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AN INVESTIGATION OF ELASTIC GUIDED WAVES 
FOR CERAMIC JOINT EVALUATION* 

W. A .  Simpson, Jr., and R. W. McClung 

ABSTRACT 

The rapid development of ceramic technology has led to 
the widespread use of ceramics in applications traditionally 
reserved for metals. Many of these applications, however, 
require the use of ceramics bonded to other ceramics or to 
metals in order to achieve the requisite strength. The 
presence of unbonding in such ceramic joints can now be 
reliably detected by previously developed ultrasonic 
techniques, but what is needed is a nondestructive approach 
which is capable of assessing bond strength directly. 
possible tool to achieve this goal is the use of guided 
elastic waves propagating in the braze layer of a typdcal 
ceramic joint . 

We describe the theory of guided waves in the center 
layer of a general three-layer solid. The secular deter-- 
minant is found, and roots of the secular equation are 
determined numerically for cases of interest in ceramic 
joining. Both guided and leaky modes are described, and 
it is shown that dispersive Stoneley waves can occur for 
these materials. In addition, the evanescent nature of the 
guided waves in the bounding solids raises the possiblity of 
determining the elastic properties of the oxygen depletion 
layer adjacent to the braze in oxide ceramics. Possible 
models for incomplete bonding and the effect of  this 
condition on the ultrasonic parameters are also discussed. 

A 

INTRODUCTION 

The excellent thermal and wear properties of structural ceramics 

are finding increasing use in applications that have traditionally been 

reserved for metals. Since many ceramics remain stable at temperatures 

*Research sponsored by the U.S. Department of Energy, Office of  
Energy Utilization Research, under the Energy Conversion and Utilization 
Technologies (ECUT) Materials Program, under contract DE-AC05-840R21400 
with Martin Marietta Energy Systems, Inc. 
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well in excess of the melting points of virtually all of the common 

structural metals, one such application is in high-temperature engines, 

where the relatively low weight o f  ceramics provides an additional 

advantage over such competitors as refractory metals. 

with the relatively low fracture toughness and poor machinability of 

ceramics, practical designs, at least for the near future, will probably 

consis'c of ceramic liners attached to metal substrates to combine the 

wear and thermal properties of ceramics with the strength of metals. 

Unfortunately, 

This configurati-on introduces new problems, however, since one must 

now guarantee the integrity of the ceramic-to-metal joint as well as 

that of the component parts themselves. This task is not insurmount- 

able, and techniques have been developed which can detect nondestruc- 

tively the presence of regions of nonbonding between the ceramic and the 

metal substrate, even when these regions are as small as 100 pm in 

diameter.' Even for joints which exhibit no demonstrable degree of 

nonbonding, however, it is well known that failure can still occur, 

somerimes at stresses well below the expected failure load. 

suggests that, although the component parts are indeed bonded in the 

sense that local stress is continuous across the interface, the strength 

of the bond is reduced. One would therefore like to probe the joint 

region, preferably nondestructively, in a manner such that the local 

strength of the bond, not just the simple presence or absence of bond, 

could be assessed. 

properties of either ceramic or substrate (or both) may vary in the 

region adjacent to the bond, and the techniques described previously are 

poorly adapted to the determination of this variation. 

this behavior is afforded by oxide ceramics, which typically exhibit an 

oxygen depletion region for =1 nun from the bond when brazed with certain 

braze filler metals, The elastic properties in the depletion region are 

currently inferred by diamond indentation; this technique is clearly 

destructive. 

This result 

Another aspect of this problem is that the 

An example of 

In considering possible nondestructive techniques to achieve the 

goals of bond strength determination and assessment of the elastic 

properties of the materials in and adjacent to the bond, it is clear 

that conventional elastic bulk waves will be of limited usefulness 



because of  the very sm’all dimensions of the bond region. The problem of 

separating the effect of variations in the bulk properties from that of 

variations in the bond would be virtually insurmountable in this case. 

However, if one could propagate along the bond layer an elastic wave 

which was evanescent in the materials on either side of the bond, 

both goals could be achieved simultaneously. 

generating such waves and the characteristics of the resulting interface 

propagation are the subjects of this report. 

The possibility of 

The use of  elastic guided waves (waves which are bound to a layer) 

and interface waves (waves propagating along an interface between 

media), with a few notable exceptions, has been almost entirely 

neglected in nondestructive evaluation. One exception, that of waves 

propagating on the free surface of a solid, was first investigated by 

Rayleigh.’ These waves are frequently used for detecting flaws which 

are surface breaking or which are too near the surface to resolve with 

bulk waves. A second exception, that of Lamb waves3 (waves propagating 

in a plate of  thickness comparable to or smaller than a wavelength), has 

also been used rather widely to monitor changes in the thickness of a 

plate or to detect the presence of laminar flaws. These two cases 

represent virtually all of the practical applications of interface waves 

in nondestructive testing, although many other examples o f  such waves 

are known. 

propagating in a layer clad on a semi infinite substrate. 

gave the first comprehensive treatment of waves propagating along the 

interface between two solids in perfect contact and found that, for a 

narrow range of material parameters, unattenuated boundary waves may 

exist. However, this phenomenon has been rarely, if ever, exploited in 

nondestructive testing, probably because the materials of  interest do 

not satisfy the stringent requirements for such waves. It is shown here 

that a wave will almost always be present at the interface between any 

two solids if one permits the wave vector to be complex (i-e., the wave 

will be attenuated as it propagates along the interface). This type of 

wave may be more useful than the pure Stoneley wave, but its existence 

appears not to be widely recognized in nondestructive testing. 

For example, Love4 investigated the properties of waves 

Stoneley’ 
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In the case of  a ceramic joint, we have a general three-layer 

solid, and it appears that this case has not been examined before in 

nondestructive testing. 

elastic wave propagation in the braze layer of  such a structure, and the 

solutions to the equations of  motion are developed numerically froin the 

theory. 

This report therefore presents the theory of 

THEORY 

Figure 1 shows the geometry of the problem. The interface wave is 

assumed to have no y dependence and to propagate in the x direction in a 

braze layer of  thickness 2h. 

homogeneous, and isotropic solids. The equation of motion to be 

satisfied in each medium is6 

We assume that all materials are linear, 

2 h  
I..-- 

ORNL-DWG 88-13171 

X 

Fig. 1. Geometry for a three-layer solid. 
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where 1s is the particle displacement, p and A are the Lam6 elastic 

constants, and p is the density. 

usual potentials: 

Now 3 can be defined in terms of  the 

The displacement thus contains irrotational and solenoidal components, 

which give rise to compressional and shear waves, respectively. 

Substituting Eq. (2) into E q .  (l), we see that 4 and 4 satisfy 

where C, is the longitudinal wave velocity and Ct is the shear wave 

velocity in the medium in question. 

dependence is of the form exp(ikx) and which are independent of y .  

latter condition requires that $ = ( 0 ,  &,,, 0) = $. 

the solutions are time harmonic of the form exp(-iwt). Thus, 

We seek solutions whose x 

The 

We a l s o  assume that 

or (V2 -I- k:)4 = 0 and (V2 + kt)$ = 0. Now 

v2 - a2/ax2 + a2/az2 = -k2 + d2/aZ2 . 

