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Several bilateral control techniques and methods for exploiting redundant slaves 
are investigated as a part of research to develop and analyze bilateral, force-reflecting 
control methodologies for teleoperator systems with kinematic dissimilar masters and 
slaves. The study indicates that, with forcehorque sensing at the wrist, and an 
impedance type of controller with the appropriate joint compensation, a significant 
improvement in performance and controllability of a teleoperator system can be 
achieved. 
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Bilateral, force-reflecting teieoperators have traditionally consisted of a 
6-degree-of-freedom (6-DOF) slave manipulator and a master manipulator with identical 
kinematic structure. Two basic control structures have been used €or force-reflecting 
manipulators. The first, a position-position control loop, utilizes the psi t ion error 
between the corresponding joints of the master and slave to drive the slave toward the 
desired position and to provide a retarding force at the master. The second, a position- 
force control loop, utilizes both the position and torque measurements at each of the 
joints (or motor drives, in the case of coupled drive systems). The joint (or motor) 
position error between master and slave is utilized to drive the slave toward the desired 
position, while the joint (or motor) torque error between the master and slave: is utilized 
to drive the master backward to produce the reflected force. 

At least 6-DOF are required to position and orient a manipulator end-effector in 
space. The addition of a redundant degree of freedom allows for (potentially) an 
infinite number of manipulator configurations. Criteria to select the best manipulator 
configuration can be based on a number of performance criteria such as minimizing 
actuator torques, maximizing end-effector forces, and maximizing end-effector velocities. 
Significant improvement in the performance of the manipulator can be achieved by 
means of a redundant manipulator. Dissimilar master-slave systems with nonkinematic 
replica masters have been used only in research laboratories. 

The primary objectives of this research are to develop and analyze bilateral, force- 
reflecting, control methodologies for teleoperator systems with kinematic dissimilar 
masters and slaves and to study the performance advantages of redundant slaves. 
Several bilateral control tcchniques are investigated in this report along with methods to 
exploit the redundancy of the slave. 
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The dynamic equations of notion for all rigid-bodied link manipulators can be 
formulated' assuming that the gravity component has already been compcnsatcd (Le., by 
feed forward compensation), as 

where 

M(q) E RnXn is the inertia matrix, 

C(q,q) E Wx" includes the Coriolis and centrifugal effects, 

J(q) E Rbx" is the manipulator Jacobian, 

Fes E It6 is the contact force/torque vector, 

7 E R" is the joint torque vector, 

9 E is the generalized joint coordinates, 

n = number of degrees of freedom of the manipulator. 

For the rest of this report, the functional dependency of M, C, and J will be 
dropped to reduce the notational clutter. 

The task required to be performed by the manipulator, however, is more 
conveniently represented in Cartesian coordinates. The dynamic equations of motion for 
the manipulator can be reforniulated'~z into Cartcsian space, x E R6, for redundant 
manipulators as 

where 

= (JMslJT)-', 

C, = N(JM-'C - 

F = M,JM-'r. 

The proof as follows. 

L 

Starting with the original joint equation, 

Mij -t Cq -I- J''Fen = r . 

2 
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Multiply by M inverse, since it always exists, to obtain 

q + wlc+ + M-'J~F, = M% . 

Now multiply E%+ (2.4) by J : 

Jtj + JW'CS + JM-'J1'F, = JM-'r . 
Substitution of Jq = x - jq into the above equation results in 

Defining w-' = JM-'JT, then Eq. (2.6) becomes 

x - j ,  + JM'C;? f M;' F,, = K-' F , 

where 

The workspace will include only the region where @ exists. It should be noted 
that this restriction is a very mild one and will exclude only singularity points of the 
manipulator Jacobian. Multiplying Eiq. (2.7) by Q gives 

which can be simplified by combining terms involving q and using the deflnnition for C, in 
Eq. (2.2). If these simplifications are performed, Eq. (2.8) reduces to 

Q x  + C,q + F,, = F . (2.9) 

This concludes the proof. 

Since the manipulator is redundant, an infinite number of actuator torque 
solutions can achieve a dynamic force F at the end-effector, such as, 

7 = JTF + (C, - JsW,)qB + M(1 - J+J)ro , (2.10) 

where 

J' = the generalized inverse for the manipulator Jacobian3, 

ro = is an arbitrary joint torque vector. 

The first term in Eq. (2.10) will generate the dynamic force required. The second 
term will compensate for the Cxq, term in Eq. (2.9), and the last term will allow the 
redundancy of the manipulator to be exploited without causing motion of the 
end-effector',*. 
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The proof is relatively simple: substitute @* (2.10) into Fiq. (2.6) and use the 
definitions for M, and J'. Eq. (2.9) then results. 

It is interesting to notc that if one uses a generalized inverse that minimizes the 
kinetic energy of the Eq- (2.18) simplifies to 

T = JT F + (Cs - J,WJ is + (I - 3T'si) F; , (2.1 1) 

where 
- 
J = the gcncralized inverse that minimizes kinetic energy, 

ri = an arbitrary joint torque vector. 

Proof: Eq. (2.10) can be rewritten as 

7 J'F C (C, - Ja MJJ q, I- (I - MJ+JM')Mr0 ~ 

From ref. 3, the generalized inverse that minimizes the kinetic energy is 

Inserting 7 into Eq. (2.12) for J+ gives 

(2.12) 

(2.13) 

(2.14) 

Since both ro arid I?; are arbitrary and M is nonsingular, replace Mro  with ri 

T JT F + (C, ._. J:iM.J,) 4, 4- (I - FJT) I"; , (2.15) 

This result is identical to Khatib's results in ref. 1. 

For avoiding obstacles and joint limits, manipulator redundancy can be used. 
Sincc redundancy comes into the force or moment equations as shown in Eq. (2.10), thc 
artificial potential field approach2 is taken. Obstacles an joint limits that can be best 
described in joint angles will be represented as potential functions in terms of the joint 
angles for the manipulator. Let the arbitrary joint torque vector ro be set as: 

To =z --grad[tJ,] , 
where 

U, =joint potential function. 

(2.16) 

As an example, to avoid joint limits, set the potential function4 to 
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where 

rl = a positive constant that determines the strength of the potential 
force, 

4id = the ?"joint limit, 

tresh, = the ih joint threshold. 

The total joint potential of all the joints is simply a superposition of each of the 
individual joint potential functions. 

If the elbow of the arm has to avoid a certain region in the workspace, the joint 
potential function can be written in a similar manner. Also, for the situation in which 
thc elbow of the manipulator is required to track the elbow of the operator as closely as 
possible, a simple (spring-like) potential function can be created, such as 

where 

qlbnv = elbow Cartesian position of the slave, 

Gbw = elbow Cartesian position of the master, 

y = weighting matrix of desired spring constants. 

Arbitrary joint torque vector r0 is defined as in Eq. (2.16), which, after some 
algebraic manipulation, simplifies to 

where JClh is the Jacobian of the slave elbow. 

Further, it might be desirable either to improve the manipulator mechanical 
advantage (MMA) or the manipulator velocity ratio (IV€VR)~*~ through the redundancy of 
the manipulator. For the MMA case, the joint torque vector should be set as 

a (J,,, ' ~ 3  ro = -k(J;u,JT 
aqi 9 (2.20) 
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where 

k = positkc constant that determines the strength of the potential force, 

u, = known unit vector in the direction of the force to be applied by the 
end-effector, 

J, = W;'''.JW,' where Wth and Wih are positivc definite and sprnctric weighting 
matrices, 

J = manipulator Jacobian. 

