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ABSTRACT 

A model for gamma-ray cascade de-excitation of a nucleus derived from the 
Maxwellian energy distribution function but imposing energy conservation was in- 
vestigated. Energy distributions and multiplicities and their averages were found 
over a range of nuclear temperatures and excitation energies appropriate to neutron 
capture. The model was compared to existing measurements for tantalum, a case 
where the level density was high and thus a good approximation to the model. 
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1. INTRODUCTION 

Nuclei excited to energy levels from a few keV to several MeV above their 
ground states emit prompt gamma rays. At higher excitation energies neutrons 
and charged particles may also be emitted, depending on their binding energies. 
The neutron binding energy is usually the lowest, thus ncutron capture leads to 
an excited nucleus which then may de-excite by emitting one or more gamma rays. 
Hauser-Feshbach reaction codes' have incorporated a garnma-ray transmission coef- 
ficient to parametrize cascade probabilities and competition with particle emission 
at higher energies. Theoretical estimates of gamma-ray transition probabilities are 
based on extrapolation of El giant dipole r e S 0 n a 1 1 ~ e ~ ~ ~ ~  parameters. 

Measurements of neutron capture gamma rays have been most successful where 
few nuclear levels are involved, i.e. for high-energy gamma rays to either the ground 
state or to one of the low-lying states near it. For cases where many levels are 
involved, measurements4 are more difficult but indicate the overall distribution of 
typical cascade gamma-ray energies resembles the Maxwellian energy distribution. 

x = E/kT  (2) 
where E is the gamma-ray energy and kT the nuclear temperature. A plot of the 
distribution is shown in Fig. 1. The integral of P ( x )  from a variable lower limit X 
to infinity is shown in Fig. 2. 

The Maxwellian energy distribution extends to infinity and thus cannot directly 
represent a neutron capture gamma-ray distribution. The present investigation con- 
cerns a more restrictive model in which the finite excitation energy is conserved. A 
constant nuclear temperature with many virtual gamma-ray photons in equilibrium. 
is assumed. A series of typically 200,000 gamma-ray cascades is constructed to 
approximate the model distribution. For each cascade, an energy budget is kept, 
starting with the full excitation energy. Successive energies are chosen from the 
thermal distribution. If the chosen energy does not exceed the current energy bud- 
get, it is accepted as a member of the cascade and the budget decreased by that 
amount of energy. Otherwise, the remaining budget energy is accepted as the last 
member of the cascade and the next cascade selection is initiated. 

Superimposed on this sort of distribution may be other distinct gamma rays. 
High energy transitions to a low-lying state and their successors have been men- 
tioned above. There may also be a prominent gamma ray from a low-lying level fed 
by many cascades, in cases where decay to the ground state is hindered. Thus, the 
model may be used in several ways to supplement detailed experimental information 
from energy level evaluations to give a comprehensive picture of prompt gamma-ray 
cascades. The original motivation for developing the niodel was for extrapolating 
large liquid scintillator pulse amplitude spectra to energies below 1 MeV where high 
background ratcs obscured neutron capture ~ p e c t r a . ~  
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Fig. 1. The Maxwellian energy distribution. 
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2. MAXWELLIAN INTEGRAL 

A FORTRAN code MAX has been written to sample the Maxwellian distribu- 
tion and construct random cascades, imposing a cutoff on the last energy chosen 
to match each cascade to the available nuclear excitation energy. The code was 
constructed with an upper limit of 10 kT in steps of 0.02 kT. P ( x )  was integrated 
from zero to the top of each step, X;, using the formula 

where Erf  is the error function, for which computer algorithms have been devel- 
oped. The Hastings algorithm for Er f is in a form which allowed direct incorpora- 
tion of Eq. (3) as may be seen in the subroutine eMaxint (see Appendix A). The 
stored values of the integral (3) represent the probability up to each step and were 
searched to find the step matching successive random numbers uniformly distributed 
from zero to one. 
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3. R,ANDOM SAMPLING CODE 