Thus, the potentials satisfy 

where a2 = k2 - k; and p2 - k2 - k:. 
are of the form 

The solutions to these equations 
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where the subscript m denotes the region and A, and 8, are arbitrary 

coefficients . 
The displacement 3 from E q .  (2) is given by 

The stresses are calculated from the stress-strain relationship in an 

isotropic solid: 

where 

is the strain tensor and ckk ,  the trace o f  the s t r a i n  tensor, is the 

dilatation. The term 6 j - j  i s  the Kronecker delta function. Substituting 

for Sk above gives 

= -Akl# + 2pa24 + 2 y i k  a$/az . 

However, a2 = k2 - kt  ; thus ~ 

2 2 Also, ( A  + 2 p ) k ,  = p o 2  = pkc - p ( k 2  - /I2). Therefore, 

or 

( 7 )  
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Now that we have.the displacements and stresses i n  terms o f  the 

displacement potentials, the solutions in each region can be written 

down straightforwardly. Before doing this for the general three-layer 

solid, however, we shall consider several other examples of interface 

waves whose solutions are known. This will allow us to compare our 

numerical results with known or published data. 

cases, corresponding to increasing order of the secular determinant of 

the solution: Case 1: Rayleigh waves propagating on the surface of a 

semi-infinite solid; Case 2: "leaky" Rayleigh waves at a fluid-solid 

boundary; Case 3 :  Stoneley waves at the interface between two solids in 

perfect contact; Case 4 :  guided waves propagating in a fluid layer 

between two solids; and Case 5: guided waves propagating i n  a solid 

layer between two solids (ceramic joint). Each of  these cases was 

solved numerically by restricting the secular determinant to the 

appropriate order and finding the roots wjth a general FORTIiAN program 

to be described later. 

We shall consider five 

CASE 1: RAYLEIGH WAVES 

Figure 2 shows the geometry for waves propagating on the surface of  

a semi-infinite solid. Since there is but a single medium, the 

displacement potentials are 

where A and B are arbitrary amplitudes to be determined and where z < 0, 
since the solid occupies the lower half space. The common factor 

exp[i(kx - ut)] has been ignored here and will be omitted for the 

remainder of this report. 

The boundary conditions which must be satisfied are the vanishing 

of the normal and tangential stresses at the surface of  the solid 

(traction-free surface). Calculating these values from E q s .  ( 8 )  

and ( 9 ) ,  we find that 
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0 = (k2 + P2)A -I- 2ik@ 

0 = 2ikaA - (k2 + p 2 ) B  . 
, 

ORNL-DWG 89-21 14 

Fig. 2. Geometry for a semi-infinite layer. 

If there is to be a nontrivial solution. then 

Solving this secular determinant for k gives the dispersion relation for 

the waves. 

Although we located the roots of the determinant numerically, as 

must be done in the case o f  a general solid, for this simple example it 

is instructive to examine the secular equation ana1yticall.y for the case 

of an incompressible solid. 

obtain 

Expanding the preceding determinant, we 

(k2 + 8')' - 4k2aP = 0 . 
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If the solid is incompressible, then X = 0 ;  thus, k, = 0 and a = k .  

Then the secular equation becomes 

(k2  + p 2 ) 4  = 16k6p2 = 16k6(k2 - ki) . 

Expanding and collecting terms, we obtain 

k6 - 3k4k2/2  $. k2k:/2 - ki/16 = 0 . 

If we let z = k2, the equation becomes 

This cubic equation can easily be solved by an appropriate 

~ubstitution.~ 

Rayleigh velocity of the wave. 

The result is that C, = 0 , 9 5 5 3 C t ,  where C, is the 

A n  analytical solution to the secular equation can also be 

found for the Poisson relation (i.e., when X - p ) .  In this case, 

C, = 8.9194Ct. Thus, for virtually all solids, the Rayleigh velocity 

will range from 0.90Ct to 0 . 9 5 C t .  

arbitrary solid, the secular determinant must be solved numerically. 

This is our approach, and the value obtained for Rayleigh waves 

propagating on the surface of iron is given in the section on 

"Numerical Results. " 

If an exact value is required for an 

The roots found previously were all real and smaller in magnitude 

than C,. 

wave is exponentially damped with depth in the solid. The wave is 

therefore bound to the surface and propagates along the interface 

without l o s s .  

Since /3 = (k2  - k:)l", we see that p is real, and thus the 

CASE 2 :  "LEAKYt8 RAYLEIGH WAVES 

If, instead of vacuum above the semi-infinite solid treated in 

Case 1, we substitute a fluid (see Fig. 3 ) ,  the boundary conditions are 

altered and additional waves may be present. The change in boundary 
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Fig. 3 .  Geometry for a fluid-loaded semi-infinite solid. 

conditions reflects the fact that a propagating (nonattenuating) wave 

may be present in the fluid, whereas this is, of course, impossible in 

the case of vacuum. The existence of this wave in the fluid, which is 

continuously radiated by the surface wave as it propagates along the 

boundary, means that the interface wave is damped (i.e., the wave vector 

k is complex). Such a condition, in which an interface wave "leaks" 

energy into the bounding materials, is called a "leaky" wave. 

To learn the characteristics of the leaky wave, we assume the fluid 

to be perfect ( p  0 )  and write the displacement potentials in each 

region: 

The boundary conditions at the fluid--solid interface are the continuity 

of normal displ-acement and normal and tangential stress (actually, the 
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t angent ia l  s t r e s s  must vanish s ince the f l u i d  cannot support a shear 

wave). Subst i tut ing the poten t ia l s  o f  E q .  ( 1 3 )  i n t o  the expression for  

S, i n  E q .  ( 6 )  and using E q s .  (8) and ( 9 )  f o r  the s t r e s s e s  [ t h e  f irst  

term i n  E q .  ( 7 )  , -Xkt#, i s  used f o r  the s t r e s s  i n  the f l u i d  s ince p - 0 
t h e r e ] ,  we obtain the secular  determinant f o r  leaky Rayleigh waves: 

A complex r o o t ,  corresponding t o  a damped in te r face  wave, was found for  

t h i s  determinant and i s  discussed l a t e r .  

CASE 3 :  STONELEY WAVES 

We now s u b s t i t u t e  a s o l i d  f o r  the upper medium, as shown i n  

F i g .  4 .  In t h i s  case,  both the normal and the tangenti.al components of  

displacement and stress are continuous across the in te r face .  Since both 

ORNL-DWG 89-21 16 

F i g .  4 .  Geometry f o r  t w o  s o l i d  layers  i n  welded contact .  
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boundary materials are solids, potentials are required for shear waves 

as well as compressional waves in each medium. The potentials in each 

region are 

Substituting these potentials into E q s .  ( 6 ) *  ( 8 ) ,  and ( 9 )  leads to the 

determinantal equation 

de t = 0 . (16 )  

Stoneley' was able to solve this determinant for real r o o t s  and- found 

that undamped interface waves could exist between two s o l i d s  only f o r  a 

very narrow range of rnateri-a1 parameters. 

that a far richer ensemble of waves can exist if we admit complex values 

for the wave vector k. 