Likewise, for the MVR case, the joint torque vector should be set as 

(2.21) 

where 

k = the positive constant that determines the strength of the potential force, 

u, = known unit vector in the direction of the desired velocity of the end-e€fector, 

J, = WxyzJW,-~ where Wxyz and Wth are positive definite and symmetric weighting 
matrices, 

Finally, asymptotic stability of a redundant manipulator requires that a dissipation 
force be selected that acts in the null space of the Jacobian matrix.' T h i s  dissipation 
force will be inserted into the ro term in Eq. (2.11) in the following form: 

A summary is listed in Table 1 of possible joint torque vectors, rm that exploit the 
redundancy of a manipulator. It should be mesltioncd that the entry in Table 3 
pextaining to the null motisn stabilization' is required for all redundant manipulators, not 
an option. Care should be taken to ensure that the arbitrary joint torque vector does 
not cxcite any of the resonant modcs of the manipulator. Suitable filtering could be 
added to compensate for this potential problem. Finally, combinations of desirable 
attributes (such as joint avoidance and elbow tracking) can be simply combined to form 
a new joint torque vector signal. An unsolved research problem that has to be 
addresscd is  the determination of the relative weights among different schemes, 
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Table 1. Posslile ways of utilizing the manipulator redundancy 

1. Obstacle and joint avoidance: 

d 2 ,  if lq-qdI 5 tresh, 1 
9 - 9  

9 

Q, otherwise 

2. Elbow tracking: 

3. Mechanical advantage: 

a JmTum 
ae ro = -k(J:u,JT 

4. Velocity ratio: 

5. Null motion stabilization: 

and 



For teleoperatiom, the design problem is difficult because the human operator is in 
the control loop. The operator will change the dynamics of the master arm in an 
unknown and unpredictable manner. Therefore, any control scheme €or the master, and 
indirectly for the slave, will be. signitkantly modified by the operator’s imposed dynamics. 
Two possible ways to handle the dynamics of the operator are the probe method and 
adaptive impedance control. 

Thc basic idea of the probe method is to control the slave as if it were a 
mechanical probe with an operator-specified impedance. ‘I’he master is controlled such 
that the operator’s dynamics dominates and the slave hand forces are fed back through 
the master Jacobian to give the operator an accurate indication of the slave force. The 
specific design requirements follow. 

1. The slave forces are fed hack by means of the master Jacobian, 

where 

F, = measured slave force, 

(T = positive force sensitivity constant, 

J, = manipulator Jacobian €or the master, 

T‘, = master controller signal. 

2. The master controller exclodiiig the slave forcc feedback should be gravity- 
cornperisated to avoid fatiguing the operator: 

where 

F ~ ~ . ,  = torque signal to compensate for gravity ef€ccts. 

3 .  Master controller 7C,should be stable in the sense that, if the operator released 
the manipulator and the slave manipulator was locked into a fixed position with Fs set to 
zero, the master arm should settle to, or close to, the zero positional error posture. The 
positional error is defined as 

8 
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e = % - % .  (3.3) 

4. The operator’s dynamics should dominate the master arm dynamics, 7,‘. T h i s  
statement is somewhat equivalent to Arzbaecher’s requirement7 €or a single-joint force- 
reflecting servo: “For ease in manipulation it is essential that a force-reflecting 
manipulator require little torque to move the input handle from one place to another 
when the output handle has no load.’t This condition also imposes a mechanical design 
requirement: the master dynamic €orces should be relatively small compared to the 
operator’s dynamic forces. This restriction will probably not be possible throughout the 
master workspace, depending on how close the operator is to his or her singularity 
point. The operator’s singularity points can be avoided by exploiting the redundancy of 
his or her skelctal frame. The master controller can be a stiffness controller such as 

I$m and I(vm = positional and velocity gain matrices, respectively, 

and ks = slave position and velocity, respectively, 

x,,, and k, = master position and velocity, respectively. 

More will be said about the stiffness controller in Sect. 4. 

The gain selection should be such that the operator’s dynamics dominate and 
condition 3 is satisfied. Typically, the gain matrices will be diagonal matrices, 

I(pm = diag(qm,--+’gm) (3.5) 

and 

Tcm = diag(L,...XJ ’ ( 3 4  

where it is assumed that the master is a 6-DOF manipulator. To ensure stability, 

qm > 0, for i = I, ..., 6 (3.7) 

and 

&,,, > 0, for i = 1, ... $3 (3.8) 

Further, each gain constant should be set to  a small positive value to ensure that the 
operator’s dynamics dominates. The master positional gain matrix, which is related by a 
positive constant to the slave positional gain matrix, will be discussed shortly. 
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5. The slave controller should be designed as an impedance controller with an 
actuator signal of 

More will be said about the impe ance controller in Sect. 4. 

6. When couplcd together, the master and slave should be stable so that when 
thc master is free from it5 human operator, the relative positional error, e = x, - q, 
goes to zero as time increases, 

When the master is freed by the human operator, the tcleoperation system should 
be dynamically stablc so that runaway is avoided. The slave controller will be based 011 

the concept of impedance control because of the desirable properties of decoupled 
dynamic: response, uniform stifhess, and adjustablc stiffness (see Sect. 4 €or more 
details). The master controller does not have to be as complicated as the slave 
controller because the human operator should be the dominant control force, as 
previously discussed. Using a stiffness controller for the master will provide uniform 
stiffness throughout the workspace. Further, its use has the desirable property of global 
stability. The proof (similar to that of ref. 3) follows. 

The slave’s dynamic equations of motion in Cartesian space are 

where contact forces have been removed. Tlne master’s dynamics of motion in Cartesian 
space [see Eq. (3.611 is  

where & arid C, are the Cartesian inertia and centrifugal/Coriolis terms, respectively. 

Define a 1,iapunov candidate function’ L as 

where a > 0 is an arbitrary positive constant. Taking the derivative of L with respect to 
time: 

Substituting Eqs. (3.10) and (3.11) into Eq. (3.13) results in the following: 

where 

(3.15) 
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has been used to  provide the stability constraint between the master and slave controller. 

Since our objective is to show that i is negative semidefinite, which would be true 
if the last two terms in Eq. (3.14) were zero, make the following definition: 

= 0.5k~&i&km - gcmqm . (3.16) 

This expression for E will now be shown to be zero. 

Using the definition of the manipulator Jacobian, Eq. (3.16) can be rearranged into 

[ = 0.54: [ X a J ,  - gCm]&, (3.17) 

or 

where 

A = [ J , ' k J ,  - J;C=,] . 

Using the fact that & - 2C, is a skew symmetric matrix, and after some messy algebraic 
manipulation, it can be shown that A is also skew symmetric. 'If A is skew symmetric, 
then [ is 0". 

Eq. (3.14) reduces to 

which shows that f. is negative semidefinite. Two cases need to be examined when 
f. = 0 (ie., I;, = 0 and im = 0) to show that e = x, - x, ---> 0 as time increases. 

Case 1: If e = x, - x, = 0, then convergence has been shown. 

Case 2: If e = x, - + 0, then from Eqs. (3.10) and (3.11), 

x, = f6,e # 0 
and 

(3.20) 

x, = - c I$me#O , (3.21) 

where singularity points are assumed to be avoided. Since the slave and master 
accelerations are not zero, their respective velocities will not stay at zero; that is, 

(3.22) 
. -  - 
x, = Atx, and Xm = Atx, , 
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where At = time. Therefore, 1; < 0, which means that e---> 0 as time increases, which 
concludes the proof- 

It is interesting to note that if the slave controller was a stiffness controller, global 
stability could still be shown'. This proof shows that the slave and master controller can 
be analyzed separately, since together they are stable. 

