P P ~ O ~ I ~ ~ ~ ~ ~ ~  

n 
$2 

~ ~ ~ ~ ~ ~ ~ ~ A ~ I ~ ~  ~ A T ~ I ~  FOR Y(X) 
~~~~E~~~~~~~~ MATRIX FOR U" (X) 

c ID-3 : GAUSSIAN UADRATURE WEIGHTS 
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C VECT--= COMPUTED DIFFERENTIATION WEIGHTS 
c! 
NT=N+NO+Nl 
IF(ID.EQ.3) GOTO 10 
DO 20 J=l,NT 
IF(J.NE.1) GOTO 21 
IF(ID.NE.l) GOTO 5 
VECT (I) = DIF2 (I) /DIF 1 (I) / 2 
GOTO 20 
5 VECT(I)=DTF3(I)/DIFl(I)/3 
GOTO 20 
2 1  Y=ROOT(I)-ROOT(J) 
VECT( J) =DIF1 (I) /DIFl ( J )  /Y 

20 CONTINUE 
GOTO 50 
10 Y=O. 
DO 25 J=I,NT 
X==ROOT( J) 
AX-X* (1-X) 
IF (NO.EQ.0) AX=AX/X/X 

VECT( J) -AX/DIFI( J) **2 
2.5 Y=Y+VECT( J) 
DO 60 J=l,NT 
60 VECT(J)=VECT(J)/Y 
50 RETURN 
END 

C 
C 
SUBROUTINE RKG (N,H,T,ENDT,Y) 
IMPLICIT REAL48 (A-H,Q-Z) 
DIMENSION YP(80),V(80),Y(80),C(80),W(80),Q(80) 

C 
C ..SOLVES SYSTEMS OF N ODE'S 
C ... REQUIRES AS INPUT: 
C ..................... N = NO. OF EQUATIONS 
C ..................... H = DELTA-T 

C ..................... T = INDEPENDENT VARIABLE 
C ................... ..Y(J) :-= DEPENDENT VARIABLES 
C ... REQUIRES AS SUBROUTINE "DERIVS" 
C .................... dY(l) /dT = YP(1) 
(3 ..................... dY(2)/dT = YP(2) 
c .................................... 
C ..................... dY(N)/d'T = YP(N) 

IF(ID.EQ.2) VECT( J)-VECT(J)*(DIF2(I)/DIFl(I)-2/Y) 

IF (N1.EQ.O) AX=AX/(l-X)/(1-X) 

c! ..................... ENDT = FINAL T-VALUE 

e ... VARIABLES Y(J) IN SUBROUTINE DERIVS ARE: 
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c ..................... V(1) = Y(1) 
c ..................... V(2) = Y(2) 
c ................................ 
C 
c 
K=3 
20 CONTINUE 
U=T 

V(J)=Y(J) 
30 CONTINUE 
CALL DERIVS (N,T,V,YP) 
DO 40 J=l ,N 
C(J) =H*YP( 9) 
W(J)=Y(J) i- .5*C(J) 

V(J)=W(J) 
40 CONTINUE 
U=T+B/2 
CALL DERIVS (N,T,V,YP) 
DO 50 J=I,N 
C( J)=H*YP(J) 

Q( J)=.5857864*C( J) + .1213024*Q(J) 
V( J)= W( 3) 
50 CONTINUE 
CALL DERIVS (N,T,V,YP) 
DO 60 J= l ,N  
C(  J)=H*YP(J) 
W (J)  = W (J) + 1.707107* (C (J)-Q (J) ) 

V( J)= W (J)  
60 CONTINUE 
W=T+H 
CALL DERNS (N,T,V,YP) 
DO 70 J=1,N 
C(  J) =€K*YP(J) 

DO 30 J=l,N 

Q( J)=C( J )  

W(J)=W(J) $. .2928932*(C(J)-Q(J)) 

Q(J)=3.414214*C(J) - 4.12132*Q(J) 

Y(J)=W(J) + C(J)/6. - Q(J)/3. 

70 CONTIN'CJE 
T=T+H 

ROUTINE NEWSUB [Ql,Q2,XO,YO) 
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IMPLICIT REAL*8 (A-H,O-Z) 

C REM NEWTON-RAPHSON METHOD FOR SOLVING SIMULTANEOUS 
C NONLINEAR EQUATIONS 
COMMON/ULK/CFlJCF2 
i=O 
All=1.6 
ZN11=1.27 
A12=1.0 
ZN1230.812 
B11=0.626 
ZMl1=0.76 
u21=1.07 
ZM21=1.254 
R22=I.O 
ZM22==0.906 
A21=.045 
ZN21=.634 
X=(Ql*A12/All)**( l / ( Z N l l - Z N l B ) )  
Y =( Q2*B22/B21) ** (I/( ZM21-ZM22)) 

IF(CF2.EQ.O.OR.Q2.EQ.O) GOTO 2241 
TF(CFl.EQ.O.OR.Ql.EQ.0) GOTO 2242 
IF(QlaEQ.0.and.q2.eq.Q) goto 2240 
2100 PHI = All*X**ZNll/(A12*X**ZN12 + Bll*Y**ZM11) - Q1 
XI = BZI*Y**ZM21/(B22*Y**ZM22 + A21*X**ZN21) - Q2 

BB1 = (A12*X**ZN12 + Bll*Y**ZMll) 
BB2 = (B22*Y**ZM22 + A21*X**ZN21) 
DPHXl= A 11 * ZN 11 *X* * (ZN11- 1) /BB 1 
DPHX2==-A12*A11*ZN12*X**(ZNll-ZNl2+l)/BBl**2 
DPHX=DPHXl+DPHX2 

DXIY1 = B21*ZM21*Y**(ZM21-1)/BB2 
DXIYZ- - B22*B21*ZM22*Y**(ZM21-ZM22+1)/BB2**2 
DXIY = DXIYl + DXIY2 
DXIX = -B21*A21*ZN21*X**( ZN21-1) *Y * * 2  *ZM21/BB2* 
DDD = DPIIX*DXIY-DXIX*DPRY 
Z€IPl= (-PHI*DXIY+XI*DPHY)/DDD 
ZKl l  = (-XI*DPHX+PHI*DXIX)/DDD 
x = x + ZIl l l  
Y = Y 3-ZKll 
IF(X.LT.0) GOTO 2248 
IF(Y.LT.0) GOTO 2240 
xo=x 
YO=Y 

DPHY = -A11*B11*ZM11*X**ZN1l*Y**(ZMll-1)/BB1**2 
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RPXS = ZH11/X 
RPYS=ZK11/Y 
IF( RPXS.LE. O.Ol.AND.RPYS.LE.O.01) GOTO 2250 

GOTO 2100 
2240 x=o 
Y=O 
YO=O 
xo=o 
GOTO 2250 
2241 XO=(Ql*A12/A11)**(1/[ZNll-ZN12)) 
YO=O. 