However, we shall l a t e r  see 

CASE 4 :  FLUID LAYER 

Figure 5 shows the geometry €or a fluid layer between two solids. 

We assume that the center of the layer corresponds to z - 0 and that the 

layer half thickness is h .  Since the layer is of  finite thickness, the 

solutions for waves in the layer are given by functions of the form 

exp(rtaz). We shall write the potential +o in the layer as 

9o = Aocos(a,z) -b Bosin(aoz) . 
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Fig. 5 .  Geometry for a fluid layer between two solids. 

The solutions will thus exhibit symmetric ( B o  = 0) or antisymmetric 

(A, = 0) behavior with respect to the centerline z = 0. 

choice of potentials, however, the terms containing (k2  + p i )  in 

Eqs . (8) and (9) must be replaced by (k2 -- #It). Since the layer 
thickness is finite, we shall also see that the admissible waves are 

dispersive, in contrast with the previous examples of interface waves. 

With this 

The potentials in each region are given by 

The boundary conditions to be satisfied at z - fi are the continuity of 
the normal displacements and the normal and tangential stresses. 

Substituting these potentials into E q s .  (8)-(10) [and using E q .  (7) with 

p = 0 for the stress in the fluid layer], we obtain the determinantal 

equation for waves in the fluid layer: 
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de t 

a , e Q , h  ike-pih a ,  sin a,h --% cos a& 

pl(P+pf)eQ~h -2ikp,B1e-Blh Xk," cos a& Xk,' sin a& 

2ikplale-"lh pl(P+B:)e-B1h 0 0 

0 0 ap sin a& aQ cos a& 

0 0 -Ab: cos a,h Akt sin a,h 

0 0 0 0 

- 0 . (18) 

There are several characteristics of  the wave propagation which can be 

predicted from the form of the preceding determinant. First, for 

identical solids on either side of the fluid layer, the symmetry o f  the 

secular determinant about the plane z = 0 allows the determinantal 

equation to be factored, indicating that two classes of waves will be 

present.' Second, as the layer thickness goes to zero, the determinant 

reduces to that for two solids in slip (frictionless) contact; thus, we 

expect the zero-thickness wave propagati-on to reduce to that o f  a 

Rayleigh wave at the boundary. The dispersion curves for the fluid 

layer problem are presented later. 

CASE 5: THREE-LAYER SOLID 

Far the three-layer solid (Fig. I . ) ,  both longitudinal and shear 

waves can exist in the center layer, and thus six potentials are 

required. The potentials in each region are 

The boundary conditions are that both the normal and the tangential 

displacements and stresses must be continuous at kh. As in the last 
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example, the choice of trigonometric functions for the potentials in the 

braze layer requires that the expressions f o r  the stresses, E q s .  ( 8 )  

and ( 9 1 ,  be modified by replacing the term (k2 + 
secular determinant for this problem is given in E q .  (20) .  

2 by (k2 - P o > .  The 

A s  in the case of the fluid layer, the form of the determinant 

suggests that, for identical solids on either side of  the central layer, 

symmetry about z = 0 can again be invoked t o  show that the secular 

determinant may be factored into two terms. Also, the determinant 

reduces to that for two solids in perfect contact when the layer 

thickness goes to zero. Hence, we expect that the zero-thickness 

solution will be a Stoneley wave and that the solution in this limit 

will reduce to an ordinary shear wave when the solids are identical. 

For the three-layer solid problem, the secular determinant becomes: 

I 

de t 

, 

0 

0 

0 

NUMERICAL RESULTS 

a. COS a& 

-ik s i n  a& 

-po(P-& sin a0h 

-2ikpoao cos aoh 

a,, cos  a,h 

-ik sin aoh 

-p,(P-& s in a& 

2ikpoao cos aoh 

0 

0 

0 

A s  mentioned previously, we have chosen to solve the secular 

This was not a particularly difficult decision equations numerically. 
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in light of  the fact that the equations appear to be intractable to 

analytical approaches except for a very few specific cases or unless we 

make some simplifying assumptions. 

for all choices of material parameters, we wrote a general FORTRAN 

program to locate all roots of each secular determinant. 

Since we wanted to ensure a solution 

A few comments regarding the existence and nature of  roots are in 

order here. Since the secular determinant for each problem leads to an 

nthkorder equation for the wave vector, k, of  the interface or gui-ded 

wave, there will always be n roots. Some (or all) of  these roots may be 

complex, and there may be multiple real r o o t s .  

indicate that rhe wave is damped, since exp(ikx) = exp(-kjx)exp(ik,x), 

where k, and k i  are the real and imaginary parts of the wave vector, 

respectively. 

[ e . g . ,  those complex roots for whi.ch k i  < 0 (which corresponds to an 
exponentially growing wave)], and those which are acceptable may not be 

practical because they aK@ daiiiped too rapidly. In all cases, however, 

there will be n roots, some of which will probably correspond to a 

physically realizable interface or guided wave. Thus, although the 

identification of real roots of  the solid-solid secular determinant with 

Stoneley waves is appropriate, in nondestructive evaluation the fact 

that no real roots exist is sometimes interpreted to mean that no 

interface wave exists, which is incorrect. The complicated nature of 

these roots, including the previous incorrect identification of the 

limiting cases of some of  the roots, has been pointed out by Pilant.g 

The complex roots 

Some of the roots may not: correspond to physical waves 

In locating the roots of the secular equation, we note that there 

is a branch point associated with each square root which defines the 

wave vectors a and [see E q .  ( 5 ) ] .  Thus, the roots of  the secular 

equation will lie on several Riemann sheets. 

as we have in Eqs. ( l o ) ,  (13), (15), (17), and ( 1 9 ) ,  however, we see 

that the real roots (corresponding to waves evanescent in the 

surrounding solids) should lie on the sheet corresponding to all 

positive branches of  the square root functions. In addition, leaky 

modes (if present) should occur on the sheet corresponding to the 

negative branch of the wave vector for the potential 4 in the medium in 

which the leaky wave propagates. We emphasize that, except for the case 

En defining the potentials 
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, 

of  Stoneley waves, we did not search each Riemann sheet for all possible 

roots, although this could certainly be done. Hence, there may be modes 

other than those we report. We believe that the physically significant 

waves can be found by application of the preceding principles, however, 

We tried a number of different approaches in locating the roots of 

the secular determinant. In the end, however, we settled on a technique 

in which we first search the complex phase velocity plane for local 

m i n i m a  of the ldetl function, using a relatively coarse step along both 

real and imaginary axes. 

too coarse a step may miss a root while too fine a step requires 

excessive computer time. Each minimum is then located precisely by 

using a two-variable Newton's approximation method; that is, the slope 

of the surface in both the real and the imaginary direction is 

calculated by using a step size of 

taken to yield a conservative estimate of the location of the minimum. 

