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ABSTRACT 

We examine several aspects of the dynamical behavior of Competitive systems 
modeled by nonlinear maps. In the second chapter of this report, we analytically 
investigate some features of special cases of such maps, and we use the 
symbolic manipulator MACSYMA to derive expressions for the linearized systems’ 
eigenvalues. These enable us to determine the linear stability of some of the fixed 
and periodic points of these maps, and in some cases, yield the regions of attraction 
in phase space. 

In Chapters 3-5 we extend the analysis to a more general form of competitive 
systems. The two-species one-index system and the one-species two-index map are 
numerically explored in search for interesting bifurcation and/or chaotic regimes 
over a large range of parameters. We will show that system (1-1-4) with linear 
attrition displays stable, interesting behavior for a large region of parameter space 
even if the quadratic self-repression is taken very small. We will also show that 
small quadratic self-repression combined with bilinear attrition generally results in 
steady-state solutions with one species zero or in unbounded iterates. 

In Chapter 6, we describe the method used to obtain an approximate estimate of 
the correlation dimensions of the chaotic attractor presented in Chapter 3. We also 
propose a new method to evaluate the correlation dimension of a chaotic attractor 
using statistical analysis methods. 

vii 





1. INTRODUCTION 

A two-dimensional finite difference map has recently been proposed as a discrete 
time- and space-dependent model for competitive systems.’ This map was derived 
from a time- and space-dependent partial differential equation (PDE) model of 
combat .2 The two-species, two-index version of the finite difference system has the 
following form in one space dimension: 

(1-1-1) 
1 M Icf  

- #ijup,* tbj nJ + + i j u y  , i = 1,2. 
l = l ,  

j I 1 {  ;+”k f#m 

The variables u1 and u:! represent the area densities of the two forces (species) at 
a given node, m, and at a given iteration (time), n. The term on the left-hand side 
of Eq. (1-1-1) models the variation of the densities of the species with time. The first 
bracketed term on the right-hand side of Eq. (1-1-1) represents diffusion effects. The 
second and third bracketed terms model convective motion (advance and retreat) 
of the two forces. The fourth bracketed term models self-repression, resupply, and 
local attrition effects. The fifth term allows for the existence of autonomous sources. 
The sixth term models nonlocal attrition, whose first part is analogous to the area 
fire term and second part to the aimed fire term in Lanchester’s seminal ordinary 
differential equation (ODE) model of ~ o m b a t . ~ ’ ~  The functions q5 and I I ,  modulate 
the effect of these terms over distance. The nonlocal terms were not present in 
the previous study’ of system (1-1-1). However, their analogies appear in the PDE 
model and we shall include them in future studies of system (1-1-1). The form of 
system (1-1-1) is complete with the specification of the initial conditions 

(1-1-2) n=O,m - 0,nz ui -ui , m=O ?..., M ,  i = 1 , 2  

and the boundary conditions 

For a full description of the form and derivation of this map, see Reference 1. 
A previous analytical and numerical analysis of system (1-1-l), largely centered 

on the dynamics of the one species (two lioninteracting species) version, has been 
conducted .’ The full-blown system ( 1 - 1- 1 ) is analytically intractable. F’urt her more, 
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the large number of parameters makes even a numerical investigation extremely 
difficult. The purposc of this paper is to provide more insight into the dyiianiics of 
system (1-1-1). To this end, we analyze the following simplified, space-independent 
version of this system: 

X n + 1  = A l T n ( 1 -  Blzn - C~yrz) - D ~ y n  + EI 
(1-1-4) 

Diffusion and 
convection haw been removed in this model, as well as some local terms. Those 
that remain have the following interpretations in thc context of combat modeling: 

~ n - t - 1  == -42y,(l- D2yn - c 2 5 n )  - .-U25n + E2 

Species 211 and u2 have been renamed as species z and y. 

Expression Interpret at ion 

A15, A2y For A, ,  A2 2 1, these terms model resupply (reinforcement). If A1 or 
A2 is taken less than or equal to one, and no S Q U F C ~  terms are present, 
tlien one force will necessarily be annihilated. 

El, E2 For El ,  E2 2 0, they model autonomous sources. 

m, D2a: For a,, 0 2  2 0, these terms rnodcl aimed fire. Their form assumes 
that all members of the targeted force are visible to and within 
range of the firing forcc, and that once a member of the targeted 
force is killed, fire is concentrated on the remaining  combatant^.^ 
Fire is assumed proportional to the force levels (the values of z and 
y). A s  the number of the force firing their weapons decreases, the 
effectiveness of this term decreases. The Lanchester ODE systcni 
using linear attrition in both species was found to model well the 
battle of Iwo J i ~ n a . ~  

Clrcy, C2zy For C1, C2 2 0, these terms model area lire. Unlike aimed fire, 
thew terms model fire targeted into a region, rather than at a specific 
combatant. The effectiveness of this kind of fire increases as the 
deinsity of the targeted force in the area increases and as the amoiint 
of fire: (again assurncd proportional to the size of the firing force) 
increases. Examples of area fire situations are artillery fire and fire 
directed at hidden giierilla  force^.^ Also, thesc attrition terms have 
some support from their similar use in predator-prey rnodels.'9' 

B12, R2y2 For 131, 3 2  2 0, they model self-repressing effects (such as a loss of 
efficiency) due to crowding, saturation, e tc2 It would seem natural 
that such effects should be small compared to attrition effects. We 
incliide these terms for completeness, because as will be shown, the 
dynamics mapping (1-1-4) depends highly on the presence or absence 
of these terms. We will especially want to determine the behavior 
of system (1-1-4) for small, and thus more plausible, self-repression 
effects. 



3 

While we have given the interpretation of the terms in the context of combat 
modeling, we certainly do not hold that the very simplistic system (1-1-4) should 
be construed as a model of combat. No attempt is made here to derive conclusions 
about the dynarnics of forces in combat from the analysis of this system. Rather, we 
analyze this system in order to provide a heuristic understanding of the dynamics 
of system (1-1-1). Furthermore, the dynamics of system (1-1-4) can be considered 
interesting in its own right. 



2. ANALYTICAL INVESTIGATION QF 
A SPECIAL TWO SPECIES SYSTEM 

2.1 XN~TXtQDUCTION 

This chapter surmnarizes the dynamics of the two species logistic map: 

This map can be viewed as a model of the dynamics of two competing species. 
The linear terms represent resupply, the quadratic terms self-repression, and the 
bilinear terms attrition. 

Single' and double7 precision computer programs writ ten in VAX FORTRAN8 
are used to simulate the map. Bifurcation diagrams are generated using DISSPLA' 
graphic library routines. 

The fixed points and period two solutions for Eqs. (2-1-1) itre determined 
analytically using MACSYMA." A discussion of the results is in Section 2.2 and 
the MACSYMA output is listed in Appendix 1. 

In Section 2.3, we prove that all periodic solutions to Eqs. (2-1-1) must have at 
least one component equal to zero, except for the degenerate case AI == A2, which 
has infinitely 1na.ny parameterized periodic solutions. Thus, for the nondezenerate 
case, Eqs. (2-1-1) asymptotically approach a single species logistic map. 

Sections 2.4 and 2.5 discuss the linear stability of the fixed and periodic solutions 
of Eqs. (2-1-1), respectively. These sections give necessary constraints, in terms of 
A I  and AZ, for the linear stability of the solutions. 

Section 2.6 is motivated by the numerical ana,lysis of Eqs. (2-1-1) with A2 = 3, 
which shows iterates in a stable or nearly stable 2-cycle closely straddling a fixed 
point for a large range of parameter values. However, it is shown analytically that 
no 2-cycle exists in the region. A plausible explanation baed  on computer storage 
of a finite number of significant digits is given. 

