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ABSTRACT

The GRESS Version 0.0 code system was developed to automate the
implementation of derivative-taking capabilities in existing FORTRAN 77 computer
models. The GRESS CHAIN option is used to calculate and report first derivatives
of model results with respect to user selected input data by application of the
caleulus chain rule. The GRESS ADjoint matrix GENerator (ADGEN) option
is used to calculate first derivatives of selected model results with respect to all
input data. The first part of this paper presents the mathematical foundations
and algorithms as presently implemented in GRESS Version 0.0. Examples are
used to describe the implementation of both the CHAIN and ADGEN options.
Due to excessive execution time and memory requirements with the CHAIN option
users are often limited to propagating derivatives for just a few parameters. The
ADGEN option allows an almost unlimited number of parameters (i.e., input data);
however, the data storage requirement for an ADGEN application was more than
322 megabytes for a code that executes in 1 minute on a VAX 8600 computer.

The purpose for this paper is to present three new algorithms that could easily
be implemented in GRESS Version 0.0 to dramatically reduce the data storage
requirements and execution time for application of the ADGEN option. The
new algorithms are described with examples. Test versions of these algorithms
were implemented and tested. The application of these algorithms to the GRESS
enhancement of the PRESTO-II computer model resulted in a significant reduction
in execution time and a reduction in data storage requirements from 322 megabytes
to 97 megabytes without any loss in the generality of the approach.

ix






1. INTRODUCTION

In many areas of scientific computing, derivatives and sensitivities of model
results to input parameters are often desired. Sensitivity analysis of computer-
generated results consists of determining the effect of model data upon the
calculated results of interest. The fields of sensitivity and uncertainty analyses have
traditionally been dominated by statistical techniques when large-scale modeling
codes are being analyzed. These methods are able to estimate sensitivities, generate
response surfaces, and estimate response probability distributions. Because the
statistical methods are computationally costly, they are usually applied only to
problems with relatively small parameter sets. Deterministic methods, on the
other hand, are very efficient and can handle large data sets, but generally require
simpler models because of the considerable programming effort required for their
implementation.

Since computer model equations can be differentiated analytically, sensitivities
can be precisely defined and calculated in a deterministic fashion.!=1® The
deterministic approach is well suited to large-scale models for which direct
perturbation of the model data becomes impractical from a cost standpoint. The
main drawback to the deterministic approach has been the initial manpower
investment to add the computational capability for calculating the necessary
derivatives into existing computer models.

To circumvent this costly manpower investment and thus provide the means for
model users to take advantage of the strengths of deterministic sensitivity analysis,
two related software systems were developed to automate the implementation of
these methods into existing FORTRAN 77 computer models. The first system,
named GRESS (GRadient-Enhanced Software System), uses a FORTRAN 77
precompiler, EXAP (EXtended Arithmetic Processor), to add derivative taking
capabilities to existing FORTRAN 77 programs.'~17 GRESS, which has been
thoroughly tested, calculates derivatives by applying the calculus chain rule to the
model equations as the equations are being solved.

The second system, named ADGEN (ADjoint matrix GENerator), was
developed as a GRESS option that provides the capability of automated
implementation of the adjoint sensitivity methods into existing FORTRAN 77
models.® 72! ADGEN uses EXAP to automate the generation of an adjoint matrix
from a computer model. Utility programs are then used to manipulate and solve
the adjoint matrix for selected derivatives and sensitivities.

The purpose of this paper is to describe three new algorithms that, if
implemented, would significantly reduce resource requirements for the adjoint
matrix generation option (ADGEN) of GRESS Version 0.0. A general approach
to the mathematical foundations is developed for GRESS and ADGEN that is
based firmly in differential calculus and linear algebra. A mathematical model
of a computer program, differentiating the mathematical model, and solving
for derivatives is shown with examples. The numerical algorithms presently

1
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implemented in the GRESS and ADGEN systems are described. Limitations are
discussed.