We found that a rather arcane collection of test statements was 

necessary to guarantee convergence to the minimum and to prevent the 

program from falling into an endless cycle of corrections which 

overshoot the minimum or approach too slowly. 

program will generally locate the minimum of the surface within 

along both real and imaginary axes within ten steps (often within five 

steps, depending on the local nature of the surface). A final test 

determines if the minimum corresponds to a true root or merely to a 

nonzero minimum (which occurs, for example, when either the real or the 

imaginary part of the determinant, but not both, goes through zero). 

The step size must be chosen carefully since 

and a weighted average is then 

In the final version, the 

The main routine of the FORTRAN program permits secular 

determinants up to 16 x 1 6  to be solved (this size can easily be 

expanded if needed). 

linked with a subroutine called MATRIX, which defines the elements of 

the determinant. Thus, the main program must be relinked for each new 

determinant (but not for each change of  materials for a given order of 

determinant, since this information is input to the main program and 

passed to MATRIX). 

The program need be compiled only once and is then 

The determinant is calculated by a subroutine which uses Gaussian 

elimination with partial pivoting. The running time for the program on 
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the 8 x 8 determinant is only a few minutes on an IBN PC-AT (8 MHz with 

12 MHz accelerator card) to cover the range 0 < C, < 4 and - 0 . 3  < Ci < 
0, where C, and Ci are the real and imaginary parts of  the phase 

velocity, respectively. 

After the roots of the secular equation have been found, one would 

also like to know the amplitudes of the various waves (i.e., t.he 

coefficients A, and B,,, for each potential, as well. as the wave vectors 

CY, and P m ) .  The wave vectors are computed from the definitions 

[ E q .  ( 5 ) ]  and printed for each root. The coefficients are determined by 

solving the homogeneous matrix equation 

NY 

D Y = Q ,  

N - 
where D is the determinant matrix and Y is the coefficient matrix. 

Since the equation is homogeneous, one can only solve for ratios of 

coefficients. Thus, we set one of the coefficients to 1 and solve for 

the others in terms of the prescribed amplitude. For guided waves 

(e.g,, Case 4 and Case 5 presented earlier), which generally exhibit 

symmetric and antisymmetric properties, the program will automatically 

determine which type of symmetry is appropriate to the root in question 

and solve for all other coefficients in terms of the coefficient of the 

symmetric or antisymmetric term. This is done by first assuming that 

the mode is symmetric (coefficient - 1) and solving €or the anti- 
symmetric coefficient. If the absolute value of the result is > 1, then 
the solution is repeated with the antisymmetric coefficient set to 1. 

For pure modes, this approach will yield a coefficient of very nearly 

zero f o r  the opposite symmetry. 

For interface waves (no finite layers), the program arbitrarily 

sets the coefficient of the potential $ in the upper medium to unity. 

All coefficients are then printed in the analysis of each root. 

CASE 1: RAYLEIGH WAVES 

The secular determinant for Rayleigh waves w a s  given by E q .  (12). 
The material chosen was iron, for which the properties are p = 7.86 g/cm3, 
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I 

C, = 5.89 km/s, and Ct - 3.21 lun/s. Since the FORTRAN program was 

written for the general case of dispersive interface waves, an input 

frequency range must be specified, even though there is no dispersion 

for Rayleigh waves. In the present case, 1 MHz was entered for both 

upper and lower frequencies. Since Rayleigh waves correspond to real 

roots of the secular determinant, the imaginary axis search range was 

set to zero. The real axis velocity search range was specified as 

0 to 4 km/s. The program found a single root at 

C - 2.97132 + i 0.00000 km/s , 

where C is the phase velocity of the Rayleigh wave. This value is 

0.9256Cc, which is in the estimated range from 0.90Cc to 0.95Cc 

mentioned earlier. 

The wave vectors for this case are 

a - 1.82582 + i 0.00000 , 
p = 0.80015 + i 0.00000 . 

Since z < 0 in this medium, we see that both potentials are evanescent 
in the iron. 

CASE 2: "LEAKY" RAYLEIGH WAVES 

The determinant for leaky Rayleigh waves is given by Eq. (14). We 

assume that the solid is iron and the fluid layer is water. The salient 

material. properties of water are p = 1 g/cm3 and C, = 1.483 km/s. The 

imaginary axis search range was from -0.3 to 0 km/s, and the real axis 

range was from 0 to 4 km/s. We specified the Riemann sheet for the 

search to be the negative branch for al and the positive branch for the 

other wave vectors. Since there is again no dispersion, the frequency 

was specified to be 1 MHz. The program found a single root on this 

sheet at 

C = 2 . 9 7 2 5 5  - i 3. .17361 x km/s . 
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The phase ve loc i ty  f o r  the leaky wave i s  thus s l i g h t l y  higher than t h a t  

of the Rayleigh wave, Since C i s  complex, we see t h a t  the wave i s  

damped. This i s  b e s t  seen by noting t h a t  k = w / C ,  Thus 

k = 2.11349 + i 2.25645 x lo-’ m’l 
4 

a t  1 MHz. Therefore, 

exp( ikx) = exp [ (--2. 25645 x 10.-2)x] exp [ i ( 2 . 1 1 3 4 9 ~ )  J . 

The wave i s  thus attenuated by 2.25645 x lo-’ neper/mm, or  about 

0 . 2  db/mm, as it propagates along the in te r face .  

The values f o r  the other wave vectors y i e l d  some very i n t e r e s t i n g  

r e s u l t s  f o r  this problem, These values a re  

a1 = -1.29870 x lo-’ - i 3.67311 mm-l , 

a2 = 1.82457 f i 2.61375 x lo-’ rniril’ , 

,9 2 ~-7 0.79911 + i 5.96788 x lo-’ mm-’ . 

The poten t ia l s  i n  the i ron a l l  y ie ld  damped waves as  before.  The value 

for  u1 requires fur ther  explanation, however. 

Since we specif ied the negative branch f o r  alp both r e a l  and 

imaginary p a r t s  a r e  l e s s  than zero.  Equation ( 1 3 ) ,  however, requires 

t h a t  41 = A41exp(-alz). 

computer program yie lds  

Subst i tut ing the value determined by the 

c $ ~  = Alexp[ (1.29870 x 10-2))z]exp[i(3.67311z) J . 

The r e s u l t  seems t o  imply t h a t  the wave grows exponentially with 

dis tance from the in te r face .  The discrepancy r e s u l t s  from the f a c t  

t h a t ,  as s t a t e d  previously, the common fac tor  exp[i(kx - w e ) ]  has been 

dropped from a l l  the poten t ia l s .  Thus, E q .  (13) should s t a t e :  

dl = Alexp(-alz)exp[i(kx - ut)] . 
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The factor exp(-iot) is not important here and may be dropped. 