The other method to control a teleoperated system can be described as follows. 

The operator arm is assumed to behave like a variable impedance manipulator. 
The operator car1 changc at will thc setting of his arm stiffness and relative damping. 
The master controller will try to estimate the operator impedance in real t h e .  With 
this estimation, the slave impedance will be changed to the estimated value of the 
operator. Further, thc slaw force will be sent to the master. Both the master and slave 
will require a force torquc transducer, as opposed to the probc method that needs a 
force torque transducer only at thc slave. 

The technical difficulty with the adaptive impedance control method is that it 
assumes a physiological model (Le., an inipedancc: model) for the operator which to this 
date is still unknown. Further, a €orce/torquc sensor on the master end-e€€ector is 
required. Because of these restrictions, only the probe method is  deemed technically 
feasible at this phase of the research and will be the only method elaborated upon. 



4. OVERVIEW OF PAST WORK 

4.1 INTRODU(;TION 

Four major classes of force control schemes have been proposed for robotic 
applications. Each can be modified to handle the master/slave teleoperation problem. 
For simplicity, only the slave control algorithm will be given, since the master controller, 
as discussed in the previous section, can be described as 

and can be treated separately. 

For each of the four classes it will be assumed that the slave is a redundant 
manipulator, which means that a-change to the nonredundant manipulator case can be 
made simply by replacing J,’ or J, to J8-’ and making the necessary simplifications. Using 
results fTom Sect. 2, each controtler will be discussed based on the transient, stability, 
and stiffness attributes of the slave in Cartesian space. 

4.2 POSITION-POSITION CONTROL 

For position-position control, the torque signal can be produced in a number of 
different ways. Normally, the null space torque signal r,,”,, is not explicitly included in 
the torque signal and can be written as follows4’: 

where 

= J l i ,  3- (I - J;J,)r, , (4.3a) 

(4.3b) 

Insert Eq. (4.2) into Eq. (2.6). After some simplifications, the equation of molion 
in Cartesian space will be 

- I 

MxX8 + J,’ K, (4 - 4:) -t- J,’ r6,(q, - Q”) 4- Fd + C,& =r 0 . (4.4) 

Notice that an expression similar to the null space torque signal appears in 
Eq. (4.4) by means of Eqs. (4.3a) and (4.3b). This appearance potentially could cause 
instability, both in the Liapunov and in the practical sense, because: 

13 
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1. The signal (I - Js+.Js)ro could have a significant frequency cornponcnt that 
overlaps one of the resonant frequencies of the rnanipmlator. 

2. (I - Js+Js)r, might not be properly bounded, so that potential torque saturation 
could occur.. 

3. Damping in the null space will be con~guration-depesdent and mule2 cause the 
transient reponse of a particular trajectasq to be significantly underdamped. 

Further, at steady state, Q- (4.4) simplifies to 

which indicates that the stilhess seen by the end-effector is dcpcndent on the location 
of the slave in its workspace Also, it is clear from Eq. (4.4) that coupling will occur 
between the diffcrent slave states, indicating that the transient response of the 
end-effector will be complex. An eigenvaluc analysis of the linearization of Eq. (4.4) 
indicated that the eigenvalues will move significantly in the left half of the s plane". A 
simple quantitative measure of the variation of the eigenvalues is the average or mean 
eigenvalue defined as 

2n 

The mean eigenvalue can easily vary by 108% in the worbpace." 

Global stability can be proven for this controller under certain conditions and will 
bc given in Sect. 5. 

The hybrid controller'* torque signal can bc described as 

mu,, = null space torque signal of the following form (I - J,+J,)r,,, 

T ~ ~ ,  = slave gravitational torque compensation signal, 

J,+ = least-square generalized inverse. 

Insert Eq. (4.7) into Eq. (2.6). After some simplifications, the equation of motion in 
Cartesian space will be 

I 

MXXS + 7: Iq5 3,+(ks - A,> i- 7;r J,+(x, - %) -1- 3: 7nu,l 4- Fsea + CXG9 = 0 . (4.8) 
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The null space torque signal does not disappear in Eq- (4.8). Further, at steady 
state, Eq. (4.8) simplifies to 

- 
JTKp Js+(xa - x,) + F,, = 0 , (4-9) 

which indicates that the stiffness as seen by the end-effector will change, depending on 
the location of the slave in its workspace. Also, it is clear from Eq. (4.8) that coupling 
will occur between the difrerent slave states, indicating that the transient response of the 
end-effector will be very complex. The variation of the eigenvalues for the linearization 
of Eq. (4.8) in joint space will be identical to that of position-position control for the 
nonredundant manipula tor case and will not be repeated''. 

While, to the author's knowledge, global stability has not been proven for this 
controller, local stability can be proven for small perturbations from the equilibrium 
points. This local stability proof will be given in Sect. 5. 

For stiffness contr01,'~ the torque signal is 

with the null space torque signal defined as for the last case @e., 7 nu,l = (I - Js+Js)ro). 
Insert Eq. (4.10) into Eq. (2.6). After some simplifications, the equation of motion in 
Cartesian space will be 

- 
MSs + Ks(Xs - + KP(xs -.IC,) + J IT~ , , l l  + F,, +- CxGs = 0 . (4.11) 

Notice that the null space torque signal again appears in Eq. (4.11). At steady 
state, Eq. (4.11) simplifies to 

Kp(x* - x,) + F, = 0 , (4.12) 

which indicates that the stiffness seen by the end-effector is independent OK th,e location 
of the slave in its workspace. Also, it is clear from Eq. (4.11) that there will still be 
coupling between the different slave states (because M, typically will not be a diagonal 
matrix), indicating that the transient response of the end-effector will again be very 
complex. An eigenvalue analysis of the linearization of Eq. (4.11) in joint space 
indicates that the eigenvalues will move again significantly in the left half of the 
s plane." The mean eigenvalue14 is defined as 

2n 
P .  

(4.13) 
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The mean eigenvalue for stiffness control can vary significantly, but it usually has a value 
of less than either the position-position or hybrid control". 

Global stability can be proven for this controller and will be given in Sect. 5.  

For impedance controI'~"Js"8, the t o q u e  signal is 

Insert Eq. (4.14) into Eq. (2.6). M e r  some sinrplifications, the equation of motion 
in Cartesian space will be 

Notice that the null space torque signal does not agpear in Eg- (4.15), which would 
not occur if it had a form different from that of (I - J;Jyrw Further, at steady state, 
Eq. (4.15) simplifies t o  

which indicates that the stiffness seen by the end-efketoa is independent of the location 
of the slave in its workspace. Also, it is clear from Eq- (4.15) that no coupling will 
occur between the different slave states, indicating that the transient response of the 
end-effector will behave like a dccaupled second-order linear differential equation with 
coiistant coefficients. Since Eq. (4.15) is already linear, its eigenvalues will not move in 
the left half of the s plane." Global stability can be proven for this controller and will 
be given in Sect. 5. 