It is possible that analytic methods exist for calculating the probability distri- 
bution for the model, as the distribution up to each successive cutoff is drawn from 
the sa.me Ma.xwellian. More transparent to me is a numerical approximation using 
the small finite energy bins a d  many sample cascades. Pseudo-random numbers, 
uniformly distributed from zero to one were used to select gamma-ray energy bins 
from the Maxwellian distrib.ution by checking each aga.inst the cumulative stepwise 
integration [Eq. (3)) Cascades were constructed by adding the randomly selected 
energies together until the sum exceeded an assigned cutoff value X,. The energy of 
the last gamma-ray selected (dubbed the lopped gamma ray) was reduced to bring 
the total for each cascade down to X,. If the first gamma-ray energy selected in a 
cascade exceeded X,, it was counted as a single, or ground state gamma-ray tran- 
sition, rather than a lopped one. The random number selection function was the 
most time-consuming process in the code. To economize on it the random numbers 
were scaled to the cumulative Maxwellian integral at the cutoff .X,  and the sin- 
gles probability corresponding to higher energies was calculated separately. Typical 
code execution is 3 minutes of central processing unit (CPU) time on a VAX 11/785 
computer. 

4 



4. MODEL ENERGY DISTRIBUTIONS 

The energy distribution of the lopped gamma rays found by random sampling 
is illustrated in Figs. 3-6 for several values of X,. Those distributions have more 
low-energy gamma rays than the Maxwellian and decrease markedly as X, is ap- 
proached. For X ,  = 9.98 so few samples are selected near X ,  that the decrease 
is masked by the statistics and the distribution shape is seen to closely follow the 
integral of the Maxwellian from X to infinity shown in Fig. 2. 

The average energy of the lopped gamma rays was calculated from the energy 
distributions. It is shown as a function of X,, the excitation energy available to 
each cascade in Fig. 7. As X ,  is increased, the average appears to approach 5/4 
kT, distinctly below the 3 / 2  kT average energy of the Maxwellian distribution. For 
X ,  = 9.98 the average was 1.245 kT on the longest test run, only 0.2% below the 
average energy up to 9.98 kT for the distribution shown in Fig. 2. 

The full energy distributions of the gamma rays in the model cascades are 
formed by adding the randomly sampled lopped-gamma distribution, the cut-off 
Maxwellian and the single gamma rays to the ground state, in the proportions 
determined by the random selection process. Examples are shown in Fig. 8 of the 
distributions below the excitation energy. The proportion of single gamma rays to 
the ground state, while fixed in the model, can readily be modified to match a case 
of interest. Figure 9 shows the ratio between the excitation energy and the energy 
at which the mobability has fallen to half its peak value as a function of the model 
parameter X,. 
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Fig. 3. The distribution of lopped gamma-ray energies for a cascade energy of 
2 kT. The crosses represent 200,000 randorrily sampled cascades. The Maxwelliaii distribution 
sampled for the other garnnia rays in a cascade is shown as a solid line. 
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Fig. 4. The distribution ob lopped gamma-ray energies for a cascade energy of 
4 kT. The crosses represent 200,000 randornly sampled cascades. 'The Maxwellian distribution 
sampled for the other gainma rays in a cascade is shown as a solid line. 
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energy distribution as a function of X,. 



5 .  MODEL MTTLTIPLZCITIES 

Saniples of the multiplicity distributions for a range of values of x, are shown 
in Fig. 10. Experimental multiplicities are expected to be smaller as the lowest 
gamma-ray energies are not detected. Multiplicities for a fixed gamma-ray energy 
bias can he readily calculated in the code. 

As the nuclear temperatiire is the free parameter of the model but the average 
gamma-ray multiplicity may be the paramet,er of interest, a munber of cases were 
run to determine their relation. It can be approximated as 

As X ,  approaches zero the probability of selecting a gamma ray exceeding X ,  
approaches unity as seen in Fig. 2; thus, the first term in Eq. (4) is 1. The function 
f is an empirical coefficient. If X ,  is allowed to go to extremely high values, the 
selected gainma rays are drawn from a nearly complete Maxwellian distribution for 
which the average energy is 3/2 kT. Already at X, = 9.98, the average Maxwellian 
energy is 1,498 kT. Thus we might expect the factor f to approach 2/3 as X, goes 
to infinity. However, the probability of selecting an energy below the average is over 
61%, so deviations from a simple linear relation at low values of X ,  are expected. 