Substituting the value for k obtained previously, we obtain 

d1 = Alexp [ (1.29870 x 10-2)2] exp [ (-2.25645 x 10-2)x] 

x exp[i(2.11349x + 3.67311z)l . 

The complex exponential defines a direction of propagation in the water 

which makes an angle of 60P084 with respect to the interface (or 29:916 

with respect to the normal to the interface). Along this line of 

propagation, the two real exponentials are exactly equal and opposite 

and therefore cancel. Thus, the wave defined by the potential d1 is a 
real (undamped) wave propagating in the water at an angle of 29:916 with 

respect to the normal to the interface. This is the leaky wave, which 

is radiated by the interface wave as it propagates along the boundary of 

the solid and which is responsible for the damping of the interface 

wave. Thus, the wave vector of the leaky wave potential must be complex 

with negative real and imaginary parts. This is the reason for our 

earlier statement that the leaky waves should be found on the negative 

branch of the wave vector for the potential in the medium in which the 

leaky wave propagates. 

The apparent exponential growth of the leaky wave can also be 

If we fix the value of the x-coordinate explained in another way. 

(i.e., if we consider a fixed point on the interface), and if we then 

examine the behavior of  the leaky wave as z increases, we shall indeed 

find that the amplitude increases with distance from the interface, 

since we will be intercepting rays which have come from earlier points 

on the boundary where the interface wave is less highly damped. Along 

the direction of propagation of the leaky wave, however, the amplitude 

is constant. 

Since the interface wave radiates a bulk wave into the water, the 

inverse situation (i.e., a bulk wave incident on the interface at the 

critical angle generates the interface wave) is also possible. This is 

a much inore useful configuration €or nondestructive evaluation because 

the leaky interface wave can be generated by a conventional angle-beam 
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immersion u l t rasonic  system whereas the undamped in te r face  wave requires  

spec ia l  contact transducer wedges f o r  each mater ia l  t o  be examined. For  

the leaky wave case,  i t  i s  in s t ruc t ive  to  ca lcu la te  the c r i t i c a l  angle.  

This w a s  obtained e a r l i e r  from the r e a l  pa r t  of  k and the imaginary p a r t  

of al. 

v e l o c i t i e s  and S n e l l ' s  law. If we use the bulk wave ve loc i ty  of  

1 . 4 8 3  km/s and the r e a l  p a r t  of the in te r face  wave ve loc i ty  given 

previously,  however, the r e s u l t s  do not agree; they a re  c lose  only 

because the  imaginary p a r t  of k is small compared with [:he r e a l  p a r t  

( i . e . ,  the  damping i s  smal l ) .  Using the absolute value of the in te r face  

wave ve loc i ty  does not cor rec t  the problem. To see where the problem 

a r i s e s ,  we wr i te  S n e l l ' s  law i n  the form 

I t  should a l s o  be derivable from the bulk and in te r face  wave 

k,  s i n  0 = k , (22) 

where k,  is  the wave vector o f  the  incident  bulk wave, k i s  the  wave 

vector  of the in te r face  wave, and 0 is  the angle o f  incidence €or the 

in t e r f ace  wave. Now k,  i s  r e a l ,  while k is complex, Hence, 6 m u s t  be 

compl.ex. The c r i t i c a l  angle corresponds t o  the r e a l  p a r t  o f  the  complex 

angle of  incidence,  which can be found as  follows. The s ine  ~f the 

incident  angle may be expanded t o  y i e ld  

s i n  8 = s i n  0, cosh 6 i  +- i cos 0, sinh 0i ) ( 2 3 )  

where 8, and 8 i  a r e  the r e a l  and imaginary p a r t s  of the complex angle of  

incidence. Likewise, 

cos 8 = cos 0, cosh 8 i  - i sin 8, s inh 0i . (24 )  

From E q .  ( 2 2 ) ,  

s i n  8 = (k , /k , )  + i ( k i / k , )  

Thus, from E q .  ( 2 3 ) ,  

s i n  8, cosh tYi = k,/k, ) cos 0, si.nh B i  = k i / k ,  . 
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Now cos 6' can be ca lcu la ted  from 

and the r e a l  and imaginary p a r t s  can be equated t o  the corresponding 

terms i n  Eq. ( 2 4 ) .  Comparing E q s .  ( 2 3 )  and ( 2 4 ) ,  we see t h a t  

Re(sin B)/Re(cos 8 )  = tan 8, . 

When t h i s  i s  done €or the above example, w e  f i nd  t h a t  the angle obtained 

i s  prec ise ly  t h a t  computed e a r l i e r  from k, and the imaginary p a r t  of al. 

The ca lcu la t ions  j u s t  demonstrated would never ac tua l ly  be per-  

formed i n  prac t ice  s ince the c r i t i c a l  angle i s  r ead i ly  ava i lab le  from 

the computer output .  The r e s u l t  es tab l i shes  t h a t  the same value can be 

obtained from the  two v e l o c i t i e s  and S n e l l ' s  law, however, a f a c t  which 

i s  not  apparent from the computer r e s u l t s .  I n  addi t ion ,  it appears 

possible t h a t  for some problems Re(k)/ko > 1, and thus f a i l u r e  t o  

recognize t h a t  6' i s  complex w i l l  lend t o  values of s i n  6' t h a t  exceed 1. 

CASE 3 :  STONELEY WAVES 

The secular  determinant f o r  t h i s  case is  given i n  E¶. ( 1 6 ) .  

Several d i f f e r e n t  mater ia l  combinations were t r ea t ed  by Lee and 

Corbly," and we chose those examples t o  t e s t  our program. W e  began 

with the case of  t i tanium bonded t o  i ron  s ince t h i s  case i s  known t o  

support a Stoneley wave. 

given, and those of t i tanium are p = 4 . 4 4  g/cm3, C, = 6 . 1 1  km/s, and 

Ct = 3 . 2 7  km/s. We f i r s t  searched f o r  roots  along the r e a l  ve loc i ty  

ax is  s ince  any such roots  w i l l  be the t r u e  Stoneley waves. The 

frequency w a s  1 MHz, although t h i s  i s  unimportant s ince the waves a r e  

not d i spers ive .  The program found a s ing le  root  a t  

The proper t ies  oE i ron  have already been 

C = 3 . 2 0 8 6 5  + i 0.00000 km/s . 
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The value given in ref. 9 was 3.209 kin/s. All wave vectors were pure 

real, indicating an undamped interface wave that is evanescent in both 

the iron and the titanium. 

