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ABSTRACT 

A technique for determining interfacial tension from the shape of an axisym- 
metric fluid-liquid interface is presented. The technique entails using a novel data 
acquisition method which uses a high speed video camera to record pendant drop 
images and a standard graphics computer to precisely measure drop edge coordi- 
nates. 

The interfacial tension is determined by curve-fitting the drop edge coordinates 
to the Laplacc equation. Curve-fitting is achieved by defining the objective function 
as the sum of the squared perpendicular distance between the theoretical Laplace 
curve and the experimental data points. An iterative nonlinear parameter esti- 
mation technique (the linearization method) is subsequently used to rninirnize the 
objcctive fiinction by varying key parameters [i.e. X ,  and yj (apex coordinates), 
R,, a n d ,  the shape factor, P c ] .  The  interfacial tension i s  obtained from P,. 

Experimental results show that precisions of 1.2-2.5% are achieved in deter- 
mining interfacial tensions for various liquid-liquid systems. Furthermore, the efrect 
of tempcrature on the interfacial tension of several systems, and the effect of salt 
on the interfacial tension of water-2-ethyl hexanol are presented. 

xi 





AN ADVANCED TECHNIQUE FOR 
INTERFACIAL TENSION MEASUREMENT 

IN LIQUID-LIQUID SYSTEMS 

M. T. Harris 
C. 11. Byers 

1. INTRODUCTION 

The interfxial tension, 7, in liquid-liquid systems and the surface tension 

in liquid-gas systems are probably the most fundamental equilibrium proper- 

ties of an interface. Their values are one of the important factors governing 

the behavior of many systems of academic and practical interest (Aveyard and 

Briscoe 1977). For example, surface tension affects the extent of spreading when 

a liquid chemical is spilled on water. The interfacial tension between an organic 

liquid and water affects such processes as the formation of stable emulsions, the 

resistance to flow through orifices, and the dispersion of droplets. In liquid- 

liquid extraction processes, a solvent with a high interfacial tension is required 

to obtain good phase separation after mixing. 

A prime motivation for our studying interfacial tension is the interest in 

advanced mass transfer operations by the Chemical Engineering Research group 

at the Oak Ridge National Laboratory (ORNL). The objective of these studies 

i s  the improvement of mass transfer in liquid-liquid extraction processes iIivolv- 

ing droplets in a continuous media (Wham and Byers 1985, Scott 1986). The 

studies have shown that the rate of mass transfer can be enhanced by forcing 

dispersed phase droplets to oscillate. In those studies, the imposition of a pulsed 

high-intensity electric field causes aqueous droplets, in a nonconducting contin- 

uous phase such as 2-ethyl-1-hexanol, to oscillate about a spherical form. Drop 



eccentricity, e ,  a 

drop, is giv, en as 

characteristic parameter for describing the deformation of the 

where a is the major axis of the drop and 6 is the minor axis. A force balance 

between the electric forces and surface forces can relate the drop shape in terms 

of e to the electric field strength (Wham and Dyers 1985). For small values of 

E O  
e 0: .- 

where E ,  is the applied potential and T is the equivalent drop radius. Therefore, 

it can be seen that the primary physical properties which influence deformation 

of the droplet by an electric field arc interfacial tension and drop size. The 

equation also suggests tha.t if the interfacial tension and drop size are constant 

then e is proportional to the electric field strength, E o .  However, the interfacial 

tension may be influenced by a number of variables such as field strength or con- 

tamination of the surface of the droplet by surfactants. Therefore, the variation 

of interfacial tension with siirfactant concentration and electric field st-ength is 

important if an accurate force balance is to be developed. 

There are several methods for measuring interfacial tension. Padday (1969) 

and Ambwani arid Fort (1979) give a list of methods such as the capillary height, 

Wilhelmy plate, DuNouy ring, drop weight, maximum bubble prcssure, sessile 

drop and pendant drop. Most of the techniques, except for the maximum bubble 

pressure method which is difficult to operate, are suitable for measuring the sur- 

face tension of pure liquids. However, the maximum bubble pressure, Wilhelmy 
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plate, capillary height, Du Nouy ring, and drop weight methods are not suitable 

for determining the interfacial tension of liquid-liquid systems, or in some cases 

the surface tension of solutions, when ageing occurs. Furthermore, the capillary 

height, sessile drop, and pendant methods are the only methods where surface 

and interfacial tension values are obtained from systems where there is truly 

liquid-liquid and liquid-vapor equilibria. 

Of the methods mentioned above, the sessile drop and pendant drop are 

the most generally used experimental techniques. These techniques are suitable 

for experimentation with (1) biologics! systerns, (2) determination of interfacial 

tension between two liquids, (3) experimentation with difficult situations using 

reactive materials, (4) for imposing electric, fields on droplets to analyzg mass 

transfer and flow, and (5) a host of other situations. 

When gravity is the only external force acting on a system, the equation 

which governs the shape of all pendant and sessile drops is called the Laplace 

equation (Padday 1969, Bashforth and Adams 1883) and is given as follows: 
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where 

A P  = pressure difference across the interface, 

Ap ~ density difference between phases, g/cm3, 

g - acceleration of gravity, cm/s2, 

y = corrected vertical coordinate, 

R ,  = radius of curvature at apex or origin, 

y - interfacial tension, and 

lil and R, ~ principal radii. 

This equation can also be transformed into the following dimensionless form: 

d 4  sin4 
- + 
ds X - 2 + p y .  (4) 

where 

4 : slope at the point X,Y, 

s = arc length, 

X = dimensionless horizontal coordinate, 

Y : dimensionless vertical coordinate, and 

A PgR: 
/? - shape factor - -. 

Y 

Various other forms of eq. 2 and 3 have been applied to several methods 

for calculating interfacial tension and contact angles from pendant and sessile 

drops. A widely used technique developed by Andreas, Hauser, and Tucker 
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(1938) entails using the method of a selected plane to rapidly obtain interfacial 

tension from pendant and sessile drops. With their method, interfacial tension is 

computed from dimensionless quantities, S and l / X .  The parameter S is defined 

as the ratio of the measured quantities, D, / D e ,  where D, is the diameter at the 

equatorial plane, and D,  is the diameter at an arbitrarily selected plane. M is a 

shape factor and is defined as 

2 

X = P ( $ ) .  

The interfacial tension is then computed by the following equation: 

( 5 )  

Andreas, Hauser, and Tucker (1938) have gellerated tables of S as a function of 

l / X .  Therefore, the interfacial tension of a liquid-liquid system can be readily 

calculated by measuring the characteristic diameters, De and D, , and applying 

the tables of Andreas, Hauser, and Tucker (1938). 

Although, the method by Andreas, Hauser, and Tucker and other selected 

plane methods for determining surface and interfacial tension are simple, there 

are concerns whenever high accuracy and consistency are needed. A major 

source of error in those methods is connected with data acquisition. Since a few 

critical measured parameters are used to describe the whole surface of the drop, 

they must be determined with high precision (Andreas, Hauser, and Tucker 

1938; Fordham 1948; Niederhauser and Bartell 1950; Jennings 1957; Stauffer 

1965; Winkel 1965; Butler 1967; Roe, Bacchetta, and Wong 1967; Rarnakrishan, 

Princq, and Hartland 1977; Lyons, Elbing, and Wilson 1985) . Furthermore, 

5 



the selected plane methods are statistically poor procedures. 

To improve the statistical soundness of determining interfacial tension by 

the sessile and pendant drop methods, techniques have recently been developed 

to curve fit drop shape coordinate data to the Laplace equation (Maze and Bur- 

net 1969; Maze and Burnet 1971; Vos and Los 1980; Rotenberg, jnoruvka, and 

Neumaiiri 1981; Girault, Schiffrin, and Smith 1982; Girault and Schriffin 1983; 

IIuh and Reed 1983; Boryce, Schurch, Rotenberg, and Neumann 1984). These 

techniques are becoming more attractive as advanced video image digitizers and 

microcomputers are being developed. 

The objective of this study is to develop a technique that allows precise 

measurement of interfacial tension using high speed video equipment to record 

surface data on the drops. Nonlinear parameter estimation methods are used to 

obtdin interfacial tension values by curve fitting experimental drop profile data 

to the Laplace equation. The present method is very similar to the technique 

employed by Rotenberg, Bonivka, and Neumann (1981) in that the optimum 

interfacial tension estimates are obtained by minimizing the perpendicular dis- 

tance between the experimental data points and the Laplace equation. With 

good initial parameter estimates, this technique will converge to a unique solu- 

tion where the sum of squares is a global minimum. The present technique offers 

several advantages over those by Rotenberg, Boruvka, and Neumann (1981) and 

others. These advantages include: 

(1) Good initial parameter estimates were obtained during the digitization 

process and therefore, convergence was faster. 

(2) The algorithm converged in 5 to 10 iterations, in comparison to 25 to 50 
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iterations for other nonlinear parameter estimation algorithms. 

(3) Since the algorithm was written to support a research project investigat- 

ing the effects of electric fields on droplets, it could be easily adapted 

to situations where sessile and pendant drops are subjected to external 

fields in addition to gravitational fields, i.e. electrical fields. 

(4) Readily available hardware were used for digitization and numerical com- 

putations; therefore, the design of special equipment is not required. 

(5) The use of high speed video equipment allowed easy adaptation for study- 

ing the dynamic effects of contaminants on interfacial tension. 

Finally, the above technique was tested on fluid-liquid systems with known 

interfacial tensions to determine the accuracy and precision of the method. The 

interfacial tension of several liquid-liquid systems (i.e., water-2-ethyl hexanol, 

water--octanol, glycerin-cyclohexane, and ethylene glycol-cyclohexane) that are 

important to electric field studies were also tested to determine the precision of 

the method. 

2. LITERATURE SURVEY 

2.1 Interfacial and Surface Tension Measurement 

Several studies have used the pendant drop method for determining inter- 

facial tension. The research has focused on solving the equations governing the 

drop formation and the errors associated with measuring interfacial and surface 

tension. Bashforth and Adams (1883) published the pioneering work of using 

numerical integration techniques to solve the Laplace equation of capillarity. 

They generated a table showing the variables in Eq. 4, 
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dd sin4 
ds x - + -  =2+/3y. (4) 

Hashforth and Adams calculated the solution to this equation for the pendant 

drop for values of /3 from -0.1 to -4.0 at  intervals of 0.1, and Fordham (1948) 

calculated values of /? ranging from -0.25 to -8.6 at intervals of 0.025. These 

results can be used to estimate (to an accuracy of 0.001 tu 0.01%) the constants 

(+  and S)  riceded for Irieasiiring intcrfacial and surface tensions by the method 

suggested by Andreas, IIauser, and Tucker (1938). Fordham (1948) pointed out 

that a precise experimental technique is required if low percent errors in the 

interfacial or surface tension are desired. 

Stauffer (1965) solved the Laplacian equation for capillarity by a technique 

involving reiterated approximations arid employing a high-speed digital com- 

puter for the computations. Using that method, StauEer was able to extend the 

table of as a function of S to lower S values (0.197 to 0.654). However, as 

stated in his article, lower S values will yield a higher degree of error in intes- 

facial or surface tension values because of the errors associated with measuriiig 

D, a n d  D, .  

Winkel (1965) proposed a method which uses the minimum diameter at  

the neck of the profile in place of the diameter,Dn, , that was proposed by An- 

dreas, Ilauser, and Tucker (1938). Roe, Bacchetta, and Wong (1967) determined 

values of + for five different selected planes at vertical distances y, = n13,, 

where n - 0.8,0.9,1.0,1.1 and 1.2, in terms of S,, D, / D e .  It was shown by 

Ramakrishnan, Princq, and IIartldrid (1977) that the shape factor S, is most 

sensitive to L), for n = 1.25. Subsequently, the value of 4%- for the region 

0.22 < S,,,, < 0.82 was found to bc given to better than 0.5% accuracy by a 
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linear expression: 

A recent technique has been developcd by Lyons, Elbing, and Wilson (1985) 

that allows the determinatiori of interfacial tension from the coordinates of any 

two points (excluding the origin) on the profile of a pendant or sessile interface, 

including pendant drops or bubbles which do not exhibit an equatorial diame- 

tes. A general method for determining the optimum choice of points that will 

minimize error due to definition of the drop edgc was given. The authors claim 

that, for minimizing the error in surface tension caused by uncertainty in locat- 

ing the boundary of the drop, this method is better than methods which fit a 

large number of profile data to the Laplace equation. 

Huh and Reed (1983) developed a method of measuring very low interfa- 

cial tensions by fitting the optimum profile to 35 to 55 experimental points on 

the drop surface, for either sessile or pendant drops. Their algorithm required 

manual adjustment of the profile data to correct for asymmetry. 

Rotenberg, Roruvka, and Neumann (1981) devised a novel computation 

scheme for determining interfacial tensions from the shapes of axisymmetric 

liquid-fluid interfaces. The strategy employed was to construct an o1)jective 

function which expressed the error between a physically observed and a theoret- 

ical Laplacian curve. The objective function was minimized numerically using 

the method of incremental loading in conjunction with the Newton-Raphson 

method. The input information to the program consisted of the following: 

1. Set of data points:(X,, Yn), n = 1, . .*.. ,n 
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2. Density difference, gravitational acceleration vector, assumed value of 

surface tension, X,,, Y , ,  and R,. 

3. Control parameters, such as the number of repetitions of the optimiza- 

tion procedure, and the total number of data points. 

In a more recent paper by Royce, Schurch, Itotenberg, and Neumann (1984), 

measurement of surface and interfacial tension by the previously mentioned com- 

putational technique had an accuracy of the order of one percent. It was stated, 

however, that the attainable accuracy will be limited only by the accuracy of 

the digitization process. 

A paper by Girault, Schiffrin, and Smith (1982) reported on a new method 

for the measurement of surface and interfacial tensions. The method was based 

on using video digitizing techniques to iiieasiire drop profile coordinates and 

a least squares computer fit analysis of the drop shapes. Furthermore, image 

acquisition required 64 ms to digitize the drop. A precision in the interfacial 

tension of approximately one percent was achieved. 

The method by Girault, Schiffrin, and Smith (1982), and the method by 

Boyce, Schurch, Rotenberg, and Neumann (1984) are good; however, these tech- 

niques may require special equipment OT computer software. The technique that 

is presented in this study uses commonly used hardware and software to achieve 

the same degree of precision. 

2.2 Nonlinear Parameter Estirnatioii and Numerical Integration 

Determining interfacial tension by curve fitting experimental data to the 

Laplace equation involves laborious calculations. Furthermore, nonIinear equa- 
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tions are involved. This requires the use of iterative nonlinear parameter esti- 

mation routines to determine the best parameter estimates. The advent of the 

computer and better nonlinear parameter estimation methods is enabling such 

difficult problems to be solved. 

An excellent discussion on the linearization technique for nonlinear parame- 

ter estimation is given by Draper and Smith (1981). Wentworth (1965) provides 

the mathematical model for the nonlinear parameter estimation technique that 

is used in the present nonlinear parameter estimation computer algorithm to de- 

termine interfacial tension. The original algorithm was developed by Whitman 

(1982) to solve nonlinear parameter estimation probleans. 

The fourth-order Runge-Kutta integration routine is based on the proce- 

dure outlined by Scarborough (1966). A method by Bridger (1977) i s  used to 

test the perpendicularity between the experimental datum and the theoretical 

Laplace curve. 

2.3 Interfacial Tension of Various Liquid-Liquid Systems 

Testing the accuracy and precision of the algorithm that is developed in 

this study requires interfacial tension values for several fluid-liqu id systems. 

Furthermore, the interfacial tensions of several liquicbliquid systems that are 

important to electric field studies are unknown. Therefore, a literature survey 

was conducted to find literature values for interfacial tension, as well as to find 

methods for predicting interfacial tension. 

A study of interfacial tension for water-organic interfaces has been done by 

Donahue and Bartell (1952). Their study showed a direct relationship between 
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interfacial tension and the degree of miscibility between the water and organic 

solvents. Furthermore, Antonoff’s rule was shown to be valid only when applied 

to the liquids which form no lenses, or at most, lenses which have very low angles 

of contact on water. Antonoff’s rule states that the interfacial tension between 

two liquids is the absolute difference between the surface tension of each liquid 

that is saturated with the other phase. Interfacial tension values between water 

arid alcohols, alkanes, ketones, and other classes of compound were reported. 

The pendant drop method was employed to determine the interfacial tension 

values. 

Good and Elbing (1970) gave a list of interfacial tension values for water - 

organic systems. Their paper also presented a method with the most theoretical 

basis for predicting interfacial tension. The method allows the prediction of 

interfacial tension from the surface tension of pure components and the miltila1 

solubility of the liquids. Of particular interest to the present study, was the 

interfacial tension for water cyclohexane and water-1-octamiol systems. 

The interfacial tension for water-%ethyl hexanol of 13.9 dyne/crn (139 

pN/crn) has been reported by Clinton (1968), and the measurements were made 

by the DuNouy Ring method. However, it has been reported by Padday (1963) 

that this method is not well suited for measuring interfacial tension for liquid- 

liquid systems. 

Aveyard et a1 (1972, 1077) presented data that allows a qualitative com- 

parison of the effect of temperature on the interfacial tension of water-alcohol 

systems. Girault and Schiffrin (1983) gave data for the comparison of the efFect 

of NaCl concentration on the interfacial tension of water-%ethyl hexanol. 
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3. THEORETICAL BACKGROUND 

3.1 Hydrostatic Approach to Surface/Interfacial 

Tension 

Young and Laplace (Padday 1969) developed the basic theory that asso- 

ciates the pressure across a curved surface to two radii of curvature. Both 

recognized that the attractive forces between molecules would set up a pressure 

across a curved liquid-fluid interface. Furthermore, if 7 represents the force 

acting tangentially along a unit length of the surface, it is possible to derive 

the pressure through this surface, provided that the principle radii of curvature 

are known. Consider the differential element of surface shown in Fig. 1. This 

element may be subjected to external forces such as gravitational, and electrical 

fields. 

If the pressure difference between the two sides is Ap, and the surface is 

displaced by the element dz, then the work done, w, is given by 

where 

(zsl)(slyl) = the area of the initial element. 

The side sx l  moves further away from yy, by the amount ( ~ , y , ) d z / R ~ ,  

while side sy moves away from slyl by the amount ( ss , )dz /R , .  The work 

required to displace each side of the element is 

13 
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Figure 1 Differential element of pendant drop surface. 
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(51 91) (=1)dz , respectively. w2 = 7 R2 
The total work, w,  is, therefore, 

Combining Eq. 8 with Eq. 11, the following familiar expression is derived: 

1 1 
Ap == r( -- + --) 

Rl R2 

Equation 12 is Laplace's equation describing the shape of all macroscopic me- 

nisci. Other equations, such as those of Bashforth and A d a m  (1883), which 

relate the shape of the meniscus profile to the surface tension and density; and 

the equations used for calculating surface tension by the capillary height and 

the drop-weight methods are derived from the Laplace equation. 

3.2 Intermolecular Forces and Interfacial 

Tension 

As stated in the previous section, Young and Laplace recognized that inter- 

molecular forces at an interface caused a pressure across a liquid-fluid interface. 

The kind of intermolecular attraction present depends on the nature of the liq- 

uids involved. Polar molecules experience Keesom (dipole-dipole) forces and 

Debye (dipole-induced dipole) forces of at traction. Hydrogen bonded molecules 

will greatly enhance the strength of attraction. Metallic bonds will be operative 

in liquid metals. London dispersion or Van der Waals (electrodynamic) forces are 

experienced in all liquids and, except for strongly polar molecules (e.g. H20), 

15 



those forces iisiially piedominate over any Keesom and Debye forces which may 

be present. 

London gave the following original expression for dispersion energy, U ( r ) ,  

between two identical neutral atoms separated by B distance ru, and assumed 

to be isotropic harmonic oscillators: 

where C is the London constant. 

The total attractive energy between ail atom and a liquid of infinite exten- 

sion and depth, may be obtained by assuming simple additivity of forces, arid 

suIiiming over all atom-atom interactions, expressed as U : ZFJ, Ut ,where U, is 

the potential energy of interaction between the external atom and the i th atom 

of the liquid, assuming U = 0 at infinite separation. Using the potential energy 

function of Eq. 13, the following integral equation is given (Jaycock and I'arfitt 

138 1) : 

where 

N A  = the number of atoms in a unit volume of the liquid, and 

d v  = a volume element of liquid at  a distance T,' from the atom. 

if  N A  is assumed constant 

N A  ./rC 

6D3 
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where D is the shortest distance between atom and surface. Equations 14 and 

15 are orily applicable when D is much larger than the space between atoms in 

the interatomic spacing within the interacting plates. 

The attractive potential energy U between two layers of liquid sepa.rated 

by a distance D in vacuim is obtained by further iiitegration over the depth of 

the second layer, which leads to an energy inversely proportional to 0' 

where AH is the Hamaker constant, equal to T'N; C. For Iwo liquids a and ,L? 

the following equation is applicable 

where 

AI;' = 7r2 N ,  N p  C,, , 

N,  and N, = Number density of atoms in cu and p, 

Cn3 = London Constant for the interaction of an a- atom with a 

p-atom. 

It can be easily shown that the surface tension, 7, of a pure liquid in which 

only dispersion forces operate is formally given. by 

As stated earlier, these equations are not valid if D is of the order of the inter- 

atomic spacing within the interacting plates. Since D will always be of this order, 
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values obtained by this procedure should be viewed critically. This derivation 

(called the microscopic approach) along with the macroscopic approach (Ave- 

yard and Vincent 1977) to siirface forces, does however, provide a theoretical 

basis for equations used to estimate interfacial tension from the surface tension 

of the pure liquids and the surface tension solely due to  dispersion forces. 

3.3 Estimation o€ Interfacial Tension 

Several methods have been developed to estimate interfacial tension from 

the surface tension of pure components, surface tension of pure component due 

to dispersion forces, and mutual solubility data (Grain 1982), The estimation 

methods with the strongest theoretical base have been described by Fowkes 

(1964), Good and Elbing (1970), arid Aveyard and Vincent (1977). In these 

derivations, it is expected that, based on the theory of solubility of nonelec- 

trolytes and the Berthelot “geometric mean” hypothesis for the attractive con- 

stant in the vam der Waals equation (Girifalco and Good, 1957), the free energy 

of adhesion between two phases might be given by the geometric mean of the 

free energies of cohesion of the separate phases (Fig. 2): 

It has furthermore been shown by Girifalco and Good (19S7) that the free 

energy of cohesion arid adhesion, AFr2 and AF’ are equal to the total energy 

of cohesion and adhesion, U and U;’. Therefore, noting Eqs. 17 and 18, Eq. 19 

may be transformed to 

18 
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Figure 2. BnterInolecular forces acting at fluid-fluid interfaces. 
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Writing the cornplete energy balance at the interphase in terms of surface 

and interfacial tension results in the following equation 

In this equation, y1 and y2 , as stated by Good and Ebling (1970)) represent 

the surface tension of pure phase components. 'l'his equation was found to be 

a good approximation for fluorocarbon-hydrocarbon systems but not for many 

water-organic liquid systems. Fowkes (1964) proposed that the surface tension 

in the square root term should be replaced by the dispersion force-component 

of the siirface tension, y" , when dispersion forces predominates in at least one 

of the liquids and the forces of adhesion are all due to dispersion forces. 

It was also recognized by Good and Ebling (19'90) that the ratio 

is characteristic of a pair of substances 1 and 2. The generalized equation for 

interfacial tension is, therefore 

ExperirnentaI values of were foiind to range from 0.55 to 1.15 (Good and 

Ehling 1970). Based on theory (Giriifalco and Good 1957), should be close to 

unity when the cohesive forces within each liquid and forces acting across the 

interface are of the same type. When the forces are dissimilar, low values of 

20 



@ are expected. Based on models for intermolecular forces, Good and Ebling 

(1970) gave an excellent explanation of the theoretical framework for a. 
Equation 21 was further developed to account for liquids with high mutual 

solubility (Good and Ebling 1952). The resulting general equation is 

7 1 2  = 91 + 9 2  - 2 @ 1 2 & X  (24) 

where 

Si = Zli71 4- %i%, 

xli  = solubility of component 1 in liquid phase i, 

xZi = solubility of component 2 in liquid phase i. 

Thus, estimations of interfacial tension may be obtained from mutual solubility 

data, pure component surface tensions, and @. 

Several empirical expressions have also been suggest for estimating interfa- 

cial tension of water-organic systems. Donahue and Bartell (1952) proposed the 

following formula 

M 
ry12 = a - bIn(s, + x t )  

vhere 

a = -3.33, 

b = 7.21, 

xy = mol fraction of organic phase in water, and 

2, = mol fraction of water in organic phase. 

21 
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The correlation is strictly valid only at  25" C. Donahue and Bartell's correlation 

has an average error of 15.5% and a maximum error of 48.5%. 

Antonov (Gaines 1978) proposed an empirical correlation which uses the 

surface tension of miitually saturated water and organic phases, 

where 

yls2 = surface tension of phase 1 saturated with component 2, 

y2?11 : surface tension of phase 2 saturated with component 1. 

This equation has been criticized by Donahue and Hartell (1952). However, it is 

generally applicable and reasonably accurate as long as saturated phase surface 

terisions are used. An average error of 11.8% and a maximum error of 38.6% is 

obtained from Antonov's rule. 

3.4 Thermodynamics of Liquid Interfaces 

The basic difficulty in the formulation of the therrnodynarnics of interfaces 

is that the interface thickness is unknown (Jaycock and Parfitt 1981). Therefore, 

an intcrface must be defined in thermodynamic terms. 

Two basic conventions, the surface phase convention and the Gibbs surface 

convention, are widely used for the thermodynamic treatment of interfaces. The 

surface phase convention, Fig. 3, assumes that bulk phases (Y and ,h' are uniform 

up to the planes AA' and R B ' ,  so that all inhomogeneities associated with the 

interface are restricted to surface phase. 
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INTERPHASE - 0 
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LIQUID PHASE - fl  

Figure 3. Physical model for thermodynamic surfaces at fluid-fluid interfaces. 
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Surface concentration, I': of component i, as well as all the extensive thermo- 

dynamic quantities, are total amounts associated with 0 . 