GOTO 2250 
2242 YO=(Q2*B22/B21) ** (1/(ZM21-ZM22)) 
xo=o. 
2250 CONTINUE 

RETURN 
END 
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This appendix lists the second of the main computer programs which are used to solve the 
system of equations described in Sect. 3 of the main body of this report. The routine is written 
in FORTRAN 77 and have been shown to operate on a wide variety of compnters, inchiding 
a VAX 8600, a SUN Model 3, and a Definicon 7801- plug-in board for an IBM PC-AT. A 
flowsheet of this program is given in Fig. 6. Like the first FORTRAN program, this is for the 
solution of the two- component problem with interactive multicomponent Fruendlich isotherms. 
The resistance to mass transport is assumed to be in the form assumed by Santacesaria et al. 
(1982) of an effective fluid film plus macropnre diffusion is modeled by a two constants for each 
component. The program was originally written by Giorgio Carta, University of Virginia, and 
was substantially modified by Michael Harris. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C TWO-COMPONENT ADSORPTION -SANTACESARIA MODEL 
C MICHAEL T. HARRIS - MODIFICATION IN NOVEMBER ’87 
C GIORGIO CARTA I ORIGINAL PROGRAM 8/14/86 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C ADSSAN.FOR - FILM AND MACROPORE RESISTANCE - 2 COMPONENT 
c *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C PROGRAM SOLVES FIRST ORDER PDE’S FOR WAVE PROPAGATION IN 
C *  
C FIXED BED ADSORPTION 
C *  
C CONSTANT FLUID VELOCITY 
c *  
C SANTACESAKIA’S MODEL (EXCLUDING AXIAL DISPERSION EFFECTS) 

C *  
C SOLUTION BY ORTHOGONAL COLLOCATION 
C *  
C RKG USED TO SOLVE RESULTING ODE’S 
c *  
C FREUNDLICH ADSORPTION ISOTHERM 
c *  ................................................................. 
C* c*****************************************************************- 
C” 
C EPSI=VOIDAGE FRACTION ROR=BED SORBENT DENSITY 
c *  
C; Z=RED LENGTH U=SUPERFICIAL VELOCITY 
C *  
C AM=MASS TRANSFER PARAMETER CF=FEED CONCENTRATION 
C ’  
C CO=INITIAL CONCENTRATION CREF=REFERENCE CONC. c *  
C P>TP=FEEI) PULSE DURATION X=COUT/CREF 
C *  
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C TSTEP=STEP DURATION 
C *  c***************************************************************- 
c *  
C 
IMPLICIT REAL*8 (A-H,O-Z) 
COMMON/LAGR/EL(40,40) ,NT,AKEl,AKE2,AKRBl,AKRB2,VZ,AM,YQl, 
ly02 
COMMON/QEl/QM,QK,CREF 
COMMON/ULK/CFl,CF2,ESP 
DIMENSION Y(80) 
DIMENSION DIFl(40) ,DIF2 (40) ,DIF3( 40) ,ROOT(40) ,VECT(IO) 

C 
C 
C INPUT COLUMN PARAMETERS 
c 
OPEN(WNIT=5,FILE='ASMC.DAT', STATUS='OLD') 
REWIND 5 

READ (5, *) U, AK1 ,AK2 ,Z 
READ(5,*) EPS1,ROB 
V= W / EPSI 
c 
C ASSIGN EQUILIBRIUM PARAMETERS QM AND QK 
C FOR FREUNDLICH ISOTHERM: Q=QK*(C**QM) 
C 
QM=0.5 
QK=0.6 
C 
READ (5, *) CF l,CFO,COl ,C02,CREF1 ,CREF2 
READ(5,*)TSTEP 

C 
C 
AKEI=AKl/EPSI*( 1-EPSI) 
AKEZ=AK2/EPS1* ( 1-EPSI) 
AKRBl=AKl/ROB 
AMRBZ=AK2/ROB 

READ(S,*) N 
READ(5,*) H 
READ (5, *) TDISP,ESP 
QPEN(VNXT=6,FILE='FR.DAT', STATUS='NEW') 
WRITE(6,500) 
500 FORMAT(' *** ESEB PROGRAM TO COMPUTE OUTPUT 
1 PROFILE ***'I 
WRITE(6,501) 
501 FORMAT(& ****** >> INPUT INFORMATION << *****') 
WRITE(6,502) Z, AK1, AK2, U 
502 FORMAT(' BED DEPTH =', F10.4, ' CM -- BED 

VZ=V/Z 
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IAREA = ',F10.4,' CM - BED AREA = ',F10.4, 
2'CM**2 - SUPERFICIAL VELOCITY = ', F10.4,' CM/SEC') 
C WRITE(6,503) EPSI, ROB 
C 503 FORMAT( ' BED VOID FRACTION =',F6.4, 
C 1' BED DENSITY = ',F10.4,' GRAM/LITER') 
C WRITE(6,504) CFl,CF2,CO1,C02,CREFl,CREF2 
C 504 FORMAT(' CONCENTRATIONS - FEED1 = ',E10.4,'MOLES/L 
C 1-FEED2 I ',E10.4,'MOLES/L-INITIAL2 -_ ',ElO.4,'MOLES/L 
C 1-INITIAL1 = ',E10.4, 'MOLES/L - REFl=',E10.4,' MOL/L' 
C l,'MOT,ES/L - REF2 =',EZO.4,' MOL/L') 
C WRITE[6,505) QM,QM 
C 5Q5 FORMAT(' FREUNOLICH CONSTANTS - PRE = ',F10.7, 
c 1'EXPONENT = ',F10.7) 
WRITE(6,506) TSTEP, H,TDISP,N 
506 FORMAT(' TIMES =',3E10.4, 
1' # OF COLLOCATION PT =',I2) 
NO= 1 
N l = l  
AL=Q. 