2.2 ANALYTICAL DETERMINATXON OF THE FIXED AND 
PEII;L%OD-TWO SOLUTIONS 
The fixed points of the ma.p represented by Eqs. (2-1-1) satisfy 

(2-2-1) 

The origin 

(2-2-24 

is a trivial fixed point, The fixed point 

4 
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(2- 2- 2b) 

exists for all nonvanishing values of Az. Similarly, the fixed point 

(2-2-24 

exists for all A1 # 0. Eqs. (2-2-1) also have a one-parameter family of solutions 

(2-2-2d) 

if AI = A2 = A # 0. 
We used the symbolic manipulator MACSYMA” to calculate the fixed points 

of Eqs. (2-2-1) as functions of the parameters AI and Az.  MACSYMA found all 
the above solutions except (2-2-2d). The MACSYMA routine did produce (2-2-2d) 
when AI was explicitly set equal to AS. These results, along with the MACSYMA 
routine’s period-two solutions, are included in Appendix 1. 

2.3 GENERAL CONSTRAINTS ON THE PERIODIC SOLUTIONS 

In this section, we prove that periodic orbits of Eqs. (2-1-1) must have one 
component zero, except in the degenerate case, A1 = A2. Thus for AI # AZ, 
stable periodic trajectories of Eqs. (2-1-1) reduce asymptotically to those of a single 
component logistic map (see Figures 1 and 2). 

Proof: 

Equations (2-1-1) can be written as a system of functions: 

(2-3-1) 

The first composition yields 

and the second composition yields 

and similarly for f;(z, 9). 
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Suppose the n t h composition yields 

for some n > 1. By showing Eqs. (2-3-2) holds also for the ca.se TZ + 1, Eqs. (2-3-2) 
will be proven by mathematical induction for aJ1 n > 1. The n + 1 composition of 
Eqs. (2-1-1) is 

which becomes 

and similarly for &?+I, which is just the case n = n + 1 of Eqs. (2-3-2). Thus, 
Eqs. (2-3-2) is valid for all n > 1. Solving for the period-n solutions and using the 
definitions of f?  and fg gives 

We will assume the system (2-1-1) has periodic solutions of period-n given by 
Eqs. (2-3-3) with neither J: nor y zero, and show a contradiction develops. For this 
case, Eqs. (2-3-2) become 

2 2  

1 

i= 1 

n-1 
1 5 - (1 - -- - !!) il .___ - __ - 
4 2 2  i= l  2 2  

(2-3-4) 
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which is a contradiction unless A1 = A2, the degenerate ease. While Eqs. (2-3- 
2)-(2-3-4) hold only for n > 1 because of the upper limit on the n operator, the 
conclusion holds for fixed points, n = 1, as we have shown in Section 2.2. 

Therefore, Eqs. (1-3-1) cannot have periodic solutions with both components 
different from zero unless A1 = A2. Furthermore, when A1 = A2, Eqs. (2-3-4) 
reduces to one equation in two unknowns. This implies there will exist infinitely 
many parameterized periodic solutions. 

2.4 LINEAR STABILITY OF THE FIXED POINTS 
In this section, a linear stability analysis of the fixed points of Eqs. (2-1-1) is 

performed. Sufficient constraints on AI and A2 are derived to insure linear stability 
of the fixed points, Eqs. (2-2-2). Then it is shown that the stability of all fixed 
points of the map (2-1-1) with A1 = (1,3} or A2 = (1,3} cannot be determined by 
linear analysis. Furthermore, in the next section, we show that for Eqs. (2-1-1) in 
general, the stability of periodic orbits of period two or more cannot be determined 
by linear analysis either. 

Rewriting Eqs. (2-1-1) in vector form, 

The Jacobian of E is given by 

Evaluating Eq. (2-4-2) at the origin gives 

J Z Z [ ~ '  0 A2 ' 1  . 

(2-4-1) 

(2-4-2) 

(2-4-3) 

Therefore, the origin is stable if both lAll < 1 and 1.421 < 1, and unstable if either 
lAll > 1 or IA21 > 1. 

Evaluating Eq. (2-4-2) at the fixed point given by Eq. (2-2-2b) gives 

(2-4-4) 

whose eigenvalues are A1 = 2 a.nd A2 = 2 - A2. Therefore, the fixed point (2-2-2b) 
is stable if both 1 < A2 < 3 and 1.41 1 < Az, and unstable if either A2 > 3, A2 < 1, 
or ]All > Aa. 

Finally, evaluating Eq. (2-4-2) for the third fixed point, Eq. (2-2-2c) gives 
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(2-4-5) 

This fixed point is stable if both 1 < A 1  .< 3 and lA21 < A1 and unstable if either 
A1 > 3, Ai < 1, or IA2I > Ai .  

The pammeter values AI, A2 = (1,3} result in eigenvalues of magnitude one 
for Eqs. (2-4-4) and (2-4-5), asid thus asre boundaries of linear stability. Consider 
thc case A2 = 3 and A1 arbitrary. The finxed point (2-2-2b) is unstable for > 3. 
For AI 5 3, stability cannot be determined by linear analysis because at least one 
of the Jacobian matrix eigenvalues has unit magnitude. For AI < 3, numerical 
solutions have converged to this fixed point, indicating that it has a finite rcgion of 
attraction. On the other hand, for A2 = 3, the fixed point Eq. (2-2-2c) is stable if 
1 < AI < 3 and lAll > 3, which is a contradiction; SO for Al # 3, this solution is 
unstable. This fixed point may be nonlinearly stable at A1 L- 3. 

Consider further the degenerate case A, ==: Az = ,4. Evaluating Eq. (2-4-2) at 
the fixed point (2-2-2d) with = A2 = A yields 

(2-4-6) 

The eigenvalues of this matrix are A1 = 1 and A2 = 2 - A. Thus, the stability of 
this 660ff-axes” fixed point (fixed point with both species nonzero) is indeterininant. 
Figure 3 summarizes the results of the parametric stability analysis of the system (2- 
1-1). 

2.5 DETERNlNATION OF THE PAILAMETRIC REGIONS WHICH 
YIELD STABLE PERIODIC SOLUTIONS 
We showed in Section 2.3 that any periodic solutioin to Eqs. (2-1-1) for A1 # A2 

must have at least one component zero. In this section, we determine the regions in 
parameter space, (A1 , A2), in which periodic solutions with either z or y zero may he 
stable. The Jacobian matrix for x or y zero simplifies significantly and its eigenvalues 
can be found analytically as follows. The Jacobian of the nth composition of the 
system is 

where 

(2-5- 1) 

whose components are given by Eqs. (2-3-2). 
Period-n solutions are essentially fixed points of the nth composition of the 

map arid thus satisfy Eqs. (2-3-3). Consider, for example, a period-n solution of 
the form [O,y]. For this case, Eqs (2-3-1) become 
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(2-5-2) 

and the Jacobian of the system becomes 

(2-5-3) 
A d 1  - ;) 0 

-A$ A2(1 -Y) 
JZ(0,Y) = 

The Eqs. (2-3-3) become the single condition on tlie amplitude, y, of the period-n 
solution, 

(2-5-4) 

The elements of the Jacobhn, Eq. (2-5-1) can now be evaluated. Observe 
immediately fc,(O, y) vanishes because f1 ,~(0 ,  y) and fl(0, y) are zero. So, the 
eigenvalues are fi*,,(O, y) and fc,(O, y). Using Eqs. (2-5-2)-(2-5-4), these are now 
evaluated for n > 1. 

First note f,'(O, y) = 0 because f l (O,  y) = 0 and fi is given by Eq. (2-5-3). Then, 
by virtue of Eq. (2-5-4) 

(2-5-5) 

Since fj,,(o, y) = O, 

with all functions and derivatives evaluated at [0, y], 
Using Eq. (2-5-4), 

Simplifying and writing the terms imide the summation as the derivative of the 
natural logarithm gives 
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Using Eq. (2-5-4) and then differentiating and simplifying gives 

f&(O,Y)  = 1 (2-5-6) 

This immediately impiies that the stability of the solution cannot be determined 
by linear analysis. However, it is minimally necessary for stability that the following 
condition be met: 

Essentially, the same analysis for the solution of the form [x,O] to the nth 
composition of Eqs. (2-3-1) yields the eigenvalues 

f2n,2(2,0) = 1 * 

Again, linear analysis is insufficient. However, it tells us a necessary condition for 
stability of this solution is 

So, it has been shown in this section that linear analysis is insufficient to determine 
the stability of period-n solutions of Eqs, (2-1-1) for n > 1, although necessary 
constraints on A1 and A2 were found. 