The general approach is then used to develop the three matrix reduction
algorithms: 1) Forward Reduction; 2) Back Reduction; and 3) Pipeline Reduction,
that can easily be implemented in the present ADGEN system to significantly
reduce the amount of data storage required by an ADGEN application. The matrix
reduction algorithms are described with examples. The relative computational
and storage requirements with and without matrix reduction are compared for the
derivative enhancement of the PRESTO-II computer model.?!
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2. A MATHEMATICAL FOUNDATION FOR
THE GRESS AND ADGEN CODE SYSTEMS

2.1 A MATHEMATICAL MODEL OF A COMPUTER PROGRAM

In a FORTRAN program, calculated left-hand-side variables are a function of
previously defined left-hand-side variables and data, either through mathematical
operations or read statements. This relationship can be expressed as

7:= §(7) (1)
where the symbol,:=, indicates a value assignment (i.e., store) operation, the
components of the column vector, g, are all the terms on the left-hand-side of real
number replacement statements, and the column vector, f, represents the right-
hand-side mathematical operations. The vector, g, includes both model calculated
results and data. Read statements are treated the same as setting a variable equal
to a constant.

In a FORTRAN program a symbol cannot explicitly depend on itself. When
a FORTRAN variable is redefined, mathematically, it is not the same variable. In
the statement, X := X + 5.0, the X on the left and the X on the right represent
two different locations in the solution vector, §. Mathematically, the equation can
be thought of as, X3 = X; + 5.0

Therefore to represent equation (1) mathematically the dependence of a variable
on itself must be considered explicitly. If we define

dy;

— = 111,
™ 1, for all 1 (2)

Then equation (1) can be rewritten as

g = f(7) (3)
Consider the following four lines of FORTRAN.
READ (5,%¥) A,B,D
X =Axx24 B xx2
W=AxX + D% +2
Z=X*+24+ W+ A*x%x3+ D * %3

The components in Eq. (3) are

A input parameter

B input parameter

_ | D P input parameter
Y=l x f= A * %2+ B % %2
Tg Ax X 4+ D xx2

X*+24+W 4+ Ax+x3+ D %3
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2.2 DIFFERENTIATING THE MATHEMATICAL MODEL
Differentiating Eq. (3), with respect to ¢, yields
dy Of dy
6 _0f "
dy 0y dy
where the identity matrix, I, provides the explicit dependence of a variable on itself
necessary to make Eq. (4) meaningful. Eq. (4) can be rearranged, such that

-] e -1 . (5)

Eq. (5) can be represented in a more compact form as,

AY' =17 (6)
where
of
A= |- —
-5
and
dy
Y' - -2
dy

Since FORTRAN equations are solved in a sequential fashion, FORTRAN
variables are dependent on previously defined variables. Therefore,
afi S
_f_l:()’ for;>1
Oy,
so that the matrix, gg—, is a lower triangular matrix with zeros on and above the
diagonal. Therefore, the matrix, A, is nonsingular and invertible.

Solving Eq. (6) for V' yields

Y= A" (7)

Since A is a lower triangular matrix, derivatives in the solution matrix Y, can
casily be resolved using forward substitution. Also, since the transpose of A is
upper triangular, components of Y/ can be calculated using back substitution as
represented by Eq. (8).

[Yr]tr — [Atr]—l . (8)

The tr superscript is used to represent the transpose of the matrix.

2.3 THE SOLUTION MATRIX

The purpose of this section is to look at the contents of the solution matrix,
Y’. The matrix, Y', represented in Eq. (7) contains the total first derivatives of
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all real number variables in the FORTRAN program with respect to all other real
number variables in the program. Since —*'L' =1, for all 7, the diagonal terms are 1.
Variables can only depend on variables that are defined in prior equations, therefore,
the terms above the diagonal are zero. This simplifies the solution matrix to

1
dyy
dy1 1

Y' =
dyi  dy: 1
dy, dy
ATESY
dy;
dyn dyn 1
| dy, dy;
3 . dyi dyi
Note that the terms in the ith column from Y are (0, .. 1,—%"—, —tyﬂﬂ, TR dy iy
: -th , ’ dy: . Vi
and, the terms in the i** row of Y’ are (3% T ,ﬁ; , #,1, 0, ... ). Resolving }
for the 7** column, results in the derivative of each element in § With respect to ;.

This is the same result that would be obtained by calculating the derivatives of §
with respect to y; by application of the calculus chain rule. The GRESS CHAIN
option calculates selected columns in this matrix by forward substitution in memory,
without saving the 4 matrix. Solving V' for the ith row, results in the derivatives
of y; with respect to all the elements of 3. For a FORTRAN program, solving for
a selected row in Y’ yields the same result that is achieved by solving the adjoint
equation for the numerical model defined by the computer code as discussed in refs.

(10-21).
2.4 SOLVING THE DERIVATIVE MATRIX EQUATION

When a code enhanced by EXAP for gradient calculation is executed, equations
are solved sequentially. As each equation is solved, the partial derivative of the term
on the left is calculated with respect to each variable on the right. These derivatives
are the off diagonal terms in the A matrix. Using a simple example, the matrix
of partial derivatives will first be created, and then solved using both forward and
back substitution techniques.