The convention proposed by Gibbs defines the surface as a dividing plane 

S S ' ,  called the Gibbs surface, which is parallel to, and in between, AA' and 

BB' .  Surface excess concentration, i, is the amount of i per unit area in excess 

of that in unit area in a reference system of the same total volume in which the 

bulk concentration in CY and p remain uniform to the Gibbs surface. The volume 

of the surface, V u ,  is ~ e r o  by this convention. 

Using the surface phase convention, the following derivation is given for 

the thermodynamic description of a closed interface (Jaycock and Parfitt 1981). 

The work done on the interface by the forces across the plane AA' and B13' is 

- Y A d r .  Work done by forces parallel to the planes AA' and PIB' is - ( P 7 - 7 ) d A .  

The total work done on the interface is 

w t o t n l  = -PAdr - ( P r  - 7 ) d A  

-P(AdT + T d A )  -t rdA,  

but 

V u  : r A  and 

dV" = Adr $- rdA,  

therefore 

~ t , , t < ' l  = -PdV" + 7 d A .  

The first law of thermodynamics states that 
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d U = q + w  (29) 

tnd making the substitution qreversible = TdS and putting Eq. 28 into Eq. 29 

dU = T d S  -- PdV 4- 7dA. 

Using the classical thermodynamic definitions, 

H = U + P V ,  

.4 -= u - TS 

G = u 4- PV - TS, 

the following differential equations are obtained for the Helmhotz free energy: 

d A  = -SdT - PdV + YdA (34) 

At constant temperature 

d A  dU - T d S  

__ 
-wma, 

-PdV - TdA 

I 
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if only work associated with volume and area changes is involved. 

The differentials for the Gibbs function are: 

dG == ---SdT + V d P  + 7dA, 

and at constant temperature and pressure 

For bulk phase systems, it is normal to consider that dG represents the 

net work of a system. However, as can be seen from Eq. 45, when a system 

contains an interface, the classical approach does not lead to this equality, since 

the contribution to the work term of pydA is not in the equation. 

This abnormality in the behavior of the Gibbs function led Guggenheirn 

and Hill to redefine H and G (Guggenheim 1967), 
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Differentiating Eq. 47, 

dG dU 4- P d V  V d P  --- */dA - Ad7 - TdS - SdT, 

which for constant T, P and 7 yields: 

The Gibhs function is now equal to net work. For an open system with varying 

composition, the following classicai thermodynamic functions are applicable: 

(50)  

(51) 

dU = T d S  - PdV c y d A  + ,udni, 
i 

dH = dU -t P d V  + T d A  -I- E p d n i ,  
i 

d A  z= dU -- TdS - S d T  

= - S a  - PdV + ydA -+- 1 p idn i ,  (52) 
a 

dG = d H  - TdS - SdT 

= -SdT + VdP + $ A  + x p i d n , .  (53) 
t 

Integration of the Gibbs free energy equation at  constant intensive variables 

yields: 

G = ?A -t C p i n t .  
i 

(54) 
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This equat,iori is differknt from the expression for G in the absence of an interface 

(i.e., bulk phases) in that an extra term 7A is included. 

Applying the methods of Guggenheim and Hill (1967) to an open system, 

the following expressions are obtained by redefining G and 11: 

d H  = T d S  + V d P  - Ady t- X i ~ - . d n , , a n d  ( 5 5 )  

a 

The expressions for d A  arid dU are the same as those derived from the classical 

method. Integration of Eq. 56 at constant intensive variables yields: 

G = pin, and 
-d 

I 

a i 

which is of the same form as that for bulk phases. 

The redefinition of H and G by Guggenheirn and Hill lead to a more con- 

sistent treatment of interphases than may be obtained by classical methods. 

Guggenheirn and Hill’s approach results in thermodynamic parameters which 

are not altered by the presence of an interface. Therefore, their method should 

be viewed as precise generalized definitions, while the classic treatment should 

he viewed as specific cases for bulk phases in the absence of an interface. 

Using the Guggenheim-Hill definitions for dG (Eqs. 55 and 5%) and equat- 

ing the two, the following equation may be obtained: 

SdT - V d P  --t Ad7 +- 2\ n,dp,  = 0 
i 
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This equation is analogous to the Gibbs-Duhem equation for a bulk phase which 

requires no Ady term. 

The Gibbs adsorption isotherm which relates the extent of adsorption of 

components at the interface to the interfacial tension is easily derived from Eq. 

58. At constant temperature and pressure, Eq. 58 reduces to 

where 

n; = mol of component i in the interfacial region. 

The parameter T i  ,the amount of species i in a unit area of the interface, is 

expressed mathematically: 

(60) 
ni r .  = --. 

‘ A  

Substitution of Eq. 60 into Eq. 59 yields the familiar Gibbs adsorption isotherm 

equation: 

-dy = r idp i .  
i 

The Gibbs-Duhern equations for the adjoining phases (a and p)  are: 

i 

i 

Adopting the surface phase convention and applying the Gibbs-Duhem 

equations (Eqs. 62 and 63) for bulk phases, the following equation applies to 
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a two phase system ( a  and ,B) with i components and with 1 and 2 being the 

“solvents” in a and p,  respectively: 

where the 5 are mol fractions. For two immiscible solverits (i.e. x; : rc; Q 0),  

with a Surface-active solute 3 which is soluble in phase a only (i.e. x! = 0), Eq. 

64 reduces to 

In the case of dilute solutions and if rl is negligible, Eq. 65 becomes 

ill 

Guggenhcim (1967) warns that the term z3-1’1 in Eq. 65 should not be omitted 

even in the case of a dilute solution, because although X: << xy, it is possible for 

rq >> I?;. A similar equation to Eq. 66 is obtained if the surface-active solute 3 

is soluble in both phases and both phases contain dilute solutions of component 

3. 

x;‘ 

Jn the special case where a: is a liquid phase aqueous solution and air is the 

vapor phase, ,ll , the surface tension as a function of the solute concentration in 

the liquid phase exhibits the three basic forms shown is Pig. 4. Curves 1 and 3 

indicate positive adsorption of the solute, i.e. rz surface excess (Gibbs surface 

convention) is positive. Curve 2 indicates negative surface excess, or a surface 

depletion of the solute (Hiemenz 1986). 
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Pig. 4. Effect of surfactant on surface tension: (1) simple organic solutes, 

(2) simple electrolytes, (3) amphipathic solutes. 
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Curve 1 is typical of the effect that most unionized organics have on surface 

tension. Curve 2 is typical of aqueous sohitions containing iiiorganic electrolytes 

and highly hydrated organic compounds. The type of behavior shown in curve 

3 is characteristic of soluble amphipathic species. It is also observed that inter- 

facial tension between two liquids behaves in a similar manner. 

The temperature dependence of interfacial tension €or a two component 

system can he easily derived from Eq.58 and applying the Gibhs-Duhem equation 

for each of the liquid phases. Neglecting the term V d P ,  the following Gibbs- 

Duhem relation in each of the liquid phases is given: 

To obtain the temperature dependence of y, dpL1 and dp, are eliminated from 

Eqs. 58, 67 and 68 yielding the following equation: 

For the special case where the two liquids are immiscible, the temperature coef- 

ficient of y is related to the specific interfacial entropy, 3, and internal energy, 

U ,  by the equations 
- 
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where 

S,"O = the entropy of interface formation and 

= the internal energy of interface formation. 

3.5 The Pendant Drop Method 

The shape of a pendant drop is governed by the Laplace equation of capil- 

larity 

At the vertex of the drop, the radii of curvature are equal, and the equation 

becomes Rl = R2 = R, at 5 = y = 0 ( where 5 and y are the horizontal a.nd 

vertical coordinates of any point in a meridional section of the surface of the 

fluid, and R, is the radius of curvature at the vertex. It also follows that, the 

pressure at y = 0 is given by A P  = 2. But at other values of y, A P  due to 

hydrostatic pressure is equal to Apgy; where Ap is the density difference across 

the two interfaces, and g is the gravitational constant. The resulting equation 

is : 

27 .($-t$) = - * p g y + - -  R o  (73) 
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It is common to nondimensionalize Eq. 72, by introducing the parameter 

p ApsR,” 
Y 

and substituting Y = y /R , ,  and ,B into Eq. 73 to get 

1 1 
R,,(- + -) BY + 2. 

R, R2 

(74) 

(75) 

Noting the geometrical meaning of R, , and R 2 ,  in Fig. 5, it can be shown 

that Eq. 75 can be expressed by the followirrg equation in X and Y ,  where 

X - dimensionless horizontal coordinate, z / R ,  : 

This equation is a nonlinear second order ordinary 

PY + 2 .  (78) 

differential equation which 

must be soived numerically. ‘The boundary conditions are at  X = 0, Y 

Y’  0 .  

0, and 

Bashforth and Adams (1883) suggested resolution of the equation by in- 

cremental series around the surface of the drop. IIowever, because of the slopc- 

dependent variable associated with iising numerical methods on K q .  76, another 

form of Eq. 76 that uses arc length, s, as the independent variable was suggested 

by nashforth and Adams. 

Starting with Eq.73 and the definitions of 11, and R2 (Fig. 6),  the trans- 

formation of Eq. 7 3  into an arc-length-dependent equation is readily obtained. 

Since R2 - ;=, Eq. 72 becomes 
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Fig. 5.  Graphic representation of principal radii. 
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Fig. 6. Pendant Drop: (a) Definition of I ) ,  and I ] , ,  (b) alternative coordi- 

nate sys terns. 
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and the governing equations for using s as the independent variable are: 

t dx 
2 = - = cos q5 and 

yt = - = sing5 

ds 

d9 . 
ds 

and by definition, 

__ 1 3  - - 
R, d s '  

Substituting Ey. 80 into Eq.77 , the resulting equation is 

q 5 t x - - = - +  dg5 2 Apgy s in4  

ds R, Y X 

or 

sin q5 
.!I-- 

t dd 2 g5 L - = - 4 - p  
ds R, 5 

where p, = ";;". Equations 78, 79, and 81 form a set of first-order differential 

equa.tions with x, y, and g5 as functions of the independent variable s. The 

boundary conditions are 

s(0) I= y(0) = qq0) = 0. (83) 

Eq. 81 is usually expressed in the following dimensionless form: 
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Substituting the shape parameter, 0, as is defined by Eq. 76, this equation 

becomes 

sin q5 

X 
4' == 2 -+ p y  - ---. 

The shape parameter, p, cannot be measured directly and conveniently with 

any great accuracy; but as a shape determining parameter, it can be related to 

other variables that can be determined more easily and more accurately. 

Andreas, Hauser and Tucker (1938) suggested measuring the drop at two 

selected planes, D e ,  the diameter at  the equatorial plane, and D , ,  the diameter 

at the plane 11, from the vertex of the drop. The ratio, 2 or S ,  is a function 

of p. Furthermore, Andreas et al. also defined the following new quantity, H ,  to 

remove the parameter R, from Eq. 75: 

Substitution b;q. 74 into Eq. 86 aiid solving for 7 ,  the following equation is 

obtained: 

The common method for determining p is to determine S from meamre- 

ments of U ,  and f j e  and to obtain F( from tables of $ vs. S .  Fordham (1918), and 

Niederhauscr and Bartell (1 950) independently solved the fundamental equation 

(Eq. 74) in order to obtain a theoretically sound tablc of + vs. S .  Their numer- 

ical integration techniques were similar to the method of Bashforth and Adams 

(1883). This method of determining y is simple, but it requires precise measure- 

merits of De and D,.  The precision of this method as published by Andreas, 

38 



Hauser, and Tucker (1938) is approximately one percent. 

Recent techniques for determining interfacial tension by the pendant drop 

method entail correlations of the entire data on the drop shape to  the theoreti- 

cal Laplace curve. These techniques should result in better estimates of 7 ,  since 

more data points are used to obtain this parameter. The most common methods 

use numerical techniques to simultaneously integrate the three ordinary differ- 

entials of Bashforth and Adams( Eqs. 77, 78 and 80). The best combination 

of R, and /?, is found by nonlinear parameter estimation techniques such that 

the defined objective function is minimized. Maze and Burnet (1969 and 1971) 

were the first to develop a satisfactory scheme for the determination of inter- 

facial tension from the drop shape coordinates. The objective function was to 

minimize the horizontal distances between the measured and calculated curve. 

This type of objective function can, however, lead to serious error if the shape 

tends to flatten near the apex. Any data point which is near the apex, may 

cause a large error even if it lies very close to the “best” curve; thus, leading to 

bias of the solution. Rotenberg, Boruvka, and Neumann (1981) have, therefore, 

defined the objective fiinction, E ,  as the sum of the perpendicular distances be- 

tween the experimental data points and the theoretical curve. In theory, there 

should be only one set of unbias parameters, ,f3, and R,, where the sum of the 

perpendicular distances is minimized. The algorithm by Rotenberg, Boruvka 

and Neurnann (1981) also takes into account the importance of locating the 

apex of the drop, which determines the origin of the calculated curve. Their 

model consists, therefore, of four parameters X,, Yo, R,, and Pc,  which are 

varied to minimize the objective Function. Numerical integration is done by a 

Seeond-Ordcr Implicit Euler Method, and changes in parameter estimates are 
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obtained by the Newfon-Raphson method with incremental loading of one of the 

parameters. Analytical expressions are used for the derivatives of the objective 

with respect to each parameter and parameter combinations. 

The theoretical aspects of the nonlinear parameter estimation method that 

is used in the present study is given in the following section. This method uses 

the same objective function that i s  given by Rotenberg (1981); however, the 

method differs in the method of performing numerical integration and in the use 

of numerical derivatives rather than analytical derivatives. Futhermore, good 

initial parameter estimates of p,, R,,, and the coordinates of the origin ( i x .  

X ,  and Y,) are obtained during the digitization step. Therefore, the present 

algorithm converges in 5 to 10 iterations. Algorithms, such as Rotenberg's, may 

require a large number of iterations ( ~ 5 0 )  to converge. The present algorithm 

is also written generically, such that the effect of external fields (in addition to 

gravity) on the pendant drop may be incorporated into the model. 

3.6 Nonl inca 1- Paramet cr Estimation 

There are a number of different methods for obtaining nonlinear parameter 

estimates. Thc  three most widely used computer based routines include (1) 

linearization, (2) steepest decent, and (3) Marquardt's compromise (Draper and 

Smith 1981). Of these three, the linearization (or Taylor series) method is 

employed in this study because of its general use to successfiilly solve many 

nonlinear problems. 

The  linearization method uses the results of linear least squares in a suc- 

cession of steps. This is shown by assuming that the proposed model is given 
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by Eq. 88 

where 

& = the independent variable, 

8, = parameter estimates, 

and choosing the initial parameter estimates, 8:, 8;, ..., 0; for the parameters 

8, , 8, ,...., 0 , .  A Taylor series expansion of f ( E J  ,e) is carried out about the point 

8" (i.e., fl;, Qi ,.....,e;). The series is then truncated after the first derivatives, 

where 

Letting 

Eq. 89 becomes 

Y E  -- f o  = CAiZ:' + ~ j .  
.1 

i 
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Eq. 91 is linear in terms of 8 and therefore the linear least squares theory may 

be applied. In vector notation, bz, the estimates of A' are obtained by solving 

the following equation: 

Since linear least squares theory is applied, bf ,  will minimize the sum of 

squares 

j = l  L t =  1 J 

with respect to A:, i = 1, 2, ...., p .  New values of 8%(k+ 1 )  are obtained by letting 

= 8,  + hk, where k is the number of iterations. This iterative process is 

continued until the solution converges, that is, until in successive iterations k ,  

(k +I), 

where S and 6, are some specified small amount (e.g., 0.000001). At each stage 

of the iterative process, SS(8 )  should be evaluated to assess whether a reduction 

in its value has actually been achieved. 

The linearization method has several possible drawbacks for some problems 

in that: 
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1. It may converge very slowly,i.e., a very large number of iterations may 

be required before the solution stabilizes even though the sum of squares S S ( 8 )  

may decrease consistently as k increases. This sort of behavior is not common 

but can occur. 

2. The estimate may oscillate widely, continually revcrsing direction and 

often increasing, as well as decreasing the sum of squares. Nevertheless, the 

solution may eventually stabilize. 

3. It may not converge at all, and even diverge, so that the sum of squares 

increases without hound. This will probably occur if the initial estimates are 

not good guesses or if the proposed rnodcl is incorrect. 

A s  is seen from the defiiiition of Z,  it is necessary to compute the partial 

derivative of the function f with respect to each of the parameters. This may be 

done by determilling the analytical expression for each of the derivatives which, 

in some cases may be dimcult to obtain, or by computing the ratio 

where i = 1,2, . . . p ,  and hi is a small increment. A number of nonlinear computer 

algorithms employ the latter method to compute the derivatives. 

At this point, it is helpful to compare the sum of squares surfaces for linear 

and nonlinear models. Figs. 7a and 7b depicts the sum of squares surfaces for 

linear and nonlinear models, respectively. The surface contour for the linear is 

ellipsoidal and has a single local and global minimum height, S ( 8 )  , at  the least 

squares estimator, 8. If the model is nonlinear, the contours are not ellipsoidal 

but tend to be irregular and often “banana-shaped.” The model may also consists 
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of several local miniria and perhaps with more than one global minimum. 

The linearization technique converts the problem of finding the minimum 

height of S(0)  for a nonlinear model starting from an initial point e", into a 

series of linear models. The initial linearization of f( E ,  8) about 8" replaces the 

irregular S ( 0 )  bowl by an elliptical bowl S S ( 8 )  with a "psiiedo right shape," 

Le., it has the same first derivatives of the corresponding model function right 

at 0". The  accuracy with which this technique approximates the actual S ( 0 )  

contours depends on (1) the model assumed, (2) the data available, and (3) 

the relative positions of 8" and e^ in the &space. In any event, the linearization 

method solves the problem at 8" by moving to the bottom point of the liriearized 

bowl at  0" to reach 8 as shown in Fig. 8. The process is repeated at 8,. With 

successive iterations, it is hopeful that the procedure will converge to  i, as is 

shown in Fig. 9. 
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Fig. 7. Sum of squares surfaces for linear and nonlinear models: (a) linear 

model (b) nonlinear model. 
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* 4 
Fig. 9. Successive iteration of linearized model. 
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3.7 DETERMINING INTERFACIAL TENSION BY NONLINEAR 

PARAMETER ESTIMATION 

As mentioned above, the convergence of a nonlinear parameter estimation 

(NLPE) algorithm to the global minimum depends upon the model assumed, the 

data available, and the relative positions of 8" and in the Q-space. Tliercfore, 

it is necessary to define a model that adequately describes the data and allows 

convergence to the global minimum. Rotenberg defined the objective function as 

the square of the perpendicular distance between the experimental data and the 

theoretical Laplace curve. The objective function is expressed mathematically 

as 

Since the objective function contains the measured (observed) values for vari- 

ables X and Y ,  both variables are defined as independent variables. A dependent 

variable milst therefore be indentiiied in order to perform nonlinear parameter 

estimation. The observed perpendicular distances between the measured (digi- 

tized) data points and drop siirface coordinates are zero. That is, the measured 

dependent variable, d: , equals zero. 

The values X c ( L I c  and Y,,,l, are determined by simultaneous numerical in- 

tegration of  the Bashforth-Adams equations and testing for perpendicularity. 

Numerical integration is done by the Fourth-Order Runge-Kutta method for 

sirnultaneous first ordinary difiercntial equations (Scarborough 1966). 

The method of testing for perpendicularity is shown in Fig. 10. 

As is shown, if the sign of the slope of the line 
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Fig. 10. Test for perpendicularity. 
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and the sign of the slope of the line 

are not the same, then there is a point between j and j -t 1 calculated values 

where the experimental data is perpendicular to the theoretical curve. However, 

if the sign of the slopes are the same, there is not a point between the j and 

j 1-1 calculated data point where the experimental data point is perpendicular to 

the theoretical curve. An interpolation technique is then used to determine the 

calculated X and Y data point that is perpendicular to the experimental datum 

(Bridger 1977). Finding the perpendicular distance between the experimental 

and theoretical curve is the most computer- time-intensive step. 

To complete the information required for nonlinear parameter estimation, 

it is necessary to compute the derivatives of f(E, 6 )  with respect to each of the 

parameters ( p c ,  R,, X,,  and Yo).  The programs NONL14.BAS arid PENI1R.F 

(Appendix C) computes these derivatives by Eq. 96. The value of h, is 0.00005 x 

8,. Analytical expressions are used to compute derivatives in the program 

NONLI8.HAS. The equations are the same as those given by Rotenberg et. 

a1 (1981). 

With the above information, b:, is computed by matrix manipulation of the 

vector representation. The new values in the parameter vector, 0 ,  are computed 

by the equation 



where fr represents the fraction of bfl to be used to compute the new value 

of 8 .  In most cases, fr can be set at one; however, in cases where the initial 

parameter estimates are not close to the solution, or if the algorithm diverges, 

it is sometimes necessary to select fr  to be less than one. 

The above procedure for computing interfacial tension has been incorpo- 

rated into a modified version of a public domain algorithm for nonlinear pa- 

rameter estimation. The original program was written by Whitman (1982) in 

Microsoft BASlC for the IBM PC and is based on a paper by Wentworth (1965). 

The program, NONLT4.€3AS, has been modified, translated into the FORTRAN 

77 language, and ported to a mainframe computer. 

4. EXPERIMENTAL 

4.1 Pendant Drop Apparatus and Drop Formation 

Initial experiments with water-air, water-cyclohexane, and water-oc tanol 

systems were conducted in a system described by Malinauskus and Hyers (L985). 

Droplets were suspended from 0.95 cm (0.375 in.)-Teflon, aluminum-coated noz- 

zles with a. single bore at its tip. After several uses, the droplets began to wet 

the surface of the tip. This resulted in a  la,..) ratio that was greater than the 

recommended value of 0.5 or less. The term r is the radius of the nozzle if the 

liquid wets the nozzle, and T is the radius of the bore if the liquid does not wet 

the nozzle (Jennings 1957). The parameter a,, is the capillary constant given 

by 

a c c  = {Z. (99) 

Furthermore, the above setup required large volumes of liquids (600 rnL) for 
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the continuous phask which made temperature control to within f0.1" C very 

difficult. 

Another column was, therefore, designed which required a smaller quantity 

of continuous phase liquid (50 mL) and allowed better temperature control. The 

pendant drop column consists of 1.27 crn (0.5 in.) square glass tubing, jacketed 

by 2.54 cm (1.0 in.) square tubing (Fig. 11). 

This arrangement allows for a temperature control of the system to  within 

Sr0.l"C by circulating ethylene glycol through the annilhis. The temperature of 

the ethylene glycol was controlled by flow through a Haake constant tempera- 

ture bath. A DORIC Trendicator (400'4 Type E/" C) temperature recorder with 

chromel-alumel thermocouples was used to monitor the temperature. 

Droplets were dispensed by a chemically inert microsyringe (Cole-Palmer J- 

7844-00, 2.0 mL rriax. volume) and were suspended from a 0.125 cm OD stainless 

steel syringe needle. The microsyringe was filled by immersing the needle into 

the bottom phase. Air bubbles were removed by inverting the syringe and 

displacing any gas. The syringe was quickly transferred to the pendant drop 

column where stable drops were formed. 

4.2 Video Recording and Digitization 

A high speed video camera (Tritronics model PC5600) was employed to 

capture the droplet image. Shutter speeds could vary from 4 to 0.1 ms with 

framing rates of 60 to 300 frames per second. The camera was equipped with an 

easily focused telephoto lens (Micro-Nikkor 105mm f/2.8) for closeup photog- 

raphy. The camera was interfaced with a Sony VO-5800 video recorder, which 
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was used for recording the video image and playback of the image for analysis 

(Figs. 12 and 13). 

After a drop was suspended for three minutes, images of the droplets were 

tape recorded for 30 to 60 s. The position of the image on the tape was defined 

by the counter reading on the recorder. Horizonal and vertical scaling factors 

were determined by suspending into the plane of view either a 0.3175 cm (0.125 

in.) spherical rotameter ball or a “T” consisting of two perpendicular sections 

of 0.1588 cm (0.0625 in.) stainless steel rods. 

Backlighting of the image was arranged to give the best detection of the 

droplet profile. A Lowel Softlight 2 (2000 W maximum power) was the lighting 

source. Light control was obtained by setting the light intensity via powerstat 

control and adjusting the “barn doors” for flare control. 

Digitization of the drop profile was done by a manual trace with a Sony SMI- 

70 Graphics computer with Genlocking capabilities (Fig. 13). The Genlocker 

allowed microcomputer graphics to overlay a video image. Sony Graphics Editor, 

a software package for the SMI-70, utilized the Genlocker capabilities for manual 

tracing of a drop profile with commands from the keyboard. To transfer these 

graphics data into a file of x and y coordinates, a procedure was developed 

to trace the perimeter of the drop in one color, and subsequently, to fill the 

interior of the drop with a different color. Thus, a computer graphics picture 

was generated and stored on 3.5 in. disks. A basic program for the SMC-70, 

PFIND4, was then used to obtain x,y coordinates for the drop profile by loading 

the graphics picture and scanning the entire graphics screen to determine the 

drop edge. This procedure took about 4 to 5 min to complete. 

The digitized data was transferred from the Sony graphics computer to an 
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IBM AT computer by using ASCOM, a communication package for the Sony, 

and Symphony’s communication package. The data were converted by the IBM 

basic program RK4TR8 to a form that could be used by the IBM basic nonlinear 

parameter estimation programs, NONLI4.BAS and NONLI8.BAS. To speed the 

computation, data were transferred to a main frame computer, the VAX 780, 

where the nonlinear program was translated into the FORTRAN 77 language. 

The FORTRAN 77 version of the program is entitled PENDR.F. 

Finally, data sets generated from the nonlinear parameter estimation pro- 

grams were used to graph observed and calculated data and residual plots. A 

graphic program, GRP4.BAS, developed by Giorgio Carta (Howard, Carta, and 

Byers, 1987) for the IBM AT computer was employed to generate the graphs. 

Typical input and output datasets are given in Appendix B. 