BE=O. 
NT=N+NO + N 1  
NEQ=2* (NT+NT-1) 
CALL JCOBI (N,NO,Nl,AL,BE,DIF1,DIF2,DIF3,ROOT) 
WRITE(6,114) 

DO 200 I=l,NT 
WRITE(6,115) I,ROOT(I) 
115 FORMAT('X( ',127' ) = ',F7.4) 
206) CONTINUE 
WRITF,(6,120) 
120 FORMAT(/,'*******************' 

ID= 1 
DO 10 I=1,NT 

CALL DFOPR (N,NO,Nl,I,ID,DIF1,DIF2,DIF3,ROOT,VECT) 
DO 5 K=l,NT 
EL(M,I) - VECT(M) 

C WRITE(6,130)M,EL(K,I) 
5 CONTINUE 
10 CONTINUE 
125 FORMAT(/,'COLLOCATION POINT I = ',12) 
130 FORMAT(' L[1]( ',E,' 1 - ',E12.6) 

114 FORMAT(/,'COLLOCATION POINTS',/,'*******************' ,/I 

1 

C WRITE(6,125) I 

C 
C ASSIGN INITIAL CONDITIONS 
c 
T=O.O 
CALL QEQUIL (@Ol,C02,QSTARl,QSTAR2) 
DO 20 I=l,NT-1 
Y (I) =CO 1 
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Y(2*NT-l+I)=GO2 
Y (NT-tI)=$STARl 
Y (3 * NT- 1 +I) =QSTAR2 
20 CONTINUE 
Y (NT) =QSTAR1 
Y(3'NT- 1) =QSTAR2 
c 
C ASSIGN BOUNDARY CONDITION 
YOl=CFl 
Y02=CF2 
C 
WRITE(6,123) 
123 FORMAT(/,' RESULTS OF NUMERICAL INTEGRATION',/) 

C 
ENDT-TDISP 
PFLAG=O 
30 CONTINUE 
IF(ENDT.LT.TSTEP.OR.IFLAG.EQ.1) GOTO 35 
ENDT=TSTEP 
IFLAG=1 
35 CONTINUE 
c 
CALL RKG (NEQ,H,T,ENDT,Y) 

C 
IF(IFLAG.EQ.1) Y01=CO1 
IF(IFLAG.EQ. 1) Y02=C02 

XOUT2=Y (3*NT-2)/CREF2 

WRITE(6,40)T,XOUTl,XOUT2 
40 FORMAT(F12.4,' ',F10.7,' ',F10.7) 

XOUTl=Y(NT- l ) /CREFl  

c print *,t,xout 

C WRITE(6,45)YOl,Y(NT),Y02,Y(3*NT-l) 
C45 FORMAT(/,'ENTRANCE CONCENTRATION = ',E12.6,' Y (NT) = ', 
C > E12.6) 
C 
IF(IOWTF.EQ.1) WRETE(S,*)T,XOUTl,XOUTZ 
ENDT=ENI)T+TDISP 
IF(T.GE.TSTEP) GOTO 510 
IF(IFLAG.EQ.1) GOTO 510 
GOTO 30 
560 CONTINUE 
END 
c 
c: 

c 
C SUBROUTINE TO CALCULATE DERIVATIVES OF ODE'S 
C 
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SUBROUTINE DERIVS (NEQ,X,V,YP) 

COMMON/LAGR/EL(40,40) ,NT,AKEl,AKE2,AKItBl,AKRB2,VZ, 
lAM,YOl,YOZ 
DIMENSION V(80) ,YP(80) 
CALL CEQUIL (V(NT),V(3*NT-l),CSTARl,CSTARB) 
YP(NT)=AKRBl*(YOl -CSTARl) 

IMPLICIT REAL*8 (A-K,B-Z) 

YP(3*NT-I)=AKRB2*(Y02 - CSTAR2) 
DO IO I=-1,NT-1 
YSUMI=YOl* EL ( 1,I+ 1) 
YSUMZ=Y02*EL(l,I+l) 

YSUMI=YSUMl+EL(K+ l,I+l)*V(K) 
YSUM2=YSUMZ+EL(R+ 1,1+1)*V(2*NT-l+K) 
15 CONTINUE 

Y P ( I) --akel * 1  (v( i)-cst ar 1)-vz* ysum 
YP(2*NT-l+I)=-ake2* (v(2*nt-l+i)-cstar2)-vz*ysum2 

YP(3*NT-l+I)=AKRB2*(V(Z*NT-l+I)-CSTARZ) 
10 continue 
RETURN 
END 
C 
C 
SUBROUTINE QEQUIL (X,Y,Ql,QZ) 
IMPLICIT REAL*8 (A-H,Q-Z) 
COMMON/QEl/QM,QK,CREF 

C 
C SUBROUTINE CALCULATES QSTAR GIVEN C FROM THE 
C EQUILIBRIUM ISOTHERM: Q=f(C) 
C 

DO 15 K=l,NT-P 

CALL CEQUIL (V(NT+I) ,V( 3*NT- 1+I) ,CSTAR1,CSTAR2) 

YP(NT+I)=AKRBl*(V(I)-CSTAR1) 

A1 1== 1.6 
ZNIl=1.27 
A 12 == 1 .O 
ZN12=0.812 
I31 1-0.626 
ZMll=0.96 
B21=1.07 
ZM21=1.254 
B22-1.0 
ZM22=0.906 
?a21-0.045 
ZN21=0.634 

IF(X.LT. 1 . O E  12) X-DABS (X) 
IF(Y.LT.1.OE-12) Y=DABS(Y) 
IF(Y.EQ.O.AND.X.EQ.0) G O T 0  2111 
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Q1 = All*X**ZNll/(A12*X**ZN12 + Bll*Y**ZM11) 
Q2 = B2 l*Y * *ZM2 1/(B22*Y * *ZM22 + A21*X**ZN2 1) 
GOT0 2112 
2111 Q1 = 0 
Q2 = 0 
2112 CONTINUE 

C 
RETURN 
END 

C 
SUBROUTINE CEQUIL (Ql,Q2,Cl,C2) 
IMPLICIT REAL*8 (A-H,O-Z) 
COMMON/QEl/QM,QK,CREF 

C 
C SUBROUTINE CALCULATES CSTAR GIVEN Q FROM THE 
C EQUILIBRIUM ISOTHERM: C=f(Q) 
c! 