2.4.1 A Simple Example

The FORTRAN program shown in Fig. 2.1 is used to demonstrate the creation
of the A matrix and the calculation of selected rows and columns in the derivative
matrix, Y', as presently implemented in GRESS Version 0.0.



=20
B =30
D =350

X =F %24+ B x*x*2
W= FEx X+ D x=*2
Z=X*x:2+WI+ExD
END

Fig. 2.1. A simple FORTRAN program to be used for derivative matrix generation.

Shown in Fig. 2.2 are the various components used by GRESS to create the A
matrix.

Partial Derivatives

Row Y F Result 3—5
1 E 20 0
2 B 3.0 0
3 D 50 0
- 7 . X X
4 X E 2 4+ B+ %2 13.0 SE=4 S5 =
5 W ExX+Dxx2 51.0 Te=13 3x =10 P =2
, ) \ 8Z _ = BZ o 8Z _ 87
6 VA X*xx24+WH+ExD 230.0 ﬁ”b B—D“—NQ 8X-««26 W~1

Fig. 2.2. The components needed to create and solve the A matrix.

The A matrix created using the partial derivatives from the sample program is
shown in Fig. 2.3. The row number identifies the dependent term in the equation,
the column nuraber identifies the independent term. The first FORTRAN variable
defined during execution becomes row one in the A matrix, the second defined
variable becomes row two, etc. The column is determined by the row in which the
right-hand-side term was defined. For j less than ¢, the matrix element in row i,
column j identifies the negative of the partial derivative of the term defined in row
7 with respect to the term defined in row j.



Columns
1 2 3 4 5 6
Rows

1 1
2 0 1 (0)
3 0 0 1
4 -4 -6 0 1
5 -13 0 -10 -2 1
6 -5 0 2 26 -1 1

Fig. 2.3. The A matrix created by sample program.

2.4.2 Forward Substitution

Using the A matrix shown in Fig. 2.3, the Y’ matrix for the sample program can
be fully resolved by forward substitution. This is the same as simply calculating
selected derivatives with the calculus chain rule. For example the derivative of §
with respect to E, could be calculated using the chain rule, as follows.

dE dB dD

E=L==0"2=0
%ZQ*E: 4
'ZZ:X%—E*%: 21

92 aux X I D130

When using forward substitution to solve for the derivatives of § with respect
to E, only column one of Y' has to be resolved. The matrices set up for forward
substitution are shown in Fig. 2.4. The non-zero locations in Y’ are indicated with
a question mark (7). To invert column one it is necessary to resolve every non-zero
term in column one.

1 1
0 1 (0) ? 1 (0)
0 0 1 707 1
-4 -6 0 1 ? 77 1
~13 0 -10 -2 1 ? 77 71
-5 0 -2 -2 -1 1 7077 77 1

Fig. 2.4. The matrices for solving 4 * Y' = [ for column one of Y.

By successively multiplying each row in the A matrix by column one in Y”, the
unknown terms in column one can be quickly resolved. The Y’ matrix with column
one resolved is shown in Fig. 2.5.



1
0 1 (0)
0 7 1
4 7 7 1
21 7 7 7 1
130 ? ? 7 7 1

Fig. 2.5. Y’ with column one resolved by forward substitution.

The GRESS CHAIN option calculates the derivatives using forward substitution
in memory. Derivatives with respect to declared parameters are propagated forward
as the enhanced model is executing. The actual A matrix is never stored. At any
giveu point during execution, the user can retrieve the total first derivatives for a
calculated variable with respect to all the declared parameters. Since GRESS does
not know @ priers which results are of interest, it is necessary to propagate the
derivatives for the user selected parameters through every row in the matrix. This
causes the amount of execution time and memory required to calculate derivatives
using the CHAIN option to increase rapidly with the number of declared parameters.
In practice with large codes, the user is often limited to a few parameters per run.

2.4.3 Back Substitution

By transposing the A matrix from Fig. 2.3, and setting up the matrices in
Eq. (8), back substitution can be used to solve for the derivatives of ¥; with respect
to y. The derivatives of Y; with respect to § are in the i** column of [Y’]*". Shown
in Fig. 2.6, are the sub-matrices necessary to calculate the derivative of W with

respect to y (i.e., {E, B, D, X, W, Z}).

