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Non-Linear Surface Fitting of Laser Range Images 
Using a Hypercube Concurrent Computer 

Michael Finley 

Abstract 

Segmentation and non-linear surface fitting with laser range images are attempted 
on a hypercube concurrent processor. Low-level software acquires range images onto 
the hypercube. ,4 substantially modified existing range image edge detector works 
in the hypercube image analysis environment to accomplish segment ation. The 
Levenberg-Marquardt algorithm implements the non-linear least squares fitting of 
the surfaces. 

Problems were found with each part of the approach. The edge detection algorithm 
is unnecessarily complex and yields an all too cluttered edge map. The fitting rou- 
tine is limited by hardware in the number of surfaces that it can process. Finally, 
the fitting approach requires input estimates of the parameters which do not ap- 
pear to be generalizable for any image, thus keeping the process from being totally 
automated. Other research in surface fitting on serial computers has yielded results 
which may be helpful additions to solve the problems of automation. 

V 
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Introduction 

This report describes an experimental implementation of a computer vision system 
using a laser range camera. It consists of three independent parts (segmentation, 
surface fitting and recognition), of which only one is complete (segmentation) and 
one is near completion (fitting); the third has become a separate project of its own. 
The range camera is a state-of-the-art Odetics, Inc., Laser Range Scanner and all 
programs in this application were written in the C language for a 64 node hypercube 
parallel processor. 

This work was performed under the Oak Ridge Science and Engineering esearch 
Semester (ORSERS) at the Center for Engineering Systems Advanced Research 
(CESAR) of the Oak Ridge National Lab. The study was directed by Dr. Reirihold 
Mann. 

A range image is a picture of a scene in which the brightness of a point represents the 
distance from the camera to that point. A device which produces such images has 
obvious utility in machine vision where other techniques, such as stereo triangulation 
with conventional cameras, require a large amount of computation while yielding 
ambiguous or erroneous range information. Given a range image of the world around 
the scanner (located, for example, on a mobile robot), a three dirncnsional model of 
the environment can be created such that objects can be recognized. The procedure 
from digitizing a range picture of a box, for example, to labeling that part of the 
picture as “box” is, however, a difficult problem. The steps taken towards a solution 
to this problem in this particular study are image acquisition, segmentation, and 
surface fitting (Fig. 1). 

Image Acquisition 

The laser range camera is controlled through a DR-11W card in a VME system. 
The raw output of the camera is a 32768 byte buffer (software by Dr. Ralph Ein- 
stein) which must be interpreted for use. This buffer is transferred to the NCUBE 
parallel processor (transfer software by Dr. Judd Jones) where it can be interpreted. 
A program was written for this study (and permanently added to the vision labora- 
tory software) which separates the 32K image into two 1GK images: one containing 
information about the reflectivity of the scene and one containing the range data. 
This yields a range image as a 2D array (128 x 128) of 1 byte (unsigned char- 
acter) values. These values are interpreted as integers between 0 and 255 which 
correspond to distance from the camcra to the points in the scene, at intervals of 
(approximately) 1.4 inches. The camera can also be operated in a more accurate 
range mode (reflectivity accuracy is lost) with range resolution up to 0.7 inches. 

Range Image Segmentation 

Once the 16K range image is acquired, a program is invoked to scparate the arcas 
of the picture that correspond to different objects in the scene. This is called a 
segmentation program and has led to several problems in working with range images. 
Dr. Griff Bilbro implemented a segmentation algorithm which uses complicated 
morphological techniques. His code operated on synthetic data (real range images 
were not available at the time) in 64K images. That code was rnodified during 
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E image processing: 

Figure 1. The Laser Range scanner produces an image. The computcrs digitize the 
image, create an edge map and fit surfaces to separate objects. 
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the current project to segment the 16K range images and operate in the standard 
vision laboratory environment. Dr. Bilbro’s approach was found to be unnecessarily 
complex for the smaller images and needed modification to produce useful results. 