While mathematically the niultiplicity approaches one a s  the excitation energy 
goes to zero, the useful range of the model is where it preserves a semblance of the 
Maxwellian distribution with a well defined peak. The range in X, is thus about 1.4 
to 10, with the larger va.lues more appropriate to fission gamma rays for example. 

The random selectioii code MAX was run for 100000 cascades or more for in- 
tegral values of X ,  from 1 to 9 and for one million cascades at 9.98. Figure 11 
shows the average multiplicities found. That for X ,  = 3.000 was (2.996 f 0.004) 
whcre the uncertainty is based on the square root of the number of cascade gamma 
rays selected. A constant value of f = 0.6436 in the formula above misses the 
multiplicities for X ,  from 2 to 5 by as much as 3%. ,4 modified linear relation 

M = 1.070 + 0.6380 * X ,  (5) 

fits the useful range X ,  = 1.4 to 10 to within 1%. 

10 
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6. COMPARISON WITH EXPERIMENT 

A number of isotopes above atomic mass 100 show thermal neutron capture 
gamma ray spectra with substantial unresolved components similar to the model 
spectra investigated here. In particular, spectra of rhodium, silver, samarium, eu- 
ropium, gadolinium, erbium, hafnium, tantalum, rhenium, iridium and thorium4 
show such a shape. Where a single isotope predominates, the available excitation 
energy is essentially equal to its neutron binding energy, and thus one feature of the 
model is automatically satisfied. 

Thermal neutron capture on tantalum offers a case with high-level density where 
relevant data exist.4 Tbe binding energy for the principal isotope "'Ta is 6.0629 
MeV, and compound nuclear spins 3 and 4 can be formed. Prompt gamma rays lead 
to the 115 day t l p  ground state and a 280-ms isomer at 16.5 keV. The early work 
with magnetic analysis of electrons from a thin converter led quite directly to aver- 
age gamma-ray spectra. Note that the corrected spectra of Groshev et ajL4 include 
the radius of curvature and magnetic field strength of his apparatus to facilitate 
line strength comparison. That feature has been factored out in the comparison 
to be shown. Most of the more recent work has used germanium crystal gamma 
spectrometers and their peak response to measure relative strengths of individual 
gamma rays. For tantalum a great many capture gamma rays below 1 MeV and 
above 3.88 MeV are now known.6 From 3.88 MeV to the binding energy at 6.063 
MeV 70 gamma rays are listed as primary. Since the probability of primary tran- 
sitions per neutron captured must sum to unity, a normalization factor of 0.072 
was given6 corresponding to the intensities of these gamma rays (and no others). 
The normalized intensities per neutron capture have been grouped in approximately 
half-MeV intervals and shown in Fig. 12 as a histogram. 

The model parameters were chosen to come close to the data in the range 
above 1 MeV, and include 11.5% of the gamma-rays at the 6.06 MeV cutoff energy, 
corresponding to the two highest energy primary transitions.6 The model shows 
more gamma-rays below 1 MeV than the data, from which, however, the strong peak 
at 0.511 MeV has been deleted as if it were entirely due to positron annihilation 
gamma rays. The model multiplicity distribution is shown in Fig. 13 and its average 
is 3.56. The average multiplicity for the model with gamma-rays below 0.75 MeV 
not counted is 2.54, corresponding more nearly to a coincidence experiment with 
biased gamma-ray detectors. 

13 
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'7. CONCLUSIONS 

The excitation energy limited Maxwellian cascade model investigated provides 
a plausible description of nuclear gamma-ray cascades in the limit of high level 
densities. As such it can be used to supplement detailed but partial level-to-level 
transition data where a more complete description of neutron capture gamma-ray 
cascades is needed, or where an average prediction is sufficient. Complete energy 
and multiplicity distributions for the model were investigated for a range of values 
of the free parameter, the nuclear temperature. A satisfactory comparison with 
existing measurements for thermal neutron capture by tantalum was found. Further 
work suggested involves incorporating the pulse-height response matrix of a detector 
system and adjusting the model parameter by least squares or other criteria to 
measured spectra. 
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APPENDIX A 