4.3 CHEMICALS AND MIXING PROCEDURES 

The water was triple distilled and stored in a glass container that was 

scrupulously washed with detergent and thoroughly rinsed with distilled water, 

ethanol, and hexane. All glassware was thoroughly cleansed to avoid contam- 

ination. The 2-ethyl hexanol was an Analytical Reagent grade MCB Preiser 

sample with a purity of 99%. Ethylene glycol, glycerin, and l-octanol were an 

Analytical Reagent grade Fisher Scientific sample with a purity of 99.9, 99.5 

and, 99.9%, respectively. Cyclohexane was an Analytical Reagent. grade EM 

Scientific product with a purity of 99.9%. 

Saturation of each phase for interfacial tension studies was accomplished 

by mixing the liquids at the desired temperature for one day. The phases were 

then separated at the same temperature. It is desirable to keep the tempera- 
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ture constant during the saturation, separation, and measurement stages so that 

the system is in thermal and mass equilibria during interfacial tension measure- 

ments. 

Density data for saturated solutions were determined by using pycnome- 

ters and a Mettler balance. A list of these data is given in Appendix A. The 

temperature was held to within &O.l"C. 

5 .  DISCUSSION OF RESULTS 

5.1 Overview of Research 

The interfacial tension of several fluid-fluid systems were determined by 

the pendant drop method and analyzed using the computer algorithms that are 

given in Appendix C. Initially, tests were conducted with synthetic data from 

Fordham's tables to determine the numerical accuracy of the algorithm. Sec- 

ondly, surface and interfacial tension values for water-air and water-cyclohexane 

were obtained to test the overall accuracy of the experimental procedure and 

computations by comparing values from this study with literature values. 

Several liquid-liquid systems that are important to electric field studies 

were also studied to provide data on the effect of temperature and surfactant 

concentration, i.e., NaC1, on interfacial tension. The main thrust of these stud- 

ies was to provide interfacial tension data for systems with different electrical 

and chemical properties and to provide a technique for measuring the dynamic 

behavior of interfacial properties, e.g., interfacial tension. 
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5.2 Choosing Initial Parameter Values 

Choosing the initial parameter estimates is essential to  the convergence 

of the algorithm. The program RK4TR8 converts x,  y coordinates from the 

transferred Sony file into a file that compensates for difference in z,-y, scaling 

and that has been corrected by the coordinates at the apex (xo , yo). Values for 

z,, yo and rZy (the ratio of z, per crn to ys per cm) must be inserted by the 

user. Values for x, and yo are printed out when the graphic picture is being 

digitized by the Sony basic program, PE‘[ND4. Since PFIND4 scaiis across the 

screen at a given y, location, z, is computed as follows: 

where X , ~  and x,,  are the z, coordinates of left and right edges of the drop, 

respectively. The value yo is the valuc of y, at  the bottom of the drop. If a large 

number of profile data points are available, the program ItK4TR8 will fit the 

bottom data points to a quadratic expression and will compute the minimum of 

this function, which should give x, and yo x r sy  values that are close to the values 

given by PFIND4. Initial values of R, and ,Oc are determined by selecting R, to 

be 0.95 x z,,, , i.e., 0.95 x 9. The initial value for the shape factor, pc, is 5. 
Methods similar to Andreas and Hauser (1938) may have also been employed to 

obtain initial parameter estimates; however, such precise initial estimates were 

not required. 

0 
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5.3 ComputationaI Time and Accuracy 

An NLPE program that was written in Microsoft BASIC for the IBM per- 

sonal computer was initially used to determine surface and interfacial tension 

values. The software package, BASCOM compiler, was subsequently used to 

translate this program into a compiled code. A five-fold increase in speed was 

obtained. Using 50 data points, computational times were approximately 2.5 

and 8 min per iteration for two-parameter (i.e., R, and pc)  and four-parameter 

models (i.e., X,, Yo, R,, and P c ) ,  respectively, when numerical derivatives were 

used to compute the Z-matrix. A shorter time per iteration was achieved if 

analytical derivatives were used. With reasonable initial guesses for the param- 

eters, the algorithm converged in four to ten iterations when numerical deriva- 

tives were used to compute the Z-matrix. When analytical derivatives were 

employed, the algorithm took longer to  converge and had a tendency not to  

converge to the global minimum; but it would oscillate between two apparent 

local minima. The long computational time on the IBM AT computer made this 

method very unattractive. Therefore, the program which uses numerical deriva- 

tives was translated into the FORTRAN 77 language and ported to a compiler 

on the ORNL VAX 780 computer. A 30-fold increase in speed was obtained. 

The program (Pl3NDR.F) now requires 6 min to converge if 120 data points are 

used. Since thirty to  fifty data points should be adequate to achieve a precision 

of less than one percent, it will require approximately 1.5 min for convergence 

All computer programs are listed in Appendix C: along with descriptions of the 

programs. 

Another method of decreasing the computational time is to increase the 
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step size for the numerical integration routine. However, this will decrease the 

accuracy of the results. Following the experience of previous investigators (Gi- 

rault, Schifflin and Smith 1982), a step size of 0.01 x R, was chosen. This step 

size is also approximately equal to the resolution of the digitization process. 

Several tests were performed using synthetic profile data sets to evaluate 

the accuracy of the algorithm for determining interfacial tension. The data were 

taken from Fordham's tahles where R, and p have values of 1.000000, and -0.45, 

respectively. These data, i.e., 2 and y, have a resolution of lo'-' x R,, and are 

stored in the data file BASATd2T. Another data file, BASAD, was constructed by 

truncating the values after the third decimal place; thus, resulting in a resolution 

of 0.01 x R,. This is the approximate resolution achieved by digitization with 

the Sony Graphics Computer wlsere R, has an order of magnitude of 100 units. 

Values of 12, and pc are calculated from both data sets by the program 

NONL14.BAS, NONLI8,RAS, and 1PENDR.F. The programs NQNLI4.l)AS and 

NONLI8.BAS utilize, respectively, numerical, and analytical derivatives to form 

the Z- matrix; thus, a comparison between using numerical and analytical 

derivatives for deterrnining parameter estimates was obtained. Table 1 gives the 

actual and calculated values of 12, and p ,  for the two synthetic data sets. It is 

observed that, as the resolution of the coordinates is decreased from lo-' x R, 

to 0.01 x R,, the percent difference between the calculated and expected shape 

factor, p, increases from to 0.5%. This would also mean a similar error in 

calculating the surface or interfacia1 tension. It is, therefore, concluded that an 

accuracy and precision (for digitization) of approximately 0.5% can be expected 

with the present digitization technique and with the use of either numerical or 

analytical derivatives to determine the 2-matrix. 
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Table 1. Test of algorithms on Fordham’s data set 

(R,  = 1.000000, p = -0.45) 

Program Resolution Calculated values Difference (%) 

name (ra ) (RO 1 ( P )  ( R o )  ( P )  

NONLI4.BAS 1E-6 0.99993 -0.4502 0.04 0.07 

NONLI4.RAS 0.01 1.00100 -0.4480 0.10 0.44 

NONLI8.BAS I$;-6 0.99998 -0.45001 0.0024 0.0020 

NONLI8.RAS 0.01 1.001.00 - 0 . ~ 0  0.10 0.44 

PENDR.F 1 E-6 0.99998 -0.450803 0.0016 0.0007 

1’ EN I) I t .  F 0.01 1.00100 -0.4470 0.10 0.45 

Pigs. 14 and 15 illustratc the results from the curvefitting of the synthetic 

data sets (BASAD and RASAD2T, respectively) by the algorithm. 

Furthermore, residual plots for each data set are given in Figs. 16 and 17. 

The residual plots are constructed by subtracting zobs from xcalc and plotting 

these values against yloba. Residuals for the BASAD data set exhibits a random 

distribution about zero and do riot exceed about 0.005 units. IIowever, the 

residuals for BASAD2?‘, although very small (< IO-‘) ,  show a distinct pattern 

as a function of y. This is most probably due to the interval of integration being 

much greater than the resolution of the data. A further investigation of the 

residuals was not conducted, since practical data would have a resolution much 

greater than the 0.01 x R,. 
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5.4 Interfacial Tension of Test Systems. 

Initial experiments were done to determine the surface and interfacial ten- 

sion of systems that woirld show the comparison between experimental values 

with literature values. The surface tension of water in air was initially deter- 

mined a t  several tcniperatures by the two-parameter algorithm. Three drops 

were traced and surface tension was determined from each trace. Surface tension 

values had an average standard deviation of 1.1 dyne/cm (11p N/cm) or a stan- 

dard error of the mean of approximately 1.5%. The values are given in Table 2 

along with literature data. The percent error betwecn our values and literature 

values (Hodgman 1951) averaged 0.14%. Using the four-parameter model on a 

separate data set, a value of 72.2 dyne/cm (720 pN/cm) was obtained for the 

surface tension of watcr in air at  21.0"C. A value of 72.6 was interpolated from 

data given by Hodgman 1951 and, therefore, a difference of 0.55% was obtained. 

Plots of the experimental and theoretical curve, and residuals are shown in Figs. 

18 and 19. The fit of the experimental data is very good; however, there is a 

pattern in the residuals plot which tends to indicate that the drop was slightly 

tilted. This will cause a small error in estimating the surface tension. However, 

the residuals are generally smaller than the resolution for digitization; and it is, 

therefore, expected that this error should be smaller than 1%. 

An interfacial tension of 50.3f1 .2  (-". 2.5%) dyne/cm (503 pN/crn) (Table 

2) was obtained for water-cyclohexane at  20" C using the two-parameter model 

and 50.9 k 1.1 ( f 2 . 2 )  dyne/cm (509pN/cm) using the four-parameter model. 

Values of 50.2 dyne/cm and 51  dyne/cm (Petre 1966) were reported for the 

interfacial tension of water-cyclohexane at 20" C. Boyce et al. (1984) reported 
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Table 2. Surface and interfacial tension of fluid-fluid systems 

System 

Surface and interfacial tension 

Temperature (dyne/cm) 

(" C) Experiment a1 Literat urea 

Water-air 25.0 72.0 f 1.0 71.97 

Water-air 28.8 71.3 f 1.2 71.3 

Water-air 30.8 70.7 f 1.2 70.95 

Water-Cyclohexane 23.5 50.2 f 1.7 50.2b 

Water-1-oc tanol 23.5 8.5 * 0.2 8.5& 

Literature values interpolated from data presented in The Handbook..of 

Chemistgian.d-Phys& 33'd edition, 1951-1952. 

Value at 20°C reported by Good, 1970. 

that the algorithm by Rotenberg et al. (1981) resulted in standard errors of the 

mean ranging from 1.2 to 3.4% for systems with interfacial tensions ranging from 

5.7 to 38.4 dyne/cm. Therefore, the standard errors of the mean observed in the 

preliminary test of our technique are similar to those obtained by Rotenberg's 

algorithm. 

With these preliminary results, it was concluded that the algorithm accu- 

rately estimated surface and interfacial tension; however, changes in the exper- 

imental setup were required to improve the precision. 
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Fig. 18. Curvefitting experimental peridant drop profile data to the Laplace 

equation: Water-Air System (21" C) 
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5.5 Interfacial Tension of Other Systems 

Table 2 also gives the interfacial tension of water-octanol. The water- 

octanol data were obtained in the same experimental device as the water-air 

and water-cyclohexane systems. Interfacial tensions of 8.6 3: 0.1 ( f1 .2%)  and 

8.5 f 0.1 ( f1 .2%)  dyne/cm (86 and 85 pN/cm) at 23.4"C were obtained for 

this system using the two and four parameter models, respectively. This agrees 

with a literature value of 8.5 dyne/cm (25°C) that was given in Good and 

Elbing (1970). It should be mentioned that great care was taken to acciirately 

determine z, and yo from the digitized data of the first three systems (water- 

air,water-cyclohexane, and water octanol) . Therefore, surface and interfacial 

tension values as calculated by the two and four parameter models were in very 

closc agreement (i.e., < 1% difference). 

A modified experimental setup was used to determine the interfacial tension 

of the systems given below. This setup allowed for better temperature control. 

Furthermore, the image of the pendant drop was magnified by inserting a longer 

barrel for the camera lens. This allowed focusing on a smaller portion of the 

glass column, which would decrease any nonlinear scaling of the 5 arid y axis due 

to distortion in curvature of the glass tubing and would also slightly improve 

the resolution of the digitizer. As a result of this change, the image of the drop 

was enlarged on the video screen. Consequently, the array for storing the drop 

edge data point at every yJ position was too large for the memory of the Sony 

computer. The graphics picture was, therefore, digitized by scanning the edge at 

every other y8 position. This meant that the yo that was determined by PEIND4 

may be in error by at most one division. As is shown below, this uncertainty in 
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go may cause substaitial error in determining interfacial tension. 

The interfacial tensions of water-2-ethyl hexanol, glycol-cyclohexane, and 

glycerin -cyclohexane as a function of temperature were determined by the two- 

parameter and four-parameter models. These data are given in Table 3 and were 

obtained from the modified experimental setup that was given in Section 4.2. 

'rhe difference between interfacial tension values calculated by the two methods 

shows the consequence of using the two parameter model when there is uncer- 

tainty in yo. Percent differences from 1% to 10% were observed €or interfacial 

tension values that were determined by two and four parameter models. 

Evaluating the water-2-ethyl hexanol data,, we see that the values from the 

two -parameter model show a minimum in the iiiterfacial tension as the temper- 

ature was increased from 22.4 to 35.3" (7. The behavior of the interfacial tension 

for water-long chain alcohol suggest, however, that the interfacial tension should 

increase with increase in temperature (Aveyard and Saleem 1977); and fiirther- 

more, interfacial tension should increase linearly with temperature. Using the 

four-parameter model, this behavior (Fig. 20) is observed and the entropy of 

interface formation, - (;$, is -0.08 dyne/cm/" C (-0.8 pN/cm/" C).  The inter- 

facial tension of 13.7 dyne/cin (137 pN/cm) for water-2-ethyl hexanol at 22.4" C 

that is reported in this study confirms a value of 13.9 dyne/cm (139 ,uIV/cm) 

(25" C) reported by Clinton (1968). 

Fig. 20 also shows the temperature dependence for the interfacial tension 

of glycol cyclohexane. The entropy of interface formation is 0.064 dyne/cm 

0.64 ,uN/cm). Literature data supports this trend. The interfacial tension of 

glycol--cyclohexane is reported as 14.4 dyne/cm (144 ,uN/cm) and 14.2 dyne/cm 

(142 pN/cm) at 20 and 40"C, respectively (Timmermans 1959). 
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Table 3. Interfacial tension of liquid-liquid systems 

Interfacial tension, 7 

(dyne/cm)" 

System Temp Two parameter Four parameter 

(" c> model model 

Water-2-ethyl: 

hexanol 

hexanol 

hexanol 

Glycol: 

cyclohexane 

cyclohexane 

cyclohexane 

Glycerin: 

cyclohexane 

cyclohexane 

cyclohexane 

22.4 

30.4 

35.3 

21.1 

29.4 

(33.8) 

20.3 

28.8 

34.3 

13.2 IfI 0.2 

13.0 f 0.1 

13.6 ::ti 0.6 

15.2 k 0.0 

14.5 ::!I 0.1 

14.0 f 0.1 

23.8 :rk 0.5 

24.0 k 0.1 

24.3 f 0.3 

13.7 3 0.2 

14.2 f 0.1 

14.8 f. 0.2 

15.4 f 0.0 

14.8 k 0.1 

14.6 f 0.1 

24.6 f 0.5 

24.4 f 0.1 

24.8 f 0.3 

1 dyne/cm = 10 pN/cm. 

The 6.9% difference between the interfacial tension that is reported in 

this study [ (15.4 dyne/cm) 154pN/cm] and the literature value of 14.4 dyne/cm 

(144 pN/cm) cannot be fully evaluated because the previous workers did not 
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give the method for determining this value or the purity of the solvents. 

The interfacial tension of glycerin--cyclohexane did not appear to vary with 

temperature and averaged 24.6 dyne/cm (246 pN/cm) over the temperature 

range 20.3 to 343°C. No literature data was found on this system. However, 

as will be seen in a subsequent section, this value does agree with the interfacial 

tension value that is predicted by Fowkes equation. 
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5.6 Effect of Salt on'Interfacia1 Tension 

Surfactant will affect the interfacial tension of a liquid-liquid system in 

several ways depending on the manner in which the surfactant absorbs in the 

bulk phases and interfacial region. Eq. 64 may be used for strong adsorption 

at the interface of a solute from dilute solutions. It is seen that the term I?; is 

positive and, therefore, the interfacial tension will decrease with an  increase in 

bulk surfactant concentration. If the surfactant absorbs more into a bulk phase 

the interfacial tension may increase. This can be seen if we begin with Eq. 64. 

Equation 64 reduces to Eq. 101 if the following reasonable assumptions are used: 

1. The solvents 1 and 2 are immiscible, i.e. xf = 0 3 2  x" = 0. 

2. The surfactant, solute, is soluble in only one of the phases, i.e. xt = 0. 

3. The solute does not adsorb strongly at the interface, i.e. I': = 0. 

Then 

(101) 
XU d7 - -?-ra dCL 

1 3 -  
x; 

This equation suggests that the interfacial tension should increase with an in- 

crease in the chemical potential or solute concentration. 

Fig. 21 shows the effect of salt concentration on the interfacial tension 

of water-2-ethyl hexanol. This system is of practical importance in that the 

electrical properties of the water-2-ethyl hexanol is changed by adding salt to 

the system. Table 4 gives the interfacial tension and electrical conductivity 

data for this system. The interfacial tension increases with an increase in salt 

concentration. Furthermore, the interfacial tension increases linearly with salt 

concentration in the region 2; = 0.1001 to 0.3165 g/mL. This linear behavior 
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can be explained if the chemical potential of the salt in the aqueous phase can 

be expressed by the equation: 

where a, is the activity coefficient. If it is assumed that for dilute solutions a, 

and xy are 1.0, then substitution of Eq. 101 into Eq. 102, the following equation 

is obtained: 

(103) 

UPOR integrating this equatiori, we can see that the interfacial tension in- 

creases linearly with an increase in salt concentration. 

Table 4. Effect of Salt Concentration on Interfacial Tension 

of Wa t er-2-ethyl hexanol. 

___. .. . .. . .. .- 

Concentration of 

salt in H,O 

( g / 4  
-. ______ 

0.3165 

0.1700 

0.1001 

0.0000 

Conduct ivity‘l Interfacial tension” 

(ohms) - (dyne/cm) 

400 

270 

118 

0 

21.7 4: 0.07 

16.6 :k 0.20 

14.2 f 0.08 

13.7 f 0.2 

1 ohm’- = 1 siemens (S) 

“1 dyne/cm = 10 pN/cm 
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Fig. 21. Effect of aqueous phase salt concentration on the interfacial tension 

of water-2-ethyl hexanol. 
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Fig. 21 also illustrates that as the concentration of salt in the aqueous 

approaches zero, the slope of the curve changes. This is expla.iIied by the fact 

that as xz approaches zero, the above assumptions 1 and 2 are no longer valid; 

and also the assumptions that zf and xz = 0 is also invalid, since x! and sz 

approaches the same order of magnitude a.s z! as sg --> 0. Equation 6 3  must, 

therefore, be employed to evaluate solute effects on interfacial tension at very 

low salt concentrations. 

5.7 Estimating Interfacial Tension 

In many cases, the interfacial tension for a particular system is not axailable; 

and it becomes necessary to estimate this physical property from existing data 

such as surface tension, solubility, molecular weight, and molecular structure. 

Table 5 gives interfacial tension estimates for (1) water-2-ethyl hexanol, (2) 

glycol cyclohexane, and (3) glycerin-cyclohexane. Methods by Good and Elbing 

(1970), Fowkes (1964), Donahue and Bartell ( 1 9 5 2 ) ,  and Gaines (1984) were 

employed to obtain interfacial tension estimates. All of tliese methods, with 

the exception of Gaines, have been discussed in the theory section. Gaiiies 

presents the following empirical linear equation for the, homologous series, diol 

and alkanes: 

- 2 1 3  
7 1 2  -5.03 + 408.2Md,0, 

where M is molecular weight. 

Although this equation is for alkanes/diols, it has been applied to water--- 

alkane systems by replacing the molecular weight of the diol with the molecular 
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Table 5. Estimating interfacial tension by various methods 

Interfacial tension (dyne/cm) 

System This work Fowkes Good Ilonahue Gaines 

Wrtter-2-et hyl 

hexanol: 13.7 N / A  11.3" 10.1' 7.6 N/A 

G ~ ~ c o ~ - C ~ C I O -  

hexane: 15.4 N / A  N/A N/A N/A 16.7 

Glycerin-Cyclo- 

hexane: 24.6 27.5 N/A N/A N/A N / A  

N / A  - Not applicable or not available a Assumes sohibility effects 

are negligible and !D -1.0. 

'' Includes solubility effects and uses an interpolated value of 0.96 for a. 

weight of water. Excellent agreement between experimental and calculated in- 

terfacial tensions for waterlalkanc and diol/alkane systems was obtained. I t  

is also expected that good estimates for cyclohexane-ethyl glycol should also 

be obtained from this equation. The calculated interfacial tension of glycol- 

cyclohexane is 16.7 dyne/cm (167 pN/cm), which agrees to within 10% of the 

experimental value of 15.4 dyne/cm (154 pN/cm) that was obtained in this 

study. 

The estimate for the interfacial tension of water-%ethyl hexanol was cal- 
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culated by the expressions given by Good and Ebling (1970) and Donahue and 

Bartell (1952). Value (a), 11.3 dyne/cm (113 pN/cm), was determined from 

Eq. 20, where was assumed to be 1.0 and solubility effects were neglected. 

A value of 10.1 was obtained if solubility effects were taken into account and a 

value, was interpolated from data values 

given by Good fop. substances with a range of solubilities. Donahue’s equation 

yielded an interfacial tension of 7.6 dyne/cm (76 pN/crn), which is considerably 

lower than the experimental value of 13.7 dyne/cm (137 pN/cni). The large 

differences between the calculated and experimental data shows the need for 

developing better correlations for the estimation of interfacial tension. 

of 0.96 is used. The value for 

Interfacial tension for the glycerin--cyclohexane system was determined by 

the Fowkes equation, which may be applied to binary systems where the in- 

termolecular forces in at least one of the liquids are predominately due to  dis- 

persion forces. Furthermore, the adhesive forces between the two liquids must 

only be due to dispersion forces. To use this equation, it is assumed that the 

dispersion force component of the surface tension is known for the second liq- 

uid. Fowkes (1964) reported a dispersion force-surface tension component of 

37.0 f 4.0 dyne/cm (370 pN/cm), which was determined by contact angle niea- 

surements between glycerol and a solid hydrocarbon. Inserting th i s  value into 

Fowkes equation and using the literature value (Scheflans and Jacobs 1953) of 

7glycerin = 63 dyne/cm (630 pN/cm), an interfacial tension of 27.5 f 3 dyne/cm 

(275 pN/cm) was obtained. This agrees reasonably well with the experimental 

value of 24.6 dync/cm (246 pN/cm). 

Using Fowkes equation, the dispersion force-component for the interfacial 

tension, r y d ,  of glycerol and glycol can be estimated from the experimental in- 
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terfacial tensions for glycerol-cyclohexane and glycol-cyclohexane given in the 

present study and pure component interfacial tensions. Values of 40.6 and 29.5 

dyne/cm (406 and 295 pN/cm) were computed for glycerol-cyclohexane and 

glycol-cyclohexane systems, respectively. With use of Fowkes equation, these 

values will be helpful in predicting the interfacial tension between these polyhy- 

dric compounds and other alkanes. 

In summary, a generalized correlation that accurately computes interfacial 

tension has not been developed. The method by Good has the best potential 

of becoming an excellent generalized correlation. This method has a strong 

theoretical basis and is attractive in that pure component surface tensions and 

solubility data may be used. Pure component surface tensions can be calculated 

from the methods by MacLeod and Sugden, Grain, Walden, and Mayer (Grain 

1982). The major drawback in using this method is estimating @. Reliable val- 

ues have only been calculated for hydrocarbon-water systems; when applied to 

hydrogen-bonded systems such as alcohol-water, calculated values of Q! do not 

give accurate results. Even when CP is interpolated from existing experimental 

values for similar systems large errors may be obtained. However, the develop 

ment of empirical correlations for the parameter Q! (for the various classes and 

structure of compounds) and solubility could make this method more attractive. 

The other methods for estimating interfacial tension are, at best, empirical and 

applicable only to specific liquid-liquid systems. 

6. CONCLUSIONS AND RECOMMENDATIONS 

Interfacial tension can be accurately determined from drop edge coordinates 

of pendant drops by the nonIinear parameter estimation algorithm that was 
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developcd in this study. The overall accuracy and precision of the method is 

determined by the degree of asymmetry of the drop Coordinates, the ability to 

accurately determine the drop edge and apex coordinates (z, and yo), and the 

resolution of the digitization process. If ar, and yo are known, the two parameters 

are employed to accurately deterniine the interfacial tension by varying the 

parameter p and h!,. However, for general use where the apex coordinates are 

not known, a four parameter model is used which varies the parameters 5, , yo, 

and R, to minimize the objective function. Using test data from Fordham’s 

tables, an error in interfacial tension of 0.5% was determined for data points 

which could be determined with an accuracy of 0.01 x R,. 

Initial parameter estimates of z,, yo, p, and R, are easily obtained by 

properly digitizing the image such that reasonable estimates of 5, and yo are 

determined. Subsequent Computations are made to determine D e ,  and estimates 

of R, and /j’ are obtained. With these initial estimates, the computer algorithm 

converges in approximately 10 iterations. Computational times on a VAX 788 

are 6 min for 120 drop edge coordinates. For most applications, 30 to 50 data 

points are all that is required to achieved a precision of 1%, and therefore, 

convergence occurs in approximately P .5 minutes. 

Repetitive measurements of the interfacial tension for several fluid-fluid 

systems shows an overall precision, i.e, standard error about the mean, of 1.2 

to 2.5% for digitization and computation. This agrees with values reported 

by Hoyce et al. (1984) who used uses a similar technique for digitization and 

computation. The overall precision can be improved by increasing the resolution 

for digitization and ensuring that the drop is axisymmetrical. 