'Thz problems with implernentinig the impedance con trollcr discussed in Sect- 3.5 
are related to the computational intensiveness of the algorithm and bow to cope with 
unknown payloads. The reduced-order impedance controller is an attempt to reduce the 
computational effort while maintaining the desirable properties of an impedance 
controller. This scheme is not a clew type of controller but an approximation of the 
impcdance controller. To reduce the computational intensity of the impedance control 
algorithm, the velocity terms in Eq. (4.14) associated with Coriolis, centrifugal, and the 
change in the manipulator Jacobian effects will be ignored, that is, 
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Equation (4.17) can be rearranged into the following form: 
- 

z = J,{[&(x, - %) + K(Xm - 2%) - J,MS-'roI) 7 (4.18) 

where 

= slave inertia tensor. 

If it is assumed that slave inertia tensor is known (more will be said about this 
later), then everything within the brackets in Eq. (4.18) is known. Quat ion  (4.18) can 
be solved based on a modification of the scheme proposed by Dubey et  aL4 This 
modified scheme solves thc problem of solving for &,in given X, where both are related 
by the generalized inverse which minimizes the kinetic energy, that is 

- 
qmin = J$ . (4.19) 

The modified scheme utilizes the particular solution, qp, of Eq. (4.19) and its 
homogeneous solution, &. Every joint solution to the equation x = J,;7 can be written 
as a linear combination of the particular and homogeneous solution, 

;r = ;Ip + k i h  ? (4.20) 

where k is some arbitrary constant. To solve for &,,, k should be set at 

(4.21) 

So, if the inertia tensor is known, then ;Imin can be found. If X in Eq. (4.19) is 
replaced with I$(% - XJ -t &(xm - ;cB) - J,W-' ro, then z can be solved for in 
Eq. (4.18). The actuator torques then can he determined from z. 

7 ,  = r Q z  -t- 'Tagrav + ro . (4.22) 

Because of the difficulty in obtaining the inertia tensor and because many of the terms 
of inertia tensor are not significant, we are proposing to use a sparse inertia tensor with 
all off-diagonal terms set to zero. 

4.7 RANKING OF THE CQNTRQUERS 

A summary of the attributes of the five controllers is shown in Table 2. Of the 
five controller types, only the impedance controller has all the desirable attributes of 
uniform stiffness, decoupled transient response, and global stability in Cartesian space. 
Next is the stiffness controller, which is somewhat similar to the impedance controller 
but has somewhat fewer computational requirements than the impedance controller. 
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Decoupled 
Controller transient Constant Computational 
me response Stability ~~~~~~~s~ eamplexity 

1. Positisn- No Global No TBW 

Position 

2. Hybrid No Local NO Msdera te 

3. Stiffness No Global Yes Moderate 

4. Impedance Yes Global Yes High 

5. ROIC Approximately Local Yes Moderate 

Some commcnts are necessary at this point. The discussion so far has assumed 
that the master and slave can be modeled as a kinematic chain of rigid-body objects with 
ideal actuators. Unfortunately, most mechanical manipulators are far from this ideal, 
and unmodeled dynamics has a significant effect on their overall performance. These 
aspects will be discussed in depth in Sect. 6. The: purpose of the first five sections is to 
explain the basis of the problem. Section 6 will discuss ways to compensate for 
unmodeled dynamics at the joint level that will reduce their effects on the ideal model. 
Section 5 will examine in more depth the stability of the various controllers summarized 
in Table 2. This section can be skipped without any loss of continuity. 



5. STABILXIY AND TRANSIEZNT ANALYSIS 

5.1 LNTRQDUCTION 

Each of the controller types will be discussed, as mentioned in the previous 
section, concerning their stability and transient properties. This section can be skipped 
by the reader without any loss of continuity. 

5.2 SIlFFNEss CONTROL 

5.21 Global Positional Stability 

For position control, assume that the master is fixed and the slave is required to 
track the master, that is 

The slave actuator torque signal for stiffness control can be represented as 

7, = J,' [%{& - xs) i- K(k - 3 1  + (1 - J+JJ ro 

and 

where 

  null = a fixed positive constant, 

r; = an additional torque signal for such elements as obstacle avoidance and 
torque minimization, as discussed in Sect. 2. 

For notational simplicity, let P = (I - Js+ JJ r,,, where P has all the properties of 
a projection matrix. Gravity compensation is assumed to be included in Q. (5.1), but 
for simplicity it will not be shown. 

To show positional stability of stiffness control, a Liapunov function candidate' can 
be written as 

19 
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where 

V is a continuously differcntiabll: positive definite function in terms of Ax and q,. 

According Lo Liapunov's second method,' o m  needs to show for global stability that 

d_v, i ;<o  
dt 

for all1 nontrivial trajectories. T h i s  derivative will be proved as follows, 

Taking Lhe derivative of Eq. (5.3), 

Collecting like terms, 

v = ;ET(*,) -+ 0.5 ;IpT(M, - 2 q  ;I, - XJT Q(xm - XJ I 

Sincc is - 2 ~ ,  is an antisymmetric matrix,'' 

(5.4) 

(5.5) 

(5.6) 

(5-7) 

then, 

v = i S T G - S )  - X3$& - s> - 
Substituting Eq. (5.1) into Eq.. (5.9) gives the following: 

(5.9) 

Exploiting the fact that JS(iS = X,, itiserting this equation into Eq. (5.10) and 
replacing X, = 0 gives 

v = --is%., i, t 4: P ro . (5.11) 

Now insert Eq. (5.2) into Eq. (511): 
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Using the fact that kUl, is a positive constant, Eq. (5.12) can be modified to: 

Assuming that r; = 0, which means that the redundancy is not being exploited, 
simplifies Eq. (5.13) to 

v = -x*x xs - Lull q: Pq, - (5.14) 

Define the projection matrix Q = J,+J,. Both P and Q are projection matrices, 
have the properties that L = (P v: v E R"} and LL = (Q v: v E R"), and are orthogonal 
linear  subspace^.^^ Further, any point v E R" can be represented uniquely as v = p + q, 
where p E L and q E L'. Decompose bq, into 

bq,  = 8,: f bs""" . (5.15) 

where bq,' E L' and bq?" E L. Then Eq. (5.14) simplifies to 

Equation (5.16) indicates that V < 0 for 4, z 0 and K,,, > 0. 

Up to this point, all that has been shown is that v is negative semidefinite and not 
the negative definite needed to prove global stability. The following argument will show 
that V is negative definite. 

For q, = 0, V = 0, which means that there are two possible cases to cmsidcr, 
either AX = 0 or AX ie 0. If AX = 0, then V = 0, which means that we are at the 
desired point. Further, 7 ,  = 0, which means that the actuator will not try to move from 
this point. 

If AX # 0, then V + 0, since V is positive definite. Further, 

M, q, = 7 ,  = J,'Ka,Ax (5.17) 

or 

Now there are two possibilities: qs z 0 and qs = 0. For qd = 0, this means that w-' J,' K, is singular, which can be explained physically as requiring the manipulator to 
move in a direction in which it cannot move. Thus the case of qo = 0 is not of interest 
because it is physically unrealizable. 

For q8 z 0, 

4, At ¶, , (5.19) 
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which means that V < 0 since 4, + 0 from Eq, (5.19). ‘This means that the stall. 
condition of 4, = 0 and rn + 8 is lost a. stable equilibrium point. Therefore, the 
positional stability of the stiffness controller has been shown. 

When the slave is in contact with a surface, i t  will feel an external force. 
Assuming that the master position is fixed, Ict the external force be represented as an 
elastic restoring force, 

F*E = &(ai - XE) 9 

where & is the environment stiffness constant. 