The FORTRAN coding was developed in several stages, The model behavior 
was studied in terms of the dimensionless parameter x = E/kT  in 2% steps with ar- 
rays of 500, even for the multiplicity. The ASCII output in a MAX.LOG file was read 
into an ORELA Data File (ODF) with a simple command file MAXREAD.CMD 
where plots could be studied and a few simple algebraic transformations could be 
done with the FORODF p r ~ g r a m . ~  The integration over steps was originally done 
with Gaussian quadratures but replaced by the more analytic form (3) as suggested 
by Peter Fu. When the model behavior study was completed, the code was adapted 
to accept and generate output in energy units. The step size was set at 20 keV 
and the maximum excitation energy was set at 15 MeV, thus increasing the output 
arrays to  750. This led to a concern with the multiplicity array as it was found 
that 25 was a practical upper limit, but the ODF format required equal length 
for all arrays in one file. Rather than form a separate file for the multiplicity, the 
energy range was cut back to 14.5 MeV and the last 26 channels used to store the 
multiplicity. MAXR.ODF and MAXRREAD.CMD accommodate the longer files 
and leave two sections for experimental data and/or uncertainties. Vestiges of the 
earlier use of the program probably remain in t,he FORTRAN listing which follows. 

C 
C 
c their sum exceeds an excitation energy. rlm 6/2/89 
C Files max . f o r ,  max .bat, max. odf , marread. cmd , max .rpt etc . 

set up a Haxwellian array for use in checking the gamma ray 
cascade model where energies are picked from it at random until 

C 
Dimension ehi(750), eav(750), a5(500), sa5(500) 
Dimension test (500) ,dist(25), spect(500) ,rspec(750) 

c set channel width .02 (*kT); to be scaled later to He'll. 
C 

E=O .02 
E2=0.5*E 
Haxwellian infinite a r e a  normalization constant *2/m 
anorm=i.12837917 

c 

C 
C 
C 

x=-e2 
do € i=1,500 
x=x+e 
ehi (i) =x+ e2 
eav(i)=x 
test(i)=o.O 
if (i.le.25) dist(i)=O.O 
spect(i)=O. 0 
sa5(i)=eMaxint(ehi(i)) 
if (i . eq . i ) a5( i ) =sa5 (i) 
if ( i .gt . i )a5(i)=sas( i ) -sa5(i-I)  

1 continue 
C 

do 2 i=501,725 
eav(i)=eav(i-i)+e 

2 ehi(i)=ehi(i-i)+e 
do 3 i=726,750 

3 eav(i)=i-725 

17 



C 

ncasc=200000 
rn=i.o/float(ncasc) 
rnsum=O . 0 
ivar=6553657 
rx=ran( ivar) 

accept I10 ,ExMeV 

C initialize ran function before use 

c generate cascades with maximum excitation energy MeV 

110 format (f10.0) 

C 

C 

C 

C 

C 

C 

C 

C 
C 

C 

C 
C 

C 
C 
C 

C 

c 
C 
1: 

C 
C 

C 

C 

C 
C 

C 
C 
C 

lint ag=O 
set a reasonable range of excitation energies 
if (ExMeV.lt.4.5) limttag=l 
if (ExReV.lt.4.5) ExMaV-1.5 
if (ExMeV.gt.14.5) limtag=2 
if (ExFieV.gt.14.5) ExMeV=14.5 
reset ExMeV to top of nearest channel. 
nmax=nint(ExPIeV/e) 
ExMeV=ehi (max) 
mmaxml=max-l 
generate cascades with cutoff so many times kT 
accept I10,EkT 
set a range of cutoffs 1.38 to 9.98 
if (EkT.lt.l.38) limtag=l 
if (EkT.lt.l.38) EkT21.38 
if (EkT.gt.9.98) limtag=2 
if (EkT.gt.9.98) EkT=9.98 
reset EkT to top of nearest channel. 
nmax=nint(EkT/e) 
EkT=ehi(nmax) 
set bias at 0.75 Rev to get biased average multiplicity 
bx=0.?5*EkT/ExHeV 
nbx=ifix(0.5+bx/e) 