In addition to developing the algorithm and digitization procedure, several 
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tests were conducted to evaluate the effect of several properties on the interfacial 

tension of systems that are important to electric field studies. The temperature 

dependence of the interfacial tension for several liquid-liquid systems shows a 

negative entropy for interface formation for systems where both phases contain 

liquids with polar function groups and a positive entropy for interface formation 

if one of the liquids does not contain a polar functional group. This agrees with 

the findings of Aveyard et al. (1977). 

Varying the salt concentration in the aqueous phase of the water-2-ethyl 

hexanol system shows an increase in interfacial tension with increase in salt 

concentration. The linear increase in interfacial tension with salt concentra- 

tion in the range, 0.1001 to 0.3165 g salt/mL is predicted by thermodynamic 

principles. The apparent deviation from linearity that is observed at lower salt 

concentrations is qualitatively explained thermodynamically. 

Future studies in this area should include the use of an IBM PC/AT 

compatible high resolution (512x512 pixels) frame-grabber (Data Translation 

Inc., DT 2851-60Hz) for real-time digital image processing. The frame-grabber 

should be interfaced with a high speed 16-bit image processor (Data Transla- 

tion Inc. ]UT 2858). The use of a higher resolution frame - grabber will minimize 

the error due to digitization. Improved methods for assuring the symmetry of 

the drop image about the y-axis are also needed if very accurate and precise 

measurements are to  be achieved. This could be done by carefully machining an 

adjustable lid with an unremovable nozzle that is perpendicular to the horizontal 

plane. The lid could then be adjusted to achieve perfect verticality. 

It would also be interesting to test PENDR.F on an IBM YC/AT computer 

which is equipped with a high speed co-processor (Definicon Systems Inc.( DSI- 



780-+/4). This board allows processing of FORTRAN at speeds comparable to 

mainframe computers. Furthermore, the user would be able to perform all the 

necessary computations on one system which would improve the overall time for 

obtaining interfacial tension values from pendant drops. 

Studies should also he conducted to determine the effect of low salt con- 

centrations on the interfacial tension of water-2-ethyl hexanol. Previous inves- 

tigators have observed a minimum in the interfacial tension at low salt concen- 

trations (Beunen and Ruckenstein 1982). 
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Table A . l .  Binary liquid density" Data for interfacial 

tension ealculat ions 

Liquid 'remperature (" C) 

Mixture 19.4 22.3 25.0 27.1 30.5 40.5 42.3 

W-S-~EH 0.9970 0.9957 0.9940 0.9896 

0.8312 0.8272 0.8186 2EH-s- W 0.8354 

EG-s-CH 1.1092 1.1063 1.1056 1.1023 1.0961 1.8947 

CII-s-EiG 0.7706 0.7690 0.7692 0.7669 0.7570 0.7557 

G-s-CH 1.2486 1.2456 1.2376 

c I-I-s- G 0.7744 0.7700 0.7574 .. . . . .. ..__I__ .... . . . . 

a density values were obtained by pycnometers and a Mettler balance 

W = water 

2EII - 2-ethyl hexanol 

EG = ethylene glycol 

CH = cyclohexane 

G = glycerol 

- a-s-b = liquid phase 3 saturated with component b. 
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Table A.2. Density data for water-salt-%ethyl hexanol system 
(Temperature - 28.5 " C )  

Corsc. of Density (g/mL) 
Salt in T%,O 

(g / I d J )  Water phase 2-ethyl tiexanol phase 

0.3165 
0.1700 
0.1001 

1.2006 0.8315 
1.1007 0.8315 
1.0462 0.8315 
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TYPICAL INPUT FILE 
(Input file: gc201) 

The following data in the left-most column represents the information that 
is required in the nonlinear parameter estimation computer programs. The right 
most colurnn list the designation of each input. This data file i s  specifically for 
the FORTRAN 77 program PENDR.F. To use this data set in the Basic com- 
puter programs, NON LI4.BAS and NONLI8.BAS, the parameter names must 
be put in quotation marks, i.e., “r09’. 

153 
7 
0 
0 
1 .oo 

0.00 
0.00 
0.02 
14.70 
0.02 
-18.30 
2.66 
23.70 

(same as above) 
1-0 
73.00 
beta 
-0.00006 
xo 
0. 

0. 
YQ 

No. of Data Points 
No. of Iterations 
A flag for weighting factor 
A flag for weighting factor 
fraction of calculated change 
to apply to each parameter 
y coordinate 
x coordinate 
y coordinate 
x coordinate 
y coordinate 
x coordinate 
y coordinate 
x coordinate 

Parameter name 
Initial parameter estimate 
Parameter name 
Initial parameter estimate 
Parameter name 
Initial parameter estimate 
Parameter name 
Initial parameter estimate 
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TYPICAL OUTPUT FILE FROM PJ3NDR.F 

'The following printout is a typical output file generated by PI3NI)R.F. 
Values for the x-scaling factor, density difference are listed. Parameter estimates, 
and values for the objective function are given for each iteration. Calculated 
and experimental profile coordinates are listed for the last iterations. These 
coordinates are used to generate graphs of the data. 

DATA FILE: gc201 

scale, cm/division, = 1.5910000000000d-03 

density difference, g/cm* *3, = 0.47330000000000 

iteration # 1 
r0- 73.0009336 beta-= -0.00006 
xO= 0.0007149 YO- -0.0000123 
surface/hterfacial tension = 19.56 
sum(objective function) **2 = 0.119311e+05 

-0.100000e+21 

iteration # 2 
rO- 80.2662652 beta: -0.0000480 
xO- 0.1433751 YO- -0.0813675 
surface/interfacial tension = 24.44 
sum(objective function) *"2 = 0.118446e-t 05 

-0.864836et02 

iteration # 3 
rO= 80.7818293 beta- -0.0000477 
x O ~  0.18282.52 yo= -0.0289267 
surfaee/hterfacial tension = 24.61 
sum(objective function) **2 = 0.178079e+03 

-0.116665e+05 

iteratiori # 4 
rO- 80.7689866 beta= -0.0000477 
xO= 0.1830654 YO= -0.0374999 
surface/interfacial tension = 24.59 
surn(objective function)**2 = 0.954635e-t 02 

-0.826154ef02 

iteration # 5 
rO- 80.7893214 beta= -0.0000477 

surface/interfacial tension = 24.62 
sum(objective function) ""2 = 0.950903e+Q2 

xO= 0.1825366 YO= -0.0259211 

-0.373249e+00 

delta sum= 

delta sum= 

delta sum= 

delta sum- 

delta sum= 
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iteration # 6 
rO= 80.7889723 beta= -0.0000477 

surface/interfacial tension = 24.62 
sum(objective function)**2 = 0.948292e+02 

xO= 0.1826099 YO= -0.0263197 

delta sum= 
-0.261 105e-t 00 
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iteration # 7 

Function Values 

xcalc 
...... 

0.1827370 
14.3003 109 
18.0281135 
23.2935 166 
25.9Fj04278 
30.3090837 
31.9692839 
35.4609236 
37.0271070 
40.4735199 
41. 1942788 
45.2781600 
45.2540472 
48.5451397 
49.1654666 
51.7294778 
52.3076834 
54.8081010 
55.3421200 
57.7607359 
58.2492286 
60.5702142 
60.5541050 
63.2226882 
63.2081605 
65.332 1 I36 
65.3188232 
66.9959547 
66.9835716 
68.9458054 
68.9345999 
70.4983000 
70.7790884 
72.2591914 
72.2502101 
73.9024562 
73.8945119 

xobs ycalc yobs 

-0.1826085 
14.5173915 

23.5173915 

30.5173915 

35.5173915 
-37.4826085 
40.5 17391% 

45 .I 5 1739 15 

48.5 173915 
-49.4826085 
51.5 173915 
-52.4826085 
54.5173915 
-55.1826085 
57.5173915 

60.5 I7391 5 

63.5 173915 

65.5173915 

66.5 173915 

68.5 17391 5 

69.5 173915 

71.5173915 
-71.4826085 
73.5173915 

-18.4826085 

-26.4826085 

-32.4826085 

-41.4826085 

-45.4826085 

-58.4826085 

-60.4826085 

-63.4826085 

-65 -4826085 

-66.4826085 

-68.4826085 

-70.4826085 

-73,4826085 

1.275577 
2.0361469 
3.4257134 
4.2 727075 
5.8836493 
6.5722549 
8.1628065 
8.9411028 
10.8030401 
11.2194 164 
13.7659956 
13.7499575 
16.0486383 
16.5084944 
18.5052377 
18.9775417 
21.1210207 
21.6005910 
23.8783537 
24.3597556 
26.7572530 
26.7399 10 1 
29.7359186 
29.7 I87657 
32 ”3 120248 
32.2951248 
34.4904’3’90 
34.4738234 
37.2309562 
37.2147030 
39.5800783 
40.0207119 
42.4486399 
42.4334180 
45.3568 100 
45.3422089 

0.0263225 
0.0463225 
0.0463225 
2.6863225 
2.6863225 
5.3663225 
5.3663225 
8.0463225 
8.0463225 
10.7263225 
10.7263225 
13.4863225 
13.4863225 
16.0863225 
16.0863225 
18.7663225 
18.7663225 
21.4463225 
21.4463225 
24.1 263225 
24.1263225 
26.8063225 
26.8063225 
29.4863225 
29.4863225 
32.166322.5 
32.1663225 
34.8463225 
34.8463225 
37.5263225 
37.5263225 
40.2063225 
40.2063225 
42.8863225 
42.8863225 
45.5663225 
45.5663225 

- 
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Function Values (cont.) 

xcalc xobs ycalc yobs 

75.2258342 
75.2 1887 14 
76.4769147 
76.6494148 
77.65774 18 
77.8072941 
78.8944752 
78.889899 1 
79.8983513 
79.8943418 
80.9173306 
80.8187764 
8 1.743 1028 
8 1.58 18634 
82.4273997 
82.3602846 
83.1086604 
83.0546739 
83.6694387 
83.6275525 
84.2025648 
84.1696038 
84.6343727 
84.60983 78 
85.0037465 
84.9872977 
85.3209740 
85.3097969 
85.55883 I 1 
85.5.53053 1 
85.7330363 
85.7301202 
85.8443597 
85.8433204 
85.8925115 
85.8924983 
85 3779402 
85.8776341 
85 .8O340 11 
85.801 9324 
85.6661 3 15 
85.6659868 

74.5 173915 

75.5 173915 

76.5173915 

78.5173915 

79.5173915 

81.5173915 

82.5173915 

82.5173915 

83.5 173915 

83.5173915 

84.51 73915 

84.5173915 

84.5 173915 

85.5 173915 

85.5 173915 

85.51 73915 

85.5 173915 

86.5 I73915 

86.5 173915 

86.5 173915 

85.5173915 

-74.4826085 

-76.4826085 

- 77.482608 5 

-78.4826085 

-79.4826085 

-80.4826085 

-80.4826085 

-81.4826085 

-82.4826085 

-82.4826085 

-83.4826085 

-83.4826085 

-83.4826085 

-84.4826085 

-84.4826085 

-84.4826085 

-84.4826085 

-85.4826085 

-85.4826085 

-85.4826085 

-85.4826085 

47.8918823 
47.8779652 
50.4765518 
50.8498490 
53.1180288 
53.4672923 
56.1395429 
56.1277862 
58.8288012 
58.8176937 
61.841 0090 
61.5372508 
64 -550 1873 
63.9989061 
67.0300196 
66.7751767 
69.7802805 
69.5500755 
7 2.3 350903 
72.13 1 1576 
75.1O34250 
74.92 17084 
77.7087629 
77.5484026 
80.3445071 
80.2 150839 
83.1068446 
82.9998822 
85.7632145 
85.6861076 
88.4348562 
88.3800020 
91.1159.527 
91.0831761 
93.8085511 
93.8048563 
96.47532 24 
96.4931142 
99.139401 7 
99.1783587 
101.8559341 
101.8581729 

48.2463225 
48.2463225 
50.9263225 
50.9263225 
53.6063225 
53.6063225 
56.2863225 
56.2863225 
58.9663225 
58.9663225 
61.6463225 
61.6463225 
64.3263225 
64.3263225 
67.0063225 
67.0063225 
69.6863225 
69.6863225 
72.3663225 
72.3663225 
75.046322s 
75.0463225 
77.7263225 
77.7263225 
80.4063225 
80.4063225 
83.0863225 
83.0863225 
85.7663225 
85.7663225 
88.4463225 
88.4463225 
91.1263225 
91.1263225 
93.8063225 
93.8063225 
96.4863225 
96.4863225 
99.1663225 
99.1663225 
101.8463225 
101.8463225 



Function Values (cont.) 

xcalc xobs ycalc yobs 

85.4711456 
85.4638002 
85.2197902 
85.2086686 
84.9138712 
84.89731809 
84.5549262 
84.5323724 
84.1176388 
84.0891681 
83.6535040 
83.61 74849 
83.1018057 
83.0995 161 
82.5391339 
82.4872569 
81.9355371 
81.8153793 
81.2272254 
81.0867781 
80.46266 15 
80.3823451 
79.6463510 
79.5547559 
78.7780017 
78.6758624 
77.8614727 
77.85 76679 
76.89762 70 
76.8935059 
75.8898593 
75.8853152 
74.698 1638 
74 3347859 
73.5986210 
73.59334 39 
72.46 13873 
72.4557014 
68.849212 1 

85.5173915 

85.51 73915 

85.5173915 

85.5173915 

84.5173915 

84.5173915 

83.51 73915 

83.5173915 

83.5173915 

82.5173915 

81.5173915 

80.5173915 

79.5173915 

78.5 173915 

77.5 173915 

76.5 17391 5 

74.5173915 

73.5173915 

72.5173915 

-84.4826085 

-84.4826085 

-84.4826085 

- 83.4826085 

-83.4826055 

-~3.4a2~085 

-82.4826085 

-81.4826085 

-80.4826085 

-80.4826085 

-79.4826085 

-78.4826085 

-78.4826085 

-77.4826085 

-76.4826085 

-75.4826085 

-73.4826085 

-72.4826085 
-69.4826085 

104.5224098 
104.6092827 
107.1753001 
107.28 19993 
109.8116744 
109.9402627 
112.4226532 
112.5737479 
115.1790806 
115.3483446 
117.764844 
117.9523653 
120.5 182409 
120.5252830 
123.06 15777 
123.2873874 
125.5744654 
126.0507308 
128.29625 I7 
128.8137801 
13 1.0217447 
131.2967891 
133.7348789 
134.0288026 
136.4434569 
136.7508691 
139.1364376 
139.1472936 
141.8190955 
141.8303361 
144.4830469 
144.4947684 
147.4800889 
147.1452245 
150.1206748 
150.1331524 
152.74 15624 
152.7544242 
160.4958321 

104.5263225 
104.5263225 
107.2063225 
107.2063225 
109.8863225 
109.8863225 
112.5663225 
112.5663225 
115.2463225 
115.2463225 
11 17.%%3225 
117.9263225 
120.6063225 
120.6063225 
123.2863225 
123.2863225 

125.9663225 
128.6463225 
128.6463225 
131.3263225 
131.3263225 
134.0063225 
134.0063225 
136.6863225 
136.6863225 
139.3663225 
139.3663225 
142.0463225 
142.0463225 
144.7263225 
144.7263225 
147.4063225 
147.4063225 
150.0863225 
150.0863225 
152.7663225 
152.7663225 
160.8063 2 25 



Function Values (eont .) 

.... I__._._ 

xcalc xobs ycalc yobs 
... 

71.2907465 
71.2846636 
70.0873921 
70.0810215 
68.6622133 
67.3948306 
67.3877465 
65.8915129 
66.0958440 
64.3505980 
64.7831449 
63.0060057 
63.4502911 
61.6452835 
62.1018570 
60.0330276 
60.5013078 
58.4017370 
59.1203369 
56.7573353 
57.4858675 
55.3536755 
55.8397435 
53.7022210 
54.4359256 
52.3013058 
52.7849708 
50.66433 79 
51.1412883 
49.0468715 
49.5129306 
47.2334954 
48.1403501 
46.7849430 

71.5173915 

70.5 1739 15 

68.5 173915 
67.5173915 

65.5 173915 

63.5 173915 

62.5173915 

61.5173915 

59.5173915 

57,5173915 

55.5173915 

54.5 173915 

52.5173915 

51.5173915 

49.5173915 

47.5173915 

44.5 173915 

-71.4826085 

-70.4826085 

-67.4826085 

-66.4826085 

-65.4826085 

-64.4826085 

-63.4826085 

-61.4826085 

-60.4826085 

-58.4826085 

-56.4826085 

-55.4826085 

-53.4826085 

-5 1.4826085 

-49.4826085 

-48.4826085 
-47.4826085 

155.3419737 
155.3551859 
157.9226977 
157.9361508 
160.8773113 
163.4 24 3 360 
163.4383432 
166.360891 7 
165.96651 13 
169.290461 8 
168.4756445 
171.7910557 
170.9699 1 42 
174.27692 49 
173.4473779 
177.1753545 
176.3381694 
180.0678025 
178.7979204 
182.9549001 
181.6786339 
185.4059598 
184.5580857 
188.2853452 
187.0058960 
190.7339405 
189.8873556 
193.615 1594 
192.7726844 
196.4988247 
195.663292 1 
199.7996690 
198.138404 7 
200.6303920 

155.4463225 
155.4463225 
158.1263225 
158.1263225 
160.8063225 
163.4863225 
163.4863225 
166.1663225 
166.1663225 
168.8463225 
168.8463225 
171.5263225 
171.5263225 
174.2063225 
174.2063225 
176.8863225 
176.8863225 
179.5663225 
179.5663225 
182.2463225 
182.2463225 
184.9263225 
184.9263225 
187.6063225 
187.606322s 
190.2863 22s 
190,2863 225 
192.9663225 
192.9663225 
195.6463225 
195.6463225 
198.3263225 
198.3263225 
201.0063225 

r0-I 80.7889700 beta== -0.0000477 

surface/interfacial tension =24.62 
sum(objective function)**2 =0.950652e+02 

~0=0.1826085 YO= -0.02632- 25 

delta sum= 0.236073e+00 
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APPENDIX C 

COMPUTER PROGRAMS 

AND 

THE RUNGE-KUTTA METHOD FOR SIMULTANEOUS 

FIRST ORDER DIFFERENTIAL EQUATIONS 
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PFINQ4.BAS: A SONY BASIC COMPUTER PROGRAM 
(Written for the Sony SMI-70 Graphics Computer) 

This program is used to define drop edge coordinates of a pendant drop picture that ha.$ 
been manually traced with the aid of a Sony Graphics program. The interior of the pendant, 
drop picture is filled with a particular color code which is different from the color code used to 
trace the perimeter of the drop. PFIND4.BAS scans the Graphics screen at  each y location to 
determine the boundary at which the two colors intersect. This program stores the x,y drop 
edge coordinates, calculates the initial estimate of the x coordinate at the origin, xo, an3 prints 
the initial estimate of yo. 

5 c:T,osE 
10 DIM A(300,2),NG$(9),VA(9,4) 
15 CCLEAR 0,24 
17 INPUT “READ DATA FROM DISK”;K$: Rem ENTER N 
18 I F  K$<>“N” AND K $ o ” Y ”  THEN 17 
19 I F  K$-=“Y” THEN 505 

Insert User Defined Parmeters 

20 INPUT “ENTER NO. OF GRAPHS”;NG 
21 PRINT ,“NAME ” ,“XSCALE”,“YSCALE”, “DENSITY” 
22 FOR 1=1 TO NG 
23 INPTJT “ENTER NAMES OF GRAPIIS” ,NG$(I) 
24 VA (I, 1) =VA (I- 1,l) : VA ( I, 2 )  =VA (I- 1,2) :IF SS $ = “S” THEN 27 
25 INPUT “ENTER X,Y SCALE”;VA(I,l),VA(I,Z) 
26 INPUT “ENTER S IF SCALE IS T H E  SAME FOR ALL GRAPHS”; SS$ 
27 INPUT “ENTER DENSITY DIFF (G/ML)”;VA(I,3) 
29 INPUT “ENTER Y-INCREMENTn;VA(I,4) 
30 PRINT ,NG$(I),VA(I,l),VA(I,2),VA(I,3),VA(I,4) 
31 NEXT I 
40 CCLEAR .24 
60 FOR JP=l  TO NG 
61 RG$=“A:”+NG$(JP):XS:--VA(JP,l):YS=VA(JP,2):DD= VA(JP,3) : 

K- VA( J P,4) 

Load Pendant Drop Picture 

70 - GLOAD (BG$) 

Vertical Scan of Graphics Screen to 
Determine Drop Edge Coordinates 

85 N=O:L=O:P=319 
90 FOR 1=0 T O  199 S T E P  K 
100 M=O 
106 IF  GPOINT(L,I)<>lO THEN llO:L=:O 
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107 IF GPOINT(P,I)<>lO THEN 11O:P=319 
110 FOR J-L TO 319 
120 I F  M==1 THEN 160 
130 IF  G P O I N T ( J , I ) o l O  THEN 200 
140 N=N-t  1: M=M+ 1: A (N, 1) = J- 1: A (N, 2) -1 
150 G O  TO 200 
160 IF  GPOINT(P,I)<>lO THEN P=P-1 
161 IF N-2<1 THEN 165 
165 I F  G P O I N T ( P , I ) o l O  THEN 160 
170 N=N+l:A(N,l)=P+l:A(N,2)=1 
180 GO T O  205 
200 NEXT J 
205 IF N<4 THEN 260 
210 IF  M o l  AND NiO THEN 270 
215 L=A(N-1,l)-lO:P=A(N,l)+lO 

220 IF A(N-l, l)>A(N-3,1) THEN L::=A(N-l,l) 
230 IF (A(N,l))<A(N-2,1) THEN P=A(N, l )  
260 NEXT I 

217 IF  N-3<1 THEN 260 

Clear Screen and Plot x,y Drop Edge Coordinates 

270 GCLEAR 3 

380 FOR 1=1 TO N 
390 GPLOT( A(I,l),A( 1,2)), 10,O 
400 NEXT I 

Save Drop Edge Coordinates 

425 FS$=“B:”+NG$(Jl’) 
430 OPEN /S FS$ 
432 NI$=STR$(N)S ‘,” 
435 SEND N1$ 
440 FOR I=1 TO N 
445 C$=STR$(A(I,l))+”,” 
450 SEND C$ 
455 D$=STR$(A(I,2))-t ‘,” 
460 SEND D$ 
465 NEXT I 
470 CLOSE 
480 GOTO 575 
500 GOTO 575 

Receive Drop Edge Coordinate da t a  from Existing File 
(This was not required for the present research) 

505 INPUT “ENTER DRIVE#-FILENAME”;FR$ 
510 OPEN /R FR$ 
515 RECEIVE Nl$:N=:VAL(Nl$) 
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520 FOR I=l TO N 
530 RECEIVE C$:A(I, l)=VAL(C$) 
540 RECEIVE D$:A(I,2)=VAL(D$) 
550 NEXT I 
560 CLOSE 

Calculate xo and Print x,y Drop Edge Coordinates 

565 REM GOTO 810 
575 PRINT , :PRINT ,NG$(JP):PRINT ,‘ 
576 REM GOTO 610 
577 P R I N T ,  : PRINT ,“Xn,uY” 
590 PRINT ,A(N,l),A(N,2) 
611 SUM2=O 

613 NEXT I 
614 XO=SUM2/N:PRINT , “XX0= 
615 NEXT JP 
620 CLOSE 
700 END 

612 FOR 1-1 T O  N-1 STEP 2:SUM2=A(I+l,l)+A(I,l)+SUM2 

,XO:SUM2-0:GCLEAR 0:CCLEAR 1,24 
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RK4TR8.BAS: A MICROSOFT BASIC COMPUTER PROGRAM 
(Written for the IRM Personal Computer) 

This program converts drop edge data files that were transfered from the SONY SMI-70 
Graphics Computer into a data file with the proper format for use in the nonlinear parameter 
estimation programs, NONT,I4.BAS1 and NONLI8.BAS. To use this data file in the FORTRAN 
77 program PENDR.F, the quotation marks 

a r o i d  the parameter names milst be removed. 

The user must insert the following data: 

1. 
2. Input file name 
3. Output file name 
4. 

rxy - The x-y scaling factor x divisions per cm / y divisions per cm. 

Estimates of Xo and Yo, Soiiy Graphic divisions. 

RK4TIt8.BAS will then input the data file, correct the data set about the origin, sort the 
data in ascending Y coordinates, determine initial estimates for Ro, Beta, Xo and Yo, and will 
finally store the data in the proper format. 

4 DIM XC, (4,4) ,Y G (4) ,SG( 4) ,LG (4) 
5 REM INPUT X-Y SCALING FACTOR (X DIVISIONS PER CM/ Y DIVISIONS 
PER CM) 
7 INPUT ”enter rxy”;RXY 
10 DTM VOBS(450,l) ,FORS(450) ,VOR(450) ,POB(450) 
12 INPUT ”enter file name”;FG$ 
13 IF FG$=”” THEW 12 
14 OPEN ”i”,#2,FG$ 
15 INPUT ”ENTER OWTPUT FILE NAME”;OP$: OPEN OP$ FOR OIJTPUT AS #1 
16 INPUT # 2 , N l $ : N = L E N ( N l $ ) : N l $ ~ ~ R I G H T $ ~ N 1 $ , N - l ) : N l ~ ~ ~ V A L ( N l $ )  
17 N1::~NP:GOSUB 3000:REM INPUT SONY DATA FILE 
20 GOSUB 4000: REM ESTIMATE POSITION OF ORIGIN BY CURVEFITTING 

THE BoT‘roM OF THEPENDANT DROP TO A QUADRATIC EXPRESSION AND 
DEFINING THE ORIGIN AS TFIE MINIMUM OF THE FUNCTION. 