1 00 —4 -13 -5 1 77 T 77
1 0 —6 0 0 R S S S

1 0 -10 -2|, 1?7 77

(0) 1 -2 -26 (0) 177

1 -1 17

1 1

Fig. 2.6. The sub-matrices for solving [A]tr*[Y']" = [ for column five of [Y']tr.

Back substitution can be used to resolve column five. Shown in Fig. 2.7. is the
[Y']"" with column five completely resolved.



1?7 ? 7 21 7
1 0?7 7 12 ?
1?7 10 ?

© 1 27
17

1

Fig. 2.7. [Y']'” with the column five resolved by back substitution.

From Fig. 2.7, we see that

-
dF
¥4 21
W 12
[g,w]" _|lap| _ |10
dy T law | T 2
dx 1
W 0
dW
aw
L dZ

The ADGEN system uses the GRESS adjoint matrix generation option to create
the A matrix. ADGEN utilities are used to transpose the A matrix, and then to
solve for the derivatives in a selected column. The A matrix created by GRESS
Version 0.0 can be excessively large. For a moderately sized program:, it is not
uncommon for the A matrix to have on the order of 107 rows. If only the non-zero
terms are stored, the data set can require as much as 200 megabytes of storage.

There are three pieces of information stored for each row.
1) Np = number of non-zero derivatives
2) C’s = column numbers for the right-hand-side terms
3) D’s = derivatives with respect to right-hand-side terms

For each row, values for items 2 and 3 are repeated Np times. The row number
of the left-hand-side term is not stored, since it can be determined during processing.
The present version uses four byte words for Np, D, and C. Therefore, eight bytes
are required for each non-zero derivative in the row, and an additional four bytes
for each row to store the derivative count, Np. The amount of storage required for
either the forward or transpose matrix can be estimated as follows.

Storage = (#of Rows) * [4 + (average Np) * 8] bytes (9)

For a matrix with 107 rows with an average of two non-zero terms off the
diagonal per row, the amount of storage can be estimated as follows.
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Storage = (107) * [ 4 + (2 * 8)] bytes = 200 megabytes

In application, this amount of storage has been required for codes that used
1 minute of execution time on a VAX 8600 prior to enhancement.
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3. ALGORITHMS FOR REDUCING
THE SIZE OF THE A MATRIX

Presented in this chapter are three matrix reduction algorithms that can be
easily implemented in the present GRESS and ADGEN systems to reduce the
resource requirements required by an enhanced model. Mathematically, the matrix
reduction techniques are based on the fact that the rows in the A matrix are linearly
independent and the matrix is nonsingular. It can easily be proven that any sub-
matrix from a linearly independent, nonsingular matrix, is also linearly independent
and nonsingular.?? This means that if a row and corresponding column (i.e., row
t, column ¢) are removed from the matrix, the remaining matrix is still linearly
independent and nonsingular. Therefore, Egs. (1-8) are still valid for any sub-matrix
extracted from the A matrix. Since parameters and potential responses of interest
must be declared by the user, and are “known” during execution, information is
available that can be used to extract a problem dependent sub-matrix, thus reducing
the amount of data stored, and the number of calculations required to solve for
selected derivatives.

3.1 FORWARD REDUCTION

When creating the A matrix, partial derivatives are calculated and stored for
every equation solved. However, only derivatives in rows that are dependent on
user specified parameters are actually needed. Forward Reduction keeps track
of parameter dependency. If any term on the right-hand side of an equation
is dependent on a declared parameter, then the term being calculated is also
dependent; and therefore, the row is needed. If there is no dependency on the
right, then the row is not needed. For the example in Fig. 3.1, B and C are
declared to be parameters. The variable, R, is specified as a result of interest for
derivative calculation. Using Forward Reduction, a problem dependent sub-matrix
can be extracted that includes those terms that are dependent on B and C.

B=2

C=3 Parameters of interest = B, C
D=4

X=B+D

Y=D+%24+ B *x2

R=T7TxX+ D x%2 Result of interest = R

S=Y %2

END

Fig. 3.1. Example program to demonstrate forward reduction.
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The complete A matrix is shown in Fig. 3.2. Since only derivatives with respect
to parameters B and C are of interest, the problem dependent sub-matrix, shown
in Fig. 3.3, can be extracted. The variable D was eliminated from the matrix
using forward reduction. Though R is dependent on D, D is not included as a
parameter; therefore, D may be treated as a constant. S was not eliminated by
forward reduction because it is dependent on parameter 5.