We next selected the case of aluminum bonded to iron. The 

properties of aluminum are p = 2 . 7 7  g/cm3, G, = 6 . 3 1  h / s ,  and C, = 

3 . 1 0  km/s. No true Stoneley wave exists for these materials, and this 

was confirmed by our program, which found no roots on the real axis in 

the range 0 < C < 6 km/s. We next specified that the Riemann sheet 

corresponding to the negative branch o f  and the positive branches of 

a l l  other wave vectors be searched. The real  axjs range was 0 < C, 

< 6 h / s ,  and tkc imaginary axis range was -0 .3 < Ci < 0. The program 
found a root at 

c = 3.14829 - i 7 . 2 4 4 0 6  x h,h 

The value given in ref. 10 was 3.1483 -.- i 0 . 0 0 7 2 4  h / s .  The wave 

vectors f O K  this case were 

al = 1 . 7 2 9 5 8  + i 5.29875 x m-' , 

j?1 = -2 .58410 X - i 0 . 3 5 4 6 5 4  IIUII.-' , 

a2 = 1.68672 -t i 5 . 4 3 3 4 1  x mm-' , 

p2 = 0.390083 + i 2.34940 x lo-' mm-' . 

A s  before, al, a2, and BZ lead to damped potentials. The wave vector p1 
corresponds to a leaky wave, however. From the imaginary part of p1 and 
the preceding phase velocity, we see that the wave is propagating upward 

in the aluminum at an angle of 7 9 : 9  with respect to the normal to the 

interface and is a shear wave, Thus, the leaky Stoneley wave can be 

excited by a shear wave in the aluminum incident on the interface at an 

angle of 7 9 " .  

The next case considered was aluminum bonded to titanium, which is 

also discussed in ref. 10. The program found a single leaky wave on the 

same Riemann sheet as that for aluminum bonded to iron. The phase 

velocity is 
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C - 3.25449 - i 2.49132 x lun/s . 

The value given in ref. 10 is 3.2545 - i 0.025 h / s .  The wave vectors 

of the potentials are 

a1 = 1.65391 + i 1.72495 X 

PI = -4.60666 x 

w-' , 

- i 0.619302 mm" , 

a2 - 1.63385 + i 1.74614 X 
Bz = 0.225124 +- i 0.126727 mm'l . 

aaUnl , 

From these values and the preceding phase velocity, the wave is found to 

be propagating in the aluminum at an angle of 72:2 with respect to the 

normal to the interface. 

A more stringent test of our computer program was afforded by the 

results of Pilant,g who showed that there were 16 roots to the Stoneley 

equation and who found all of these roots numerically for a number of 

materlal combinations. Pilant's analysls assumed materials for which 

(C,/C,)' = 1/3. 

ratios (Ct2 /C, , )2  and ( p l / p 2 )  varied. 

case ( C t 2 / C t l ) 2  = 0 . 8  and ( p I / p 2 )  = 0.5. 

assumed with the following material parameters: 

C,, = 5.19615 km/s, Ctl = 3 km/s, p2 - 3 g/cm3, C,, - 4.64758 km/s, 
and C t 2  = 2.68328 km/s. 

-0.4 < Ci < 0. 
same as those found by Pilant. 

imaginary parts are physically untenable, we searched only the negative 

imaginary half plane, finding 12 roots ( 8  real and 4 complex). The 

other 4 roots are presumably positive and were not given by Pilant,] 

The behavior of the roots was then studied as the 

We repeated this study for the 

Two hypothetical solids were 

p 1  = 1.5 g/cm3, 

The range for the search was 0 < C ,  < 7 and 
Our program easily found all 16 roots, and they were the 

[Since complex roots with positive 

CASE 4: FLUID LAYER 

The secular determinant for a fluid layer between two solids is 

given by Eq. (18). This problem was also studied by Staecker and Wang.' 
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Since we have a I.ayeK of finite thickness, we should expect the guided 

waves to exhibit dispersion, and this is found to be the case. 

The case chosen was that of a water layer between t:wo fused quartz 

half spaces. 

5.57 km/s,  and Ct = 3.51 km/s. We first considered only pure guided 

waves (no damping) by searching along the real axis for roo t s  o f  the 

secular equation. Since dispersion i s  present, the calculations were 

perforrned for a range of frequenci-es. 

by normalizing the velocities and layer thickness; thus, the roots 

(velocities) were divided by the velocity of sound in water, and the 

layer thickness was divided by the wavelength o f  sound in water at the 

specified frequency. Figure 6 shows the results. The permissible waves 

are seen to consist of  a number of symmetric or antisymmetric modes. 

This figure should be compared with Figs. 2a and 2b of  ref. 8 ,  where the 

slight differences are presumably due to differences in material 

parameters, which were not described in the reference. 

The properties of the quartz are p = 2.6 g/(7m3, C, = 

The results are bese interpreted 

\ \ \ \ 
\ 

Fig. 6 .  Dispersion curves for guided waves in a fluid 
layer between quartz. 
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In the limit as the frequency (or the thickness of the fluid layer) 

goes to infinity, the phase velocity of each mode approaches that of an 

ordinary wave in the fluid. This is to be expected since the propaga- 

tion approaches that of an ordinary bulk wave in fluid when the 

normalized layer thickness becomes large. As the normalized layer 

thickness approaches zero, however, Fig. 6 shows that all of the waves 

vanish but one, the lowest-order antisymmetric mode. The phase velocity 

of  this wave in the limit is just that of a Rayleigh wave propagating 

along the surface of the quartz. 

thus a dispersive Rayleigh wave. 

The lowest-order antisymmetric mode is 

The behavior of the "slow wave" (i.e., the lowest-order symmetric 

mode, whose phase velocity is less than that o f  the normal wave in the 

fluid) is also correctly described by our results. Reference 8 indi- 

cates that, for this wave, the amplitudes will be hyperbolic rather than 

sinusoidal as assumed in E q .  (17). This was confirmed by our program, 

where ag was found to be pure imaginary, and the sine or cosine of a 

pure imaginary argument becomes the hyperbolic sine or cosine of the 

same pure real argument. For all other modes q, was pure real. 

The group velocity of a given wave, which has not been mentioned 

previously since dispersion was not present, can be obtained from the 

data in Fig. 6 .  By definition, the group velocity Vg is given by 

Vg - dw/dk . 

But o - Ck, where C is the phase velocity. Thus 

Vg = C + k(dC/dk) . (25)  

The term dC/dk  is proportional to the slope of the phase velocity curves 

in Fig. 6 .  For all of the curves b u t  the lowest-order symmetric mode, 

the group velocity i s  found to be less than the phase velocity (normal 

dispersion). For the lowest-order symmetric mode, however, the group 

velocity is greater than the phase velocity (anomalous dispersion). 

The results depicted in Fig. 6 are qualitatively similar to those 

seen with Lamb waves. For each mode (except the lowest-order symmetric 
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and antisymmetric modes), there is a cutoff frequency below which the 

wave cannot propagate. For the lowest-order symmetric mode, the phase 

velocity goes asymptotically to zero as the frequency approaches zero, 

whereas the phase velocity of the lowest---order antisymmetric mode 

approaches the Rayleigh velocity. The high-frequency asymptotic limit 

is the fluid velocity. For Lamb waves, however, the high-frequency 

asymptotic limit is the Rayleigh velocity, and the low-frequency limit 

for the surviving mode is'' 

c/e, = 2 [  ( K 2  - 1)/K211'2 , 

where n = C,/Ct-.  