2.6 ANOMALOUS NUMERICAL SOLUTIONS 

Tbis section is motivated by the existence of anomalous periodic orbits in the 
finite precision computer simulation of Eqs. (2-1-1) with A2 = 3 and AI 5 3. The 
computer results conflict with the MACSYMA results which show no such orbits 
exist for those parameter values. Specifically, for A1 4 3, the y-component of the 
single precision (Le., seven significant figures) computed iterate oscillates indefinitely 
with period two about the y-component of the fixed point, Eq. (2-2-2b), namely 
x = 0, y".= 4/3. The x-component converges monotonically to zero (see Figure 4). 
The periodicity of the y-component appears to be stable; after 50000 iterations to 
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damp the transients, every second iterate is identical up to the seven significant 
figirres for. some initial conditions (see Table 1). 

TABLE 1 

The Almoinalous Periodicity of the Ty-Iterate of Eqs.(Z-I-l) 

Single Precision. For A, = 3, AI = 0.1, z 0 = y 0 = .6 

Iteration Number y-component 

50,001 1.329810 

50,002 1.336837 

50,003 1 .329810 

50,004 1.336837 

Similar behavior is exhibited for -41 = A2 = 3. Here, both the 2- and y- 
component oscillated with period two about their respective values of a fixed point 
given by Eq. (2-2-2d). For xo = ~ J Q  I- .6, the iterates begin converging to the fixed 
point 17: = y = 2/3, but eventually oscillate about it (see Table 2). 

TABLE 2 

T h e  Anoinalous Periodicity of the Iterates of Eqs. (2-1-1) 
Single Precision. For A2 = 3, AI = 3, x 0 = y 0 = .6 

Iteratioii Number PIterate y-I t e rate 

50,001 0.6685271 0.6685271 

50,002 0.6647958 0.6647958 

50,003 0.6685271 0.6685271 

50,004 0.6647958 0.6647958 

An analysis based on the cmiputer’s finite truncation, i.e., the number of 
significant figures the computer retains, was forniulated to explain this contradiction 
between analytical and niirnerical results. A double precision program has been 
written, and it displays dynamical. behavior consistent with that predicted by the 
truncation analysis. The truncation analysis is presented first, followed by an 
interpretation of the double precision results. The analysis is written with A2 and 
AI arbitrary; however, so far, the only cases discussed are A2 = 3 and .41 = A2 = 3. 

Case I: x # 8,y # 0 
The family of fixed points is given b y  Eq. (2-2-2d). Suppose the average of 2 

and y differs from the value (1 - $) by some real nuniber 6, after n iterations, 

(2-6-1) 

Substituting Eq. (2-6-1) into Eqs. (2-1-1) yields 



8 I FIJRCRT I ON PLOT 
TRYNSIENT ITERATIONS: 500 

A2 - 3.9 Xo - Yo - 0.6 

n 

- -  
T --:?-*(I : : I  - i  - i  - f  

0.0 0.3 0.6 0.9 1-2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9 
VARYING PRRAMETER IS AI 

Figure 4. An example of the anomolous periodic solutions. The oscillations in species y are easily seen. 
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~ , + 1  ~ ~ ( 1 .  - AS,) 

Yn41 = Y,(l - AS,) * 

The above can be rewritten as 

Subtracting (1-1/J4) from both sides and using Eq. (2-6-1) yields, 

(2-6-2) 

then applying Eq. (2-6-1) evaluated at (n  + l), this becomes, 

&,+I p- S,(2 - A) - AS: . (2-6-3) 

Thus, the difference of the new iterate from the “fixed point” is related to the 
difference of the previous iterate from that “fixed point” by Eq. (2-6-2), which is, 
actually, another logistic map. 

Case 2: z = 0,y # 0 
The fixed point is given by Eq. (2-2-2b). Suppose the nth iterate differs from y 

by some real mimber S,, So, 

y,-2 ( 1--  a,) z 6 n  

where .42 = 3.  Substituting Eq. (2-6-4) into Eqs. (2-1-1) yields 

or 

A2 2 
6n+l = 6,(2 - Az)  - 2 6 ,  . 

Case 3: 2 # 0,y = 0 
Similar analysis shows 

(2-6-4) 

(2-6-5) 

(2-6-6) 

(2-6-7) 

(2-6-8) A1 -2 6,+1 = 6 4 2  - A , )  - 2 6 ,  . 
The evolution of the iterates is described by Eq. (2-1-1) or equivalently by 

Eqs. (2-6-21, (2-6-5), and (2-6-7), for cases 1, 2, and 3, respectively. In these 
expressions as the fixed point is approached, 6, + 0 and 6: eventually assumes 
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values that are much smaller than the remaining terms which are of order 1 and 
6,. Tn particular, in a cornputin environment with N significant figures, once 6, 
reaches values of the order 
to the evolution. When this happens, Eqs. (2-6-3), (2-6-6), and (2-6-8), with A = 3, 
A2 = 3, and AI = 3, respectively, become, 

B 2, the terms proportional to 152 do not contribute 

6, = 0(10-N’2) (2-6-9) 

on the computer, thus indicating oscillation of the iterates about the fixed point 
with an amplitude of the order 10-N/2. These oscillations result directly from the 
finite truncation on the computer and cannot be predicted ‘by the exact analysis 
methods employed in the previous sections. Furthermore, they are bound to occur 
in any finite computing environment, even though its amplitude can be significantly 
reduced by increasing the number of significant figures, N ,  e.g., by computing in 
double precision. 

For single precision variables in VAX FORTRAN, only about seven digits are 
significant. As an example, consider Eqs. (2-6-5) and (2-6-6) for A2 = 3 and 60 = 
1 x (20 = 0, yo = 4/3 + So). Via Eq. (2-6-5), y1 = 1.332331, truncated 
after the seventh figure. One iteration of (2-6-6) gives 61 = -1.0015 x low3; thus, 
6; = 1.00300255 x exactly. The computer truncates this value when 6: is 
combined via Eq. (2-6-5) to form y2, only the first two digits of 5; will contribute. 
This is because the term 2(1- k) is of order 1, making the sixth decimal place the 
last significant figure. So, instead of the exact d u e  for 612, the value 1.0 x 
is used in Eq. (2-6-5), yielding y2 = 1.334333 = yo.  Thus, a fictitious period-two 
orbit is observed in this case. 

In VAX FORTRAN, 16 figures are significant when working in double precision. 
Thus, “periodicity” analogous to the single. precision results should be seen when 
variations in 6: are of order 10-16, which will be truncated by the computer when 
the Eqs. (2-6-2), (2-6-5), and (2-6-7) are evaluated. A deviation of 60 = lo-* 
from the fixed poiiits occurring during the evolution would produce such variations. 
This deviation was initially supplied to the double precision program in a region 
in parameter space where Eqs. (2-6-5) and (2-6-6) represent the stable fixed point. 
Table 3 compares the values of yn predicted by the analysis above to those calculated 
by the computer. 