The symbol names (i.e, B,C, D, X, Y, R, and S) are included in Figs. 3.2 - 3.6

to associate the terms in the matrix with the variables in the sample program.

B C D X Y R S

= w e Nes!
CORIMOO —

0 0 -40 0 1

Fig. 3.2. Complete A matrix used to demonstrate forward reduciion.

Using the sub-matrix shown in Fig. 3.3, it is possible to calculate the derivatives
of R with respect to B and C. These are the same derivatives that can be calculated
with the complete A matrix, by either forward or back substitution. Since only the
derivatives for specified results with respect to declared parameters are retrievable,
there is no loss of usable information during the Forward Reduction process.

B C X Y R S

B 1

C 0 1 (0)

X 1 -1 -1

Y 4 0 0 1

R o 0 -7 0 1

S 0O 0 0 -40 0 1

Fig. 3.3. Sub-matrix extracted from a sample
program A matrix using Forward Reduction.

Table 3.1 shows the reduction in data storage that occurs in this sample program
due to Forward Reduction. What can not be easily shown in a small program is
the overall impact to execution time. However, in most applications, the amount of
execution time to write the A matrix to disk is significant. By removing rows from
the matrix, not only is the data storage reduced; but also, in most applications the
execution time decreases. Reduction in execution time is discussed in the application

to PRESTO-II in Chapter 4.
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Table 3.1. Reduction in data storage due to Forward Reduction algorithm applied
to a sample problem.

REDUCTION ALGORITHM TOTAL STORAGE (bytes)
None 76
Forward 56

RESULT = 26% reduction in data stored

3.2 BACK REDUCTION

Once the A matrix exists, the results of interest for derivative calculation
are known. Back Reduction uses this information to extract the sub-matrix that
contains only results of interest, declared parameters, and other rows on which the
chosen results of interest depend. If both Forward and Back Reduction algorithms
are used, the remaining sub-matrix will contain only the independent parameters,
the dependent results of interest, and the intermediate variables required to map the
parameters into the results. Applying Back Reduction algorithm to the sub-matrix
shown in Fig. 3.3, results in the sub-matrix shown in Fig. 3.4.

B C X R

B 1 (0)
C 0 1

X 1 -1 1

R 0 0 -7 1

Fig. 3.4. Sub-matrix extracted from a samnple
program A matrix using Back Reduction.

The sub-matrix in Fig. 3.4 can be used to calculate the derivatives of R with
respect to parameters B and D. Shown in Table 3.2, is a comparison of the amount
of data stored after using Forward and Back Reduction algorithms.

Table 3.2. Reduction in data storage due to both Forward and
Back Reduction algorithms applied to a sample problem.

REDUCTION ALGORITHM TOTAL STORAGE (bytes)
None 76
Forward 56
Forward and Back 36

Total Reduction in Data Stored = 53%
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3.3 PIPELINE REDUCTION

The third algorithm discussed is Pipeline Reduction. This method takes
advantage of the fact that in FORTRAN programs, memory locations tend to
be re-used often. When a variable is re-defined, its FORTRAN symbol becomes
associated with a different row in the matrix, and the associated column in the 4
matrix is truncated. The variable associated with that row will never appear on
the right-hand side of an equation again. If a mapping variable (one that is not a
parameter or a respouse) appears on the right-hand side of an equation only one
time, then data storage can be reduced. The method is applied to the A matrix
after completion. At that point, knowledge of the entire memory-use pattern is
available. By reading the A matrix from bottom-to-top ( read the last row first,
then read the next-to-last row, etc.), it is possible to know where variables are used,
as well as knowing where they were defined. If a variable is defined very near where
it is used, and if the variable was never used again, then it is possible to apply the
Pipeline Reduction algorithm to reduce the amount of data stored.

In the example, the FORTRAN variable, X, can be considered to be a mapping
variable. The transposed A matrix from Fig. 3.4 is shown in Fig. 3.5. By using
the calculus chain rule, the derivative information associated with the variable X
can be moved to the column associated with R by simply multiplying the non-zero
derivatives in column X by 24 (i.e., 7), and adding them to the non-zero derivatives
in column R.

B cC X R

B 1 0 -1 0
C 1 -1 0
X |
R (0) 1

Fig. 3.5. The transposed A matrix for the example in Fig. 3.4.

Once the processing has passed the row associated with X, that row can be
dropped from the matrix. This is analogous to removing X from the FORTRAN
model by re-writing the program. The reduced matrix is shown in Fig. 3.6.