25 INPUT ”enter xx0,yyO” ;XXO,YYO: REM USER INPUTS ESTIMATES OF 
XXO AND YYO. 

30 FOR 1=1 TO N1 
40 V O s s (  I,l)=VOBS (I, 1)-xxO 

60 NEXT I 
99 REM USER DEFINES HOW MUCH OF THE DROP PROFILE TO CURVEFIT 
100 1NPUT”enter left(l), right(r) or both(b) sides”;S$ 
102 1NPUT”enter s2-increment” $2 
103 J-0 

110 IF S$=”r” THEN S l = = N l  
111 IF S $ o ” b ”  THEN 122 
112 R l = l  

50 FOBS (I) =ABS (FOBS (I)-YYO) 

105 IF S$=”P THEN Sl=l:S2=-S2 
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115 I F  S$=”b” AND B l = l  THEN Sl=l:S2=-S2 

122 BI=Bl+l:SS=O 
130 FOR 1- N1/2 T O  S I  STEP S2 
132 J=J+1 

120 I F  S$=”b” AND B1=2 THEN Sl=Nl:S2=-S2 

133 IF I-+-S2<0 THEN 170 
135 REM LPRINT USING ”####.#### ”;VOBS(I+1,1),VOBS(I-1,1), 

FOBS( 1+1) ,FOBS(Ll) 

ABS(VOBS(1,l)) THEN 170 
136 IF ABS(VOBS(I+S2,1)+VORS(I, l))<ABS(VOBS(X+S2,1))+ 

137 IF SS=O THEN SS=(VOSS(I,l)- 2+FOR§(I)^ 2)^ .5 
140 SS=((VOBS(I+SP, l)-VOBS((I) , l))A 2+ 

150 FOB(J)=FOBS(I) 
155 VOB(J)=VOBS(I,l) 
160 PRINT VOB(J),FOB(J) 
161 IF S$=”b” G O T 0  170 
170 NEXT I 
171 IF S$=”b” AND B1<3 THEN 120 
173 GOSUB 5000: REM SORT DATA IN ACCENDING Y-ORDER AND STORE 

(FOBS(I+S2)-FOBS(I))A 2)- .5+SS 

CORRECTED DATA FILE. 
175 CLOSE ffl :  CLOSE #2 
180 END 
3000 FOR 1=1 T O  N1/2 
3010 I1::::I 
3020 FOR L=1 TO 2 
3030 IF Lz.2 THEN Il=Nl-I+l  
3040 FOR K::=l T O  2 
3050 I N P U T  #2,V$ 
3052 N=LEN (V$) :V$=RIGHT$(V$,N-l) 
3060 IF K = l  THEN VOBS(II,1)--=VAL(V$)-XXO 
3070 IF K>1 THEN FOBS(I1)=ABS(RXY*VAL(V$)) 
3090 NEXT K 

3110 NEXT I 
3120 RETURN 
4000 FOR IG=1 TO 3 
4010 FOR JG:-1 T O  3 
4020 XG(JG,KG)=O 
4030 NEXT JC, 
4040 NEXT IC4 
4050 YG(l)--=O 
4060 YG(2)=0 
4070 YC2(3)=0 
4080 FOR IG-=N1/2-5 T O  N1/2+4 
4085 PRINT VOBS( IG, l),FOBS(IG) 

3100 NEXT r, 

4090 XG(l , l )=VOBS(IG,l)* 4 -t XG(1,l) 
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4100 XG(l,P)=VOBS(IG,l)^ 3 + XG(1,2) 
4110 XG(1,3)=VOBS(IG,l)^ 2 + XG(1,3) 
4120 XG(2,1)=XG(1,2) 
4130 XG( 2,2)=XG( 1,3) 
4140 XG(2,3)=VORS(TG,l) t- XG(2,3) 
4150 XG(3,1)=XG(1,3) 
4160 XG( 3,2) =XG( 2,3) 
4170 XG( 3,3) -XG(3,3) + 1 
4180 YG(l)=FOBS(IG)*VOBS(IG,l)^ 2 + YG(1) 
4190 YG(P)=FOBS(IG)*VOBS(IG,l) -i- YG(2) 
4200 YG(J)=FOBS(IG) + YG(3) 
4210 NEXT IG 
4220 FOR IG= 1 TO 3 
4225 LG(IG)=IG 
4230 SG(IG)=O 
4240 FOR JG=1 TO 3 
4250 IF SG( IG) <ARS(XG( IG, JG)) THEN SG( IG)=ABS( XG( IG, JG)) 
4260 NEXT JG 
4280 NEXT IG 
4290 FOR KG= 1 TO 2 
4300 RMAX-0 
4310 FOR IG= KG TO 3 
4320 R=ABS (XG (LG (IG) ,KG))/SG (LG (IG)) 

4340 JG=IG 
4350 RMAX=R 
4360 NEXT IG 
4370 LK=LG( JG) 
4380 LG(JG)=LG(KG) 
4390 T,G(KG)=LM 

4410 XMULT=XG(LG(IG),KG)/XG(LK,KG) 
4420 XG(LG(IG),KG)=XMULT 

4440 XG(LG (IG), JG)=XG (LG( IG) ,JG)-XMUT,T*XG(LK, JG) 
4450 NEXT JG 
4460 NEXT IG 
4470 NEXT KG 
4480 FOR JG=1 TO 2 
4490 FOR IG=JG+l TO 3 
4500 YG( LG (IG)) -YG (LG( 1G))-XG( LG (IG) , JG) *YG( LG(.JG)) 
4505 NEXT IG 
4507 NEXT JG 
4510 SG(3)=YG( LG(3))/XG( LG(3) ,3) 
4520 FOR IG=1 TO 2 

4330 IF R<RMAX G O T 0  4360 

4400 FOR IG-KG-t-1 T O  3 

4430 FOR J G y K G - t l  TO 3 

4530 SUMGGzYG(LG(3-IG)) 
4540 FOR JG=3-IG+l TO 3 
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4550 SUMGG:=SUMGG-XG(EG(3-IG),JG)*SG(JG) 
4560 NEXT JG 

4580 NEXT IG 
4590 XXO=-SG (2) / (2*SG( 1)) 
4600 Y Y O= SG ( 1) * XX0^ 2 +S G (2) * XXO+ S G ( 3 )  
4605 PRINT " n o =  ";XXO;" yyO= ";YYO 
4610 RETURN 
5000 Nl=J 
5001 XE=O:WRITE #1,N1: REM STORE NUMBER OF DATA POINTS. 
5002 WRITE -#1,10: REM STORE NUMBER OF ITERA4TIONS. 
5003 WRITE #1,0:WRITE #1,Q: REM STORE NUMBER WEIGHTING FACTORS. 
5004 WRITE #l,l: REM FRACTION OF THE CALCULATED CHANGE TO APPLY 

5005 FOR I -=l  TO N 1  

4570 SG(3-IG)=SUMGG/XG(I,G(3-IG),3-IG) 

TO EACH PARAMETER. 

5010 FOR J=I+-I N I  
5020 IF FOR(I)<FOB(J) GOT0 5050 
5030 DV=VOB(I):VOB(I)-VOB(J):VOB(J)=DV 
5040 EV ::: FOB (I) :FOB (I) = FO €3 (J) : FO €3 ( J) = EV 
5050 NEXT J 
5055 IF ARS(VOB(I))>(XE/.95) THEN XE=.95*ABS(VOB(I)): REM 

5060 WRITE #l,FOB(I): WRITE #l,VOB(I): REM STORE CORRECTED 

5080 NEXT I 
5081 BETA 1:: .3/(XEA 2): REM ESTIMATE BETA. 
5082 WRITE #I,"RO":WRITE #l,XE: REM STORE INITIAL ESTIMATE OF RO. 
5084 WRITE #l,"BETA":WRITE #l,BETA: REM STORE INITIAL ESTIMATE OF 

5086 WRITE #l,"XXO":WRITE #1,0: REM STORE INITIAL ESTIMATES OF 

5088 WRITE #l,"YYO' ':WRITE #1,0: REM STORE INITIAL ESTIMATES O F  

5090 RETURN 

ESTIMATE RO 

PROFILE DATA POINTS. 

BETA. 

xo. 

YO. 
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NONLI4.BAS: A MICROSOFT BASIC COMPUTER PROGRAM 
(Written for the IBM Personal Computer) 

This program uses nonlinear parameter estimation algorithms to curvefit experiment a1 pen- 
dant drop profile data to the Laplace equation. The core of the program consists of algorithms 
that were written by Dave Whitrrian for solving nonlinear parameter problems. The program 
was modified and adapted by Michael T. Harris for curvefitting axisymmnetric drop edge data 
to the Laplace equation. Numerical derivatives are used to form the b-matrix. 

The user must insert the following data: 

1. 
2. 
3. 
4. 

Number of data files to be processed. 
Full name of data file. 
The x-scaliiig factor, L e .  cm/(measured unit). 
Density difference between the saturated phases, g/cm3. 

A listing of the program is given below. Lines 11000-11900 contains the fourth-order Runge- 
Kutta method for solving a set of first order differential equations to determine xcnlc and ycalc. 
This portion of the program was developed by Michael T. Harris (1986). 

15 DEFINT I-N 
16 DEFDRTJ A-H,O-Z 
110 DIM AORS(300),FCAT~C(300) ,FTEMP(SOO) ,OBSWT(300) 
120 DIM VOBS(300,2) ,V(300,2) ,VARWT(300,2) ,UFDV(300,2) 
130 DIM P(4),PNAME$(4), DFDP(300,4),INDEX(4,5),B(4,4) 
140 DIM IFLAG(300) ,DL AMBDA( 300) ,RHS (4) ,BCD (4'4) ,FCALC2(300) 
150 DIM IFIL1$(3O),XSCA1(30),DENDIl(JO) 
10050 NVAR=l : NP=2 
10052 NFT=3 
10055 IYT=l:NONDIV==O:NONCONVERGE=O 
10060 GOSUB 18000 'initialization routine 
10065 IFT=IFT+l 
10080 FOR IT := 1 TO NUMIT 
10090 'print progress report on screen 
10100 GOSUB 12000 'subroutine iteration report 
10110 'Test for non-convergance, exit if so 
10120 GOSUB 13000 'subroutine converge 
10130 IF NONCONVERGE => 1 
THEN PRlNT'nonconvergence termination" : 
GOTO 10270 

10135 IF NONDIV=l THEN PRINT "convergence": GOTO 10270 
10140 'Calculate lagrangian multipliers 
10150 GOSUB 13500 'subroutine lambda 
10160 'If internal weighting desired, calculate new obswts 
10170 IF INTERNALWT = 1 
THEN GOSUB 14500 

10180 'Set up matrix equation to  get parameter changes 
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10190 GOSUB 15000 'SUBROUTINE SETUP 
10200 'Solve equation for parameter changes 
10210 GOSUB 16000 'siibroutine solve 
10220 'Apply changes 
10230 GOSUB 17000 'subroutine deltap 
10240 NEXT IT 
10250 ' 
10260 'print final report 
10270 GOSlJB 19000 'subroutine report 
10280 'Do any final processing (user supplied) 
10290 GOSUB 20000 
10295 IF IFT<=NFT THEN G O T 0  10055 
10300 END 
11000 DS=.OO6579*€'(1) 
11010 S=O: JCOUNT=O:IERR=l 
11020 THIl=O 
11030 THI=THI1 
11040 XCALC=O 
11050 YCALC=O 
11070 REM runge-kutta method 
11080 J= J 
11085 XOLD=XCALC 
11090 YOLD=YCALC 
11110 THOLD=THL 

11125 SFB=SP:TIIF2= THOLD 
11130 GOSUB 11710 
11135 XK1=VF2 
11140 XKl=XKl*DS 
11145 SFl=SP:THFl=THOLD 
11150 GOSUB 11710 
11155 XLl=VFl 
11 160 XL 1-XL l*DS 
11165 SFl=SP:XF3=XCALC:YF3=YCALC:THFl=THOLD 
11170 GOSUB 11770 
11175 XM1-VF3 
11180 XMl=XMl*DS 
11190 SP=(S+DS/P!)/P( 1) 
11200 XP=XCALC+XK1/2! 
11220 YP=YCALC+XL1/2! 
11230 TIP=THOLD+XM1/2! 
11235 SF2=SP:THF2=TIP 
11240 GOSUB 11740 
11245 XK2=VF2 
11250 XK2=XK2*DS 
11253 SFl=SP:THFl=TIP 
11255 GOSUB 11710 

11120 SP=S/P(l)  
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11256 XL2=VF1 
11257 XLZ=XL2*DS 
11258 SFl=SP:XF3=XP:YF3=YI':THFl=TIP 
11260 GOSUB 11770 
11265 XM2=VF3 
11270 XM2==XM2*DS 
11280 XP=XCAT.E +XK2/2! 
11290 YP= YCALC+XL2/2 
11310 TIP=THI+XM2/2! 
11315 SF2=SP:THF2=TIP 
11320 GOSUB 11740 
11325 XK3=VF2 
11330 XK3=XK3*DS 
1 13 3 5 S F 1 =S P :TIIF 1 =TIP 
11340 GOSUR 11710 
11345 XL3=VF1 
11350 XL3=XL3*DS 
11355 SFl=SP:XF3:=XP:YF3=YP:SCHF1.:TIP 
11360 GOSUB 11770 
11365 XM3-VP3 
11370 XM3=XM3*DS 

11390 XP=XCALC t X K 3  

11420 TIP=THI +XM3 
11425 SFB=SP:TRF2=TIP 
11430 GOSUB 11740 
11435 XK4=VF2 
11437 SFl=SP:THFl=TIP 
11440 GOSUB 11710 
11445 XL4=xVF1 
11447 SFl=SP:XF3=XP:YF3-YP:THIFP=TIP 
11450 GOSUB 11770 
11460 S=S t D S  
11465 XM4=VF3 

11380 SP=(S-+P)S)/P(l) 

11410 YP=YCALC 3- XL3 

11470 XCALC-XC ALC+ (XKl+2!*XK2-+2! *XK3-+-XK4*DS) /6! 
11475 YCALC=YCALC +(XL 1 +2! *XL2+2!*XL3+XL4*DS) /6! 

11490 THI=THI -t- (XM1+2! *XM2+2!*XM3+XM4*DS)/6! 
11477 REM YCALC=YCALC+(-(XCALC-XOLD)" 2+DS" 2) 

11492 I F  T H b 3 . 1 4  OW. THI<O GOTO 11580 
11493 IF IMIN<=l GOTO 11500 
11500 IMIN=IERR 
11505 FOR I-IMIN TO NORs 
11510 XO=XOLD:YO=YOLD:Xl=XCALC:Y l==YCALC:XS=ABS( VOBS(1,l)): 
YS-AOBS(1) 

11512 REM IF DII==2 THEN XS=VOBS(I,1)+P(3):DII-1 
11514 DII=T)II+l 

.5 
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11515 DELT=(Xl-XO)^ Z+(Yl-YO)^ 2 
11520 IF DELT=O GOTO 11550 
11522 STESTO=( (Xl-XO) *(XS-XO) +(Y 1-YO) * (YS-YO)) /DELT 
11524 STESTl=( (Xl-XO) * (XS-X1) +(Y 1-YO) * (YS-Yl))/DELT 

1 15 28 VORS (I, 2) =X 1: FC ALC (I) =Y 1: FCALC2 (I) =Y 1 
11529 FCALC(I)=((XS-VOBS(I,2))^ Z+(YS-FCALC(I))^ 2)-  .5 
11530 JCOUNT=JCOUNT-tl:IERR=I+l 
11531 LOCATE 1,l:PRINT USING "### ";I,IERR:GOTO 11550 
11532 IF STESTO=O GOTO 11550 
11534 STS=SGN( l!-STESTO):STSl=SGN(l!-STESTl) 
11536 IF STS=STSl GOTO 11550 
11538 VOBS (1,2)=XO+ STESTO* (X1-XO):FCAI,C(I)=YO+STESTO * (Y 1-YO) : 

11526 IF S T E S T l o O  GOTO 11532 

FCALC2 (I) =FCALC( I) 
11539 FCALC(I)=((XS-VOBS(I12))^ 2-t-(YS-FCALC(I))^ 2 ) -  .5:IERR=I+1 
11540 JCOUNT=JCOUNT+l 
11550 LOCATE 1,l:PRINT USING "### ";I,IERR:NEXT I 
11560 IF IERR<=NOBS GOTO 11080 
11580 WEIGHT=( NOBS-2) / (JCOUNT-2) 
11700 GOTO 11900 
11710 REM sunb f l  
11720 VFl=SIN(THFl) 
11730 RETURN 
11740 REM sun f2.f 
11750 VF2==COS(THF2) 
11760 RETURN 
11770 REM f3.f 
11780 GOSUB 11710 
11785 ZF3=VF1 
11787 IF XF3=0 THEN VF3=1/P( 1):GOTO 11800 
11790 VF3=2/P( l)+P(2)*YF3-ZF3/XF3 
11800 RETURN 
11900 RETURN 
12010 '* SUBROUTINE ITERTATION REPORT 

12030 '* Prints out current parameters, function values, and 
deviation * 
12050 GOSUB 12200 'print parameters 
12060 GOSUB 11000 'get function values in fcalc 
12070 GOSUB 12500 'print function values and 
deviation 
12080 RETURN 
12210 '* SUEROUTINE PARAMREPORT( IT, NP, P) 
12220 '* 2/7/82 by Dave Whitman 
12230 '* Prints out current parameter values 
12250 CLS : LOCATE 4,4 
12260 PRINT 'Parameters, Iteration" ;IT : PRINT 

* 
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12265 LPRINT "Parameters, 1teration";IT : T,PRlNT 
12270 LOCATE 7,2 
12280 COLOR 1 : PRINT " Name I Value I Change "; : COLOR 7 : 
PRINT 
12285 LPRlNT 
12290 FOR I = 1 TO N P  
12300 LOCATE I+7,2 
12310 PRINT USING " 
"; P(I); " I ";-I * RHS(1) 

1231 1 SURT=-979.699*DENDIF*XSCAL 2/P(2) :STFFD$= "surface tension" 
12312 IF 1-2 THEN PRINT USING 
STFFD$; '1 " ;SURT 

12315 LPRINT USING " 
PNAME$(I);"I "; P(1); " I ";-1 * REIS(1) 

12316 IF 1-2 THEN LPItINT TJSING 
STFFD$;' 1' ;SUItT 

12320 NEXT I 
12330 PRINT 

12340 RETURN 
12510 '* SUBROUTINE FUNCTIONREPORT 

12520 '* Prints obs. and calc. function values, and deviation 
between them * 

12540 IROW ::: 1 : ICOL :I= 40 : IOFFSET = 20 : IItOOM = 40 : NUMROWS 
= 20 

12550 LOCATE IROW,ICOL : COLOR 1 
12560 PRINT ' obs. I calc. ";:COLOR 7 : PRINT 
12565 LPRINT obs.1 calc. ";:LPRINT 
12570 IF NOES >= NUMROWS 
THEN LOCATE IROW,ICOL+IOFFSET : COLOR 1: 
PRINT " obs. I calc. "; : COLOR 7 : 
PRINT 

12580 DEVSQ = 0 
12590 FOR I = 1 TO NORS 
12600 IF I > IRQOM THEN 12630 
12610 IF I <= NUMROWS THEN LOCATE (IROW + I),ICOL 

12620 PRINT USING "#.#### #.####"; VOBS(1,l);" I "; 
VOBS( 1,2) ; 

12030 DEV = FCALC(I)*WEIGBT 

12650 NEXT I 
12660 LOCATE 20,5 : PRINT TJSING " ##.#####";"sum error' 2 = 
";DEVSQ 
12665 LPRINT USING " ##.#####"; "sum error- 2 = ";DEVSQ 
12070 IF IT = 1 THEN 12690 'no change in first iteration 

Name I Value I Change ";:LPRINT 

#.##### +####"; PNAME$(I);"I 

" ###.Sf###";  

+iff#.####### +####.#####Sf###"; 

" ###.####"; 

12335 T,PR.INT 

* 

ELSE LOCATE (IROW 4- IMQD NUMROWS),(ICOL + IOE'FSET) 

12640 DEVSQ = DEVSQ -+- DEV * DEV * ORSWT(1) 
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12680 LOCATE 21,5: PRINT USING “ #.######”; 
“Change = ”;DEVSQ-DEVSQ1; 

12685 LPRINT USING ’ #.######”;“Change = ”; 
DEVSQ-DEVSQ1; 

12690 RETURN 
13010 ’* SUBROUTINE CONVERGE ( ERRSQ, DEVSQ, DEVSQ1, DEVSQ2, 
NONCONVERGE ) 

13030 ’* Compares squared deviation of calculated function from 
observed 
13040 ’* function with that obtained in the last 2 iterations. If 
the 

13050 ’* deviation got worse two iterations in a row, set 
nonconverge flag. 
13070 IF (DEVSQ > 1.05*DEVSQl AND DEVSQl > 1.05 * DEVSQP) 
THEN NONCONVERGE = 1 

13075 IF AUS(DEVSQ-DEVSQl)/UEVSQ<.OOOl THEN NONDIV-1 
13080 DEVSQ2 = DEVSQl 
13090 DEVSQl =E DEVSQ 
13100 RETURN 
13510 ’* SUBROUTINE LAMBDA ( DLAMBDA, FCALC, FOBS, OBSWT) 
13530 ’* Calculatcs lagrangian multipliers for setting up matrix 
equation 

13550 FOR I = 1 TO NOBS 
13560 DLAMBDA(1) 1::: FCALC(1) * ORSWT(I)*WEIGIIT 
13570 NEXT I 
13580 RETURN 
14010 ’* SUBROUTINE VSLOPE( V,DFDV,NVAR ) 
14030 ’* Calculates the partials of the function w/ r.t. each 
14040 ’* of the variables at  each of the observed points, and 
14050 ’* stores them in dfdv. 
14070 GOSUB 11000 ’call function( p, v, nobs, nvar, np, fcalc) 

14090 FTEMP(1W) = FCALC(1W) 
14100 NEXT IW 
14110 FOR IW = 1 TO NVAIL 
14120 FOR JW = 1 T O  NORS 
14130 IFLAG(JW) :::: 0 

14080 FOR IW = 1 To NOBS 

14140 IF ARS(VOBS(JW,IW)) < 1D-20 
THEN VOBS(JW,IW) = .0005# : IFLAG(JW) = 1 
ELSE VOBS(JW,IW) :::: VOBS(JW,IW) * 1.0005# 

14150 PRINT “modified var:” ;VORS(JW,IW) 
14160 NEXT JW 
14170 GOSUB 11000 ’call function(fca1c) 
14180 FOR JW = 1 TO NOBS 
14190 IF IFLAG(JW) ::= 1 
THEN DFDV(JW,IW) = (FCALC(JW) - E’TEMP(JW)) / .0005# : 
VOBS(JW,IW) = VORS(JW,IW) -.0005# 
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14200 IF IFLAG(JW) <> 1 
THEN DFDV(JW,IW) = (FCALC(SW)-FTEMP(JW)) / 
(.0005# * VOBS(JW,IW)): VOBS(JW,IW) = 
VOBS(JW,IW) / 1.0005# 
14210 PRINT“dfdv(”;JW;IW;“)=”; DFDV(JW,IW) 
14220 NEXT J W 
14230 NEXT IW 
14240 RETURN 
14510 ’* subroutine weigh( p, I I Q ~ S ,  nvar, v,  dfdv, varwt, ohswt ] 
14530 ’- calculates new weights for function values, 
14540 ’* using the follwing formula. 
1455Q ’* obswt(i) = 1/ sum [(dfdv)^ 2 * (l/varwt(v))] 
14560 ’* note: obswt(i) = l/L(i) in Wentworth article 
14580 IF IT = 1 THEN RETURN ’skip weighting on first iteration 
14590 GOSUB 14000 ’subroutine vslope 

14610 SUM = O# 
14620 FOIt JW = 1 TO NVAK 
14630 SUM = SUM + UFDV(IW,JW)*DFUV(iW,JW)/VARWT(IW,JW) 
14640 NEXT JW 
14650 QBSWT(1W) - 1# / SUM 
14660 NEXT IW 
14670 PRINT “new function weights.” 
14680 FOR 1W = 1 TO N O M  
14690 PRINT OBSWT(1W) 
14700 NEXT 1[W 

15000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

15010 ’* SIJBRQUTINE SETUP( B,RII§,dfdp) * 
15020 I* Sets up matrix equation to get changes to parameters * 

15040 ’ 
15050 ’Get partials of function w.r.t. parameters 
15060 GOSUB 17500 ’subroutine pslope 
15070 ’Now set up matrices 
15080 FOR I = 1 TO N P  
15090 ’Set up right hand side element 
15100 HEIS(1) = O# 
15110 FOR J = 1 TO NORS 
15120 RHS(1) I- RHS(1) t DFDP(J,I) * DLAMBDA(J) 
15130 NEXT J 
15140 ’Set up left hand side elements 
15150 FOR J = 1 TO NP 
15160 R(1,J) = O# 
15170 FOR K = 1 TO NOBS 
15180 B(I,J) = B(1,J) + DFDP(K,I) * DFDP(K,J) * 
0 BS WT (K) 

14600 FOR IW = 1 To NOUS 

14710 R m m N  

15030 ,$$$*$$**+*t*$*$*t******$***t**f$****$******$$$$**$~**$~**$ 
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15190 NEXT K 
15200 NEXT J 
15210 NEXT T 
15220 RETURN 

16010 '* subroutine solve[b#(np,np), rhs(np), np] * 
16020 '* 1/31/82 by Dave Whitman * 
16030 '* solves matrix equations of the form b# x = rhs# * 
16040 '* inverts b# in place,multiplies rhs# by inverse * 
16050 '* uses Gauss-Jordan matrix inversion * 
16060 '* for good results b# and rhs# must be dbl precision* 
16070 '* ref J.M. McCormick "Nunierical Methods in FORTRAN" * 

16090 DETERM = 1# 
16100 FOR I - 1 TO NP 
16110 INDEX(T,3) = 0 
16120 NEXT I 
16130 FOR I = 1 TO N P  'MAIN LOOP 
16140 'search for pivot element 
16150 MAX# = O# 
16160 FOR J ::- 1 TO N P  
16170 IF INDEX(J,3) = 1 THEN 162630 
16180 FOR K = 1 TO N P  

16200 IF INDEX(K,3) = 1 THEN 16250 

16220 TROW = J 
16230 ICOL = K 
16240 MAX# = ABS(R(J,K)) 
16250 NEXT K 
16260 NEXT J 
16270 INDEX(ICOL,J) = INDEX(ICOL,S) + 1 
16280 INDEX(1,l) =J IROW 
16290 INDEX(I'2) = ICOL 
16300 'interchange rows to put pivot on diagonal 
16310 IF IROW ::= ICOL THEN 16380 'ALREADY THERE 
16320 DETERM = -1# * DETERM 
16330 FOR J = 1 TO N P  
16335 PRINT "brow= ";B(IROW,J);" bcol= ";B(ICOL,J) 
16340 SWAP B(IItOW,J),B(ICOL,J) 
16345 PRINT "brow= ";B(IROW,J);" bcol= ";B(ICOL,J) 
16350 NEXT J 
16355 PRINT %ow= ";RHS(IROW);" rcol= ";RHS(ICOL) 
16360 SWAP RHS (IRO W) ,RHS( ICOL) 
16370 'divide pivot row by pivot element 
16380 PIVOT = B(ICOL,ICOL) 
16390 DETERM = DETERM * PIVOT 

16000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

16080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

16190 IF INDEX(K'3) > 1 THEN 16700 

16210 IF MAX# > ARS(B(J,K)) THEN 16250 
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16400 ]B(I[COL,ICOL) = I# 
16410 FOR J = 1 TO NP 
16420 B(ICOL,J) = B(ICOL,J)/PIVOT 
16430 NEXT J 
16440 RHS(1COL) = RIIS(ICOL)/PIVOT 
16450 ' reduce non-pivot rows 
16460 FOR J = 1 TO N P  
16470 IF J 7 ICOL THEN 16540 
16480 T = B(J,ICOL) 
16490 B(J,ICOL) = Off :BCD(J,ICOL)=R(J,ICOL) 
16500 FOR K = 1 TO PIP 
16510 R(J,K) = B(J,K) - U(ICOL,K)*T:BCn~J,K)=B(J,K) 
16520 NEXT K 
16530 RHS(J) == RHS(J) - RHS(ICOL)*T 
16540 NEXT J 
16550 NEXT I 
16,560 'interchange columns 
16570 FOR I = NP TO 1 STEP -1 
16580 IF INDEX(I,I) = INDEX(I,2) THEN 16640 
16590 IROW = INDEX(1,l) 
16600 IGOL = INDEX(1,Z) 
16610 FOR J -= 1 TO NP 
16620 SWAP H(J,IROW), U(J,ICOL) 
16630 NEXT J 
16640 NEXT I 
16650 'test for singularity 
16660 FOR I = 1 TO NP 
16670 IF INDEX(I,3) <> 1 THEN 16700 
16680 NEXT I 
16690 RETURN 
16700 PKINT"singu1ar matrix error ":RRTURN 

17010 '* SUBROUTINE DELTAP ( P, RHS, N P  ) * 
17020 '* * 
17030 '* Modifies parameters according to changes in rhs * 

17050 FOR I = 1 TO N P  
17060 P(I) = P(1) - RHS(1) * FRACT 
17070 NEXT I 
17080 RETURN 
17510 '* subroutine pslope[ p, vobs, nobs, np, nvar, 
dfdp(nobs,np) ] 

17520 '* 2/1/82 by Dave Whitman 

17530 '* calculates partial of the functioii with 

17540 '* respect to the each of the parameters at 

17000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

17040 ' * * * ~ * * * * * * * * * * * * + + + * * * * * * + * * * * * * ~ * * * * * * * ~ ~ * ~ * ~ ~ * ~ ~ ~ ~ +  

* 

* 
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* 
17550 ’* each of the observations, and stores them in dfdp. 