TABLE 3 

A Verification of the Significant Figure Argument for Eqs. (2-1-1) 
Double Precision. For A2 = 3, AI = 2, 5 0 = 0,  y 0 = 4/3 + 6,, b,, = 1 x lo-* 

Iteration 31, predicted y. calculated 

0 1.333333343333333 1.333333343333333 
1 1.333333323333333 1.333333323333333 
2 1.333333343333333 1.333333343333333 

The above truncation analysis can also be verified in two other ways. First, 
it predicts the existence of fictitious period--two orbits for A1 = 3 and A2 < 3 



analogous to those found for A2 = 3 and AI < 3. This was confirmed on both 
the single a.nd double precision simulators. Second, it predicts the appearance of a 
fictitious fixed point for A = 1, A2 = 1, or AI = 1 in cases 1, 2, and 3, respectively, 
because again, corivergence would depend on the quadratic term alone. Consider 
Eqs. (2-6-7) and (2-6-8). For the single precision program with A,  = 1, they predict 
zQ = 1 x yo = 0 will be a fixed point because variations in x, would be of 
order and thus lost when combined with 2,. This was verified. 

Thus, our truncation analysis predicts well the aberrations that arise in the 
computer simulation of Eqs. (2-1-1). 



3. ANALYSIS OF A GENERALIZED 
TWO-SPECIES SYSTEM 

3.1 INTRODUCTION 

System (1-1-4) is itself quite complex. So as an aid in analysis, we first consider 
this system with neither linear attrition nor sources. We also couple the parameters 
B1 and I32 with C1 and C, through the new parameter A to get: 

The fixed points of system (3-2-1) are determined analytically using MACSYMA 
and the results are presented in Section 3.2. Section 3.3 discusses the stability of 
the fixed points in parameter space. Section 3.4 describes the behavior of the map 
for a range of values of A. In particular, it discusses the instability that arises in 
system (3-1-1) for values of A approaching one, corresponding to low self-repression 
relative to bilinear attrition. A partially analytical basis for this pathological 
behavior is developed in Section 3.5. From the above analyses, conclusions axe 
drawn in Section 3.6 to direct the subsequent numerical investigation of system (1- 
1-4) presented in Section 4. 

3.2 DETERMINATION OF THE FIXED POINTS 

is obtained by setting 
Equations (3-1-1) are clearly a generalization of Eqs. (2-1-1) whereby the latter 

1 
2 '  

A = -  (3- 2- 1) 

in the former. 
The system (3-1-1) possesses four fixed points. The origin 

Z=O, Y = Q  (3-2-2a) 

is a trivial fixed point. The fixed point 

exists for A:! # 0 and A # 1. Similarly, the fixed point 

exists €or A1 # 0 and A # 1. Finally, the fixed point 

(3- 2- 2b) 

(3-2-2~) 

(3-2-2d) 

19 
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exists for Al ,  A2 # 0 and A # 1/2. All fixed points were also found by a MACSYMA 
program. 

3.3 LINEAR STABILITY OF THE FIXED POINTS 

We now look for constraints on the parameters AI,  Aa, and A sufficient to 
ensure linear stability for each fixed points (3-2-2). Decause of the complexity of 
the parametric., expressions, surface plots have been generated in parameter space 
so that stable regions can bc found by visual inspection. 

Writing system (3-1-1) in vector form 

(3-3-1) 

The Jacobian of system (3-3-1) is 

Evduating the Jacobian (3-3-2) at the fixed point Eq. (3-2-2a) gives 

Thus, the origin is stable if both )AI)  < 1 and lAzl < 1. Evaluating the Jacobian 
at the fixed point (3-2-2b) yields 

Thus, linear stability is assured if both (2 - .41( < 1 and IAl - ~ ~ ~ ~ ~ ~ ) l  < 1. 
Analogously, at the fixed point (3-2-2c), 

I < 1. AzA A1 -1) This fixed point is linearly stable if both 12 - All < 1 and [A2 - nl(l-n) 
Deterniination of the eigenvalues of the Jacobian (3-3-2) evaluated at the fixed 
point (3-2-2d) is exceedingly arduous. Therefore, a MACSYMA4 program was 
written and used to perform the evaluation. 

Surfaces were generated in parameter space to give a graphical representation 
of the parametric regions of fixed-point linear stability. This was accomplished 
by using the graphics capabilities of MACSYMA and the DISSPLA' graphics 
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subroutine library. The surfaces generated for the “off-axes” (neither species zero) 
fixed point (3-2-26) me shown in Figures 5 and 6 .  

3.4 NUMERICAL ANALYSIS OF THE BEHAVIOR OF SYSTEM (3- 
1-1) FOR VARIOUS VALUES OF THE PARAMETER A 

If the self-repression terms are taken sufficiently large, system (3-1-1) displays 
interesting regimes, often with both species positive (see Figures 7, 8, 9, and 10). 
Stalemates, as well as clear victories, comnionly occur, often in the same bifurcation 
diagram (see Figure 7). Periodicity and chaos are ubiquitous. Periodicity of a large 
number of cycles and chaos can be viewed as a loss of predictability in future force 
levels. 

In the figures above, the effects of self-repression were over twice those of 
attrition. In a model of combat, we assume that the attrition effects should be 
generally taken significantly greater than the self-repression effects. 

Therefore, we are particularly interested in parameter regions for which the self- 
repression is low. This implies the pamimeter A should be taken relatively close to 
one. Unfortunately, instability arises in the model (3-1-1) with increasing A. Here, 
instability means failure of the iterates to be attracted to any fixed, periodic, or 
chaotic attractor, resulting in the iterates of the species becoming unbounded. This 
behavior is consistent with the results of the last section which showed that as A 
approaches one, the fixed points (3-2-2b), (3-2-2c), and (3-2-2d) become repellors. 

A series of bifurcation diagrams were plotted with A2 first set to 3.55 and A1 
allowed to vary from zero to four. Bifurcation diagrams w(ere constructed with 
A = 0.3 through A = 0.9 in 0.1 increments (see Figures 11, 12, 13, and 14). 

As A becomes sufficiently large, instability arises, with iterates becoming 
unbounded for sufficiently large AI and then for even smaller AI as A grows larger. 

The experiment was repeated with A2 = 1.7. For a given A,  decreasing A2 has 
the effect of delaying the onset of instability until larger values of A1 are reached. 
But for A greater than about 0.7, instability again arises, with iterates failing to 
converge to an attractor and becoming unbounded. With increasing A, the onset 
of this instability occurs for smaller values of AI. 

Ira both cases (A2 = 3.55 and A2 = l-?), for sufficiently sniall AI, the iterates of 
species z converge to zero, either monotonically or with decaying oscillations about 
zero (see Figure 15). The iterates of species y converge to a fixed, periodic, or 
chaotic attractor, depending on the values of AI and A2 chosen. Iterates that decay 
monotonically can be forced into decaying oscillations by increasing either A1 , Aa, 
or A. Iterates which converge to zero with decaying osci’llatilons can be forced to 
grow, again either by increasing A I ,  Az,  or A sufficiently. TEiese growing oscillations 
result in either species x or y becoming unbounded. Table 4 provides a sainplc of 
the numerical output showing how the amplitude of the oscillations increase with 
increasing A1 for the same number of iterations. 

3.5 THE EVOLUTION OF THE INSTABILITY 
We now look at the transient behavior of the iterates for specific parameter 

regions to detail the evolution of the instability discussed above. First, consider the 
simplified case of zero self-repression in system (3-1-1), written 
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OFF-AXES 
(3-1-1) 

Figure 6. The region below the lower surface yields eigenvalues for the fixed point (3-2-26) with 
magnitude less than one. 
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TABLE 4 

The increasing magnitude of the oscillations in species 3: for increasing Ai in 
system (3-1-1) with A = 0.7, xo = yo = 0.6, A2 = 3.55. These transients eventually 
reach a steady-state at zero. 

Iteration Ai 1.1 A1 = 1.6 A1 = 2.3 

101 -5.545 x 10-33 -3.428 x 10-19 4.020 x loe6 

102 5.466 x 10-33 5.800 x 10-19 1.590 x 

103 -1.569 x 10-33 1.261 x 3.278 x 

104 1.825 x 10-33 -1.880 x lo-'' 1.967 x 

105 2.730 x 10-34 5.443 x 10-20 -4.784 x 

-2.797 x 10-34 -9.323 x -1.498 x loe6 106 

107 5.564 x -2.567 x 3.208 x 

108 -6.552 x 10-35 -3.681 x -1.337 x 

The fixed point of system (3-5-1) with both species nonzero is 

(3-5-1) 

(3-5-2) 

Evaluating the Jacobian of Eqs. (3-5-1) at the fixed point (3-5-2) yields the 
eigenvalues 

X1,2 = 1 f J i m A 2  - A1 + 1 .  