All=1.6 
ZNll=I.Z7 
A12=1.0 
ZNP2=0.812 
€31 1=0.626 
ZMll=0.76 
B2 1 ~ 1 . 0 7  
ZM21=1.254 
B22=1.0 
ZM22=0.906 
A21=.045 
ZN21=.634 
IF(Q1.LT. 1.0E-12) Ql=DABS( Q1) 
IF(Q2.LT.l.OEIS) Q2=DABS(Q2) 
CALL NEWSUB (Ql,Q2,Cl,C2) 

C C=(Q/QK)**(l.O/QM) 
C 
RETURN 
END 
c 
C 
C SUBROUTINE JCOBI 
c 
C EVALUATION OF' ROOTS AND DERIVATIVES O F  JACOB1 POLYNOMIALS 
C P(N) (AL,BE) 
c 
C FIRST EVALUATION OF COEFFICIENTS IN RECURSION FORMULAE 
C RECURSION COEFFICIENTS ARE STORED IN DIFl AND DIF2 
c 
d= SUBROUTINE FROM MICHELSEN AND VILLADSEN, P. 418 
c 
SUBROUTINE JCOBI( N,NO,N1,AL,BE,DIFl,DIF2,DIF3,ROOT) 
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IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION DIF1(40),DIF2(40),DIF3(40),ROOT(40) 

C 
AB=AL+BE 
AD=BEAL 
AP=BE*AL 
DIFI(l)=(AD/(AB+2.)+1.)/2. 
DIF2( 1) =O.O 
IF(N.LT.2) GO TO 15 
DO 10 I=2,N 
z 1-1- 1. 
Z=AB+2,*Zl 
r>IFl(I)=(AB*AD/Z/(2+2.)+1.)/2. 
IF (I.NE.2) GO TO 11 
DIF2(I)=(AB+AP+Zl)/Z/Z/(Z+l.) 
11 z=z*z 
Y=Zl*(AB+Zl) 
Y-:Y * ( AP+Y) 

10 CONTINUE 
15 X=O. 
DO 20 k 1 , N  
25 XD=O.O 
XN-1.0 
XDl=O.O 
XNl=O.O 
DO 30 J=l,N 
XP:z( DIF1( J)-X)*XN-DIF2( J)*XD 
XP1= (DIF1( J)-X) *XNl-DIF2( J)*XDl-XN 

DIF2(I)=Y/Z/ (Z-1.) 

XI) z:zXN 
XDl=)INl 
XN=XP 
30 XNl=XPl 
ZC=l*O 
Z=XN/XNl 
IF(I.EQ.l) GO TO 2 1  
DO 22 J=2,I 
22 ZC=ZC-Z/(X-ROOT(J-1)) 

x=x-7, 
IF(I)ABS(Z).GT.l.OD-12) GO TO 25 

21 Z=Z/ZC 

ROOT( I) =x 
X :::X+.QOQl 
20 CONTINUE 

C 
C ADD INTERPOLATION POINTS AT X=O AND X=l  IF REQUIRED 
C 
NT=N+NO+Nl 
IP(NO.EQ.0) GO TO 35 
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DO 31 I=l,N 

31 ROOT(J+lf=ROOT(J) 
ROOT( 1) =O. 
35 IF( N1.EQ. 1) ROOT( NT) = 1.0 
C 
C EVALUATE DERIVATIVES OF NODAL POLYNOMIAL 
C 
DO 40 I=l,NT 
X=ROOT(I) 
DIF 1 (I) = 1. 
DIFP(I)=O. 
DIF3(I)=O. 
DO 40 J=l,NT 
IF(J.EQ.1) GO TO 40 

DIF3(I)=Y*DIF3(I)+3.*DIF2(1) 
D IF2 (I) =Y * D IF2 (I) 3-2. * DIF 1 (I) 
DIF1( I)=Y *DIFl( I) 
40 CONTINUE 
RETURN 
END 
c 
C 
C SUBROUTINE DFOPR 
C FINDS DISCRETIZATION MATRICES AND GAUSSIAN QUADRATURE 
C WEIGHTS FOR GENERAL COLLOCATION APPROXIMATION 
C SUBROUTINE JCOBI MUST BE EXECUTED FIRST TO FIND ZEROS AND 
C DERNATIVED OF NODAL POLYNOMIAL 
C 
SUBROUTINE DFOPR (N,NO,N1,I,ID,DIF1,DIF2,DIF3,ROOT,VECT’) 
IMPLICIT REAL*8 (A-H,O-2) 
DIMENSION DIFl(40) ,DIF2(40) ,DIF3(40) ,ROOT(40) ,VECT(4O) 
C 
C GAUSSIAN WEIGHTS NORMALIZED TO SUM 1 
C ID=I : DISCRETIZATION MATRIX FOR Y’(X) 
C ID=2 : DISCRETIZATION MATRIX FOR Y”(X) 
C ID=3 : GAUSSIAN QUADRATURE WEIGHTS 
C VECT= COMPUTED DIFFERENTIATION WEIGHTS 
C 
NT=N+NO-tNl 
IF(ID.EQ.3) GOTO 10 
DO 20 J=l ,NT 
IF(J.NE.1) GOTO 21  
PF(ID.NE.l) GOT0 5 
VECT (I)=DIF2 (I) /DIF 1(1)/2 
GOTO 20 
5 VECT(I)=DIF3(I)/DIFl(I)/3 
GOTO 20 

J=N+l-I 

Y=X-ROOT(J) 
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2 1  Y=RQOT(I)-ROOT(J) 
VECT( J)=DW1(I)/DIFl( J)/Y 
IF(ID.EQ.2) VECT(J)=VECT(J)*(DIF2(I)/DIFl(I)-2/Y) 