B C R
B 1 0 -7
C 1 -7
R (0) 1

Fig. 3.6. Transposed A matrix reduced by Pipeline Reduction.

The reduction in data storage by removing column X' from the matrix is shown

in Table 3.3.
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Table 3.3. Data reduction due to Pipeline Removal algorithm.

REDUCTION ALGORITHM TOTAL STORAGE (bytes)
None 76
Forward 56
Forward and Back 36
Forward, Back and Pipeline 28

RESULT = 63% reduction in data stored

At first glance, a Pipeline Reduction algorithm does not necessarily appear to
be very useful. However, as will be shown with the PRESTO-II example, a majority
of variables in FORTRAN programs tend to be defined near where they are used.
This results in a partially banded matrix. The Pipeline Reduction algorithm is
primarily concerned with the memory locations that are used only near where they
are defined (those in the band near the diagonal).

With forward substitution, as presently implemented in GRESS Version 0.0,
there is no a prior: knowledge as to where, and how often, a variable is used. As
has been shown, once the matrix is created, information about variable usage is
available. But what is also true is that once a variable is re-defined, we know that
its associated column in the A matrix is truncated. By maintaining an output
buffer large enough to hold several thousand rows of the matrix in memory, it
would be possible to apply the Pipeline Reduction algorithm during the execution
of the enhanced code. If ten thousand rows are kept in the matrix output buffer, in
essence, the code can ”see” ten thousand rows ahead as to how memory locations
are being used. The required buffer size can be estimated using Eq. (6). If the
average Np is two, then the amount of memory needed to maintain a buffer of
10,000 rows would be 50,000 four byte words. With the PRESTO-IT application,
discussed in Chapter 4, the band that contains 58.8% of the variables used in the
model is only 10,000 rows wide.
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4. MATRIX REDUCTION APPLIED TO PRESTO-II

The PRESTO-II computer model?® was used as a benchmark for the GRESS
Version 0.0 adjoint matrix generation option, ADGEN. A more complete discussion
of the benchmark is included in Ref. 21. In this chapter, the computational and
storage requirements for an ADGEN application with and without matrix reduction
are compared for the derivative enhancement of the PRESTO-II computer model.
The banded nature of the PRESTO-1I derivative matrix is shown. A simple Pipeline
Reduction algorithm is tested.

4.1 PRESTO-II BENCHMARK

PRESTO-II was developed as a non site-specific screening model for evaluating
the possible health effects due to shallowland disposal of radioactive waste. The
model has approximately 6,900 lines of coding. The PRESTO-II computer resource
requirements are for the Barnwell sample problem included in Ref. 23. This
problem calculates a time-dependent radiation dose to a man from transport of
42 radionuclides over a one thousand year time span.

PRESTO-II was enhanced with the EXAP precompiler, GRESS Version 0.0.
Derivatives for two results with respect to 2800 parameters were calculated. The
resource requirements for creating and solving the [A] matrix are shown in Table 4.1.
The PRESTO-II [A] matrix had more than eight million rows and 322 megabytes
of direct access storage were required to create the [A]'" matrix. The [A] matrix
is considered a scratch data set, and may be deleted once [A]'" is created.}
However, the [A]'" matrix (144 megabytes) must remain active for the YSOLVE
step. YSOLVE reads [A]'" and calculates the derivatives for one result with respect
to all the declared parameters (i.e., a column of [Y]"). The YSOLVE step can be
re-executed for additional results of interest that were specified during the execution
of the enhanced model.

Table 4.1. Resource requirements for creating
and solving the A matrix created by PRESTO-II.

Run Time Data Set Storage
Job Step (Min:Sec) created (megabytes)
Enhanced Presto-II 24:51 [4] 178
TMAT* 8:09 [A]* 144
YSOLVE (1 result)* 4:59

322 (total)
* TMAT and YSOLVE are described in “GRESS Version 0.0 User’s Manual.”

1 A GRESS utility, TMAT, is used to convert the [4] matrix into the [A]*" matrix.
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4.2 PRESTO-II BENCHMARK WITH FORWARD AND BACK
REDUCTION

Simple modifications to the GRESS/ADGEN run-time library routines were
made to implement the Forward Reduction algorithm. Results, summarized in
Table 4.2, show a decrease in the size of [A]'" from 144 megabytes to 86 mnegabytes
due to the Forward Reduction algorithm, alone. Because of the nature of the
algorithm changes, the intermediate step of creating a separate forward matrix,
then transposing it, was also eliminated. This removed the TMAT utility from the
calculational sequence.