This immediately implies the fixed point (3-5-2) is linearly unstable for all parameter 
values, except A1 = A2 = 1. However, this caveat can be ignored in a modeling 
context because taking A1 or A 2  = 1 corresponds to the absence of resupply and 
will necessarily result in trivial or negative steady-state solutions in at least one 
species. Therefore, in this idealized case of zero self-repression, a steady-state, non- 
oscillatory solution with both species nonzero cannot exist. In fact, it can be easily 
shown that all fixed points of the system (3-5-1) are linearly unstable for A I ,  A2 2 1. 

With this in mind, consider Column A of Table 5 which shows successive 
iterates of system (3-5-1) for tbe prameter values listed. Notice that species y 
grows stronger while species x tends toward zero at first. However, after sufficient 
iterations, species 5 becomes negative and begins to oscillate about zero with 
increasing amplitude. This occurs because species y increases past one, so that 
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TABLE 5 

The evolution of the instability in System (3-1-1) for various paraineter values. 
The base 10 exponential is written using computer ‘“E” notation. 

Column 

A R c D 
__........_.... .-. 

Parameter A41 II= 1.3 A; TIJ 1.7 A1 = 1.3 A2 = 1.7 A1 = 1.3 A2 = 2.7 A1 = 1.3 A2 = 1.7 
fj .._ 

(System (1-1-4) 

Values A = 0.8 A = 0.8 A = 0.8 1 - Bj2 = 0 c, = c; = 0.8 
(System 3-2-5) (System 3-2-1) (System 3-2-1) D1 = 0 0 2  = 0.4 

Initial 
Conditions 20 = 0.5 yo .= 0.6 zo = 0.5 yo = 0.6 zO = 0.5 yU = 0.6 zO = 0.5 yo - 0.6 

Species 
Iteration 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

1: 

0.338 
0.224 
0.114 

2.27E-2 
-9.11E3 
1.40E-2 

-4.9 9 E-2 
0.343 

-4.51 
74.4 
-10298 
- 

..... 

Y 
0.612 
0.759 
1.05 
1.63 
2.70 
4.67 
7.85 

13.8 
17.1 

134.1 
-13366 

..... 

1: 

0.273 
0.196 
0.129 

6.883-2 
2.33Fr2 
1.65Fr3 

-4.163-4 
2.27E-4 

1.32E-4 
-1.653-4 

-1.09E4 
9.19E-5 

- 

Y 
0.489 
0.569 
0.705 
0.905 
1.17 
1.49 
1.77 
1.94 
2.02 
2.04 
2.05 
2.0s 
- 

..... 

- 
..... 

2 

0.273 
0.114 

- 1 . l l E 2  
1.19E-2 

-2.693-2 
4.443-2 

0.134 
-0.103 

-0.380 
-9.213-2 

0.189 
-0.495 
-0.165 

-1.11 
-3.35 

-4409 

0.357 

-34.7 

Y 
0.777 
0.31 
2.29 
3.40 
2.84 
3.47 
2.52 
3.93 
1.11 
3.25 
3.71 
1.053 
3.37 
4.16 

-1.34 
-7.88 

-112.0 
-15489 

z 
0.338 
0.294 
0.267 
0.244 
0.219 
0.186 
0.142 

8.55Fr2 
2.59E-2 

-6.283-3 
7.883r3 

-2.42Fr2 
0.147 

-1.69 
30.1 
-2293 
- 

the attrition of species x surpasses its resupply, forcing z to become negative and 
to oscillate. The increasing magnitude of species y corresponds to the increasing 
amplitude of the oscillations of species 2. 

The final result is species 2 and y converging to minus infinity. However, we 
have not shown that this is the only typc of behavior system (3-5-1) can exhibit. 
The iterates may instead remain bounded by converging to a periodic or possibly 
a chaotic attractor. However, for a variety of parameter values, unstable behavior 
was the only type observed. 

Now consider the effect on the unstable behavior of system (3-5-1) of adding a 
small amount of self-repression; that is, we now consider system (3-1-1) for A large 
but less than one. Intuitively, self-repression niight have the effect of curbing the 
drastic rise in species y. Certainly, this is the effect of the quadratic term in the 
single species logistic equation, for without it the iteratcs increase 1inea.rly without 

Y 
0.412 
0.375 
0.370 
0.387 
0.432 
0.432 
0.673 
0.957 
1.48 
2,45 
4.20 
7.09 

12.3 
18.3 
74.3 
-2936 

..... 
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bound. Observing Column B of Table 5, this seems to be the effect of quadratic 
self-repression in system (3-1-1) a s  well. The oscillations in species x now decay 
instead of grow. This would seem to be a result of the slower and bounded rise in 
species y. 

Column C of Table 5 shows the effect of increasing the parameter A2 on the 
dynamics above. Comparing Columns B and C, we see that the increase results 
in the return of the instability. As was mentioned in Section 3.4, increasing the 
parameter AI has a similar effect. 

We hypothesized that the inclusion of a linear attrition term (ainied fire) to the 
y-equation of system (3-1-1) might help stunt the growth of the y-iterates, resulting 
in a stable system. The results are shown in Column D of Table 5. Obviously 
the attempt failed, probably because the effect of the linear attrition term becomes 
negligible as species (7: becomes close to zero, allowing the y-iterates to again rise. 

3.6 CONCLUSIONS 
In summary, the quadratic effect diminishes as A grows large. As even very 

small quadratic self-repression does not result in unboundedness in the absence 
of bilinear attrition, it is the combination of the lack of damping due to the low 
self-repression and the feedback of the bilinear terms that brings on instability. 

We observed further increases in instability as AI and A2 were increased. 
The three general types of behavior observed for system (3-1-1) with large A 

axe: 

(i) The iterates become unbounded. Generally, one species increases in strength, 
eventually forcing the other species into growing oscillations around zero, finally 
resulting in both iterates becoming unbounded. 

(ii) The iterates remain bounded with one iterate converging to zero monotonically 
and the other converging usually to a fixed attractor. 

(iii) The iterates remain bounded with one iterate converging to zero with decaying 
oscillations and the other converging to a fixed, periodic or chaotic attractor. 
For a given A, this behavior occurs for AI or A2 larger than in (ii). The 
possibility of selecting parameters in such a way as to drive one species toward 
it fixed point while the other one is in a high bifurcation or even chaotic regime 
seemed a rather new phenomenon with promising potential for applications. 

For many of the stable regions with low self-repression, one iterate converges 
to zero with decaying oscillations about zero. This means that positivity is not 
preserved in the iterates, which is physically unacceptable. However, the magnitudes 
of these transient oscillations are small, sudi that they could be taken to be zero. 

Essentially, we have shown in the previous sections that for small quadratic 
effects in system (3-1-l), one species quickly gains a decisive advantage over 
the other, forcing t,he other to zero or into growing oscillations leading to 
unboundedness. This conclusion provides the rationale for the form of the numerical 
investigation of system (1-1-4) presented next. 



4. NUMERICAL ANALYSIS OF SYSTE 

4.1 INTRODUCTION 

A brief description of the program used for the numerical simulations is 
presented in Section 4.2. In Section 4.3, we analyze system (1-1-4) without linea 
attrition. We consider system (1-1-4) with linear attrition in Section 4.4. 