20 CONTINUE 
GOT0 50 
10 Y=O. 
DO 25 J-1,NT 
X=ROOT( J) 
AX==X* (1-X) 
IF (NO.EQ.0) AX=AX/X/X 
IF (N1.EQ.O) AX= AX/ (1-X)/ (1-X) 
VECT( J)=AX/DIFl( J)  **2 
25 Y=Y+VECT( J) 
DO 60 J=1,NT 
60 VECT(J)=VECT(J)/Y 
50 RETURN 
END 

C 
C 
SUBROUTINE RKG (N,H,T,ENDT,Y) 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION YP(80) ,V(80),Y( 8O),C(8O),W(8O),Q( 80) 
c 
C ..SOLVES SYSTEMS OF N ODE’S 
(2 ... REQUIRES AS INPUT: 
C ..................... N = NO. OF EQUATIONS 

C ..................... ENDT = FINAL T-VALUE 
C ..................... T = INDEPENDENT VARIABLE 
C ................... ..Y (J) = DEPENDENT VARIABLES 
C ... REQUIRES AS SUBROUTINE ”DERIVS” 
C ..................... dY(l)/dT = YP(1) 
C ..................... dY(Z)/dT =:= YP(2) 
c .................................... 
C ..................... nY(N)/dT = YP(N) 
C ... VARIABLES Y(J) IN SUBROUTINE DERIVS ARE: 

C ..................... H DELTA-T 

cr ..................... V(1) = Y(l)  
c ..................... V(2) = Y(2) 
c ................................ 
C 
C 
K= 3 
20 CONTINUE 
U-T 
DO 30 J==I,N 
V( J)=Y (J) 
30 CONTINUE 
CALL DERTVS (N,T,V,YP) 
UO 40 J:=E,N 
- 
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C { J)  =H* Y P (J) 
W(J)=Y(J) + .5*C(J) 

V( J)= W( J) 
40 CONTINUE 
U=T+H/2 
CALL DERIVS (N,T,V,YP) 
DO 50 J=l,N 
C (J) =H* Y P (J) 

Q(J)=.5857864*C(J) + .1213024*Q(J) 
V( J) = W (J) 
50 CONTINUE 
CALL DERIVS (N,T,V,YP) 
DO 60 J=l,N 
C ( J) =H* Y P( J) 

Q( J)=C( J) 

W( J) = W( J) + .2928932*(C( J)-Q( J)) 

W (J)- W ( J) + 1 .TO7 107* (C( J)-Q( J)) 
Q(J)=3,414214*C( J) - 4.12132*Q( J) 
V( J) = W (J) 
60 CONTINUE 
U=T+H 
CALL DERIVS (N,T,V,YP) 
DO 70 J==l,N 
C ( J) = W* Y P( J) 
Y(J)=W(J) + C(J)/6. - Q(J)/3. 

70 CONTINUE 
T=T+M 

IF (T.LT.ENDT) GOT0 20 
RETURN 
END 

SUBROUTINE NEWSUB (Ql,QZ,XO,YO) 
IMPLICIT REAL*8 (A-H,O-2) 

C REM NEWTON-RAPHSON METHOD FOR SOLVING SIMULTANEOUS 
C NONLINEAR EQUATIONS 
COMMBN/ULK/CFl,CFZ,ESP 
i=0 
All=1.6 
ZNll=1.27 
A12=1.0 
3N12=0.812 
BPB=Q.626 
ZMll=0.76 
B21= 1.07 
3M21-1.254 
B22=l.O 
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ZM22=0.906 
A21=.045 
ZN21=.634 
X=(Ql*A12/A11)*'(1/(ZNll-ZN12)) 
Y=(Q2*B22/B21) **  (l/(ZM21-ZM22)) 

IF(CP2.EQ.O.OR.Q2.EQ.O) GOTO 2241 
IF(CFl.EQ.O.OR.Ql.EQ.0) GOTO 2242 
IF(Q 1.EQ.O.and.qZ.eq.O) goto 2240 
5100 PHI = (I-O.O)*Al1*X**ZNl1/(A12*X**ZN12 + B11*Y**ZM11)+ 
1ES P * X-Q 1 
XI = (l-O.O)*B21*Y**ZM21/(B22*Y**ZM22 + A21*X**ZN21) 
l+ESP*Y - Q2 
EB1 = (A12*X**ZN12 + Bll*Y**ZMll) 
BB2 = (E22*Y**ZM22 + A21*X**ZN21) 
DPHXl=A 11*ZN 11 *X* * (ZN 11- 1) /RB 1 
DPHX2=-A 12* A 11 *ZN 12 *X** ( ZNl 1- ZN 12+ 1) /BB 1* * 2 
DPHX=DPHXl+DPHXP + ESP 
DPHY = -A11*B11*ZM11*X**ZN11*Y**(ZMll-l)/BBl**2 
DXIY 1 = B2 1*ZM21*Y * * (ZM21-1)/BB2 
T)XIY2= - B22*B21*ZM22*Y**(ZM21-ZM22+l)/BB2**2 
DXIY = DXIYl + DXIY2 + ESP 
DXIX = -B21*A21*ZN21*X**(ZN2l-l)*Y**ZM21/I3B2**2 
DDD = DPHX"DXIY-DXIX*DPHY 
ZH11= (-PIII*DXIY+XI*DPHY)/DDD 
ZKll = (-XI*DPHX+PHI*DXIX)/DDD 
x = x + ZHll 
Y = Y +ZK11 
IP(X.LT.0) GOTO 2240 
W(Y.LT.0) GOTO 2240 
xo=x 
YO=Y 

RPXS = ZM11/X 

IF(KPXS.LE. O.Ol.AND.RPYS.LE.O.01) GOTO 2250 
RPYS=ZKll/Y 

GOTO 2100 
2240 x=o 
Y-3 
YO=O 
XO-0 
GOT0 2250 
224' ALP = hll/A12 
ZNP .= Z N l l -  ZNl2 
C AL 1, N E W  P (Q 1 >XO, AL P; Z N P, ES P) 
YO = 0. 
G O T 0  2250 
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2242 ALP = B21/B22 

CALL NEWP (Ql,YQ,ALP,ZNP,ESP) 
XO=O. 