We next searched for leaky modes, although we did not expect to 

find any for the case o f  water between SiO,. No leaky modes were found. 

In general, one would expect to find leaky modes only when the 

shear wave velocity in one of the solids is less than the interface wave 

velocity. To investigate this, we considered the case of  a fluid layer 

between fused quar tz  and isotropic CdS, This structure was also studied 

by Wang,12 who observed a leaky wave in the GdS. 

properties o f  CdS, obtained by suitably averaging the single crystal 

values, are p = 4.812 g/cm3, C, = 4.218 km/s, and Ct = 1.799 km/s. 

The material 

Although the leaky wave modes are dispersive, we examined the 

quartz-CdS structure for a single frequency only. To properly display 

the results would require a three-dimensional plot, since both real and 

imaginary parts of the interface wave velocity will vary with frequency. 

The search was restricted to the region 0 < C, < 4 and --0.3 < C i  < 0. 
The program found two roots in the indicated range for a normalized 

layer half thickness of 1. The first root has not been analyzed 

completely and will be ignored here. The other root, which is very 

close to the expected position, is 

C = 3 . 1 7 3 4 3  - i 0.01732 km/s 
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This value is very close to the Rayleigh wave velocity for fused quartz. 

The wave vectors were 

a. - 3.74577 - i 0.00571 mm-' , 

a1 - 1.62711 + i 0.01315 nun" , 
p1 - 0.84620 + i 0.02528 mm-' , 

a2 = 1.30427 + i 0.01640 mm-' , 

p2 = -0.00743 - i 2.87724 mm-' . 

As before, the vector & indicates that the leaky wave is propagating in 
the CdS at an angle of 34?5 with respect to the normal to the interface. 

Since the material properties for isotropic CdS might be 

questionable and since the acquiring of a sample might be difficult, we 

repeated our calculations for a fluid layer between quartz and brass. 

The properties of the brass are p - 8.094 g/cm3, C, = 3.83 km/s, and 
C, - 2.05 h / s .  

Two roots were found in the indicated range. 

is given by 

Again we restricted the frequency to a single value. 

The faster phase velocity 

C - 3.16786 - i 0.00827 km/s . 

Again, this value is close to the Rayleigh wave velocity of the quartz 

The wave vectors are 

a. = 3.74389 - i 0.00274 nun-' , 

al = 1.63139 + i 0.00630 mm-' , 

= 0.85417 -t i 0.01202 m-l , 

cy2 = 1.11474 c i 0.00921 mm-' , 

pZ - -0.00440 - i 2.33671 m-' . 

The leaky wave i s  thus propagating in the brass at an angle of 40:3 with 

respect to the normal to the interface. 
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CASE 5: THREE-LAYER SOLID 

The secular determinant for the three-layer solid is given by 

Eq. (20). 

with a commercial silver-based alloy. The properties of the zirconia 

are p = 5.66 g/cm3, C1 = 7 .04  b / s ,  and Ct = 3 . 7 4  km/s. 

the material properties of the braze were not available, atid the 

material itself was only about 75 pm thick. 

is silver, however, we simp1.y assumed the properties to be those of 

silver, which are p = 10.5 g/cm3, C, = 3 . 6  km/s, and Ct .= 1.59 km/s. 

We began by considering the case of zirconia coupons brazed 

Unfortunately, 

Since the major constituent 

We first searched for guided (undamped) waves by restricting the 

analysis to the real. velocity axis. 

0 < C, < 4 km/s.  

were chosen to yield a normalized thickness (layer half thickness 

di.vi.ded by the wavelength of a shear wave in the braze) of 0 < h/X < 2. 
For a total braze layer thickness o€ 75 pm, the frequency at h / X  = 1 

Would be =42 MHz. 

The search covered the range 

The braze layer half thickness and frequency range 

Figure 7 shows the dispersi-on curves obtained f o r  guided waves in 

the zirconia joint. 

modes are alternating pure symmetric or anti.syetric waves. 

high-frequency 1 imi.t of these modes tends toward the phase velocity 

of a shear wave i.n the braze material. This is to be expected since the 

high-frequency limit corresponds to infinite thickness of the braze 

layer; hence, the result should approach a bulk wave in the braze. 

For each mode except the lowest-order antisymmetric one, there i s  a 

low-frequency cutoff below which the mode caxino t propagate. 

lowest-order mode, however, the wave survives as the frequency (or the 

layer thickness) goes to zero. 

of this wave is just that of a shear wave in zirconia. 

As in the case of the f1ui.d Payer, the permissible 

The 

For the 

The limiting value of  the phase velocity 

Although the group velocities of these modes were not calculated, 

the curves suggest that each mode is characterized by normal dispersion 

(i.e., the group velocity is less than the phase velocity and propagates 

in the same direction). For some material combinations, however, it is 

possible for the group velocity to be negative; the wave propagates 

backward ( i . e . ,  opposite to the phase velocity). This decidedly strange 
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Fig. 7. Dispersion curves for guided waves in the 
braze layer of a zirconia joint. 

behavior has just been reported for Lamb waves,13 where backward pro- 

pagating waves were theoretically predicted and experimentally observed. 

Since we would expect the zero-thickness sol-utions of the 

three-layer problem to reduce to that of Stoneley waves, we next chose a 

material combination which is known to support such waves. We therefore 

chose the case of  titanium bonded to iron by a thin braze layer. 

existence of a Stoneley wave at a titanium-iron interface was shown 

earlier in this report, and this material combination also occurs in the 

typical ceramic transition joint. We assume that the braze layer is 

silver, so the material properties of all three components have been 

given previously. We again restrict the search f o r  roots to the real 

The 
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velocity axis in order to determine if guided waves may exist. 

range for the search was 0 < C, < 4 as before, and the frequency range 

was chosen to provide a normalized thickness range of  0 < h / X  < 2. 
Figure 8 shows the results, which are quite similar to the case of 

zirconia bonded to zirconia. The curves are different from the zirconia 

j oirit, however, for finite-layer thicknesses. 

The 
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Fig. 8 .  Dispersion curves for guided waves in the 
braze layer of an iron-titanium joint. 

The major difference between Figs. 7 and 8 is given by the limits 

of the lowest-order antisymmetric modes. For the zirconia joint, the 

limit is just the zirconia shear wave phase velocity. For the 

titaniun-silver-iron joint, the limiting phase velocity approaches the 

value 3.20865 km/s as the thickness is reduced; thus, t h i s  wave is the 
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Stoneley wave found earlier for the titanium-iron structure. The wave 

is now dispersive, however, and is analogous to the dispersive Rayleigh 

wave found for the fluid layer. 

By comparing Figs. 7 and 8 ,  we can get some idea of the sensitivity 

of the guided-wave velocity to the properties of the ceramic adjacent to 

the braze layer. Recall that, for Fig. 7, the materials adjacent to the 

braze were zirconia whereas, for Fig. 8, they were titanium and iron. 

In both cases the braze material was silver, The differences in the 

figures may thus be attributed to changes in the bounding solids. 