4.2 DESCRIPTION OF THE COMPUTER PROGRAM 

A computer program called DPMAP,7 written in double-percision VAX 
It is based on an earlier 

program by S. de Itada called MAP.' The form of the equations to be iterated 
is specified by the user in the subroutine DPE&N,FOR, which is contained in an 
external file. The user specifies parameter values and other options in the data 
file DPMAP.DAT. An output file with the numerical results is generated by the 
program, as well as a graphics file created using DISSPLA' graphics subroutine 
library. The program i s  menu driven by a Digital Command Language" command 
file. 

was used for the numerical analysis. 

4-3 NUMERICAL ANALYSIS OF SYSTEM (1-1-4) FOR BILINEAR 
ATTRITION ANI) LOW SELF-REPRESSION 
In an attempt to iinprove the stability of system (1-1-4) for low self-repression, 

we now decouple the parameters B1, B2, and C1, C2. We chosc B1 < Bz and 
C1 < C'z, effectively strengthening species 5 relative to the coupled-parameter case, 
system (3-1-1). Of course, this implies AI must lx takcn less than A2, otherwise, 
species z would necessarily emerge as dominant. 

It was supposed that strengthening species z might help damp the increase in 
species y, allowing the iterates to remain boianded for a larger range of parameter 
values. It was also hoped that the strengthening of species 5 might allow the iterates 
to converge to an attractor positive everywhere, as commonly occurs in this system 
for larger qiiadratic effects. Besides being more interesting dynamically, this would 
mean system (1-1-4) with bilinear attrition would be capable of modeling stalemates 
for sniall quadratic effects. 

The parameters AI, A2, B1, &, CI1 and C2 were systematically varied and 
several bifurcation diagrams were constructed. The parameter R z  was first chosen 
to be 2,75, a compromise between the need to reduce the strength of the species y 
and the desire to maintain the possibility for bifurcations into periodic orbits and 
chaos. The parameter AI was allowed to vary between zero and three. A reference 
case with A2 = 2.75, B1 = B2 = 0.3, and C1 = C'2 = 0.7 wits constructed for 
comparison (see Figure 16). 

Figures 17 and 18 show what we continued to sec for all trials: a limited region of 
stability, always with one species converged to zero, which gives way to instability 
as The nature of this instability is the same as was found in 
system (3-1-1) and discussed in the previous two sections. 

is increased. 
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If a source term for species x is included, species x converges to the approximate 
value of the source term instead of zero. However, the inclusion of these terms in a, 
model a.lready containing resupply ternis is questionable. 

Of course, if the bilinear attrition of species y is increased beyond certain values, 
species x gains the advantage, even for A41 less than Aa. In trials where species x 
is made the stronger by increasing either the attrition of species y or the initial 
force-level of species 5, the only stable behavior was, similar to the case before, the 
decay of species y to zero and the convergence of species 2 to a fixed, periodic, or 
chaotic attraetor. However, there was an exception: stable periodic oscillations in 
both species. But from a modeling standpoint, this case must be ignored because 
some iterates would become negative and not of negligible magnitude. 

We also analyzed the effect of granting both species equal strength (equal 
pmameters) and equal initial force levels and then perturbing the values slightly. 
This was both an attempt to study the sensitivity of the dynamics to small 
parameter changes and an attempt to produce a steady-state solution with both 
species nonzero. We felt a steady-state solution with both species nonzero might 
occur if the strengths of the species were nearly equal. Table 6 shows the 
results of one such experiment. Obviously, the dynamics are highly sensitive to 
perturbations in the parameters arid initial conditions from the symmetric case. 
Small perturbations in equal configurations of the forces were always seen to result 
in the annihilation of one species. 

In summary, we have shown that system (1-1-4) with bilinear attrition and 
relatively small self-repression displays the same instability a.s system (3-1-1) and 
that decoupling of the parameters in system (1-1-4) has not helped to eliminate 
or even reduce the occurrence of the instability. ‘The asymptotic states for low 
self-repression and bilinear attrition continue to be unbounded iterates or bounded 
iterates with one species zero. 

4.4 ANALYSIS OF SYSTEM (1-1-4) WITH LINEAR ATTRITION 

We remove the bilinear attrition and source terms from system (1-1-4) to get 

(4-4-1) 

Numerical analysis shows that this system i s  much more well-behaved than 
system. (3-1-1). Specifically, we observed that for both large a n d  small quadratic 
self-repression effects, system (3-3-1) displays positive, bounded iterates in both 
species for a considerable range of parameter values. Chaos and bifurcations from 
periodicity to fixed poiiits to chaos were observed (see Figures 19, 20, and 21). As 
in the case of system (3-1-1) for large quadratic effects, bifurcations in both species 
were always seen to occur in phase. 

We analyzed the effect of perturbing system (4-4-1) with low quadratic effects 
by adding a small amount of bilinear attrition in one or both species. In the 
cases observed, small bilinear effects had a strong effect on model dynamics (see 
Table 7). Only bilinear attrition comparable in size and smaller than the quadratic 
self-repression was seen to resiilt in bounded iterates. 
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TABLE 6 

The effect of small perturbations on equally configured forces in sytem (1-1-4). 
The unperturbed system has the parameter values: A1 = A2 = 1.7, B1 = B2 = 0.2, 
C1 = C2 = 0.8, D1 = D2 == 0.5, El =r E2 = 0, and the initial conditions 20 = yo = 
0.5. 

Case: unperturbed B1 = 0.201 C1 = 0.801 D1 = 0.501 A1 = 1.701 
Species x Y X Y X Y 2 Y X Y 

Iterate 

1 0.175 0.175 0.174 0.175 0.174 0.175 0.174 0.175 0.175 0.175 

2 0.157 0.157 0.157 0.158 0.157 0.158 0.157 0.158 0.158 0.157 

3 0.147 0.147 0.145 0.147 0.145 0.147 0.145 0.148 0.148 0.146 

4 0.139 0.139 0.137 0.141 0.137 0.141 0.136 0.142 0.141 0.138 

5 0.134 0.134 0.129 0.138 0.129 0.138 0.128 0.140 0.138 0.131 

6 0.127 0.127 0.121 0.140 0.121 0.140 0.117 0.143 0.138 0.123 

7 0.125 0.125 0.107 0.147 0.107 0.147 0.099 0.155 0.144 0.111 

Steady Fixed point at Unbounded Unbounded Unbounded Unbounded 
State x = y = .117 

4.5 CONCLUSIONS FOR THE ANALYSIS OF SYSTEM (1-1-4) 

System (1-1-4) was found to generate steady-state solutions with both species 
positive, including fixed, periodic, and chaotic, solutions for both linear and bilinear 
attrition as long as quadratic self-repression is large compared to the bilinear 
attrition. System (1-1-4) continues to display such dyiiamics for small self-repression 
with linear attrition but not with bilinear attrition. Bilinear attrition combined 
with relatively small self-repression results in steady-state solutions with at least 
one species zero or in unhounded iterates. 
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TABLE 7 

The strong effect of addition of bilinear attrition has on a system with linear 

System (1-1-4) with A1 = 2.0, A2 = 2.05, B1 = 0.01, Bz = 0.014, D1 = 0.2, 
attrition. 

0 2  == 0.16, 20 = 0.6, TJO = 0.6. 