17580 FOR IS = 1 TO NOBS 
17590 FTEMP(1S) = FCALC(IS)*WEIGFIT 
17600 NEXT IS 
17610 FOR IS = 1 TO NP 

17625 P(1S) = TP*1.000000005# 

THEN P(1S) = TP + .000000005# 
ELSE €‘(IS) = TP * 1.000000005# 

17640 GOSUB 11000 ’call function( fcalc ) 
17645 I)PP:=O 
17650 FOR JS = 1 TO NOBS 
17660 REM IF T P  < ID-20 THEN DFDP(JS,IS) = (FCALC(JS)*WEIGHT - 

* 

17620 ‘rp I:T ~ ( 1 s )  

17630 REM IF TP < 1D-20 

FTEMP( JS)) / .000000005# ELSE U)FI)P( JS,IS) 
(FCALC( JS) *WEIGHT - FTEMP( JS)) / (.00000OO05# * TP) 

17665 D FDP (JS, IS) = (FC ALC (JS) * WEIGHT-FTEMP (JS) ) / (.OO0000005# * TP)  
17670 NEXT JS 
17675 REM FOR JS=1 TO NOBS 
17676 REM DFDP( JS,IS)=(1-DPP/DEVSQ)/(ABS( 1-DPP/DEVSQ))* 
DFD P (JS, IS) 

17677 REM NEXT JS 
17680 P(1S) = TP 
17690 NEXT IS 
17700 RETURN 
18010 ’* SUBROUTINE initialize 

18020 ’* 

18030 ’* Prompts for name of input file, then reads problem in 

18040 ’* from input file. 

18060 ’ 
18070 KEY OFF : CLS 

18076 IFT=l:  INPUT “enter # of fi1es”;NFT 
18077 FOR 1=1 TO NFT 
18080 LOCATE 13’20 : INPUT “Name of input file? ”,IFILl$(I) 
18082 INPUT “enter x-scale and density diff”;XSCAl(I),DENDIl(I) 
18084 NEXT I 
18086 IFILE$=IFIL 1$( IFT) :XSCAL=XSCA 1 (IFT) :DENDIF=DENDIl (IFT) 
18090 OPEN IFILE$ FOR INPUT AS #1 
18100 INPUT#l,NOBS 
18150 INPUT#l,NUMIT 

* 

* 

* 

* 

18075 IF IFT >1 THEN 18086 
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18160 INPUT#l,IUSERWT,INTERNALWT 
18170 INPUT#l, FRACT ’fraction of calculated param. change to 

18180 FOR I = 1 TO NOBS 
18185 NODS=T-l:IF EOF(1) THEN 18260 
18 190 INPUT# 1,AOBS (I) 
18200 IF IUSERWT -= 1 
THEN INPUT# 1,QBS WT(1) 
ELSE OBSWT(1) = 1# 

18210 FOR J = 1 TO NVAR 
18220 INl?UT#l,VORS(I, J)  
18230 IF ITJSERWT = 1 
THEN INPTJT#l,VARWT(I,J) 
ELSE VAKWT(1,J) = I# 

18240 NEXT J 
18250 NEXT I 
18260 FOR X = 1 TO NE‘ 
18270 INPUT#l,PNAME$(I), P(1) 
18280 NEXT I 
18285 NORS=NODS 
18290 DEVSQl = 1D+20 : DEVSQZ = ID-1-20 ’dummy devsqs for 
non-converge test 
18300 TIME$ == uOO:OO:OO” 
18305 CLOSE #1 
18310 RETURN 
19010 ’* SUBROUTINE REPORT 
19030 ’* Prints final report giving observed and calculated 
values of 
19040 ’* function, and standard deviation 
19050 ’* Note: assumes NEC 8023 printer. Modify to suit other 
printers. 

19060 ’* On NEC, esc X turns on underlining, esc Y turns it off. 
19070 ’* The following is a partial list of IBM screen 
characters, followed 

19080 ’* by the charactor the NEC will print: ii = I ; = sum; 

apply 

19090 ’* Thus “ error] =” prints as “sun1 error- 2 =”. 
19110 GOSUB 11000 ’subroutine function 

19140 LPRINT “FUNCTION: ”; FUNCTION$ 
19150 LPRINT “DATA FILE:”;IFILE$ 
19160 LPRINT : LPRINT“ Function Values” 
19170 LPRINT “X” “Observed I Calculated”; : LPRINT “Y” 
19172 PDRAW$=IFILE$+“r”:PDRAW2$=IFILE$+”c” 

19130 CPR1NT:LPRINT “FINAL REPORT” 

PDRAW3$=IFILE$+ ”0” 
19175 OPEN PDRAW$ FOR OUTPUT AS #3 
19176 OPEN PDRAW3$ FOR OUTPUT AS #2 
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19177 OPEN PDRAW2$ FOR OUTPUT AS #4 
19180 DEVSQ = O# 
19185 L-1 
19190 FOR I = 1 TO NOBS 
19192 I F  VOBS(I,l)<O THEN VOBS(I,2)=-VOBS(I,2) 
19193 L Z L - t l  
19194 I F  L>2 THEN L=l  
19195 WRITE#3,VOBS(I,l),FCALC'L(I)-AOBS(I) 
19196 WRITE#4,VOBS(I,2) ,FCALC2( I) 
19197 WRITE#Z,VOBS(I, l),AOBS(I) 
19200 LPRINT USING"####.## ####.##";VOBS(Ill); 

19210 DEVSQ = DEVSQ + FCALC(I)^ 2 * OBSWT(I)*WEIGHT 
19220 NEXT 1 
19225 CLOSE #3: CLOSE #4:CLOSE #2 
19230 LPRINT 
19240 LPRINT USING " ####.########### 

+#.sf##########";" error( = "; DEVSQ; 

" I ";VOBS(I,2) 

" Change, last iteration = "; DEVSQ - DEVSQl 
19250 GOSUB 19500 'subroutine covariance 
19260 LPRINT: 1,PRINT"FINAL PARAMETERS" 
19270 LPRINT "X" " Name 1 Value 1 Std.Dev."; : LPRINT "Y" 
19280 FOR I ::: 1 T O  NP 
19290 LPRINT USING " ####.########### 

ARS(B(I,I))^ .5 
19292 SURT=-979.699*DENDIF*XSCALA 2/P(2):STFFD$="surface tension" 
19293 IF I=2 THEN LPRINT USING " 

STFFD$;"I";SUItT 
19300 NEXT I 
19310 LPRINT 
19320 KEY ON: RETURN 
19510 '* SUBROUTINE COVARIANCE 
19530 '* Calculates estimate of unit variance, then calculates 
19540 I* variance/covariance matrix based on inverted €3 matrix 
and the 

19550 '* variance estimate. 
19570 'estimate unit variance 
19580 IF NORS <= N P  
THEN VAR - 0# 'should never trust parameters if nobs < np 
anyways! ELSE VAR = DEVSQ / (NOBS - NP) 

19590 'convert I3 to covariance matrix 
19592 VAR:-::DEVSQ/(NOBS-NP) 
19600 FOR I = 1 T O  NP 
19610 FOR J = 1 TO NP 
19620 B(1,J) = R(1,J) * VAR 
19630 NEXT J 

##.Sf -###########" ;  PNAME$(I);"I "; P(1);" I "; 

###.####"; 
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19640 NEXT I 
19650 RETURN 
20010 ’* subroutine finalproc 
20020 ’* 
20030 ’* Before nonlin stops] it makes a call to a subroutine at 
line 20000 

20040 I*  The user may supply a subroutine (in the file with the 
function 

20050 ’* subroutiire) to do any final calculations using either 
the final 

20060 ’* parameter set and/or the variance-covariance matrix. 
20080 RETURN 
65000 ’ Trap error of function file not in ascii mode 
65010 IF ERR <> 54 THEN 65090 
65020 CLS: BEEP : LOCATE 5’28 
65030 PRINT “Bad File Mode Error:” 
65040 LOCATE 7,21: PRINT ‘Function file must be saved in ASCII 

65050 LOCATE 8’15 

65090 RESUME 

mode” 

65080 LOCATE 2 3 , ~  sror 
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NONLI8.BAS: A MICROSOFT BASIC PROGRAM 
(Written for the IBM Personal Computer) 

This program uses nonlinear parameter estimation algorithms that were developed by Dave 
Whitman to curvefit experimental pendant drop profile data to the Laplace equation. The 
algorithm was modified by Michael T. Harris so that analytical derivatives are used to compute 
the 2-matrix. 

The following data which is not contained in the data file must be entered by the user: 

1. 
2. 
3. 
4. 

Number of data files to be processed. 
Full name of data file. 
The x-scaling factor, i.e. cm/(measured unit). 
Density difference between the saturated phases, g/cn13. 

A listing of the program is given below. Lines 11000 -- 11900 contains the fourth-order 
Runge--Kutta method for solving a set of first order differential equations to determine x,,lc 

and ycalc. Lines 31085 -- 41800 contains the fourth-order Runge-Mutta method which is used 
to compute the analytical derivatives that are required to form the 2-matrix. 

15 DEFINT I-N 
16 DEFDBL A-13’0-Z 
110 DIM AOBS (300) ,FC ALC( 300) ,FTEMP( 300) ,OBS WT( 300) 
120 DIM V0BS(300,2),V(300,2),VARWT~300,2),DFDV(300,2) 
130 U1M P(4),PNAME$(4), DFDP(300,4) ,INDEX(4,5) ,R(4,4)  

150 DIM IFlL1$(30),XSCA1(30),DENDI1(3O),IP(300) 
10050 NVAR=1 : NP=2 
10052 NFT-3 
10055 IYT=1:NONDIV=O:NONCONVERGE=O 
10060 GOSUB 18000 ‘initialization routine’ 
10065 IFT=IFT+l 
10080 FOR IT T- 1 TO NUMIT 
10090 ‘print progress report on screen’ 
10100 GOSUB 12000 ‘subroutine iteration report’ 
10110 ‘Test for non-convergance, exit if so’ 
10120 GOSUB 13000 ‘subroutine converge’ 
10130 IF NONCONVERGE = 1 
THEN PRINT‘nonconvergence termination” : GOTO 10270 
10135 IF NONDIV=l THEN PRINT “convergence”: GOTO 10270 
10140 ‘Calculate lagrangian multipliers’ 
10150 GOSUB 13500 ‘subroutine lambda’ 
10160 ‘If internal weighting desired, calculate new obswts’ 
10170 IF INTERNALWT = 1 
TIIEN GOSUB 14500 
10180 ‘Set up matrix equation to get parameter changes’ 
10190 GOSUB 15000 ‘SUBROUTINE SETUP’ 

140 DIM IFLAG(300),DLAMBDA(300),RHS(4),BCD(4,4),FCAT,C2(300) 
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10200 ‘Solve equation for parameter changes’ 
10210 GOSUB 16000 ‘subroutine solve’ 
10220 ‘Apply changes’ 
10230 GOSUB 17000 ‘subroutine deltap’ 
10240 NEXT IT 
10260 ‘print final report’ 
10270 GOSUB 19000 ‘subroutine report’ 
10280 ‘Do any final processing (user supplied)’ 
10290 GOSUB 20000 
10295 IF IFTI-NFT THEN GOT0 10055 
10300 END 
11000 DS= .O 13 158 *P ( 1) 
11010 S=DS: JCOUNT==O:IERR=1 
11020 THIl=@ 
11025 THIlB=O 
11027 THIlR=O 
11030 THI=THIl 
11035 TIILB=TlIIlB 
11037 THIR=THIlR 
11040 XCALC=O 
11045 XCALCB=O 
11047 XCALCR=O 
11050 YCALC=O 
11055 YCALCB-Q 
11057 YCALCR=O 
11070 REM runge-kutta method 
11080 J-= J 
11085 XOLD=XCALC 
11090 YOLD=YCALC 
11110 THQLD-THI 

11125 SF2=SP:TIIF2=THOLD 
11130 GOSUB 11740 
11135 XKl=VF2 
11140 XKl=XKl*DS 
11 145 SFl=SP:THFl=TIIOLD 
11150 GOSUB 11710 
11155 XLl=VFl 
11160 XLl=XLl*DS 
11165 SFf=SP:XF3=XCALC:YF3-YCALC:THF1=THFl=THOLD 
11170 GOSUB 11770 
11175 XMl=VFJ 
11180 XMl=XMl*DS 
11 190 SP- (S+ DS/2!) /P( 1) 
11200 XP=XCALG+XK1/2! 
11220 YP=YCALC+XLl/P! 
11230 TIP=THOLD+XM1/2! 

11120 SP=S/P(l)  
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11235 SF2=SP:THF2=TIP 
11240 GOSUB 11740 
11245 XK2=VF2 
11250 XK2=XK2*DS 
11253 SFI::=SP:THFl=TlP 
11255 GOSUB 11710 
11256 XL2=VF1 
11257 XL2=XL2*DS 
11258 SFl:=SP:XF3=XP:YF3=YP:THFl~=TIP 
11260 GOSUR 11770 
11265 XM2-VF3 
11270 XM2:---XM2'DS 
11280 XP-XCALC +XK2/2! 
11290 YP= YCALC+XL2/2 

113 15 SF2=SP:THF2=TIP 
11320 GOSUB 11740 
11325 XK3=VF2 
11330 XK3=XK3*DS 
11335 SFl=SP:TIIFl=TIP 
11340 GOSUR 11710 
11345 XL3::::VFl 
11350 XL3-=XL3*DS 
11355 SFl=SP:XF3=XP:YF3=YP:THFl=TIP 
11360 GOSUB 11770 
11365 XM3=VF3 
11370 XM3=XM3*DS 
11380 SP=(S+DS)/P(l)  
11390 XP=XCALC +XK3 
11410 YP-YCALC + XL3 
11420 TXP=THI +XM3 
11425 SF2==SP:THF2=TIP 
11430 GOSUB 11740 
11435 XK4=VF2 
11437 SFI==SP:TBFl=TIP 
11440 GOSUB 11710 
11445 XL4=VF1 
11447 SFl:=SP:XF3=XP:YF3=YP:THFl=TIP 
11450 GOSUB 11770 
11452 XM4=VF3 
11455 GOSUB 31085: GOSUB 41085 
11460 S=S+DS 
11470 XCALC=XCALC+(XKl+P!*XK2+2!*XK3+XK4*DS)/6! 
11475 YCALC=YCALC+(XLl-+Z!*XL2+2!*XL3+XL4*DS)/6! 
11477 REM YCALC=YCALC+(-(XCALC-XOLD)- 2+DS" 2)- .5 
11490 TI-II-TI11 +(XM1+2!*XM2+2!*XM3--t-XM4*DS)/6! 

11310 TIP=THI$-XM2/2! 

11492 IF TI-IIi3.14 OR THIjO G O T 0  11580 
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11493 IF IMINi=I GOTO 11500 
11500 IMIN-IERR 

11.505 FOR J=IMIN TO NORS: I-IP(J) 
11510 XO=XOLD:YO=YOLD:Xl=XCALC:Yl=YCALC:XS=ARS(VOBS(I, 1)): 
YS=ABS( AOBS(1)) 
11512 REM IF UII-2 THEN XS.-.VOBS(I,l)t-P(3):DII=l 
115 14 DII-DII+ 1 
115 15 DELT- (XI-XO)^ 2+ (?il-YO)^ 2 

11522 STESTO=((Xl-XO)* (XS-XO)+(Yl-YO) * (YS-YO))/DELT 

11502 FOR 1=1 To NOBS: IP(I)-I: NEXT I 

11520 IF DELT=O G w o  11550 

11524 STESTl=((Xl-XO) * (XS-Xl)+(Y 1-YO) * (YS-Y l))/DELT 
11526 IF STESTliLO GOTO 11532 
11528 VOBS(1,2)=Xl:FCALC(~)=Yl:FCALC2(1)=Yl 
11529 FCALC(1) ::=( XS-VOBS(I12))^ 2+(YS-FC ALC(1)) ̂  2: 
D FU P (I, 1) = 2 * ( (XC A LC-XS ) * XC AL C R+ (Y C AL C-Y S ) * Y C AL C R) 

XCALCR+ (YCALG-YS) *YCALCR):DFDP( I,3)=2* (XCALC-XS): 
DFDP (I,4) =2 * (YC ALC-YS) : IP (IMIN) = J: IP (J) :::: IMTN 
11531 LOCATE 1,I:PRINT USING "### ";I,IERR:GOTO 11550 
11532 IF STESTO:=O GOTO 11550 
11534 STS=SGN( l!-S'l'ESTO):STSl--SGN(l!-STEST1) 
11536 IF STS=STS1 GOTO 11550 

11530 JCOUNTz JCOUNT+l:IERR=I+-1:DFDP(I,2) :;:4* ((XCALC-XS) * 

11538 V0BS(T12)=X0+STEST0*(X1-X0):FCAT~@(1)=Y0-t 

11539 XCALRl=XOLUB+(VOBS(I,2)-XO)/ (Xl-XO) * 
S TEST0 * (Y 1-Y 0) : FC AL C 2 (I) = FC ALC (I) 

(XC ALC B-XO T, D B) :Y C AI, R I= Y 0 L D BS- ( FC AI, C 2 (I) -Y 0) / 
(Y 1-YO) * (Y CALCB-YOLDB) 

11540 JC0UNT::::JCOUNT-I- 1 
11541 FCALC(I)=(XS-VOBS(I,2)) ,. 2+(YS-FCALC(I))" 2:IERR:I-i- 1 
11542 XCALR1~:=XOLDR--t- (VOBS( 1,2)-XO)/ (Xl-XO) * (XCALCR-XOLDR): 

YCALRl=YOLDR+ (FCAT,CZ( I)-YO)/(Yl-YO) * (YCALCR-YOLUR) 
11543 DFDP(I,2)::::4*((VOBS(Il2)-XS)*XCALBl~t~(FCALC2~I)-YS)* 
YCALBl):IP( IMIN) = J 

YC ALR 1) : IP ( J )  I= IMIN 

11550 LOCATE 1,l:PRINT USING "### ";I,IERR:NEXT J 

11545 DFDP(1,l) :::2* ((VOBS(I,S)-XS) 'XCALRl+(FCALC2(I)-YS) * 

11546 UFDP(I,3)=2*(VOBS(I,2)-XS):DFDP(I,4)~2*JFCAI~C2(I)-YS) 

11560IF IEftRi-NOBS GOTO 11080 
11580 WEIGI-IT=(NOBS-2)/( JCOUNT-2) 
11700 GOTO 11900 
11710 REM surib f l  
11720 VFl=SIN(THFl) 
11730 RETURN 
11740 REM sun f2.f 
11750 VF2=COS (THF2) 
11760 RETURN 
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11770 REM f3.f 
11780 GOSUB 11710 
11785 ZF3-VF1 
11787 IF XF3=0 THEN VFS=l/P(l):GOTO 11800 
11790 VF3=-:2/P( l )+P(2)  *YF3-ZV3/XF3 
11800 RETURN 
11900 RETURN 
12010 ‘SUBROUTINE ITERTATION REPORT’ 
12030 ‘Prints out current parameters, function values, and deviation’ 
12050 GOSUB 12200 ‘print parameters’ 
12060 GOSUB 11000 ‘get function values in fcalc’ 

12070 GOSUB 12500 ‘print function values and deviation’ 
12080 RETURN 
12210 ‘SUBROUTINE PARAMREPORT( IT, NP, P)’ 
12220 ‘2/7/82 by Dave Whitman’ 
12230 ‘Prints out current parameter values’ 
12250 CLS : LOCATE 4,4 
12260 PRINT “Parameters, Iteration” ; IT : PRINT 
12265 LPRINT “Parameters, 1teration”;IT : LPRINT 
12270 LOCATE 7,2 
12280 COLOR 1 : PRINT “ Name I Value I Change ”; : COLOR 7 : PRINT 
12285 LPRINT “Name I Value I Change ”;:LPRINT 
12290 FOR I = 1 T O  N P  

12310 PRINT USING “ #.##### 
12300 LOCATE I f-7,2 

####”; PNAME$(I) ;“I 
” ;  P(1); “ 1  ”;-1 * RHS(1) 
12311 SURT=-979.699*DENDIF*XSCAL^ 2/P(2):STFFD$ -“surface tension” 
12312 IF I=4 THEN PRINT USING 
12315 LPRINT USING “ 
”; €‘(I); “ I ”;-1 * RHS(1) 

###.####“;ST- FFI)$;“I ”;SIJRT 
###.####### ##sf#.#########”; PNAME$(I); “ 1  

12316 IF 1=2 THEN LPRINT USING “ 

12320 NEXT I 
12330 PRINT 
12335 LPRINT 
12340 RETURN 

12510 ’* SUBROUTINE FUNCTIONREPORT 

12520 ’* Prints obs. and calc. function values, and deviation 
between them * 

12540 IROW = 1 : ICOL = 40 : IOFFSET = 20 : IROOM = 40 : NUMROWS 
= 20 
12550 LOCATE IROW,ICOL : COLOR 1 
12560 PRINT “ obs. I calc. ”;:COLOR 7 : PRINT 

###.####”; 
STFFD$;“-”;SURT 

12500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

12530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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12565 LPRINT 
12570 IF NOBS i= NUMROWS 
THEN LOCATE IROW,ICOL+IOFFSET : COLOR 1: 
PRINT " obs. 3 calc. 
"; : COLOR 7 : PRINT 
12580 DEVSQ = 0 
12590 FOR J = 1 TO NOBS: I=IP(J) 

obs. I calc. ";:LPRINT 

12600 IF I i IROOM THEN 12630 

ELSE LOCATE (IROW + I 
MOD NUMROWS),(ICOL + IOFFSET) 

12610 IF I j= NUMROWS THEN LOCATE (IROW + I),ICOL 

12620 PRINT USlNC, "#.#### #.####"; VORS(I,l)-P(3);" 3 
" ;VOBS(I,2); 
12630 DEV = FCAT,C(I)*WEIGHT 
12640 DEVSQ = DEVSQ + DEV * OBSWT(1) 
12650 NEXT J 
12660 LOCATE 20,.5 : PRINT USING 
" ; DEVSQ 
12665 LPRINT USING ' ##.#####";"sum error- 2 = ";DEVSQ 
12670 IF IT = 1 THEN 12690 'no change in first iteration 
12680 LOCATE 21,5: PRINT USING " #.######";"Change = ";DEVS&-DEVSQl; 
12685 LPRINT USING #.######" ;" Change ";DEVSQ-DRV-SQl; 
12690 RETURN 

13010 '* SIJRROUTINE CONVERGE ( ERRSQ, DEVSQ, DEVSQ1, DEVSQZ, 
NONCONVERGE ) * 
13020 '* 

13030 '* Compares squared deviation of calculated function from 
observed * 
13040 '* function with that obtained in the last 2 iterations. If 
the * 
13050 '* deviation got worse two iterations in a row, set 
nonconverge flag.* 

13070 IF (DEVSQ i 1.05*DEVSQl AND DEVSQl i 1.05*DEVSQ2) 
THENNONCONVERGE=I 

13080 DEVSQ:! = DEVSQl 
13090 DEVSQl 2 DEVSQ 
13100 RETURN 

13510 '* SUBROUTINE LAMBDA ( DLAMBDA, FCALC, FOBS, OBSWT) 

13520 '* 

13530 '* Calculates lagrangian multipliers for setting up matrix 

##.#####";"sum error- 2 = 

13000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

13060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

13075 IF ABS(DEVSQ-DEVSQl)/DEVSQj.OOOl THEN NONDIV 1 

13500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

* 
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equation * 

13550 FOR J = 1 T O  NOBS: I=IP(J) 
13560 DLAMBDA(1) = FCALC(1) * OBSWT(I)*WEIGIIT 
13570 NEXT J 
13580 RETURN 

14010 ’* SUBROUTINE VSLOPE( V,DFDV,NVAR ) 

14020 ’* 

14030 ’* Calculates the partials of the function w/ r.t. each 

14040 ’* of the variables at each of the observed points, and 

14050 ’* stores them in dfdv. 