accept 110,avm 
set a reasonable range of model+singles multiplicity 
if (avm.lt.l.05) limtag=3 
if (avm.lt.l.05) avm=l.Q5 
if (avm.gt.7.457) limtag-4 
if (avrn.gt.7.457) avw7.457 

accept 110, sngl 
set a reasonable range o f  desired singles fraction 
moat ag= I 
if (sngl.gt.0.00) go to 9 
modtag-1 
negative sngl to be replaced with model sng l  

assuming avm is the desired model multiplicity 
xcest=(avm-1.07)/0.638 
nmax=ifix(O.S+(xcest/e)) 
go to 33 

9 if (sngl.gt.0.95) limtag=5 
if (sngl.gt.0.95) sngl=Q,95 

calculata the desirod multiplicity of multiple-step cascades 
avm=(avm-sngl)/(i.O-sngl) 
check for a v m  in reasonable model range X ,  
if (avmm.lt.2.690) limtag=6 

= 1.4 - 9.98 
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C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 

C 
C 
C 

C 

C 
C 

C 

C 

C 
C 

C 

C 

C 
C 

if (avmm.lt.2.690) avmm52.690 
if (avmm.gt.7.457) limtag=7 
if (avmm.gt.7.457) avnutd.457 
estimate the model parameter to give it. 
do 30 i=499,58,-1 
nmax=i 
linear formula for multiplicity vs X, good to 1% 
but inversion gives a minimum avmct2.674815 at i=58 
avmmc=( i.O70+ (0.6380*ehi( i+l))+sa5( i>-l.O) /sa5(i) 
if (avmmc.le.avmm) go to 32 

30 continue 
type 117,nmax,avmmc 

117 format ( '  Finder loop exceeded, nmax= ',i4,' avmrnc= ',f8.5) 
stop 

32 continue 
33 continue 

if (nmax.lt.3) limtagr9 
if (limtag.eq.9) type 1i9,limtag 
if (nmax.lt.3) stop 
nmaxml=nmax- I 
if (modtag. eq. -1) sngl=i .O-sa5(nmaxmi) 
umsngl=i.O-sngl 
cutoff=ehi(nmax) 
if (cutoff.gt.lO.0) limtags8 
if (limtag.eq.8) type 119,limtag 
if (cutoff .gt.io.o) stop 
reserve last channel for singles = full energy bin 

find probability up to nmax and set ran scale to match 
scale=sa5(nmaxmi) 
rns=rn*umsngl 
rnssum-0.0 

6/29/89 

ksum=O 
k bsum= 0 
keum to total the number of gamma rays summed over all cascades 
kbsum for  those above a bias (0.75 Hev set above) 
do 10 i=i,ncasc 
nsum=O 
nsum to total the energies for each cascade in terms of channels 
do 13 k=1,500 
ik=k 
rx=ran(ivar)*scale 
do I1 j=1,500 

if (rx.le.sas(j)> go to 12 
ii=j 

I1 continue 

12 continue 
nsum=nsum+ii 
if (nsum.ge.nmax) go to 14 
if (ii.ge.nbx) kbsum=kbsum+i 

13 continue 
14 continue 

if the last gamna energy overflowed, lop it and store lopped 
gamma distribution in test 
ilast=nmax-nsum+ii 
if (ilast .gt .o) test(ilast)=test(ilast)+rn 
if (ilast.gt.0.and.ilast.gt.nbw) kbsum=kbsum+l 
if (ik.gt.25) stop 
dist(ik)=dist(ik)+rns 
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C 

C 

c 
C 

C 

C 

C 

C 

C 

C 

C 

C 
C 

C 

C 

keum=ksum+ik 

put in fraction of singles called for 
dist(l)=sngl 
do 22 i=l,nmaxml 
rnsum=rnsum+test(i) 
if (i.le.25) rnssum=rn~sumcdist(i) 