Case: c1 =O,C,=O 
Species : 

Iteration 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

- 
2 

1.07 
1.89 
3.30 
5.61 
9.21 

14.32 
20.74 
27.63 
33.84 
38.48 
41.21 
42.51 
43.08 
43.34 
43.46 
43.53 
43.56 
43.58 
43.59 
43.60 

1J 

1.12 
2.09 
3.86 
6.96 

11.99 
18.98 
26.28 
30.73 
31.47 
30.67 
29.72 
28.98 
28.50 
28.22 
28.06 
27.97 
27.92 
27.89 
27.87 
27.86 

c1 = 0.002, c2 = 0.001 
3c Y 

1.07 
1.89 
3.27 
5.51 
8.88 

13.30 
18.48 
23.12 
26.85 
29.92 
32.39 
34.24 
35.53 
36.39 
36.96 
37.35 
37.61 
37.79 
37.92 
38.01 

1.12 
2.09 
3.85 
6.92 

11.85 
18.62 
25.57 
29.73 
30.46 
29.84 
28.99 
28.20 
27.52 
26.99 
26.58 
26.28 
26.06 
25.90 
25.79 
25.70 

c1 = 0.02, c, = 0.01 
X Y 

1.05 
1.82 
3.01 
4.65 
6.35 
7.00 
5.16 
0.69 

-5.07 
-10.55 
-14.23 
-15.39 
-15.08 
-14.79 
-14.79 
-14.84 
-14.85 
-14.85 
-14.85 
-14.85 

1.11 
2.05 
3.73 
6.53 

10.8 
16.36 
22.39 
28.31 
34.52 
40.96 
46.37 
49.16 
49.39 
48.92 
48.80 
48.86 
48.89 
48.89 
48. 89 
48.89 



5. NUMERICAL ANA SIS OF SYSTEM (1-1-1) 

5.1 INTRODUCTION 

The results of further numerical analyses of system (1-1-1) are presented in 
the following sections. In Section 5.2, the computer program used in the analysis is 
described. Section 5.3 discusses further results for the one species case of system (1- 
1-1) used to test program correctness, Section 5.4 compares the dynamics of the 
space-independent system (1- 1-4) with system (1 - 1 - 1). 

5.2 I):ESCRI[PTIBNS OF THE PROGRAMS 

System (1-1-1) was numerically a.nalyzed with a computer program called 
MAPlV2, written in double-precision VL4X FORTRAN.* It was based on a previous 
program written by S. de Rada13 called MAP1. A sister program of MAPV2 
was written, namely MAPlVl which is a four-species-capable version of MAPlV2. 
While all analyses that ca.n be run on MAPlV:! can, of course, also be run on 
MAPlVl,  the less complex MAPlV2 can run two species simulations faster thaa 
the more complex MAPlVl.  

Both programs require a user edited data file and function file. Through the 
data file the user directs how the time-space mesh shall be configured, supplies 
the values of the coefficients, initial conditions and boundary conditions as needed, 
identifies the parameter to be varied and supplies bounds, and directs the formatting 
of the output. The function file describes the functional dependence on distance 
of the diffusion, convection, initial conditions, etc., for each species as stated in 
system (1-1-1). 

The output of MAPlVl  and MAPlV2 consists of a file containing the results of 
the simulation and an optional graphics file generated using the DISSPLA' graphics 
subroutine library. 

Both programs are menu driven by Digital Command Language12 command 
files 

5.3 ONE--SPECIES DYNAMICS 

Results given by MAPlV2 were compared with those found by Mitchell and 
Bruchl4 as well as with those found by de Rad%'' to prove correctness of the 
program. Figure 22 was generated by system (1-1-1) by varying the diffusion 
with all1 = 20, b l l  - -12, and all other coefficients zero. Figure 23 shows the 
similar effect, of varying convection for small diffusion. Here we took all l  = 20 a.nd 
b l l  = -12, D = 0.1, and all other coefficients zero. For Figure 24, system (1-1-1) 
was configured identically as for Figure 23 except D was taken as 0.35. Cornpasing 
Figures 23 and 24, we see that bifurcations and chaos occur for smaller values of 
convection as diffusion is increased. 'This effect is similar with the one reported in 
Reference 4 where it was found that the onset of bifurcations and chaos occurs for 
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smailer values of diffusion as convection is increased. These two findings have the 
potential. for important practical applications. 

5.4 A COMPALUSON OF SYSTEM (1-1-4) AND SYSTEM (1-1-1) 
DYNAMICS 
We now briefly study how the dynamics described in Part 2 for system (1- 

1-11 change as a spatial dimension and the effects of diffusion and convection itre 
added. We first observed the effect of adding diffusion to bilinear attrition and large 
self-repression cases. Figures 25, 26, and 27 show the results for such a case. The 
addition of diffusion with homogeneous Neumann boundary conditions has not been 
seen to drastically alter the behavior of bilinear attrition, high self-repression cases. 
On the other hand, the addition of diffusion with Dirichlet boundary conditions 
can have a pronounced effect. Figures 26 and 28 were generated by the same 
system except in Figure 28, Dirichlet instead of Neummn boundary conditions 
were used, forcing the iterates into chaos for low values of the local bilinear 
attrition. The different effects of Neumann and Dirichlet boundary condition were 
also seen in simulations of system (1-1-1) for local linear attrition with low self- 
repression. The specification of Diriclilet boundary conditions were seen in cases to 
lead to unbounded iterates at and near the boundaries of the mesh. By choosing 
homogeneous Neumann boundary conditions, we eliminated this problem. 

Local bilinear attrition with small self-repression was again seen to produce 
solutions with either one species zero or to result in unboundedness, even in the 
presence of diffusion. 

The effects of spatially-dependent nonlocal interaction were next examined. The 
nonlocal attrition function used in the studies was 

(3-4-1) 
where q is a constant. 

Cases were simulated with both species initially unifoxnly distributed, either 
over the entire mesh or each over a region at the ends of the mesh. For both 
species initially uniformly distributed, either over the entire mesh or each over a 
region at the ends of the mesh. For both types of distribution, nonlocd bilinear 
attrition with low self-repression displayed essentially the same dynamics discussed 
in Section 2, even in the presence of diffusion with Neumann boundary conditions. 
For example, Figure 29 shows a low self-repression, rionlocal bilinear attrition 
simulation. Figure 30 shows the same simulation with the addition of diffusion 
in u1 with Neumann boundary conditions. 

For a separated initial distribution, nonlocal linear attrition mid diffusion, we 
have observed the iterates at the nodes which represent the fronts of the two species 
to become unbounded. This “fringe-effect” occurs because the densities at these 
nodes are originally zero, then due to diffusion become small and positive, too 
small to sustain the effects of the nonlocal linear attrition. Thus, these itteratcs 
rapidly become negative and unbounded. 

5.5 CONCLUSIONS 

The purpose of the brief discussion above was to point out that the dyna,mics 
studies in Sections 5.2 and 5.3 for system (1-1-4) are rclevant to the dynamics of 
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system (1-1-1). Also, new problems that occur for system (1-1-l), such as boundary 
condition. specification and “fringe-effects,” were highlighted. Future studies may 
show the “fringe-effects” can be avoided by appropriately selecting nonlocal linear 
attrition functions. Furthermore, it remains to be setxi whether the pathological 
dynamics that occur for bilinear attrition and low self-repression in system (1-1-4) 
can be controlled with judicious and physically acceptable choices of parameters, 
boundary conditions, nonlinearities, etc., in system (1-1-1). 



6. CALCULATION OF THE CORRELATION 
DIMENSION OF THE CHAOTIC ATTRACTOR 

6 , P  INTRQDUCTION 

The two species "'bilogi~tic'~ system 

(6-1-1) 

harbors a chaotic attractor for AI = 3.87, A 2  = 3.8, and A = 0.2, similar to the one 
shown in Figure 10. In this chapter we describe our calculations of the correlation 
dimension, v, of this attractor. The correlation dimension has been shown to be a 
lower bound on the Hausdoiff Yet , it is much simpler and less costly 
to calculate than thc HausdorfF dimension and may even he more meaningful.15y16 

6.2 ESTIMATION OF THE CORRELATION DIMENSION 

The correlation dimension of the attractor was calculated using the method 
introduced by Gaswberger a d  P r o ~ a c c i a . ~ ~ ~ ~ ~  A total of r i i  vectors in p-dimensional 
iterate space are formed from the iterates of a single species (observable): 

= (&Xi+',. . . ,xi."p-l), 2 = 1,2 , .  . . ,m , (6-2- 1) 

The spatial correlation of these points is found by applying the correlation integral17: 

(6-2-2) 

where H is the heavyside function defined by H ( x )  = 1 for LC positive, 0 0 t h e r ~ i s e . l ~  
l h e  sum above can he viewed as placing at every point on the attractor, now 
embedded in a p-dimensional iterate-space, p-dimensional hyperspheres of radii r 
and summing the points within the hyperspheres. 