13540 ~*$$*$$*$*$$****$**$***$**$$$****$**$$$$$$$***$****$$***** 

14000 ’$$**$$****$*$*$$*******$$*$$$$********$$******~$*~*******  

* 

* 
* 

$ 

* 
14060 ’ $ $ * * * * * * $ $ * * * * ~ * * * * $ * $ * * * * * * * * * * $ * $ * $ * ~ * * * $ * * * * ~ * * * * * * ~ * *  
14070 GOSUB 11000 ’call function( p, v, nobs, nvar, np, fcalc) 
14080 FOR IW 
14090 FTEMP(1W) = FCALC(1W) 
14100 NEXT IW 
14110 FOR IW 1 TO NVAR 
14120 FOR J W  = 1 TO NOBS 
14130 IFLAG(JW) = 0 

THEN VOBS(JW,IW) = .0005# : 
IFLAG(JW) = 1 ELSE VOBS(JW- 
,IW) = VOBS(JW,IW) * 1.0005# 
143 50 PRINT “modified var:” ;VORS( JW,IW) 
14160 NEXT JW 
14170 GOSUB 11000 ’call function(fca1c) 
14180 FOR J W  = 1 TO NORs 
14100 IF IFLAG(JW) = 1 

FTEMP(JW)) / .0005# : VOBS(JW,lW) 
= VORS(JW,IW) - .0005# 
14200 IF IFLAG(JW) i i  1 
TIIEN DFDV(JW,IW) = (FCALC(JW)-L’TEM- 

P(JW))  / (.0005# * VOSS(JW,IW)) : VOBS(JW,IW) 

14210 PRINT“dfdv(”;JW;IW;“)-”; DFDV(JW,IW) 
14220 NEXT JW 
14230 NEXT IW 
14240 RETURN 

14510 ’* subroutine weigh[ p, nobs, w a r ,  v, dfdv, varwt, obswt ] 

1 TO NOBS 

14140 IF ABS(VOBS(JW,IW)) i 1D-20 

THEN DFDV(JW,IW) (FCALC(JW) - 

= VOHS(JW,IW) / l.0005# 

14500 l * * * * * * * * $ t * * * * * $ t * * * * * * t * * * * $ * * $ * * * * * * * * * * * * * * * $ $ $ $ $ * * * * * * ~  
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$ 

14520 ’* 

14530 ’* calculates new weights for function values, 

14540 ’* using the follwing formula: 

14550 ’* obswt(i) = l/sum [(dfdv)^ 2 (l/varwt(v))] 

14560 ’* note: obswt(i) = l/L(i) in Wentworth article 

$ 

* 

$ 

* 

$ 

14570 ’*******$$$$**+*$$**$$$$**$$*$$$$$$$****$$*$$***$$$$$*$$$$ 

14580 IF IT == 1 THEN RETURN ’skip weighting on first iteration 
14590 GOSUB 14000 ’subroutine vslope 
14600 FOR IW = 1 TO NOBS 
14610 SUM = O# 
14620 FOR JW = 1 TO NVAR 
14630 SUM = SUM + DFDV(IW,JW)*DFDV(IW,JW)/VARWT(IW,JW) 
14640 NEXT JW 
14650 OBSWT(1W) = l# / SUM 
14660 NEXT IW 
14670 PRINT “new function weights:” 
14680 FOR IW - 1 TO NOBS 
14690 PRINT OUSWT(1W) 
14700 NEXT IW 
14710 RETURN 

15010 ’* SUBROUTINE SETUP( B,RHS,dfdp) * 
15020 ’* Sets up matrix equation to get changes to parameters * 

15040 ’ 
15050 ’Get partials of function w.r.t. parameters 
15060 GOSUB 17500 ’subroutine pslope 
15070 ’Now set up matrices 
15080 FOR I I- 1 TO N P  
15090 ’Set up right hand side element 
15100 RHS(1) = 0# 
15110 FOR JJ  =: 1 TO NOBS: J=IP(JJ) 
15120 RHS(1) -- KEIS(I) + DFDP(J,I) * DLAMBDA(J) 
15130 NEXT JJ  
15140 ’Set up left hand side elements 
15150 FOR J =: 1 TO NP 
15160 B(I,J) 7- O# 
15170 FOR KK = 1 TO NORS:K=IP(KK) 
15180 B(I,J) :::: B(I,J) + DFDP(K,I) * DFDP(K,J) * 
OB§ W T (K) 
15190 NEXT KK 

15000 ) **$******$$****$$$$********$$*$$$***$$$$$********~******$~ 

15030 ’$$$*****+****+$$*$$*$$$$$$$$***********************~~*** 
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15200 NEXT J 
15210 NEXT I 
15220 RETURN 

16010 ’* subroutine solve[b#(np,np), rhs(np), np] * 
16020 ’* 1/31/82 by Dave Whitman * 
16030 ’* solves matrix equations of the form b# x = rhs# * 
16040 ’* inverts b# in place,multiplies rhs# by inverse * 
16050 ’* uses Gauss- Jordan matrix inversion * 
16060 ’* for good results b# and rhs# must be dbl precision* 
16070 ’* ref: J.M. McCormick “Numerical Methods in FORTRAN” * 

16090 DETERM = 1# 
16100 FOR I = 1 TO N P  
16110 INDEX(I’3) = 0 
16120 NEXT I 
16130 FOR I = 1 TO NP ’MAIN LOOP 
16140 ’search for pivot element 
16150 MAX# = O# 
16160 FOR J = 1 T O  N P  
16170 IF INDEX(J,3) - 1 THEN 16260 
16180 FOR K = 1 T O  N P  
16190 IF INDEX(K’3) i 1 THEN 16700 
16200 IF INDF,X(K,J) = 1 THEN 16250 
16210 IF MAX# i ABS(B(J,K)) THEN 16250 
16220 IROW = J 
16230 ICOL = K 
16240 M14X# = ABS(B(J,K)) 
16250 NEXT K 
16260 NEXT J 
16270 INDEX(ICOL,3) = INDEX(ICOL’3) -k 1 
16280 INI)EX(I,1) :::: IROW 
16290 INDEX(I’2) = ICOL 
16300 ’interchange rows to put pivot on diagonal 
16310 IF IltOW = ICOL THEN 16380 ’ALREADY THERE 
16320 DETERM 1:: -I-# * DETERM 
16330 FOR J = 1 TO N P  
16335 PRINT “brow-= ”;B(IROW,J);” bcol= ”;B(ICOL,J) 
16340 SWAP B(IROW,J),B(ICOL,J) 
16345 PRINT “brow= ”;R(IROW,J);” bcol= ”;B(ICOL,J) 
16350 NEXT J 
16355 PRINT “rrow:::: ”;RI-IS(IR0W);“ rcol= ”;RHS(ICOL) 
16360 SWAP RHS(IR0 W),RHS( ICOL) 
16370 ’divide pivot row by pivot element 
16380 PIVOT = R(TCOI~,ICOL) 
16390 DETERM := DETERM * PIVOT 
16400 B(ICOL,ICOL) ::= 1# 

16OQQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

16080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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16410 FOR J = 1 TO N P  
16420 R(ICOL,J) >= B(ICOL,J)/PIVOT 
16430 NEXT J 
16440 RHS(IC0L) ':= RHS(ICOL)/PIVOT 
16450 ' reduce non-pivot rows 
16460 FOR J ::= 1 TO N P  

16480 T = B(J,ICOL) 
16490 B(J,ICOL) = O# :BCD(J,ICOL)=B(J,ICOL) 
16500 FOR K ::: 1 TO N P  
16510 B(J,K) = B(3,K) - B(ICOL,K)*T:BCD(J,K)=R(J,K) 
16520 NEXT K 

16540 NEXT J 
16550 NEXT I 
16560 'interchange columns 

16580 IF INDEX(1,l) = INDEX(I,2) THEN 16640 
16590 IROW := INDEX(1,l) 
16600 ICOL = INDEX(1,P) 
16610 FOR J ::= 1 TO N P  
16620 SWAP B(J,iROW), B(J,ICOL) 
16630 NEXT J 
16640 NEXT I 
16650 'test for singularity 
16660 FOR I = 1 TO NP 
16670 IF INDEX(1,S) ji 1 THEN 16700 
16680 NEXT I 
16690 RETURN 
16700 PRINT"singu1ar matrix error :RETURN 

17010 '* SUBROUTINE DELTAP ( P, RHS, N P  ) * 
17020 '* * 
17030 '* Modifies parameters according to changes in rhs * 

17050 FOR I = 1 TO PIP 
17060 P(I) = P(1) - RHS(1) * FRACT 
17070 NEXT I 
17080 RETURN 

17510 '* subroutine pslope[ p, vobs, nobs, np, nvar, dfdp(nobs,np) ] * 
17520 '* 2/1/82 by Dave Whitman 

17530 '* calculates partial of the function with 

17540 '* respect to  the each of the parameters at  

16470 IF J =:: ICOL THEN 1654~0 

16530 RHS(J) RHS(J) - RWS(ICOL)*T 

16570 FOR I = N P  TO 1 STEP -1 

17000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

17040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

17500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

* 

* 
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17550 ’* each of the observations, and stores them in dfdp. * 
17560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
17580 FOR ISS ::: 1 TO NOBS:TS=IP(ISS) 
17590 FTEMP(1S) = FCALC(IS)*WEIGHT 
17600 NEXT ISS 
17610 FOR IS = 1 TO N P  
17620 TP = I’(1S) 

17630 REM iF TP j ID-20 
THEN P(1S) = TP + .000000005# 
ELSE P(1S) = 
‘rP * 1.000000005# 
17640 G O T 0  17650 GOSUB 11000 ’call function( fcalc ) 
17645 DPP=O 
17650 FOR JSS = 1 TO NOBS:JS==IP(JSS) 

17625 ~ ( 1 s )  = T P * ~ . O O O ~ ~ O O O ~ #  

17660 REM IF TP i ID-20 THEN DFDP(JS,IS) ::I (FCALC(JS)*WEIGfIT - 
FTEMP(JS)) / .OOOOOOOO5# ELSE DFDP(JS,IS) z: (FCALC(JS)*WEIGI-IT - 
FTEMP(JS)) / (.000000005# * TP) 
17665 DFDP( JS,IS)=DFDP( JS,IS) * WEIGHT 
17670 NEXT JSS 
17675 REM FOR JS=l  TO NOBS 
17676 REM DFDP( JS,IS)=( l-DPP/DEVSQ)/(ABS( 1-DPP/DEVSQ)) 

*DFDP( JS,IS) 
17677 REM NEXT JS 
17680 P(1S) ::: TP 
17690 NEXT IS 
17700 RETURN 

18010 ’* SUBROUTINE initialize 

18020 ’* 

18030 ’* Prompts for name of input file, then reads problem in 

18040 ’* from input file. 

18000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

* 

* 

* 
18050 ,*$*****************$$$$*$************$$*$******$*$$$***$$ 
18060 ’ 
18070 KEY OFF : CLS 
18075 IF IFT il THEN 18088 
18078 IFT=l:  INPUT “enter # of fi1es”;NFT 
18077 FOR 1=1 TO NFT 
18080 LOCATE 13’20 : INPUT “Name of input file? ”,IFILl$(I) 
18082 INPUT “enter x-scale and density diffn;XSCA1(I),DENDI1(I) 
18084 NEXT I 
18086 IFILE$-IFILl$( TFT):XSCAL=XSCAl(IFT):DENDIF=DENDIl( IFT) 
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18090 OPEN IFILE$ FOR INPUT AS #1 
18100 INPUT#l,NOBS 
18150 INPUT#l,NUMIT 
18160 I N P U T # l , I U S E R W T , I N T ~ ~ ~ ~ A ~ W T  
18170 INPUTSfl, FRACT ’fraction of calculated paiarn. change to 

apply 
18180 FOR I = 1 TO NOBS 
1818.5 NODS-I-1:IF EOF(1) THEN 18260 
18190 INPUT#l,AORS(I) 
18200 IF IUSERWT = 1 
THEN INPUT#l,OBSWT(I) 

18210 FOR J = 1 TO NVAR 
18220 INPUT#l,VOBS(I,J) 
18230 IF ITJSERWT = 1 
THEN INPUT#1,VL4RWT(I, J) 
ELSE VARWT(1,J) = 1# 

18240 NEXT J 
18250 NEXT I 
18260 FOR I = 1 TO NP 
18270 INPUT#l,PNAME$(I) I P(1) 
18280 NEXT T 
18285 NOBS=NODS 
18290 DEVSQl - 1D+20 : DEVSQ:! = 1D t 2 0  ’dummy devsqs for non-coiiv- 
erge test 
18300 TIME$ -= “00:OO:OO” 
18305 CLOSE #1 
18310 RETURN 

19010 ’* SUBROUTINE REPOR’I’ 

10020 ’* 

19030 ’* Prints final report giving observed arid calculated 
values of * 
19040 ’* function, and standard deviation 

19050 ’* Note: assumes NEC 8023 printer. Modify to suit other 
printers. * 
19080 ’* On NEC, esc X turns on underlining, esc Y turns it off. 

19070 ’* The following is a partial list of IBM screen cliaractor- 
s, followed * 
19080 ’* 
19090 ’* Thus “sum error ,. 2 =” prints as “sum error 2 =”. 

ELSE OBSWT(1) = I #  

1QQoO 9*~**r******t**i~*~*******************~**********~******** 

* 

* 

* 

* 

* 
19100 .......................................................... 
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19110 GOSUB 11000 'subroutine function 
19130 1,PRINT:LPRINT "FINAL REPORT" 
19140 LPItINT "FUNCTION: "; FUNCTION$ 
19150 J,PRINT "DATA FILE:";IFILE$ 
19160 LPRINT : LPRINT" Function Values" 
19170 LPRINT "X" "Observed I Calculated"; : LPRINT "Y" 
19172 PDRAW$=IFILE$--k "r" :PDRAWZ$=IFILE$+"c" :PDRAW3$= IFILE$-t- "0" 
19175 OPEN PDRAW$ FOR OUTPUT AS #3 
19176 OPEN PDRAWS$ FOR OUTPUT AS #2 
19177 OPEN PDRAW2$ FOR OUTPUT AS #4 
19180 DEVSQ = O# 
19185 L = l  
19190 FOR I1 = 1 T O  NOBS:I=IP(II) 
19195 WRITE#3,VOBS(I, 1)-P(3) ,FCATAC2(I)-AOBS(I)+P(4) 
19196 WRITE#4,VOBS(1,2),FCALC2(1) 
19197 WRITE#2,VOBS(I,l)-P(3),AOBS(I)-P(4) 
19200 LPRINT USING"####.## ####.##";VOBS(I,l)-P(3);" I 
; vo us (I, 2) 

19210 DEVSQ = DEVSQ + FCALC(1) * OUSWT(I)*WEIGHT 
19220 NEXT I1 
19225 CLOSE #3: CJ,OSE #4:CLOSE #2 
19230 LPRINT 
19240 LPRINT USING " ####.########### 
#.###f,+######"; "sum error A 2 = ". , DEVSQ; 
" Change, last iteration = "; DEVSQ - DEVSQl 
19250 GOSUB 19500 'subroutine covariance 
19260 LPRINT: LPRINT"F1NAL PARAMETERS" 
19270 LPRINT "X" " Name I Va.lue I Std.Dev."; : LPRINT "Y" 
19280 FOR I = 1 T O  NP 
19290 LPRINT USING " ####.########### ##.######## 
###-#"; PNAME$(I);"I "; P(1);" I "; ABS(B(I,I))^ .5 
19292 SURT=-979.699*DENDIF*XSCALn 2/P(2):STFFD$=="surface tension" 
19293 IF 1=2 THEN LPRINT USING " 

19300 NEXT I 
19310 LPRINT 
19320 KEY ON: RETURN 

19510 '* SUBROUTINE COVARIANCE 

19520 '* 

19530 '* Calculates estimate of unit variance, then calculates 

19540 '* variance/covariance matrix based on inverted B matrix 
and the * 
19550 '* variance estimate. 

##sf-.####"; 
STFFD$;"I";SURT 

19500 ~$*$**$**+t**tt***+**t********t*****$********$*************** 

$ 

* 

* 
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* 
19560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
19570 'estimate unit variance 

THEN VAR = O# 'should never trust 
19580 IF NOBS i= NP 

parameters if nobs i np anyways! ELSE VAR = DEVSQ / 

19590 'convert B to covariance matrix 
19592 VAR-DEVSQ/(NOBS-NP) 
19600 FOR I - 1 TO NP 
19610 FOR J = 1 TO N P  
19620 B(1,J) = B(I,J) * VAR 
19630 NEXT J 
19640 NEXT I 
19650 RETURN 
20000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
20010 '* subroutine finalproc 

20020 '* 

20030 '* Before nonlin stops, it makes a call to a subroutine at 
line 20000 * 
20040 '* The user may supply a subroutine (in the file with the 
function * 
20050 '* subroutine) to do any final calculations using either 

20060 '* pa.rameter set and/or the variance-covariance matrix. 

20070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
20080 RETURN 
31085 XOLDB-XCALCB 
31090 YOLDR=YCALCB 
31110 THOLDB=THIB 
31125 SF2=SP:THF2B=TIIOLDB:THF2==THOLD 
31130 GOSUB 31740 
31135 XKIB=VF2B 
31 140 XMPR=XKlB*DS 
3 1 145 SF 1 =_ S P: THF 1 B:-= THO L D I3 : T HF 1 =THO LD 
31150 GOSUB 31710 
31155 XLlB=VFlB 
3 1160 XL 1B-:XL IB*DS 
31165 SFl=SP:XF3B=XCALCB:YF3B=YCALCB:~HFlB:~~THOLDB:X~3=XCALC: 

31170 GOSUB 31770 
31175 XMZB=VF3B 
31180 XMlB=XMlB*DS 
31190 SPi=[S+DS/2!)/P( 1) 

(NORS - NP) 

* 

* 

the final * 
* 

YF3=YCALC:THFl=TI-IOLD 
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31200 XPB=XCALCB+XKlB/2! 
31220 YPB==YCALCB+XLlB/S! 
31230 TIPB=THOLDB+XMlB/Z! 
31235 SF2=SP:THF2B=TIPB:THF2=TIIOLD+XM1/2 
31240 GOSUB 31740 
31245 XKZB=VFZB 
31250 XKZR=XK2B*DS 
31253 SF1=SP:THFlR=TIPB:THFl~=THOLD+XMl/2 
31255 GOSUB 31710 
31256 XL2B=VFlR 
31257 XL2R=XL2B*DS 
31258 SFl=SP:XF3B=XPB:YF3B:~=YPB:THFlB=TIPIB:XF3=XCALC+XKl/Z: 

31260 GOSUR 31770 
31265 XM2B==VF3B 
31270 XM2B=XMZB*I)S 
31280 XPB=XCAIACB-tXIC2B/2! 

YF3=XCALC+-XLl/2:THFl=THOLD+XM1/2 

31290 YPB= YChLCB-tXL2B/2 
31310 TIPB-'l'HIB+XM2B/2! 
31315 SF2=SP:THF2R=TIPB:THFZ=THOLD+XM2/2 
31320 GOSUB 31740 
31325 XK3B::::VFBU 
31330 XK3B=XK3B*DS 
31335 SF1 =SP:THFlB=TIPB:TIIFl=THOLD+XM2/2 
31340 GOSUB 31710 
31345 XLYR=VFlB 
31350 XL3B-:XL3U*DS 
31355 SFl=SP:XFSB::: XPR:YF3R=YPB:THFlB..TIPB:XF3=XCALC $-XK2/2: 

YF3=YCALC+XL2/2:THFl=THOIAD+XM2/2 
31360 GOSUB 31770 
31365 XM3B::::VF3B 
31370 XM3R=XM3R*DS 
31380 SP=(S-I-DS)/P(I) 
31390 XPB=XCALCB+XKSR 
31410 YPB=YCALCR -i- XL3B 
31420 TIPlf)----TI-IIB-i-XM3R 
3142.5 SF~=SP:THF~B=TIPB:TI-IF~:-I-THOLD+XM~ 
31430 GOSUB 31740 
31435 XK4B=VF2H 
3 14 3 7 S F 1 = S P : T H F 1 B = TIPB : TH F 1 :::TIIOL D +XM3 
31440 GOSUB 31710 
31445 XL4B-VFlB 
31447 SFl=SP:XF3B::=XYB:YF3R=YPB:T€IFlB:::TIPB:XF3=XCAI,C+XK3: 

31450 GOSUB 31770 
31465 XM4B=VF3B 

YF3=YCALC-t-XL3:'I'AFl=THOLD+XM3 

3 1470 XCALCB:::zXCALCR+ (XKlR+B! *XK2B-+2! *XK3B+XK4B*DS) /6! 
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31475 YCALCB=YCALCB-$-(XLlB+2!*XL2R+2!*XL3B-$-XL4B*DS)/6! 
31490 THIB=THIB +(XMlB+2!*XM2B+2!*XM3B+XM4B*DS)/G! 
31500 RETURN 
31710 REM sunb f l  
31720 VFlB=THFlB*COS(THFl) 
31730 RETURN 
31740 REM sun f2.f 

31760 RETURN 
31770 REM f3.f 
31780 GOSUB 31710 
31785 ZFSEkVFlB: IF XF3=0 THEN VF3B=O: GOTO 31800 
31790 VFSB=SIN(THFl)/XFJ^ 2*XF31[il-I-YF3+P(2)*YF3R-COS(THFI)/XF3*THF1B 
31800 RETURN 
41085 XOLDR=XCALCR 
4 1090 YOLDR=::YCA LCR 
41110 THOLDR='lCT-IIR 
41125 SF~=SP:THF~R:II-THOLDR:THF~-TIIOLD 
41130 GOSUB 41740 
41135 XKlR=VFSR 
41140 XKlR=XMlR*US 
41145 SF1=Sr:THFlR=TMOLDR:TIIFlr=TIIOLD 
41150 GOSUB 41710 
41155 XLlR=VFlR 
41160 XL,lR=XLIR*DS 
41165 SFl=SP:XFSR=XCALCR.:YF3R=YCALCR:THFZR:-=TMOLDR:XF.7=XCALC: 
YFS=YCALC:THFI::: TEIOLD 
41170 GOSUB 41770 
41175 XMlR=VFJR 
41180 XMlR=XMlK*DS 

31750 VF2R=-THF2B*SIN(THF2) 

41190 SP=(S-+DS/P!)/P( 1) 
41200 XPR=XCALCR-+XKlR/B! 
41220 YPR=YCALCR+XLlR/Z! 
41230 TIPR=THOLr~R.+XM1R/2! 
41235 S F ~ = S P : T H F ~ R I I = T I P R : T I I F ' E = T H O L ~ + ~ M ~ / ~  
41240 GOSUB 41740 
41245 XK2R=VF2R 
41250 XK2R=XK2R*DS 
41253 SFl=SP:TI-IFlR=TIPR:THFI.=THOLD+XM1/2 
41255 GOSUB 41710 
41256 XL2R=VFlR 
41257 XL2R.=XL2XXDS 
41258 SFl -SP:XF3R=XPR:YF3R=YPR:TITl [ ( ' ln -TIPTt~~XCALC~XKl/2 :  

41260 GOSUB 41770 
41265 XM2R=VFSR 
41270 XMSR=XM2R.*DS 

Y F 3 ~ X C A I ~ C + X L 1 / 2 : T I - I F l ~ T ~ ~ O L ~ ~ X M l / 2  
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41280 XPR=XCALCR+XK2R/2! 
41290 YPR= YCALCR+XL2R/2 
41310 TIPR=THIR+XMSR/2! 
41315 SF2=SP:THF2R=TIPR:THF2=THOLD+XM2/2 
41320 GOSUB 41740 
41325 XK3R=VF2R 
41330 XK3R=XK3R*DS 

41340 GOSUB 41710 
41345 XL3R=VFlR 
41350 XL3R=XL3R*DS 

41335 SFl~SP:THFlR=TIPR:TIFl:~~T€~OLD-+-XM2/2 

41355 SFl=SP:XF3R=XPR:YF3R=YPR:THFlR=TIPR:XF3=-XK2/2: 
YF3=YCALC+-XL2/2:THFl=THOT,D+XM2/2 

41360 GOSUB 41770 
41365 XMJR=VFSR 
41370 XM3R=XM3R*DS 
41380 SP=(S+DS)/P(I)  

41410 YPRz-=YCALCR + XL3R 

4142.5 SF2=SP:THF2R=TIPR:THFZ=THOLD+XM3 
41430 GOSUB 41740 
41435 XK4R=VF2R 
4 1 4 3 7 S F 1 = S P : T €I F 1 R 
41440 GOSUB 41710 
41445 XL4R=VFlR 

41390 XPR=XCALCR -1-XK3R 

41420 TIPR=THIR-+XM3R 

T I P  R : T H F 1 = T H 0 L D + X M 3 

41447 S F ~ : I = S P : X F ~ R = X P R : Y F ~ R = Y P I E ~ : T I " ~ ~ : I T I P R : X ~ ~ = X C A L C - ~ X K ~ :  
YF3=YCALC+XL3:THE'l=THOLD-+XM3 
41450 GOSUB 41770 
41465 XM4R=VF3H 
4 1470 XCALCR=XCALCR +-(XM1R+2!*XK2R+2!*XK3R+XK4R*DS)/B! 
41475 YCALCR=YCALCR-t(XLlR-tZ!*XLZR+2!*XL3R-t-X~4~*DS)/6! 
41490 TIIIR=THIR +(XMlR+2!*XM2R+2!"XM3R+XM4R*DS)/6! 
41500 RETURN 
41710 REM sunb f l  
41720 VFlR=THFlR*COS(THFl )  
41730 RETURN 
41740 REM sun f2.f 

41760 RETURN 
41770 REM f3.f 
41780 GOSTJB 41710 
41785 ZF3R-;VFlR:IF XF3-0 THEN VFJR=- l /P ( l )*  2:GOTO 41800 
41790 VF3R=-2!/P( 1)- 2 + P(2)*YFSR+STN(THFl)/XF3* 2*XF3R-THFlR*COS- 
(THF1) /XF3 
41800 RETURN 
65000 ' Trap error of function file not in ascii mode 

41750 VF2R=-THF2R*SIN(THF2) 
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65010 IF ERR i i  54 THEN 65090 
65020 CLS: BEEP : LOCATE 5,28 
65030 PRINT ‘Rad File Mode Error:” 
65040 LOCATE 7,21: PRINT “Furiction file must be saved in ASCII 
mode” 
65050 LOCATE 8,15 
65860 PRINT “Read lines 1200-1260 of this program for clarifi- 
cation.” 
65080 LOCATE 23,l: STOP 
65090 RESUME 
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PENDR.F: A FORTRAN 77 COMPUTER PROGRAM 

This program is the FORTRAN 77 version of the BASIC computer pr0gra.m NONLI4.RAS. 
Both are used to curvefit experimenta.1 pendant drop profile data to the Laplace equation of 
capillarity. 