Comparing the figures, we see that there is virtually no difference for 

each mode once the frequency is sufficiently high. In other words, the 

guided-wave velocity is insensitive to the properties of the bounding 

solids at high frequencies. This could be expected from the fact that, 

at high frequencies, the guided wave becomes indistinguishable from an 

ordinary shear wave in the braze layer. 

of a given mode’s dispersion curve, however, there are measurable 

differences in the results for different bounding solids. It therefore 

appears that, although the sensitivity to changes in the properties of 

the bounding solids is not particularly great, it should certainly be 

adequate to detect at least gross changes in the properties of the 

bounding solids. 

On the low-frequency portion 

We next examined the possibility of leaky waves in the braze layer 

of a ceramic joint. We initially chose the zirconia-silver-zirconia 

joint, although we did not expect any leaky modes for this structure. 

The search was limited to the ranges 0 < C, < 4 and - 0 . 3  < Ci < 0. 
in the case of the fluid layer, w e  restricted the search to a single 

frequency, one for which h/X - 1. As expected, no complex roots were 

found . 

A s  

We next searched for leaky waves in the titanium-silver-iron joint. 

The search range was the same as above, and the results were obtained at 

a single frequency. As before, no leaky waves were found within the 

indicated velocity range. When we examined the aluminum-silver-iron 

joint, however, a leaky mode was found. The analysis, which would 

require a three-dimensional plot for proper display and results at many 

more frequencies, is incomplete. However, it does appear that leaky 
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interface waves, in a region of practical values of attenuarion, do 

occur in che three-layer structure. 

BONDING MODEL 

The raisori d'&tre for the guided-wave studies was the poss ib l e  

establishment of  a technique to assess bond strength directly for 

typical ceramic joints. 

Kokhlin, IIefets, and Rosen,14 who showed that the wave velocity of an 

interface wave propagating along the boundary between two solids coupled 

by a thin viscoelastic layer varied between the Rayleigh wave velocity 

and the velocity of a shear wave in the layer as the boundary conditions 

varied from slip contact to rigid contact. A similar result, valid 

regardless of the layer thickness, was obtained by Murty'' and by 

Banghar and Murty.16 

shall adopt, a viscoelastic layer having viscosity pl is again inserted 

between the two solids whose bonding is to be modeled. Banghar and 

Murty" noted that, if one considers the parameter q/h (which they 

called the bonding parameter and where h is the thickness of  the layer), 

then the secular determinant assumes three forms, depending on the limit 

of pl/h as h -+ 0. 

represent are 

The question of bond strength was considered by 

In the Banghar-Murty model, which i s  the one we 

The limits and the bond conditions which they 

q/h -+ m: Welded interface , 

q/h + 0: Smooth interface , 

q/h = finite value: Loosely bonded interface . 

In ther wo ds, as the bonding parameter increases without limit, the 

problem reduces to that of two solids with perfect bonding. A s  the 

bonding parameter goes to zero, the boundary condition is that of 

frictionless (slip) contact. For finite values of the bonding 

parameter, the problem becomes that of two solids which are loosely 

bonded. 
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The major result.of Murty’s’’ parametric study of bonding is that 

the interface wave velocity varies smoothly between limits as the degree 

of  bonding increases. Working with a variable, @, whose value lies in 

the range from O to 1 and which is obtained from the bonding parameter 

by transformation, Murty showed that, in the limLt of slip contact 

( a  --t 0), the interface wave velocity reduces to the Rayleigh wave 
velocity, which is to be expected. A s  the bonding increases to that 

appropriate to welded contact ( a  4 I), the interEace wave velocity 
increases smoothly to the Stoneley velocity, which is also reasonable. 

The implication of this result is that the degree of bonding can be 

determined by measuring the interface wave velocity. 

Murty a l s o  found that, €or both extremes of the bonding parameter, 

the interface wave velocity is pure real [i.e., the wave is a trapped 

(guided) wave]. A t  all intermediate values of a ,  however, the wave is 

leaky, and thus the interface wave can be generated by mode conversion 

of a shear wave in the leaky medium. 

nondestructive evaluation since the phase velocity of the interface w a v e  

can be measured simply by measuring the critical angle necessary to 

excite the leaky wave. 

This result is very important f u r  

For the ceramic joint problem, the model described above was 

applied by introducing a viscoelastic layer between the ceramic and the 

braze layer, thus giving two finite layers between semi-infinite half 

spaces. 

been determined. Our intention is to study the effect of this layer on 

the previously computed modes, depicted in Figs. 7 and 8 ,  as a function 

of the bonding parameter defined by Murty. 

complete. 

The secular determinant for this case is thus 12 x 12 and has 

This work is not yet 

EXPERIMENT 

To  confirm the results presented in Figs. 7 and 8 ,  which are 

trapped modes confined to the braze layer of the ceramic joint, we 

designed the sample shown in Fig. 9 .  The ceramic materials are 

zirconia, and the geometry of the sample was chosen to permit surface 

waves to be generated on the larger of the two coupons (which would then 
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L 

Fig. 9. Zirconia joint sample for interface wave studies. 

excite guided waves in the braze layer) and be detected by a similar 

surface wave transducer on the other side of the joint. Before any 

attempt to excite surface waves, however, the braze layer was first 

interrogated with high-frequency compressional waves focused at the 

interface in order to determine whether gross nonbonds were present. 

The results are shown in Fig. 10, where the dark regions are essentially 

completely nonbonded. 

Destructive analysis of the joint indicated that the problem was due to 

extreme porosity in the braze layer. 

The sample was thus totally unsuitable. 

Several additional samples of similar design were also procured. 

All were found to have similar problems of porosity, and one coupon was 

severely cracked as well. These results are not typical of the joints 
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vanishing layer thickness, and no leaky waves were found for any value 

of layer thickness. 

at the welded interface, a dispersive Stoneley wave was found. A 

possible bonding model was examined by introducing a thin viscoelastic 

layer between one of the bonding solids and the braze layer. 

secular determinant was obtained for this case, but the analysis is not 

complete. 

analysis, but none of these samples was suitable for interface wave 

studies. 

For different solids known to have a Stoneley wave 

The 

Several joint specimens were obtained for experimental 

From this study, it appears that elastic guided waves will be of 

considerable benefit to the evaluation of the state of bonding in 

typical ceramic joints. Additional theoretical work should be performed 

to establish the sensitivity of this technique to small changes in the 

conditions occurring at the braze-ceramic interface, and further 

development of the root-seeking algorithms would be advantageous. 

there is now strong theoretical evidence to support the contention that 

the typical ceramic joint can indeed support guided waves and the 

behavior of these waves is indicative of the state of bonding at the 

braze-ceramic interface, additional samples should be fabricated which 

exhibit varying degrees of bonding for experimental confirmation. 

Additional wave types, such as horizontally polarized guided waves, 

should also be studied, since the polarization of the interrogating 

radiation is often quite important in many problems in nondestructive 

evaluation. 

Since 
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