2250 CONTINUE 

ZNP = ZM21- ZM22 

RETURN 
END 

SUBROUTINE NEWP (QA1,XOl,A1,ZNU,EP) 
IMPLICIT REAL*8 (A-H,O-Z) 
write(*,*)’enter newsub’ 
i=O 
IF[QAl.EQ.O.)GOTO 203 

i=i+l 
X01= X 0 1 +  ZH 
RZH = ZH/XOl 
write( *,*)i,mh 
IF(RZH.LE.0.0001) GOT0 202 
GOTO 201 
203 XOl=O.O 
202 CONTINUE 
RETURN 
END 

20 1 Z H= ( 1- EP) *A 1 *XO 1 * * (ZNU- 1.0) +EP 
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AI .I. Program input infomation 

The two programs we have listed operate in precisely the same way. One must 
create a data input file, (ASMC.DAT), which is used to provide parameters and 
other input information for the operation of the program. The file is open format 
with one inpiit per line as follows: 

TYPICAL INPUT INFORI'V~ATION~ 

Input Description 

0,I.l ....................................... Superficial Velocity, IJ  
0.05 .............................. Mass Transfer Coefficient, AK1 
0.05 .............................. Mass Transfer Coefficient, AM2 
438.5 Length of Column, E 
0.35 ................................... Density of Particles, ROB 
0.5 ........................................ Porosity of Bed, EPSI 
0.0582 .................................. Feed Concentration, CF1 
0.0502 .................................. Feed Concentration, CF2 
0.000 ................................. Initial Concentration, COl 
0.000 ................................. Initial Concentration, C 0 2  
0.0502 ......................... Reference Concentration, CREFl 
0,0502 ......................... Reference Concentration, @REF2 

.................................................. TSTEP 
4 .............................. No. of Internal Collocation ]Points 
2.00 .................................. Numerical Integration Step 
PO00 ..................................................... TD IS P 
0.94 ...................... ]Particle Porosity (ADSSAN.FOR only) 

....................................... 

~ 

In the data file only the numerical values appear. 



The output information is given in a file called FR.DAT which is created by 
the program. The results appear as follows: 

Typical. Output File 

TINE XOUTl x0ut2 

100.0 
200.0 
300.0 
400.0 
500.0 
m . 0  
700.0 
800.0 
900.0 
1000.0 
1100.0 
1200.0 
1300.0 
1400.0 
1500.0 
1600.0 
1700.0 
1800.0 
1900.0 
2000.0 
2100.0 
2200.0 
2300.0 
2400.0 
2500.0 
2600.0 
2700.0 
2800.0 
2900.0 

-.01662 
,0539132 
.(I536714 
.OS40616 
.0546014 
.05532002 
.0562222 
,0573093 
.(I585764 
.0680262 
.0616591 
.0634 749 
,0654777 
.Of376783 
.0700456 
.0725943 
.0753236 
.0782330 
.0813222 
.Of345912 
.0880403 
.0916699 
.0354808 
.OW4741 
.IO36511 
.I080133 
“ 1125625 
.1173007 
.I222297 

-.OM 1621 
.0056909 
.0057257 
. ~ 0 5 8 ~ ~  1 
.W59109 
.6)860504 

,0066659 
.a069374 
.0072429 
.0075825 
.0079567 
.0083677 
.0088120 
“8092917 
.0098068 
.a103579 
0 01 094 53 
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Typical Oixtput File 
CONTINUED 

TIME XOUT1 x0ut2 

3000.0 
3100.0 
3200.0 
3300.0 
3400.0 
3500.0 
3600.0 
3700.0 
38QO.O 
3900,O 
4800.0 
4100.8 
4200.0 
4300.0 
4400.0 
4500.0 
4508.0 
4700.0 
4800.0 
4900.0 

5 1 00.0 
5263CB.G 
5300.0 
5400.c 
550c.o 
5500.0 
5700.0 
5800.0 
5900.15 

.12735 12 

.1327631 

.1384219 

.1442828 

.1503633 

.1567755 

.E33354 

.1701359 

.1771796 

.1845563 

.1922083 

.208 I361 

.2164984 
2251307 
.2340361 
.2432 1’14 
.2526766 
2624 I57 
.2724359 
.2828898 
.2937639 
.3046674 
.3158547 
.3273207 
.33906 19 
.3510739 
.3635181 
.3 76 189 
.3893704 

.0211239 

.0222938 

.0235212 

.02481le 

.0261790 

.0276053 

.0291039 

.030678 1 

.0323452 

.0340947 

.0359239 

.0378450 

.0398622 

.04 19797 

.0442018 

.0465329 

.0489775 

.05 1540 1 

.0542258 

.057065 

.060049 

.8631368 

.Of363637 

.0697362 

.O732595 

.07693 15 

.0806343 

.0846618 

.0888618 
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TIME 

Typical Output File 
CONTINUED 

XOUTl XOTJT2 

6000 .O 
6100.0 
6200.0 
6300.0 
6400.0 
6500 .O 
6600.0 
6700.0 
68OQ.O 
6900.0 
7000.0 
7100.0 
7200.0 
7300.0 
7400.0 
7500.0 
7600.0 
7700.0 
7800.0 
7900.0 
8000.0 
8100.0 
8200.0 
8300.0 
8400.0 
8500.0 
8600.0 
8700.0 
8800.0 
8900.0 

.4026807 

.4162485 
,4303758 
A444953 
.4588580 
.4734456 
.4882394 
,5032174 
.5189223 
.5 34 2 569 
.5497749 
A654656 
.Sa12423 
.5971108 
.6 130499 
.6290383 
-6450314 
.6610842 
-6770891 
,6930511 
.7089560 
.7258146 
.7414835 
-7570825 
.7725392 
.7878178 
.8028963 
SI7753 I 
.8323675 
,8468658 

.a97 79435 

.IO75133 
e 1 I26368 
,1179454 
.I234559 
.I291637 
.I351517 
.I412626 
-1475793 
.I5409 ’7 1 
.I608141 
.16??314 
.I748479 
.1821624 
.I896 762 
.I973825 
-2052782 
2133616 
.2216291 
.2302875 
2389182 
“24772331 
.2566952 
2658268 
-27511 8.7 
. ~ ~ 4 ~ 4 ~ I  
,294 3.14 



Typical Output File 
CONTINUED 

TIME XOUTl x0ut2 

9000.0 
9100.0 
9200.0 
9300.0 
9400.0 
9500.0 
9600.0 
9700.0 
9800.0 
9900.0 
10000 .o 
10100.0 
10200.0 
10300.0 
10400.0 
10500.0 
10600.0 
10 700.0 
10800.0 
10900.0 
11000.0 
11100.0 
11200.0 
11300.0 
11400.0 
115eO.O 
11600.0 
11700.0 
11880.0 
11900.0 

.8608105 

.8745708 

.8880240 
,901 144 1 
.9139167 
.9263284 
.9383670 
.9500218 
.9612832 
.9721432 
.9825953 
.992634 1 
1.0022557 
1.0114577 
1.0202387 
1.0285989 
1.0365395 
1.0440629 
1.0511728 
1.0578736 
1.0641709 
1.0700713 
1.0755821 
1.08071 13 
1.0854676 
1.0898606 
1.0939001 
1.0975964 
1.1009605 
1.1040033 

.3136562 
,3235997 
,3336514 
.3438026 
.3540444 
3643679 
.3747639 
3852232 
.3957365 
.4062942 
.4 168868 
.4275050 
.4381391 
.4487799 
.4594179 
.4 7004 39 
.4806489 
.4912239 
.SO17601 
.5122490 
.5226824 
.5330521 
A433504 
.5535697 
.5637030 
.5737432 
.5836839 
.5935189 
.GO32422 
.6128483 
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Typical Output File 
CONTINUED 

TIME XOUTl XQUT:! 