Table 4.2. Resource requirements for creating and solving the
A matrix created by PRESTO-II with forward and back reductiocn.

Run Time Data Set Storage
Job Step (Min:Sec) created (megabytes)
Enhanced model 24:01 (AT 86
BREDUCE® 3:32 (4]t 1
YSOLVE :34 —
97(total)

¢ BREDUCE 1is test program for implementing the Back Reduction algorithm
that creates a subset of [A]"".

The Back Reduction algorithm was implemented in a utility program,
BREDUCE, to be executed after the creation of the A matrix. BREDUCE was
used to create the sub-set of [A]'" that contains only those terms on which the
results of interest (as specified by the user in the run step) depend. The results
after exccution of the Back Reduction algorithin show the amount of data storage
to be reduced to 11 megabytes. The execution time to reduce the matrix and solve
for derivatives for one response with respect to 2800 parameters is less than the
time it takes to solve for one response with the eatire matrix. The tune to solve for
a sccond result would be 34 seconds, as opposed to the nearly 5 minutes required to
solve the unreduced matrix. In performing forward and back reduction as described
no data or results of interest are removed from the 4 matrix. There is no loss in
the generality of the adjoint approach as implemented in GRESS Version 0.0.

4.3 PIPELINE REDUCTION

The purpose of this section is to motivate the further study and development
of Pipeline Reduction techniques. There are two ways to implement a Pipeline
Reduction algorithm: (1) a Pipeline Reduction algorithin could be implemented on
the forward run of an enhanced model to help reduce the size of the [A]'" matrix,
prior to its creation; or (2) Pipeline Reduction can be implemented in a utility
program to be executed after the matrix is created.

The use of pipeline reduction on the forward run would be designed to try to
minimize the size of the actual matrix written to disk, by removing local variables
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(those that are defined and then used only one time, near the point of definition).
For small models, it is conceivable that the combination of Forward and Pipeline
Reduction could result in the entire matrix being maintained in virtual memory
until after the execution of the Back Reduction algorithm. For PRESTO-II, this
would reduce the total required disk storage from 86 megabytes to less than 11
megabytes.

The advantage of implementing Pipeline Reduction algorithm in a utility
program to be executed after the matrix is created, is that it could be used to
further reduce the size of the [A]*" matrix prior to solving.

Shown in Fig. 4.1, is a plot of {4]"" showing its banded nature and sparseness.
Each dot in the matrix plot represents a 10,000-by-10,000 sub-matrix with at least
one non-zero partial derivative. It is not a density plot. Terms that are defined near
where they are used, appear near the diagonal of the matrix. Terms that are used
far away from where they are defined appear in sub-matrices above the diagonal.
Pipeline Reduction is concerned with the terms that are defined near where they
are used, and then, only used one or two times.

The banded nature of the PRESTO-IT [A]"" matrix is shown in Table 4.3. To
generate this data, the area within 10,000 rows of the diagonal for the PRESTO-II
[A]'" matrix was broken into ten vertical bands, each 1000 rows high. Each non-zero
partial derivative on the right-hand side of an equation is placed in a band relative
to the row number (or band) of the equation. For example, a term that is defined
within 1000 rows of where it appears on the right-hand side of an equation will be
in band 1; a term defined within 2000 rows will be in band 2; ete. The results show
that 58.8 percent of the non-zero derivatives are used within ten thousand rows of
where they are defined.

Table 4.3. Frequency and cumulative percentage of variables defined and used
within ten, 1000 row bands of the diagonal for the PRESTO-IX [A]'" matrix.

Band Width Cumulative Cumulative
(1000 rows) Frequency Frequency Percent
1 6934351 6934351 49.7
2 242738 7177089 51.4
3 132713 7309802 52.4
4 143017 7452819 53.4
5 144551 7597370 54.4
6 131345 7728715 55.4
7 47409 7776124 55.7
8 252993 8029117 57.5
9 173120 8202237 58.7
10 3411 8205648 58.8
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Fig. 4.1. A plot showing the structure of the eight million row PRESTG-11 [AlY"
matrix. {(Each dot in this matrix represents &« 10,60C row by 10,000 row sub-matrix
with at least one non-zero location.})
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The nature of FORTRAN programs is clearly shown in Fig. 4.1, and Table 4.3.
FORTRAN programs work with a limited memory space. A significant number of
memory locations are defined, or re-defined, and then used only one time, near the
point of definition. After the [A]'" matrix is created, the complete history of the
memory use is available. By simply reading the matrix from right-to-left {(which is
equivalent to looking at the last equation solved in the enhanced model, then next
to the last equation, ete.), a simple algorithm could be implemented that checks
the row number of the terms on the right-hand side of the equation and compares
that to the row number of the equation itself. If the right-hand-side term is defined
within a specified number of rows of where it is used, and it is never used again,
then it can be flagged as a mapping term and removed by application of the Pipeline
Reduction algorithm.