The dynamic equation of motion for the slave can be represented as 

M, ijs + C, q, -+ J,’ FsE = 7 ,  . 

Inserting Eqs. (5”1)? (5.2), and (5.20) into Eq. (5.21) gives 

r\.ls iis + c, is 4- J: &(% - 

== JS’[qS(% - XS) -+ L(X, - is)] - kr-rrUii(1 - J’J)M 4 s  - 

After collecting like terms, Eq. (5.22) becomes 

N, q3 4- c, ;Is + J:[(qS * &) (i - %? + Ks(& - i > l  - k u l l  (1 - J’JM i s  

where = (M, + I&)-’ (K, 3 xE) . 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

Since is positive definite, the stability proof is identical for the positional case. 
However, the stable equilibrium point will now be x,: instead of G. 

The slave actuator torque signal for impedance control can be represented as 

7 ,  J,’ & [ K , , s ( ~  - XJ -+ KJX, - k,)] i- (C, - J s N  J,) q, w(1 - J+J) ro . (5.24) 

Gravity compensation i s  again assumed to be included in Eq. (5.24) but for 
simplicity it will not be shown. 

To show global positional stability of the end-effector, a Liapunov function 
candidate can be written as 

V(Ax,ks) = 0.5 ksTx, f 0.5 (Ax)’ &(Ax> , (5.25) 
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where 

Taking the derivative of Eq. (5.25) results in 

v = k:x + (Ax)’ Q(LX) * (5.26) 

Substituting Eq. (5.24) into Eq. (2.16) and then substituting the resulting 
expression for 2, into Eq. (5.26) results in 

v = -2: I(I ,  k* , (5.27) 

which indicates that v is negative semidefinite for K, > 0. Again, to  show global 
stability of the end-effector, V must be shown to be negative definite. This can be 
shown in a manner similar to that given for stiffness control, and therefore for brevity it 
will not be given (for the interested reader, see ref. 1). 

Only global stability of the end-effector has been shown. To show global stability 
of the entire manipulator, additional damping terms must be added, as given in 
E@ (2.20). 

5.4 PQSITIQN-POSITION CONTROL 

For local positional stability of the position-position controller, assume the Coriolis 
and centrifugal effects in Eq. (1.1) can be neglected [which appears to be a good 
assumption; see ref. 20-251. Further, with the assumptions that the gravity torques have 
been compensated for and the external forces are zero, Eq. (1.1) simpiifies lo 

with a slave torque signal of 

(5.29) 

Linearizing Eqs. (5.28) and (5.29) about a nominal position q/ gives 

where sq, = qs - qpD. 

is positive definite, and if K, and rC, are made positive definite, then 
Eq. (5.30) is asymptotically stable.’ A local stability is therefore proved. 



24 

Equation (5.30) can be put into the state space format, 

bx = A 6x , 

where 

'4 : 
, 

(5.31) 

(5.32) 

For local positional stL,ility of the .,ybrid controller, the same assumption as for 
the position-position control will be used, and Eq. (5.28) will represent the manipulator 
dynamics with a slave torque signal of 

where the null motion stabilization signal has been included. Lincarizing Eqs. (5.28) and 
(5.33) about a nominal position y; where x, = KIN q: , 

where & = x, - x, and -1%' is the least-square generalized inverse. 

Replacing Eq. (5.34) with 6% = Js bq, and = J, 6qs gives 

wq, = -Kps J,+J, sq, - Ks 4 + J S  8% - LUdJ - J,+J,) iss * 

Define the following two projection matrices: 

P = (I - J,+J,) and Q = J,+Js . 

These matrices have the properties that L = {P v: v E R"} and 
1,' = {Q v: v E $3") are orthogonal linear subspaces. Any point v E R" can be 
represented uniqileiy as v = p -+ q, where p E L and y E k'. 

Decompose iss into 

bq, = Bqs2 + i q y  , 

where iqsL E E' and iq?" E La Then Eq. (5.35) simplifies to 

Msq, = --q3 Q sq, - KbqpL - L,,,bq,"'"'" - 

(5.35) 

(5.36) 

(5.37) 
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The damping terms in Eq. (5.37) can be shown to be dissipative for any nonzero 
joint velocity if K, and K, are made positive definite. Then &. (5.37) is asymptotically 
  table.^ Local stability is therefore proved. 



The backdrivabiiity problem is that situation: opposite to normal robotic operation, 
in which mcchanical power is  flowing from the end-cffector to the actuators. The prime 
movcr in this case is eitbcr a human operator o r  an enviroiirnental force. From a design 
point of view, it is desirable that forces o r  torques required to backdrive the manipulator 
be as low as possible. Typical industrial robots are not ~ a c ~ ~ ~ ~ y ~ b ~ ~  because of large 
frictional forces at the actuators and joints. Backdrivability forces are designed to be 
lower for teleoperated systems than for industrial robotic manipulators by allowing €or 
more backlash and less stiffness. Unfortunately, the teleoperator system then has poor 
positional accuracy and repeatability. The dcgrce of backdrivability is one of the 
fundamental differences. between a teleoperator and an industrial robot. 

Backdrivability is  essential for both teleoperator and robotic systems. For 
teleoperator systems, mechanical power flow in both directions is a normal situation, and 
backdrivability has been recognized from the beginning as essential for successful 
operation. For industrial robotic systems, backdrivability is also essential to achieve force 
control capability. The force control problem is concerned with applying a fiied force to 
an object, or maintaining a fixed impedance betwccn the forms applied to an object, and 
thc relative cnd-effector displacement. Mechanical power can flow in both directions, 
and that capability is one of the reasons why the present generation of mechanical robot 
manipulators has poor performance when force control is implemented. If an industrial 
manipulator is going to be operated as a teleoperator, then its backdrivabilily necds to 
be enhanced. 

The following section examines the gcneric backdrivability problem for industrial 
manipulators, but designers of teleoperator manipulators will also be interested because 
the trade-off between backdrivability and positioiial accuracy bccornes less significant 
(Le., positional accuracy should be the dominant concern of the designer; backdrivability 
of the manipulator will be achieved by the joint controlleas). Friction will be 
compensated for by nieans of torque/€orcc sensiiig, the motivation for which will be 
discussed later. Two situations will be examined. The first entails the redesign o f  each 
joint to inchdc a joint torque scnsor. The second requires the application oc a corce 
torque sensor at the end-effector and the usc of that signal to compensate for the joint 
friction. 
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6.1.2 Joint Control 

6.1.2.1 Joint torque semfs in case 1 

Placement of a torque sensor at each joint will be examined first. This case was 
examined by Luh et  a3.?22 but they examined only the backlash nonlinearity of the 
system. Other nonlinearities due to motor saturation, gear boxes, coulomb friction and 
stiction effects were completely ignored. Unfortunately, these are the dominant 
nonlinearities of any mechanical manipulator, according to  Good et aLn These 
nonlinearities will be taken into account to gut the result of this study on a more 
credible foundation. 

The block diagram for a single joint controller, assuming an independent PD 
controller, is shown in Fig. 6.1. Five nonlinear terms take into account the major 
nonlinearities of a joint controller. These nonlinearities are as follows: 

1. motor saturation-NLSa t, 

2. motor friction due to coulomb and stiction effects-NLFm, 

3. backlash due to the gear box-NLB, 

4. gear box nonlinearities due to direction of power flow (more will be said later 
about this nonlinearity)-NLGB, and 

5. load friction due to coulomb and stiction effects-NLFl. 