The following data must be entered by the user: 

1. Name of output file. 
2. 
3. 
4. 
5 .  

Number of data files to be processed. 
Full Name of data file. 
The x-scaling factor, i.e. cm/(measured unit). 
Density difference between the saturated phases., g/cm3. 

A listing of the program is given below. 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

implicit integer (g-n) 
implicit double precision (a-f,o-E) 

char actm * 80 ifill 
character*80 pname 
character*80 ifile 
conimon /main/ nvar,np,nft, numit,fract 
common /main2/ devsql,devsq2, nobs,devsq,weight 

common /chad/ ifile,ifill(30), pname(4) 
This program performs non-linear least squares analysis 

determine surface tension from pendant drop profile data. 
based on ‘Rigorous Least Squares Adjustment” ; Wentworth, 

J . Chem Ed. 42, 96 (1965). 
When nonlin prompts: INPUT FILE?, enter the name of the 

* file. 

to 

w. E. 

data 

Required data: 
nobs: the number of observations being fit 
nuniit: the -# of iterations of the fitting process 

performed. [ 5-10 is generally sufficient ] 
iuserwt: a flag. If iuserwt = 1, nonlin expects all 

function and variable values to be 

weighting factor. If iuserwt I= 0, nonlin 

sets all initial weights to  1. 
internalwt: a flag. If internalwt = 1, noiilin 

to be 

obs 

followed by 

automatically 
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estimates 

base 

= 0, 

weighting fa,ctors for each function value 

the slope of the function. If internalwt 

causes divergence. Start with internalwt -: 

fract: The fraction of the calculated change to 

of the paratneters. Use to restrict changes 

trys to diverge. Normally equal to 1. 

0. 

apply to 

when function 

NVAR=I 
np=4 

NFT-3 
ift-1 

1005 IYT:=l 
nond=0 
nonc=O 

call suinit(ift) 
IFT=IFT+l 
do 1 it-1,niimit 

initialization routine 

call calc 
Test for non-convergance, exit if so 

devb-devsq 
devbl=devsql 
devbZ=devsq2 
call scon(devb,nFnc,Iiond, devhl,devb2) 

devsql=devbl 
devsq2=devb2 
if(nonc.eq.1) go to 1027 
if(nond.eq.1) go to  1027 

call larnba 
Calculate lagrangian mnltiplicrs 

If internal weiglitiiig desired, calculate new ohawts 
Set up matrix equation to get parameter changes 

Solve equation for parameter changes 

Apply changes 

call setiip 

call solve 

call deltap 
continue 

print final report 
1027 call report(it,nonc,nond) 
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if(nonc.eq.l.or.nond.eq.1) go to 1057 
C Do any final processing (user supplied) 
C 

336 continue 
1 continue 

1057 continue 
if(ift.le.nft)go to 1005 
stop 
end 
subroutine calc 
implicit integer (g-n) 
implicit double precision (a-fpz)  
coinnion p( 4) ,dfdp (300,4), index( 4,5), b (4,4), aobs( 300) 
common /zxa/ obswt(300),vobs(300,2), ~ ( 3 0 0 ~ 2 )  
common /zxb/ dfdv(300,2), iflag(300),dlamda(300), rhs(4) 
coininon /ZXC/ xscal,dendif, xsca1(30),dendi1(30) 
common /zxd/ fcalc(300), ftemp(300),varwt(300,2), bcd(4,4) 
common /zxe/ fcalcZ(3OO) 
comnion/main/ nvar,np,nft,numit, fract 
common /main2/ devsql,devsqZ,nobs, devsq,weight 
continue 
ds=O.OI*p( 1) 

s=:o 

rO=y(l) 
beta=p( 2) 
devsq=O 

imin= 1 
jcount=O 
ierr= 1 
TIC11 =o 
THI=THI1 
XCALC=O 
YCALC=O 

C REM runge-kutta method 
1108 J=J 

XOLD -XCALC 
YOLD=YCALC 
THOLD=THI 

SF2=SP 
t hf2 =t hold 
call fZ(sp,thi,xkl) 
XKl=XKl*DS 
call f l(sp,thi,xll) 
XLl=XLl*DS 
call f3 (sp ,xcalc,ycalc, thi,xm 1 ,rO, bet a) 
XMl-XMl*DS 

s P:= s / P ( 1) 
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SP=(SS-DS/B.)/p( 1) 
XP=XCALC+XK1/2. 

Tp =TIIOLD+XM1/2. 
call f2 (sp,ty,xk2) 
XK2=XK2*DS 
call f 1 (sp, t p,x12) 
XL2=XL2 *DS 
call f3 (sptxp,yp,tp,xrn2,rO,beta) 
XM2=XM2*DS 
XP=XCALC +XK2/2. 
YP= YCALC-i-XL2/2. 
Tp =THI+XM2/2. 
call f2(sp,tp,xk3) 
XK3=XM3*DS 
call fI (sp,tp,x13) 
XL3=XL3*DS 
call f3 (sp,xp,yp,ty,xm3,rO,beta) 
XM3=XM3*DS 

XP=XCALC +XM3 
YP-YCALC + XL3 
Tp =TIII +XM3 
call f2(sp,tp,xk4) 
call fl(sp,tp,xl?) 
call f3(sp1xp,yp,tp,xm4,rQ,beta) 

YP=Y@ALC+XL 1/2. 

SP=(S+DS)/P( 1) 

S=SS-DS 
XCALC=XCALLC+(XK1+2.*XK2+2.*XK3-t XK4*DS)/6. 
Y C ALC =Y C ALC -1- (XI, l--t-2 ~ * XL2+2 ~ *XL3 +XL4* DS) /6. 
THI=THI -i-(XM1+2.*XM2+2.*XM3+XM4* DS)/6. 
IF (thi.gt.3.14.or.thi.lt.O) go to 1158 
IF(imin.le.1) go to 1150 
IMIN-IERR 

1150 do 7 i=imin,nobs 
XO=XO I,D 

x l=xc alc 
yl-ycalc 
xs=vobs(i, 1)-p( 3) 
if(xs.1t.O.O)xs-:I-abs(vobs(i,l)- p(3)) 
ys=aobs (i)-p (4) 

DELT=( Xl-XO) * *2+ (y 1-y0) **2 
if(delt.eq.0) go to 1155 
STESTO- ((Xl-XO) * (XS-XO)+(Y 1-y0) * (YS-YO))/DELT 
STEST1=( (Xl-XO) * (XS-X1)+ (Yl-YO) * (YS-Y 1)) /DELT 
IF(stestl.ne.0) go to 1153 

yO=yold 

DII=DII+l 
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VOBS(I,L)=Xl 
fcalc (i) =y 1 
fcalc:! (i) =y 1 
FC ALC(I)=( (XS-VOBS( 13)) * *2+ (ys-fcalc(i))* *2) ** .5 
devsq=fcalc(i)**2+devsq 

ierr=i+l 
go to  1155 

1153 IF(stestO.eq.O)go to  1155 
STS=Sign( l.,stestO) 
s ts  1 ==sign ( 1. $est 1) 
IF (sts.eq,stsl) go to 1155 

fcak(i) =yO+stestO* (yl-yo) 
fcalc:! (i) =fcalc( i) 
FC ALC( I)=( (XS-VOSS( I,2)) **2+ (y~-fcalc(i))**2)**.5 
devsq=fcalc(i)**2+devsq 
ier-r=i+l 

JCOUNT= JCOUNT-t- 1 

VOBS (I,2) =XO-t-STESTO* (Xl-XO) 

JCOUNT- JCOUNT-1-1 
1155 continue 
7 continue 

1158 WEIGHT=l.*(NOBS-2)/(1.*JCOTTNT-2) 
if(ierr.le.nobs) go to 1108 

dcvsq-=devsq*weigh t 
return 
end 

subroutine f l  (slth,vg) 
implicit double precision(a-f,o-e) 
implicit integer( g-rr) 
vg -SIN(TH) 
RETURN 
end 

subroutine f2 (s,tb,vg) 

subroutine f l  

subroutine f2 

implicit double precision(a-f,o-z) 
implicit integer(g-11) 
vg ::: COS(TH) 
return 
end 

subroutine f3 (s,x,y,th,vg,rO, beta) 
subroutine f3 

implicit double precision( a-f,o-z) 
implicit integer(g-n) 
call fl(s,th,z) 

142 



2 

C 

C 

C 

C 

C 

if( x.eq.O)vg= L / r O  
if(x.eq.O)go to 2 
vg =Z./rO+beta *Y -Z /X 
continue 
return 
end 

SUBROUTINE ITERTATIQN REPORT 

Prints out current parameters, function values, and 
deviatio 

n ****%*********************** ********************%* ******* 
**********+$*******+******** . . . . . . . . . . . . . . . . . . . . . . . .  *****  
SUBROUTINE CONVERGE 
Compa.res squared deviation of calculated function from 

If deviation gets worse after two iterations, indicate 
observed 

nonconverge 
*h*~****************t****** * * * * * * * * * * * * * * * * * * * 4 % * * * *  * * * e *  

siibro utine scon (devv,nonc,nond, devv 1 ,devv2) 
implicit integer (g-n) 
implicit double precision (a-f,o-z) 
IF (devv.gt.devv1.and. devvl.gt.devv2) nonc 1: 1 
if( abs(devv-devvl)/devv.lt.O.OOOl) nond = 1 
devvZ=devvl 
d e w 1  = devv 
RETURN 
end 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  * ******  
SUBROUTINE LAMBDA 

Calculates lagrangian multipliers for setting up matrix 
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * * * * * * * * * * * * e * * * *  * * * * * A *  

subroutine lainba 
implicit integer (g-n) 
itnplicit double precision (a-f,o-z) 
common p(4),dfdp(300,4), index(4,5) ,b(4,4) ,aobs(300) 
common /zxa/ obswt(300),vobs(300,2), v(300,2) 
common /zxb/ dfdv(300,2), iflag(3OO) ,dlamda( 300), rhs(4) 
common /ZXC/ xscal,dendif, xsca1(30),dendi1(30) 
common /zxd/ fcalc( 30O), ftemp(300),varwt (300,2), bcd (4,4) 

0 conirnon /zxe/ fcalc2(3OO) 
common /main/ nvar,np,nft,numit, fract 
common /main2/ devsql,devsqZ, nobs,devsq,weight 
do 8 i=1,nobs 
DLAMda(i) = VCALC(1) * ORSWT(I)*WEIGIIT 
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8 

C 

C 

C 

C 

C 

10 
C 

12 
11 
9 

C 

C 

C 

C 

C 

C 

C 

C 

C 

continue 
RETURN 
end 

Subroutine setup 

Get partials of function w.r.t. parameters 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  ****** 

subroutine setup 
implicit integer(g-n) 
implicit double precision( a-f,o-z) 
common p( 4) ,dfdp( 300,4) , index(4,5) ,b(4,4) ,aobs( 300) 
common /zxa/ obswt(300),vobs(300,2), ~ ( 3 0 0 ~ 2 )  
common /zxb/ dfdv(300,2), iflag(300),dlamda(300), rhs(4) 
coiiiinon /ZXC/ xscal,dendif, xscal(30) ,dendil(30) 
common /zxd/ fcalc(300), ftemp(300),varwt(300,2), bcd(4,4) 
coiii~iion /zxe/ fcalc2(3OO) 
common /main/ nvar,np,nft,numit, fract 
common /rnain2/ devsql,devsq2, nobs,devsq,weight 
call pslope 

do 9 i=l ,np 

RHS(1) = 0. 
do 10 j=l,nobs 
RIIS(1) ::: ItIfS(1) + DFT)P(J,I) * I)LAMda(j) 
continue 

do 11 j= l ,np  
B(1,J) = 0. 
do 12 k=:l,nobs 
B(1,J) = B(1,J) + I)FDP(K,I) * DFI>P(K,J) * 
ORSWT(K) 
cont ui ue 
continue 

continue 
RET U R N  
end 

Set up matrices 

Set up right hand side element 

Set up left hand side elements 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  * 
si1 brout ine solve[ b# (np,n p) , rhs( n p) , np] 
1/31/82 by Dave Whitman 
solves matrix equatioiis of the form b# x - rlis# 
* inverts b# in place,multiplies rhs# by inverse 
uses Gauss- Jordan matrix inversion 
for good results b# and rhs# must be dbl precision 
refr J.M. McCormick’Numerical Methods in F0RTRL4N” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  ** 

subroutine solve 
implicit integer (g-n) 
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13 

C 

16 
15 

C 

17 

C 

implicit double precision (a-f,o-z) 
common p(4) ,dfdp(300,4), index(4,5),h(4,4) ,aobs( 300) 
coniinon /axa/ obswt(300),vobs(300,2), v(300,Z) 
common /zxh/ dfdv(300,2), iflag(300),dlamda(300), rhs(4) 
common /zxc/ xscal,dendif, xscal(30),dendil( 30) 
comnion /zxd/ fcalc(308), ftemp(300),vawt(300,2), bcd(4,4) 
common /axe/ fcalcZ(3OO) 
common /main/ nvar,np,nft,nuniit, fract 
common /main2/ devsql,devsqZ, nobs,devsq,weight 
determ=l. 
do 13 i=l,np 
INDEX(I,3) I= 0 
continue 
do 14 i=l,np 

qmax = 0 
do 15 j= l ,np 
IF(INDEX(J,Y).eq.l) go to 15 
do 16 k-1,np 
IF(INDEX(K,3).gt.l) go to 1670 
IF(INDEX(II,3).eq.l) go to 16 
IF(qmax .gt.abs(h{j,k))) goto 16 
IROW = J 
ICOT, -- M 
qmax = ABS(B(J,K)) 
c o n h u e  
continue 

INDEX(1,l) = IROW 
INDEX(I,S) = ICOL 

IF(iROW.eq.ico1) go to 1638 
determ=(-l.O)*deterrn 
do 17j=l ,np  
br-=b (bow ,j) 
bc =b (icol, j) 
b (icol,j) =br 
b( irow j ) =bc 
continue 
rr=rhs(irow) 
rc=r hs( icol) 
rhs(irow) =rc 
rhs (icol) ==rr 

search for pivot element 

INDEX(ICOL,3) = INDEX(ICOL,3) -t 1 

interchange rows to put pivot on diagonal 

divide pivot row by pivot element 
1638 PIVOT = B(ICOL,ICOL) 

DETERM = DETERM * PIVOT 
B(ICOL,ICOL) = 1. 
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do 19 j=l ,np 
B(ICOL,J) = B(ICOL,J)/PIVOT 

RHS(IC0L) = RIIS(ICOL)/PIVOT 

do 20 j=l,np 
IF(j.eq.ico1) goto 20 
T ::= B(J,ICOL) 
B(J,ICOL) = 0 
bcd(j,icol)=b(j,icol) 
do 2 1  k-1,np 

bcd(j,k)=b(j,k) 

REIS(J) = RHS(J) - RHS(ICOL)*T 

19 coiitinue 

c reduce non-pivot rows 

B(J,K) B(J,K) - B(ICOL,K)*T 

2 1  continue 

20 continue 
14 continue 
C interchange columns 

do 22 i=np,l,-1 
IF(INDEX(1,l) .eq.index(i,2))go to 22 
IROW = INDEX(1,l) 
ICOL = INDEX(1,X) 
do 23 j=l,np 

br =b(j ,how) 
bc= b(j ,icol) 
b( j ,irow) = bc 
b(j ,icol) =br 

23 continue 
22  continue 
C test for singularity 

do 24 i=l,np 
IF(index(i,S).ne.l) go to 1670 

24 continue 
1670 continue 

return 
end ****************************%*** * * *e* * * * * * * * * * * * * *  ********  C 

C SUBROUTINE DELTAP 

implicit integer (g-n) 
implicit double precision (a-f,c+z) 

subroutine deltap 

common p(4) ,dfdp(300,4), index(4,5) ,b(4,4) ,aobs( 300) 
corninon /zxa/ obswt (300) ,vobs(300,2), v(300,2) 
conimon /zxb/dfdv(300,2), iflag(300) ,dlamda(300), rhs(4) 
corninon /ZXC/ xscal,dendif, xscal(30),dendil( 30) 
common /zxd/ fcalc(300), ftemp(300),varwt(300J2) bcd(4,4) 
common /zxe/ fcalc2(3OO) 
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common /main/ nvar,np,nft,numit, frnct 
common /main2/ devsql,devsq2, nobs,devsq,weight 

C 

C 

C 

25 

28 

30 

29 

C 

Modifies parameters according to changes in rhs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  * * * e * * * *  

do 25 i=l ,np 
P(1) = P(I) - RHS(1) * FRACT 
continue 
return 
end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ***********e****** *******  
subroutine pslope 
2/1/82 hy Dave Whitrnan 
calculates partial of the function with 
respect t o  the each of the parameters at 
each of the observations, and stores them in dfdp. 
**********+**************e****** * * * e * * * * * * * * * * * * * *  ****r** 

subroutine pslope 
implicit integer (g-n) 
implicit double precision (a-f,o-z) 
common p(4) ,dfdp(300,4), index(4,5) ,b(4,4) ,aobs( 300) 
coininon /zxa/ obswt (300) ,vobs (300, 2 ) ,  v( 300,2) 
comnion /zxh/ dfdv(300,2), iflag(300),dlarnda(300), rhs(4) 
common /zxc/ xscal,dendif, xscal(3O),dendil(30) 
common /sxtl/ fcalc(300), ftemp(300),varwt (300,2) ,bcd (4,4) 
common /zxe/ fcalc2(3OO) 
common /riiain/nvar,np,nft ,nuinit, fract 
common ,/niain2/ devsql,devsq2, nobs,devsq,weight 
do 28 is=l,nohs 
FTEMP(1S) = FCALC(IS)*WEIGHT 
continue 
do 29 is=l,np 

P(IS) - TP*1.000005 

call calc 
DPP=O 
do 30 js=l,nobs 

dvp-0.000005* tp  
if (tp.eq.O.0) dvp=0.000005 
dfdp(js,is)=(fcalc(js)*weight - ftemp(js))/dvp 

TP = P(1S) 

if( p(is) .eq.O) p( is) =tp+O.O00005 

continue 
P(IS) = TP 
continue 
RETURN 
end 
************************%***** * * * *e * * * * * * * * * * * * * * *  *******  
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C 

C 

C 

C 

C 

100 

110 
120 

SUBROUTINE initialize 
siihroutine suinit(ift) 

Prompts for name of input file, then reads problem in . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  ******  

implicit integer (g-n) 
implicit double precision (a-f,o-z) 
charac t er*80 ifile 
character*80 ofile 
character*80 ifill 
character*80 pname 
coni inon p (4) ,dfdp (300’4)’ index (4’5)’ b (4’4)’ aobs (300) 
common /zxa/ obswt(300), vobs(300,2), ~(300’2)  
common /zxb/ dfdv(300,2), iflag(300),dlainda(300), rhs(4) 
common /ZXC/ xscal,dendif, xsca1(30),dendi1(30) 
common /zxd/ fcalc(300) ,ftemp( 300),varwt(300,2), bcd (4’4) 
coinrnon /zxe/ fcalc2(300) 
common /main/ nvar,np,nft,numit, fract 
common /main2/ devsql,devsq2, nobs,devsq,weight 

if(ift.gt.1)go to 1809 
write( 6 ,  *) ’ enter output filename’ 
read(5,177)0file 
open(unit=2, file=ofile,status= ’new’) 

177 format(a) 
write(6,*)’ enter number of data files to be processed’ 
read( 5,100)nft 
format(i3) 

do 30 i=l,nft 
write(6,IlO)i 
format( ’$ name of input file#’, Ix,iS,Ix,’?’) 
format (a) 

common /chad/ ifile,ifi11(30), pnanie(4) 

read (5,12O)ifill( i) 
write(6,*) ’enter x-scale and density difference’ 
read( 5, *) xscal( i) ,dendil (i) 
write(l,l012) xscal(i), dendil(i) 

’ ,f 12 3) 
1012 

30 continue 
1809 IFILE =IFILl(ift) 

format( ’ x-scale = ”f12.8,’ density difference = 

xscal=xscal (ift ) 
dendif =dendil(ift) 

52 open(unit=l, file=ifile, status=’old’,err=50) 
go to 48 

50 continue 
write(6,*)’file does not exist’ 
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48 

180 

182 

30 
34 

183 

37 

C 

C 

C 

C 

write (6,llO)ift 
read(5,120)ifill(ift) 
ifile=ifilI (ift) 
close (1) 
go to 52 
continue 
read(l,l80)nobs 
format (id) 

read( 1,180)nuinit 
read( 1,180)iuserwt 
read ( 1,180) internalwt 
read ( 1,182)fract 
do 34 i==l,nobs 
read ( 1 , 182) aobs (i) 
format (f12.7) 

if(iuserwt .eq. 1 )read( 1,182) obswt (i) 
if(iuserwt.ne. 1) obswt(i)=l 
do 36 j=l,nvar 
read( 1,182)vobs(i,j) 
if (iuserw t .eq. l)read( 1 ~ 182) varw t (i,j) 
if (iuserwt .ne. 1)varwt ( i,j)= 1 
continue 
continue 
do 37 i= l ,np 
read( 1,183)pnarne(i) 
format ( a n )  

read( 1,182)p( i) 
continue 
DEVSQl = 1D+2O 
devsq2 = 1d.i-20 

close (1) 
return 
end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  *******%*********** ******** 
SUBROUTINE REPORT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ******************* ********  
subroutine report (ift ,mnc,nond) 

implicit, integer (g-xi) 
implicit double precision (a-f,o-z) 
character*80 ifile 
character*80 ifill 
character * 80 pname 
common p(4) ,dfdp(300,4) , index(4,5),b(4,4) ,aabs(300) 
common / R x a /  oEswt(300),vobs(300,2), ~(300~2) 
commoii /zxb/ dfdv(300,2), iflag(300),dlamda(300), rhs(4) 
common /zxc/ xscal,dendif, xsca1(30),dendi1(30) 
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common /zxd/ fcalc( 300), ftemp(300), vanvt(300,2), bcd(4,4) 
common /zxe/ fcalc2(300) 
common /main/nvar,np,nft ,numit, fract 
common /main2/ devsql,devsq2, nobs,devsq,weight 

common /chad/ ifile,i611(30), pname(4) 
if(ift.gt.l)go to 1663 

writ e( 2,140)ifiie 
write(2,*) 

write(2,*)’scale, cm/division, = ’,xscal 
write( 2,*) 
write(2,*)’density difference, g/cm**3, = ’,dendif 
write( 2,*) 
write( 2, *) 
write( 2, *) 
write(2,*) 

1663 continue 
write(2,*) 
write (2,187)ift 

if(nonc.ne.l.and. nond,ne.l)go to 1387 
write(2,*) ’ Function Values’ 
write( 2,143) 

143 format(6x,’xcalc’,llx,’xobs’, lOx,’ycalc’,llx,’yobs’) 
write( 2,144) 

144 format (6x,’--’,l lx,’-’, lox,’--’, llx,’-’) 
if(nonc.eq.l)go to 1330 
if(nond.eq.l)go to 1330 

if(ift.eq.numit) go to 1330 

go to 1333 

do 43 i-1,nobs 

140 format( ’ DATA FILE: ’,2x,a13) 

187 format(’iteration #’,lx,i3) 

1387 continue 

nsvsq = 0 

1330 1=1 

xpd=vobs(i, i)-p(3) 
if (vobs( i, 1) .It .O.O)xpd= vobs(i, 1)-p( 3) 
ypd=aobs(i)-p(4) 
WRITE(2,145)vobs(i,2) ,xpd, fcalc2(i) ,ypd 
DEVSQ = DEVSQ + FCALC(I)**2* OBSWT(T)*WEIGHT 

43 continue 
13 3 3 changg-devsq 1-devsq2 

SUKI‘ =-970.699*DF,NDIF*XSCAL**2/ p( 2)  
write (2,149) p(l) ,p(2) 

write (2,179) p(3),p(4) 
149 format(’rO= ’,f12.7,5x,’beta= ’’f12.7) 

179 format(’xO= ’,fl2.7,5x,’yO= ’,f12.7) 
write(2’148) surt 
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145 
148 

159 

format (3x,f12.7,3x,f12.7,3x,f12.7, 3x,f12.7) 
format (' surface/interfacial tension = ',f12.2) 

format(' sum(objective function)**2 = ',e13.6, 
1' delta sum= ',el3.6) 
return 
end 

write(2,159)devsql,changg 
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