No attempt was made to implement Pipeline Reduction on the forward run
of the model; however, a limited version of a Pipeline Reduction algorithm was
implemented in a utility program for execution after the matrix is created. To keep
it simiple, only one term was removed from a column in a single pass through the
matrix. However, the reduction program can be re-run using the reduced matrix
as input. Each re-execution of the reduction program will remove additional terms
from the matrix. Shown in Table 4.4 are the results from seven successive executions
of the Pipeline Reduction algorithm.

Table 4.4. Results from seven executions of a simple Pipeline Reduction algorithm.

[A4]'" Storage Retrieval Time!
Step (megabytes) (Seconds)
No Reduction 322 299
Forward Reduction 85 127
Forward and Back Reduction 11 34
PLINE? (1 executions) 8 24
PLINE (7 executions) 6 18

1 The retrieval time is the execution time required to retrieve and report the
derivatives for a requested result with respect to the 2800 declared parameters.

2 PLINE is the utility program that implements a simplified version of the Pipeline
Reduction algorithm.

Clearly a Pipeline Reduction algorithm can be used to reduce the data storage
required to store the [A]'" matrix. By reducing the size of the matrix, not only are
we saving storage, but the access time to retrieve a derivative is also decreasing. If
the data storage were reduced to the point where only parameters and responses
remained in the matrix, the matrix is completely solved. Also, the matrix is stored
in a structure that allows quick access to any derivative requested. The potential for
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using this methodology to automatically generate a response surface model should
be investigated. To further understand this potential, the first 647,000 rows of the
PRESTO-II matrix were further reduced using the Pipeline algorithm. (The first
647,000 rows represent running the PRESTO-II Barnwell sample problem for five
years, rather than the full 1000 years.)

The results summarized in Table 4.5 were achieved by executing the simple
pipeline routine 135 times. A more sophisticated implementation of the algorithm
should be able to arrive at the same point with one or two executions; however, the
results demonstrate the potential for such an algorithm.

Table 4.5. Results from multiple executions of the Pipeline Reduction
algorithmn using the five year PRESTO-II sample problem.

[A]'" Storage Retrieval Time
Step (megabytes) (Seconds)
No Reduction 24.050 o1
Forward Reduction 5.992 21
Forward and Back Reduction 0.260 6
PLINE (12 executions) 0.063 3
PLINE (75 executions) 0.033 1

PLINE (135 executions) 0.003 < 0.5
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5. CONCLUSIONS AND RECOMMENDATIONS

The algorithms as presently implemented in the GRESS and ADGEN systems
for calculating derivatives have limitations. With the GRESS CHAIN option, one
can be limited to a few parameters due to limited memory available. Also, the
execution time can increase significantly with each additional parameter of interest.
Conversely, ADGEN can require an excessive amount of data storage. The 4 matrix
for a moderately sized code could easily be greater than 200 megabytes.

Because of the size of the entire A matrix, the calculational efficiency of first
extracting a problem dependent sub-matrix, and then calculating the derivatives
of interest is apparent. The three matrix reduction algorithms presented in this
report were used to extract a problem dependent sub-matrix from the PRESTO-II
application, thus significantly reducing the amount of data storage and execution
time required to calculate derivatives of selected results with respect to declared
parameters.

The Forward and Back Reduction algorithms need to be implemented and fully
tested as soon as possible. A more sophisticated Pipeline Reduction program for
use after the matrix is created should be developed. This version should reduce
the matrix as much as possible on a single pass, rather than, requiring multiple
executions.

The possibility of using Pipeline Reduction on the forward pass warrants
thorough testing. By maintaining a matrix buffer that includes 50,000 rows, it
is possible to see the memory use pattern, 50,000 rows ahead of the row being
output. For PRESTO-II, this is five times the band-width containing 59 percent
of the non-zero terms. A fully implemented Pipeline Reduction algorithm on the
forward run of the enhanced model could be used to significantly reduce data storage
of the initial [A]*" data set.
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