To understand why the torque sensor compensates for the friction of the joint 
(really, only the motor friction), first a linear analysis will be performed, to be used only 
€or motivational purposes, and then a detailed nonlinear analysis will be presented. 

For the linear analysis, remove the nonlinear terms due to coulomb friction and 
stiction. Replace the nonlinear gear box, backlash, and motor saturation function with a 
unit gain block. Set the load torque, TL, to a unit step. Further, disconnect the PD 
controller by setting both Kp and Kv to zero. The governing equations describing the 
joint dynamics seen in the block diagram are: 

(6.2) 

Ts=K,(%-oL) . 
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Fig. 5.1. Block diagram showing joint nonlinearities. 

‘l’he transfer function relating the motor velocity to load torque TI, can he derived from 
these equations without resorting to Mason’s gain rule. First, take the Laplace 
transform of Eqs. (6.1) through (6.4), then substitute Eq. (6.4) into Eq. (6.3): 

n(JLs2 .i- I ( .~s  -I- KJe, YO, - nTL . (6-5) 

Substitute Eq. (6.1) into Eq. (6.2): 

(n S, s2 -t n& s) e, = - (n & I$,, -t- 1) Ts ; (6.6) 

thcn, substitute Eq. (6.4) into Eq. (4.6): 

{n2 J, s2 -I- n2 s, s f (n IC, &, -+ 1) KJ 8, I- n(n rC, yo, -6 1) y 6, . (6.7) 

Now, solve Eq. (6.4) for load angle o,,: 
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Substitute E ! q  (6.8) into Eq. (6.5) and collect the TI, and 6, terms: 

After some rearrangement of q. (6.9, the transfer function relating TL and 8, is 

m -  s e  L n(n & Kor + 11 
- TL [KL(n  Kr q,, + 1) + n%, + A s  + B sz + C s3] ’ (6.10) 

where A, B, and C are constants that do not have to be dealt with for this phase of the 
problem (the reason will become clear when the steady state motor velocity is found). 

Now, if load torque TL is a unit step, then the steady state value of the motor 
velocity is simply 

(6.11) 

which also explains why the A, B, and C terms were not important. Equation (6.11) can 
be rewritten as 

(6.12a) 

The steady state load velocity is just the steady state motor velocity divided by the gear 
ratio, n: 

If KO, = 0, then Q. (6.12b) says that the steady state load velocity is 

and if Kor = 00, then the steady state motor load velocity is 

(6.12b) 

(6.13) 

(6.14) 



For most mechanical manipulators, motor friction seen at the joint is much greater than 
joint friction, or, expressed mathematically, 

n2K\w Kcz - (6.15) 

Using Eq. ( C J S ) ,  Eqs. (6.13) and (6.14) say simply that to reduce the motor friction, 
which is the dominant friction, set thc torque semsoi' feedback gain to as high a value as 
possible to achieve a significant reduction in the effective friction during the 
backdrivability condition. 

"he characteristic equation of this system using Eq. (6.9) is 

s4(n2Jm JJ +- s3 (nz&, I(, + d J m  M;qz) f 5' l[m2J&, & I- n'J, K, + (n&Ktor -+- l)] 

+ b2S, Y + &LY (~~GKW 3- 113 =: 0 * (6.16) 

The Routb stability criteria can bc easily applied, and they will show that this systcm will 
always be stable if all of the feedback gains are positive. However, when nonlinear 
terms are included, stability is no longer guaranteed. 'l'his aspect will be examined later. 

6.1.2-2 End eEalcPr tcrrque xnwm in case 2 

The second case to be considened is that in which a €orce/torque transducer is  at 
the cnd-effcctor, The block diagram Fig. 6.2 is similar to Fig. 6.1 exccpt that the load 
torque i s  fed directly back. 

The lincar analysis for this case is similar to the previous case, so details will not 
be repeated. The steady state load velocity is 

If &or = 0, then Eq. (6.17) says that the steady state load 

(6.17) 

velocity is 

(6.18) 

which is identical to the previous case, and i1 yo, = LU, then the steady state motor load 
is 

ss 8 ,  Ifl .-* . (6.19) 

Equation (6.19) tells us that to compensate for a11 the joint friction, a force/torque 
transducer at the cnd-effector should be uscd if the torque feedback gain yo, can bc set 
to a high enough value. TJnfortunately, as we shall find out later, too high a setting will 
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Fig. 6.2. Block diagram of joint controller with Eorceltorque transducer. 

cause a significant limit cycle21 to be created, but further compensation can rectify this 
situation. 

As before, if the characteristic equation for Case 2 is examined by means of the 
Routh stability criteria, it can be easily shown that €or a linear analysis this system will, 
again, be stable if all feedback gains are positive. However, when the nonlinear terms 
are included, stability is no longer guaranteed. 

6.1.23 Nonlinear analysis using describing functions 

When the nonlinear terms are included in the analysis, three results appear 
possible. The first is that the system will be stable and the torque gain can be set to as 
high a value as possible. The second is that, as the torque gain is increased, the system 
will go into a limit cycle. The third is that the system will go unstable in the sense of 
Liapunov. Almost every book on servomechanisms claims and years of experience show 
that the torque gain cannot be set to any arbitrary value; thus, any possibility of the first 
result is eliminated. In practice, limit cycles occur when this gain is set too high.= The 
last result also is not possible, for only a finite torque can be produced by the actuator 
because of the saturation nonlinearity. Only uncontrolled oscillations are possible; 
therefore, only the second result can be achieved. 
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Unlike linear analysis, closed-form solutions, which include the nonlinear terms, 
are not possible, but accurate approximate techniques are when limit cycles are present. 
Techniques S I J C ~  as averaging or dcscrihing function (DF) methods are particularly 
effective. Similar to those of Luk," describing techniques will be applied with all the 
nonlinearities included in this analysis. When only one ~ ~ n ~ ~ ~ e a ~ i ~  exists, DFs are 
relatively easy to apply; when more tharrn one exists, the analysis becomes dilficult, but 
still is manageable if a digital computer is used. Each nonlinear term will be discussed 
in the following sections, then the equivalent DF \will be generated, Next, limit cycle 
solutions will be generated for various torque gain settings that will determine the 
amplitude and frequency of the oscillations. Finally, a compensator will bc designed 
based on this analysis, either to reduce the limit cycle amplitude or to remove it 
altogether, 

The following assumptions are made in the analysis1~9*~ 

1. 

2. 

3. 

4. 

5. 

6. 

The nonlinear elements are rime-invarian t. 

The limit cycle can be approximated by a time-varying sinusoidal expression. 

The filter hypothesis applies (Le., hi her harmonics of the limit cycle are 
filtered to such an extent that only a trivial quantity is fed back). 

No subharmonies are generated. 

rll~c NLFl term will be set to zero because the dominant nonlinear frictions 
are at the motor and not the joint; however, the effect of NLFl can bc easily 
iiicluded in the analysis. 

Thc laonlinear backlash tcrrn will be modeled using the friction-controlled 
model. Inertia effects can be included, but for this study their effects were 
not considered significant. 

6*1.2"3*1 Nil motor friction (NLFm) DIE'. The NLFm friction term i s  due to 
coulomb friction and stiction of the motor. 'I%c friction will be approximated as a 
constant coulomb friction term with a small stiction term superimposed. This friction 
effect i s  represented in Fig. 6.3. 