10 continue 

22 continue 

calculate the average multiplicity fox more than one gamma-ray 
in the cascade 
avmult=float(ksurn)/%loat(ncasc) 
Bmult=float(kbsum)/float(ncasc) 
avmm=avmult 
f cmarwl=avmult-i .O 
cmodmult=(avmult*scale)*i.0-8cale 
calculate the factors for the full energy distribution 
flop=umsngl/avmult 
fmaxwl=fcmaxwl*urnsngIj(avmult*scale) 
spect(nmax)=sngl 

rnck=l. O/rnsum 
rnsck=umsngl/(r~ssum-sngl) 
avxlop=O.O 

do 20 i=1,500 
renormalize for repeated roundoff e r r o r e  on rn and r n s  
if (test(i).ge.rn) test(i)=test(i)*rnck 
avxlop=avxlop+test(i)*eav(i) 
if (i.gt.25) go to 21 
if (dist(i).ge.rns.and.i.gt.l) dist(i)=dist(i)*rnsck 

21 continue 

if (i .It .max) spect (i)=(as (i)*fmaxwl) +(test (i)*flop) 

rspec(726)=angl 
do 24 i-?27,750 

avmul t=(avmul t*umsngl )*sngl  
reset biassed multiplicity to include singles fraction 
Bmult=(Bmult*umsngl)*sn~l 
avx=(i.~*fmaxw~+avx~~p~flop)*umsng~+cuto~f*sng~ 

section to rabin the calculated spectrum into WsV units. 
remember channel nmax contains the singles probability. 
rspec(mmax)=spect (nmax) 
calculate tha rebinned channel width in kT units 
r=e*ehi (nmaxml) /ehi (mmaxmi) 
i=O 
reb=O .O 
asum=0. 0 
eresL=Q .O 
rrest=O. 0 
do 40 j=l,mmaxml 
esum=erest 
rebzrrest 
check whethar tha last overage produces another also 
if (esum.ge.r) go to 44 

20 continue 

24 rspec(i)=diat(i-725) 

42 continue 
i=i+j. 
esum= e sum* e 
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reb=reb+spect(i) 
if (esum.lt.r)go to 42 

calculate overage in energy and channel probability content 
erest Z8sum-r 
rrest=erest*spect(i)/e 
store in rebinned channel j and go on to j+l 

rspec(j )=(reb-rrest)/e 

do 46 i=1,750 
type iOO,eav(i) ,rspec(i) 

44 continue 
c 

C 
C renormalize to per MeV units; one gamma per capture 

40 continue 

100 format (2e16.8) 
46 continue 

if (modtag.lt.0) type 118 

if (limtag.gt.0) type ii9,limtag 

type 120,ExReV,cutoff,avmult,avx,dist(l) 

type 130,max,avm,Bmult 

stop 
end 
Function enaxint (2) 
calculate the integral of the Maxwellian energy distribution 
from 0 to x ,  using the parametrized error function erf 
Maxvellian infinite area normalization constant *2/m 
anorm=l.12837917 
x=ABS(z) 

118 format ( ’  Singles fraction reset to model estimate.’) 

I19 format ( ’  A parameter has reached a programmed 1imit.lDi2) 

120 format(’ ExMeV’,2f6.2,’*kT avm~lt’~f8.5,’ avxJ,f8.5,’ snglsyDf8.5) 

130 format (’ max’,i4,’ multiples alone’,f8.5,’ bias .75 MeVJ,f8.5) 

c 
c 
C 

y=sqrt(x) 
C emaxint=erf(y)-anorm*y*exp(-x) 
c incorporate algorithm for erf(y) 
C 
C FROM HASTINGS VIA ABRAMOVITZ AND STEGUN 7.1.26 PG 299 RLM 

APPROXIMATE ERROR INTEGRAL ERF(y) GOOD TO 1.5 E - 0 7  ABS. 

P=O. 32759 11 
AI=. 254829592 
A2=-. 284496736 
A3=1.421413741 
A4=-1.453152027 
A5=1.061405429 
T=l . /( 1. +P*y) 
POL=Al*T+A2*T*T+A3*T*T*T+A4*T*T*T*T+A5*T*T*T*T*T 

emaxint=i.O-(POL+anorm*y)*exp(-x) 
RETURN 
END 

c Erfzl.0-POL*EXP(-y*y) 
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