__ 

12000.0 
12100.0 
12200.0 
12300.0 
12400.0 
12500.0 
12600.0 
12700.0 
12800.0 
12900.0 
13000. 0 
13100.0 
13200 .O 
13300.0 
13400.0 
13500.0 
13600.0 
13’700.0 
13800.0 
13900.0 
14000.0 
14100.0 
14200.0 
14300.0 
14400.0 
14500.0 
14600.0 
14700.0 
14800.0 
14900.0 

1. 1067363 
1.1091711 
1 ,1113 194 
1.1 131930 
1.1148039 
1.1161638 
1. 1172846 
1.1181781 
1.1188557 
1.1193290 
1.1 196091 
1.1197070 
1.1196336 
1.1 193994 
1.1190144 
1.1184888 
1.1178320 
1.1170534 
1.1 161619 
1 a 1151661 
1.1140745 
1.1128948 
1.1116348 
1.1103017’ 
1. I089025 
1 .I074438 
1 .) 10593 19 
1.1043727 
1.1027720 
1.10P135l 

-62233212 
-6316889 
.&io9141 
.6500036 
.6589538 
A677612 
.6 7642 29 
.6849362 
.6932987 
.70 15085 
.7095638 
e 7174634 
.7252061 
.7327912 
e 7402 183 
.?474870 
.7545975 
.7615500 
.7683451 
.7749835 
.78 1466 1 
” 7877941 
.7939688 
.7999917 
-8058644 
.8115887 
a 8 1 71665 
.8225998 
~ g 2 ~ $ 9 0 ~  
.8330416 
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Typical Output File 
CONTINUED 

TIME XOUTl x0ut2 

15000.0 
15 100.0 
15200.0 
15300.0 
15400.0 
15500.0 
15600 .0 
15700.0 
15800.0 
15900 .O 
16000.0 
16100.0 
16 200.0 
16300.0 
16400.0 
16500.0 
16600.0 
16700.0 
16800.0 
16900.0 
17000.0 
17100.0 
17200.0 
17300.0 
17400.0 
17500.0 
17600.0 
17700.0 
17800 .O 
17900.0 

1.0994670 
1.0977725 
1.0960561 
1.0943221 
1.0925743 
1.0908165 
1.0890522 
1.0872846 
1.0855166 
1.0837510 
1.0819905 
1.0802375 
1.0784941 
1.0767623 
1.0750440 
1.0733410 
1.0716546 
1.0699865 
1.0683377 
1.0667095 
1.0651028 
1.0635186 
1.0619577 
1.0604208 
1.0589084 
1.057421 1 
1.0559593 
1.0545234 
1.053 1136 
1.0517303 

.8380546 
3429322 
.8476768 
.8522909 
.8567770 
3611377 
.8653756 
.8694933 
.8734935 
.8773789 
.8811519 
.8848154 
.8883719 
.891824 1 
.8951744 
.8984256 
.9015891 
.go46405 
.go76093 
.910488 8 
.9132815 
.9159898 
.9 186 160 
.92 11624 
.9236312 
.9260246 
9283448 
.9305938 
.9327738 
.9348867 
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Typical Output File 
CONTINUED 

TIME XOUTl XOUJT2 

18MM.O 
181cm.O 
18200.0 
18300.0 
18400.0 
18500.0 
18600.0 
187UQ.O 
18800.0 
18900.0 
19000.0 
19 100 .o 
19200.0 
19300.0 
19400.0 
19500.0 
19600.0 
19700.0 
19880.0 
19900.0 
20000.0 
20 108,O 
20200.0 
20300.0 
20400.0 
20500.0 
20600.0 
20700.0 
20800.0 
20900.0 

1.0503734 
1.0490433 
1.0477398 
1 .O46463Q 

1 .&I39894 
1.0427923 
2.0416216 
1.0404769 
1.0393581 
1.0382650 

1.0361546 
1.035 1368 
1.0341435 
1.03 3 1 74 2 
1.0322288 
1.0313068 
1.0304078 
1.0295315 
1.0286775 
1.0278454 
1.0270347 
1.0262452 
1.0254763 
1.0247277 
1.0239990 
1.0232898 
1 .O225%6 
1.0219280 

I .a452129 

1.0371973 

9369345 
.9389191 
.9408424 
.942706 :l 
.9445122 
-946262% 
.94 79579 
.94W09 
.95 11928 
-9527352 
.9542295 
9556773 
.95707W 
.9584387 
.9597551 
.9610304 
,9822658 
9634625 
.9646218 
.9657448 
.9668327 
.9678865 
-9689072 
.9698959 
.9708536 
.9717813 
-9728799 
.~~~~~~~ 

.9752097 
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Typical Output File 
CONTINUED 

TIME XOUTl x0ut2 

2 1000.0 
21100.0 
2 1200 .0 
21300.0 
21400.0 
21500.0 
21600.0 
2 1700.0 
2 1800.0 
21900.0 
2 2000.0 
22 100.0 
2 2200.0 
22300.0 
2 2400.0 
22500.0 
22600.0 
22700.0 
22800.0 
22900.0 
23000.0 
23180.0 
23200.0 
23300.0 
23400.0 
23500.0 
23600.0 
23700.0 
23800.0 
23900.0 

1.0212747 
1.0206393 
1 .O200213 
1.0194203 
1 .0188360 
1.0182680 
1.0177159 
1.01 71 793 
1.0166578 
1.0161511 
1.0156588 
1.0151805 
1 -0 14 7 160 
1.0142648 
1.0138266 
1.013401 1 
1 .a129880 
1.012586 
1.0121975 
1-01 18195 
1.01 14526 
1.0110966 
1.0107510 
1.0104 158 
1 .0 100904 
1.0097748 
1.0094685 
1.0091 7 15 