The DF for the NZFm term cain be obtained by applying a sinusoidal motor velocity 
input (Le-, i, = ASiRwt)  into this term and then taking the first harmonic component of 
the friction forces. Let y be the friction forces generated by a sinusoidal motor velocity 
input: 

y = NL',(i,) 

o r  

y = NLF,(&sinwt) , (6.20) 
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Fig. 6.3. Nonlinear friction effect. 

where 

4 = amplitude of the motor velocity, 

w = angular frequency of the limit cycle. 

4 and o are the unknowns that need to be found. 

Now take the first harmonic component of the output, y, as 

and 

since NLFm is an odd function. 

The DFs can now be determined to be 

npFM = 0 . 
Equations (6.21) and (6.22) are valid DFs for both Cases 1 and 2. 

(6.22) 

6.1.23.2 Backlash nopllinearity (NLB) DE Without going into the details, as in the last 
DF derivation, the input into the nonlinear backlash function, NLB, is 
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(6.23) 

The nonlinear backlash DF is3 

and 

where f is saturation defined as3 

(6.249 

(6.25) 

(6.26) 

and b is the amount of backlash. 

Equations (6.24) and (6.25) are valid DFs for both Cases 1 and 2, 

6.1.23.3 Motor saturation (NUAT) DF. Let spring torque T, be described as 

T, = n 4 sin (d -t- p,) (6.27) 

and the (6L)/n term as 

6 
n == sin (ut f p3) , (6.28) 

where 

4 and & are bath functions of 4 and W, 

B~ and p3 are both functions of 4 and W. 

The relationship between 4, A, pz, and p 3  tu plq and w will be developed later, but for 
now assume that they are laown. 

Motor current i is: 

(6.29) 



35 

where B~~~~~~ = 0 for convenience. Insert Eqs. (6.27), (629, and 8, = $shut into 
Eq. (6.29) and combine the three phasor quantities into 

i = & sin (at + p4) , (6.30) 

where 

(6.3 1) 

and 

p4 = ATAN2 [-(I& n & sin #Iz -+ K,, A, sin p3) , 

Motor electrical torque r e  is: 

7 ,  = NLSat (KTi) , (6.33) 

and the associated DF isw 

(6.34) 

nqst = 0 . (6.35) 

The above derivation will generate a valid DF €or Case 1. For Case 2, simply set KOc to 
0 in Eqs. (6.31) and (6.32). 

6.1.2.3.4 Gear box nonlinearity (NLGB) DF. From Fig. 6.1, the input to the NLGB 
block is 

(6.36) 

The nonlinear gear box model is derived as in ref. 25. The model is dependent on the 
direction of power Row in the gear box. Figure 6.4 shows the nonlinear effect of the 
power flow. Not only is there an oEfset c, but the slope of the curve can change. The 
p term in the figure is the coulomb friction coefficient. 

Since the torsional spring torque being fed back through the gear box, TJn, is the in 
Fig. 6.4, the output of the NLGB term will be Ti,, that is, 

Ti, = NLGB(T,,,,) . (6.37) 
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slope = 

Fig. 6.4. Nonlinear input-output relationship of gear box. 

Since 8 ,  = $siawl is positive for half the period of the sinusoid and negative for the 
second half, Eq. (6.37) can be determined by using the bottom curve for the first half of 
the period and the top curve for the last half, as shown in Fig. 6.4. 

For 8, > 0 ( i c y  0 < t c T D ) ,  Tin is: 

or 

Ti, = (1 .- p )  [A, sin (c~t -t 0,) + TNJ, for 4 sin (ut + p,) < --c . (6.39) 

For I ,  < 0 (Le., T/2 c t c T), T,, is: 

Tin = (1 - p )  [A2 sin (ut -t p,) - TNJ, for P., sin (ut + p,) > c (4.40) 

or 

Next, calculate the following terms: 

Ti, sin w t  dt , s a.jr 1 
Is, = $ [ I 
a, = $ [r Tin sin ut dt + 

T,, cos w t  dt -I- T,, COS wt dt . 

(6.42) 

(6.43) 
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Then DF for the gear box can be derived as 

(6.44) 

(6.45 a) 

where 

Q = ATAN2(b,, a,) . (6.4%) 

Equations (6.44) and (6.45) are valid DFs for Cases 1 and 2. 

6.1.2.35 Determining: & 4, flzs and &. k t  us first determine 4 and p3 in terms oP A, 
and W. From Eq. (6.23), the input to the NLB block is 

(6.46) 

and the output is 

L.. = .4, sin (ut + s,> , (6.47) n 

where the higher harmonics have been ignored because of the filter hypothesis. 

Using Eq~(6.24) and (6.25), 4 and p3 can now bc determined: 

(6.48) 

p3 = Q p  - 90” , (6.49) 

where 

Next, A, and p2 will be found in lerrns of A, and W. First, the transfer function G, 
relating T, and (dl)ln is needed. This transfer function is simply 

(6.51) 
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Replacing s with jw, G, OW): 

where 

(6.53) 

and 

BG1 = ATANZ[K,,, w, - JL w'] - ATAN~[&W,(M, - JLw2)] . (4.54) 

Since x/n = 4 sin (wt -I- ,dJ9 and using Eqs- (6.47), (6.48), and (6.52)? 4 is: 

or 

Likewise, p2 is: 

(6.57) 

6-1.2.3.6 Bimit cycle prodiction. Now, if all of thc assumptions are satisfied, the DF 
method allows each nonlinear b1ock io Figs. 6.1 and 6.2 to be replaced with its linear 
equivalent (ix., DF) model. Beth Cases 1 and 2 will be analyzed t~ determine the 
basic governing equations that predict at which amplitude and frequenq the limit cycle 
will occur. 

From Fig. 5.1, the governing equatinrns describing the joint dynamics for Case 1 as 
seen from the block diagram are: 

s 8 ,  = 6 2  t, 9 (6.59) 

7 ,  = 7 ,  - NLFM s 6, - NLGB T, , (6.60) 

7 ,  = NESat & i  , (6.61) 
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T, = G, - !SL n ’  

6‘ 
n = NLB , 

(6.53) 

(6.64) 

(6.65 j 

where 

s = j u .  

After some algebraic manipulation of Eqs. (6.59) to (6.65) and setting edmired to zero, one 
equation in terms of e, can be derived and is as follows: 

i- K, EB) s n  

The characteristic equation is simply the terms within the braces of Eq. (6.66): 

f K,,, 1- G NLB + I$ G) 
s n  s n  

+ NLFM + NLGB $ 7 1  G NLB = 0 . (6.67) 

Since Eq.(6.67) is an equation of complex terms, both the real and imaginary parts must 
be equal to zero. This gives us two equations with two unknowns @e., 4 and a). 