It has been ~ h o ~ n ~ ~ - ~ ~  that the correlation integral behaves as a power of r for 
s1nall i': 

n 

C(T) N rv (6-2-3) 

where Y is the correlation exponent, or dimension, which means the logarithm af 
C ( r )  has a linear dependence on the logarithm or P with a slope of v.  Thus, v 
can be determined by choosing a sample of hypersphere radii, calculating their 
corresponding corrclstion integrals and performing a regression analysis of the 
results to estimate I / .  

l be  values of p ,  m, and t- must be judiciously chosen. The dimension of the 
iterate space inust he greater than the dimension of the attractor. Grassberger and 
Procaccia advocate choosing p larger than strictly necessary in order to eliminate 
systematic errors. They also caution that increasing p increases statistical errors, 
so a coriiprordnise must be reached. If the iterate comes from a measurement instead 

r ?  
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of a model, Bergk et al.17 advocate calculation of v for a range of increasing p ;  if v 
continues to increase with p ,  then the signal is white noise. 

The values found for the correlation integrals will, of course, depend on the 
number of vectors, m, that are compared. Although Grassberger and Procaccia1*2 
have used -20,000 points in their calculations, they have stated that convergence 
usually occurs with a few thousand points. Furthermore, they have stated 
convergence with fewer points occurs faster for larger p ,  and it is generally more 
important to embed the attractor in a larger dimensional phase space than to 
increase the number of points. It has been suggested” that -900 points is sufficient 
for a reasonable estimate of v if a range of iterate-space dimensions are used. 

The values of the hypersphere radii must be chosen with reference to the size of 
the attractor in phase space. If T is too small, statistical errors will dominate,17 while 
if r is too larger, resolution will be insufficient and the sum in (6-2-2) approaches 
uni ty. 

A double precision VAX FORTRAN8 computer program, SATRCT, was written 
to implement the method described. The program takes, as input, a file containing 
the iterates of the observed variable and a file which specifies the values of m, p ,  
the hypersphere radii, and other user options. The program outputs the calculated 
correlation integral for each T .  It also outputs the sample regression coefficient for 
the logmitbms of the correlation integrals versus the logarithms of the hypersphere 
radii obtained by a Gaussian least-syuazes fit.18 The sample regression coefficient 
serves as an estimate of v. 

6.3 RESULTS 
The program was tested on the Henon Map and the results compazed well with 

the known Hausdo& dimension and other published results (see Table S). 
The preliminary results for the system (6-1-1) are shown in Table 9. In 

Figure 31, the points formed by the logs of the correlation integral versus the logs 
of their corresponding hypersphere radii for rn = 500 and a range of embedding 
dimensions are fit with a least-squares regression line. This line represents an 
estimate of the correlation dimension. 

In order to determine the correlation integral with certainty, a much larger 9n 
would be needed.15~16 Because of the large CPU time requirement, this becomes 
quite expensive. In order to reduce CPW cost and obtain confidence limits on I / ,  we 
are now conducting a statistical investigation of the correlation integral as described 
below. 

6.4 A STATISTICAL ANALYSTS 

We are using SAS*’ to model the behavior of the correlation integral as a 
function of the number of iterate-space points for a given hypersphere radius. Such a 
model may yield a good estimate of the asymptotic value of the correlation integral 
for a smaller number af i terate-space points than required by current methods. 
It also may allow an analysis of the errors associated with the calculation of the 
correlation integrals and the correlation dimension. 

However, a problem has arisen in that the errors are highly autocorrelated. 
Autocorrelation in the results naeans that the error estimates returned by SAS are 
questionable. Current efforts are directed at surmounting this problem. 
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Table 8. Results for the Henon Attractor 

Embedding Dimension 
Number of Points 2 3 4 5 6 

100 0.94212 0.81591 0.55757 0.39722 0.33508 

200 1.1425 1.0389 0.77740 0,62302 0.50621 

500 1.1835 1.2010 1 .(I402 0.9421 0.8608 

2000 1.1602 1 -- - _I 

Table 9. Results for the Biiogistic Attractor 

Embedding Dimension 
Number of Points 2 3 4 5 

100 1.2188 1.1676 1.0096 0.866 0. 

6 

3170 

200 1.2458 1.3087 1.3428 1.2382 1.0570 

500 1.2453 1.3384 1.3926 1.4022 1.3231 

2000 1.2261 --- - 1.3605 I 



APPENDIX P 

MACSYMA QUTPZTT for the map (2-1-1) 

The results on page 62 are the fixed and period-two points for the system 
Eqs. (2-1-1) with AI not equal to A2 (in the MACSYMA output, A1 = .4l and 
A2 = A*). Note that MACSYMA does not find the parameterized family that 
exists for A1 = A2. This solution is found by MACSYMA when AI is set equal to 
A2 in Eqs. (2-1-1) as the results on pages 63 and 64 show. 
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$ This is Macsyma 412.61 for DEC VAX 8650 Series Cornputers. 
Copyright (c) 1982 Massachusetts Institute of Technology. 
All Rights Reserved. 
Enhancements ( c )  1982, 1988 Symbolics, Inc. All Rights Reserved. 
Type "DESCRIBE(TRADE-SECRET);" to see important legal notices. 
Type "HELP();" for more information. 

Checking password file: Sl:[MACSYMA-412.SYSTEM]PA.SSWD-STCVAX8600- 
4 12. TEXT 
h i t  File Not Found: U2: [DFNlmacsyma-initmac 
(C1) 
(C2) 
(C3) 
F 4 )  

The equations being investigated are: 

Fl(X, Y )  := A1 X (1 - $ - $) 

F2(X, Y) := A2 Y (1 - F - 4) 

The Period 1 Roots Are: 

[ [ X = Q , Y = O ] , ~ X = 2 A ~ ~ 2 , Y = O ] , [ X = 0 , Y =  2 A 2 - 2  A2 ]] 

The Period 2 Roots Are: 

SQRT(A1' - 2 A 1  - 3) - A1 - i [[X == 0, Y = 01, [X = A I  9 y = 01, 

1, [X = 0, Y = A 2  - 71 A2 
SQRT(A22 - 2 A2 - 3) + A2 + i 

A2 [X = 8, Y = 
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This is Macsyma 412.61 €or DEC VAX 8650 Series Computers. 
Copyright (c) 1982 Massachusetts Institute of Technology. 
All Rights Reserved. 
Enliancemcnts (c) 1982, 1988 Symbolics, Inc. All Rights Reserved. 
Type 7cDESC~IBE(TRADE_SECRElr);99 to see important legal notices. 
Type "HELP();" for xilore information. 

Checking password file: 
412.TEXT 
h i t  File Not Found: ~J2:[IDFN]macsyin~-t-init.mac 

S 1 : [MAC SY M.4-4 12. SYSTEM] PASS W D- STCVAX8600- 

(W 
(C2) 
(C3) 
(C4-1 

The equations being investigated are: 

Fl(X, U) := A1 X (1 - $- - 

y ~ SQKT(A1' - 2 A1 - 3) - %R3 A1 + A1 + 1 
A1 -1 7 

1, [X = 0, Y = 01, SQRT(A1' - 2 A1 - 3 )  + %R4 A1 - A1 - 1 
A1 x - %R4, Y = 

SQRT(A1' - 2 A1 -3- A1 - 1- 
4 A1 

x 7 - -  , Y =  

3 SQWrr(ia1 - 3)  SQRT(A1 + 1) - 3 A1 - 3 
4 A1 --I , 
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S Q R T ( A ~ ~  - 2 AI - 3) + ~i + 1, =. 
4 AI [X = 

3 SQRT(A1 - 3) SQRT(A1 4- 1) + 3 A1 + 3 A I - 1  y - 3 A l - 3  
4 A1 1 7  f X -  2 A1 7 ..- 2 A1 11 
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