1.0088833 
1.0086038 

.9760006 

.9775085 

.9782270 

.9789230 

.9795970 

.9802498 
9808820 
.9814943 
9820873 
.9826616 
.9832178 
.9837565 
9842781 
9847832 
9852724 
.9857461 
9862048 
.9866491 
.9870792 
.98 7495 7 
9878991 
.9882896 
.9886678 
.9890310 
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Typical Output File 
CONTINUED 

- 

TIME XOUTl x0ut2 

24000.0 
24100.0 
24200.0 
24300.0 
24400.0 
24500.0 
24600.0 
24700.0 
24800.0 
24900.0 
25000.0 
25100.0 
25200.0 
25300.0 
25400.0 
25 500.0 
25600 .O 
25700.0 
25800.0 
25900.0 
2moo.o 
26180.0 
26200.0 
26300.0 
26400.0 
26500.0 
26600.0 
26700.0 
26800.0 
26900.0 

1 .oO83328 
1 .a380699 
1.0078149 
1.0075677 
1.0073280 
1.0070956 
1.0068703 
1 .m66519 
1 .HI64402 
1.0062349 
1.0060360 
1.0058432 
1.0056563 
1 .0054752 
1.0052997 
1.0051297 
1 .OO49649 
1.0048052 
1.0046505 
1.0045006 
1 BO43555 
1.0042148 
1.0040786 
1 .0039466 
1 .OO38187 
1 .QQ36949 
1.0035750 
1.0034589 
1 .OO33464 
1.0032375 

.99 15 740 
-9918478 
.9921128 
3923694 
.992617'7 
.9928581 
,9930909 
.9933162 
.9935343 
.993 7454 
.9939497 
9941475 
3943390 
.994 524 3 
.9947037 
9948773 
.9950453 
.9!352079 
.9953652 
..9955175 
"9956649 
.9958076 
.9959456 
.9w0792 
.9962084 

.9%57Pi' 
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Typical Output File 
CONTINUED 

TIME XOUTl XOUTP 

27000.0 
2 7 100.8 
27200.0 
27300.0 
27400.0 
27500.0 
27600.0 
27700.0 
27808.0 
279OO .0 
28000.0 
28100.0 
28200.0 
28300.0 
28400.0 
28.500.0 
28600.0 
28700.0 
28800.0 
28900.0 

29 1100 .o 
29200.0 
29300.0 
29400.0 
29500.0 
29608.0 
28780.0 
29800.0 
29900.0 
30000.0 

1.0031328 
1.0030299 
1.0029310 
1.0028352 
1.0027425 
1.0026528 
1.0025659 
1.0024818 
1.0024003 
1.0023215 
1.8022452 
1.0021 713 
1.0020998 
1.002030 
1.0019636 
1.0018988 
1 .OO 18361 
1.0017751 
1 .0017166 
1.0016598 
1.0016048 
1.0015516 
1 .00 1500 1 
1.0014502 
1.0014020 
1 -001 3554 
1 .0813102 
1.0012666 
1.0012243 
1.0011835 
1.001 1439 

-____ 
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APPENDIX 2. NEWTON-RAPHSON METHOD FOR SOLVING 
SIMULTANEOUS EQUATIONS 

The following is an example of the Newton-Raphson method for solving two 

simultaneous equations. First, define two functions as follows: 

If x, and yo are approximate values of a pair of roots and h and k are corrections, 

so that 

x = x0 + h, 

y = y o % - k ,  

then (Al )  and (A2) becomes 

Expanc ing (A3) and (A4) by Taylor's theorem for a function of two variables,the 

following expression is derived: 

Equations A5 and A6 are solved simultaneously to determine values of h and k. New 

values of zo and yo are computed by calculating x and y, and substituting these 

values into Eqs. A5 and A6. This procedure is repeated until h and k approach 

zero or some predetermined quantity. 
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In the present algorithm (Carta's Model), the functions q5 and + are deiined as 

follows: 

(AT) 

(A$) 

A l l  * CI""" - 
$ b ( C I , C i )  = -- - Q1 

I321 * c ; Z M 2 1  - 
* Z N 2 1  9 2  d+; ' 4) = 

A12 * c ; z N 1 1 2  + k 1 1  * c ; ~ ~ ~ ~  

3322 * c;" 
Santacesaria's model requires that $b and q!~ are t o  be defined a: 

2 2  + A21 * c ,  

(A? 

(A81 

- ._.__.I___ - A l l  * c;""ll 
*ZM 11 q 1  + ($(e* =-.-..-.- 

$+I ' 4) = __ 
B22 * c ; Z M 2 2  

A12 * c ; ~ ~ ~ ~  + B11 * c2 1 '  2 

B21* c y 2 1  - 
- Q2 + v; __I._... +- A21 * 

The term (1 - cp) has been deleted because qr , as is given by Liapis and Rippin 

(1978)' is in terms of grams of sorbent per unit total particle volume; therefore, a 

volume correction i s  not necessary. 
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