From Fig. 6.2, the governing equations describing the joint dynamics for Case 2 
as seen from the block diagram are: 

7 ,  = 7 ,  - NLFM se, - NLGB T, , (6.69) 

7 ,  = NLSat & i  , (6.70) 



(6.73) 

(6.74) 

After some algebraic manipulation of Eqs. (6.68) to (6.74) and setting B ~ ~ ’ ~ ~ ~ ~  an 
zcco, one equation in terms of e, can be derived arid i s  as €O~~OWS: 

Thc characteristic equation i s  simply the terms within the braces of Eq. (6.75): 

1 G NLR + NLFM + NLGB - s L 7  =z 0 . (6.74) 

The major difference between Eqs. (6.74) and (6.67) is that yo, appears in Case 1 and 
does not appear in Case 2. This means that the setting of 
for the determination of the limit cycle in Case 2 undcr conditions in which the 
assumptions are valid. More will be said about this later. 

does not come into play 

4,,8 2.3.7 Numeajcal . ~ ~ ~ t ~ ~ ~ .  Graphical techniques are frequently used to solve DF 
problems with one nonlinear element. Graphical techniques can give great insight into 
such problems and even suggest ways of compensating the syste 
performance. For multiple nonlinearities, however, such techniques are difficult to 
apply. Equation (4.67) for Case 1 can be reformulated by putting the NEB term on the 
right-hand side: 

or 

(6.77) 

where G, is the first term in Q. (6.77). The NLB term has becn placed on the right 
hand side of Eq. (6.77) because it is  considered to be a dominate nonlinear term when a 
limit cycle occurs. Further, if a change of variables is  pcrfoormed, 4 and w can be 
transformed into alpha and W: 

(6.78) 

and 

(6.79) 
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Since A, and w can take on only nonnegative values, the transformation is one to one, 
that is: 

A,=--- b n o  
alpha ’ (6.80) 

w = w .  (6.81) 

The NL33 term is now a function of only alpha, and the amount of gear backlash is 
relative, as can be seen from Eq. (6.78). For a solution to have physical meaning, alpha 
is restricted to lie betweed 

0 < alpha I 2 . (6.82) 

Define h, (alpha, W> to be the left side of Eq. (6.77) and h, (alpha) to be the 
right sidc. The problem then becomes to find all the alpha and w such that the 
following two conditions are satisfied: 

R e  (h, - h2) = 0 , (4.83) 

Im (h, - h2) = 0 . (4.84) 

Since these two equations are nonlinear, solutions will have to he performed on the 
computer. The problem can be easily reformulated as: Find all alpha and w such that 

[Re(h, - hJl2 4- [Im(h, - h2]’ 5 to1 

and 

0 < alpha 5 2 , 

where 

toi = some user specified tolerance. 

Optimization routines to solvc this type of problem are fairly common. WG 
found that a conjugate gradient search routine works well. For practical considerations, 
the angular frequency w should be restricted to  lie within 

and omin and w,, are bounds specified by the user. 

It should he noted that only some of the solutions to Eq. (6.77) are stable limit 
cycles. Whether or not a solution is stable is a somewhat difficult problem numerically, 
because the eigenvalue sensitivities associatcd with Eq. (6.77) will have to he 
determined. Methods to compute these sensitivities can be fbund in Because of 
the low dimensionality of this problem, all solutions to Eq. (6.77) can be tried out on a 
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program that will simulate the dyiiamic performance of this system. Stablc solutions will 
be clearly seen; unstable solutions will be quickly damped out. 

Similarly, Case 2 can bc formidated as arm optimization? problem in an fashion 
identical to Case 1. Tlierefoore, thc details of thc derivation will not be given. Clearly, 
h i t  cyclcs can bc predicted, which is om of the main points of this section. 

6-1.2.3.8 Ixad/lag frictkm ~~~~~~~~~. Friction can be mixipensated for by means of 
forec/tosquc sensors, as discussed previoarsly, Unfortunately, the gains for these signals 
cannot bc set at any arbitrary level because of potential limit cycle problems.. One 
method for eliminating OH reducing their effects is to me a leadAag compensator at the 
forcdtorque signal. For clarity, Case 1 will be discuss ~ PrevirPus researchers have 
examined this 
Figure 6.5 shows the plot of the magnitude YS phase of the G, and the -1/NLB transfer 
function for different alpha values. Limit cycles might occur at their intersections. To 
reduce the effccts of the limit cycle, the curves should be niovcd to the right, either to 
hit &he curve at higher alpha values (i.e*, the amplitude of the limit cycle is invcrsdy 
proportional to the alpha magnitude [see Eq. (6.78)j or to avoid entirely any intersection 
at all. A leadflag compensator can achieve: this movement. Luh et  aL21 have reported 
that a 38-to-1 reduction in friction of the Stanford Arm is possible, While a 30-to-1 
reduction in friction is not possible for every manipulator, reduction to some extcnt 
does appear to be possible, and this capability be exploited Lo improvc the 
backdrivability of the manipulator. 

and data arc readily available. Case 2 should be similar. 

All the control algorithms disxssed in Sect. 6.1 assumc rigid-body dynamics with 
linear friction and idcal actuators. TJnfortunately, this situation is not valid, as 
mentioned bcfore. Nonlinearities due to backlash, actuator limits, gear boxes, coulomb 
friction, and stiction are the dominant effects in the manipulator dynamics and compose 
the unmodeled dynamics. Unmodeled dynamics significantly limits the performance of 
advsnccd control algorithms, which is why simple PD and PI13 controllers have achieved 
such popularity in industry and why their performance is hard to beat. Unfortunately, 
PD and PHD controllers do not exploit to any significant degree the knowledge of the 
system being controlled, and this lack is the primary reason why there is so much 
research to find better coiitiol schemes, If the zmmodeled dynamics can be quantized, 
their effects can be diminished to some exleait, as was seen in the section on 
backdrivahility. However, carcful measurements are needed because of the high 
dimensionality and complexity of the problem. 

Figure 6.6 shows a nominal model G u m )  and the error due to unmodeled 
dynamics E(?,jw) at particular angular f requcnq W. Biace the overall transfer function of 
the system, H ( i , j w ) ,  has been determined, E( i , jm)  can be easily calculated by 

E = -11 -I- G-yn .- Iry] . (6.86) 
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Fig. 6.5. Possible limit cycles. 

Fig. 6.6. Unmodeled dynamics model. 

Once N has been measured and E calculated, the relative stability of the system can be 
determined, either by means of a describing function (or averaging techniques) or by 
stable robustness measures’6 such as 

(6.87) 

where 11-11 is a matrix norm operator.’ After E has been determined, a suitable 
compensator can be applied to limit the effects of the most relevant nonlinearities. 
Further, this whole process will determine regions where stable gains lor the desired 
control can be selected. 



7. su 

Section 1 of this report givccs an introduction to the probkm of dissimilar and 
redundant bilateral, force-reflecting teleopcrators. Sect30 2 gives thc fundamental 
theory of redurnbant teleoperators with ~~~~~~~~~~ kinematics" ,Section 3 discusses the 
basic philosophy of how a telleoperated system should be designed if only the slave has a 
forcehorque sensor. Section 4 categorizes the diffcre-ent types of contrcll algorithnis into 
four basic types: position -pmition, hybrid, stiffwss, and impedance control. Criteria to 
judge the relative attributes of each type are listed in Table 2. The impedance type of 
contrnlles has heen determined to be best in the sense that it decsuples the Cartesian 
motions and allows for uni€erm and adjustable stiffrmm in Cartesian space. Section 5 
gives a deeper discussion of thc stability and transient issues of each of the controller 
types. Section 6 discusses unrnodeled dynamics and itt effects on the performance of 
the manipulator. It is argued that joint compensators would be designed to limit the 
effccts OF the dominant, umnodeled raonlinearities at the joint Ievcl. These joint 
compensators would make the rniaiiipulzator appear, bo some extent, to behave like a rigid 
body contrsllcd by an ideal actuator, Impedance control algorithms as discussed in 
Sect. 3 would then be "layered" o v a  these joint compensators. The overall effcct should 
be a significant improvement in performance and controhbility (Lev9 uniform and 
adjustahk stiffness) throughout the woskspacc 
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