Essentially, Dr. Bilbro’s code finds edges of both step (discoiitinuities in depth) and 
roo€ (abrupt changes in surface curvature) types. The roof edges complicated the 
scene by finding, for example, that the faces of a cube were different objects. For 
the purpose of fitting surfaces (the next part of the study), the roof edge dctectiori 
was eliminated (technically, the gain for roof edges has been set to zero; otherwise 
the code is intact). In addition, several complications with real range images cause 
problems in the edge detector. The probleIn may be explained by thinking of 
a person looking head-on at a wall. In this simple scenario, points on the wall 
directly in front of the observer are nearer than those found above or below (or left 
and right) the line of sight. The result is that the edge detector shows concentric 
circles around areas where the rangc finder’s precision yields an equal distance. 
This distance changes abruptly (the least significant bit is increased by one) at the 
threshold of the camera’s precision. A wall 3.5 feet from the range camera, for 
example, is seen as four concentric rings of equally distant points (Fig. 2). The 
solution to this problem is part of a calibration scheme (currently, the work of Dr. 
Frank Sweeney) that will be necessary for any application of the range images. 

Figure 2. Edges in a xange Figure 3. Edges in a rangc 
irnage of a flat surface. image of a box on a flat surfacc. 

A similar problem that arises due to the range camera’s resolution is that objects of 
a significant size in the range irnage arc also plagued by the ring edges (Fig. 3)) while 
smaller objccts have undetectably small variations in their surfaces, and are shown 
to be closer than the background, but flat even when they have structure. A cylinder 
of diameter 5.5 inches on a wall at 3.5 feet from the camera, for example, apyears 
to be a flat surface (Fig. 4). Simple range imagcs were taken as data for the study, 
but they are disturbed by the precision problems to the extcnt that synthetic data 
(simulated surfaces) have become the only means of evaluating the fitting routine’s 
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performance. When range images of larger objects can be taken and transformed 
under calibration, these problems should bc resolved. A final point about the edge 
detector must be ma,de: some real-world images (of part of the laboratory room) 
were taken and edge detcction was done on them. The result is most commonly 
a picture cluttered with edges to the point that objects become indistinguishable. 
Real objects can have very complex shapes, and a different approach will be needed 
to producc a useful edge map from complicated images. 

Figure 4. Left: A simple image as seen by the eye. Right: The range image (darker 
represents nearer; points with equal shading are determined to be equidistant from 
the camera). 

Surface Fitting 

The third and final part of the study involves fitting surfaces to the patches outlined 
by the edge detector. The idea is coirinion in image analysis: to reduce a set of N 
points in space to a set of M<<N surfaces which model the points. Essentially, it 
is a problem in data reduction; the goal is to reduce 16K of information to some 
smaller amount of information which significantly represents the original data in 
a manageable way. The method chosen is one that lias been applied to range 
i r n a g e ~ ~ ? ~ , ~  on serial computers. The advances of our implementation are the usc 
of machine-segmented rather than hand-segmented data and the implementation of 
simultaneous fitting to many surfaces on a hypercube concurrent processor. 

The surfaccs chosen for fitting are called superquaclrics. This farriily of curves 
was invented by danish designer Peit Hein as an extension of basic  quadric^.^ The 
functional representalioil of the surface depends on 5 functional parameters (scale 
on the x, y, and z axis and two exponents which govern the squareness in the x-y 
plane and along the z axis), three position parameters (center of the superquadric in 
3-space), and three orientation parameters (the EiiPcr angles). Altogether, these 11 
paranieters describe a wide variety of objects from any ellipsoid to any right-angled 
parallelepiped3 (Fig. 5). The points on the surface can be represented in parametric 
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form in spherical polar coordinates. Alternatively, an implicit density €unction for 
the superquadric is given as €ollows2: 

Where xs = X s ( % , x , Y , z , a ,  p, y) 
ys = YS(Y,,X,Y,Z,Or, p, y) 
zs = Zs(q,x,y,z,a, p, y) 

And x = center of the superquadric on the X axis 
y = center of the superquadric on the Y axis 
Z = center of the superquadric on the Z axis 
El = squareness along the Z axis 
E,= squareness in the X-Y plane 

23, = scale on the X axis 
a2 = scale on the Y axis 
a3= scale on the Z axis 

a$,Y = Euler angles of rotation 

Using this function, a point (x,y,z) lies on the surface of the superquadric if S(x, 
y, z) equals unity. This function can be evaluated and the parameters adjusted to 
yield a fit. The problem arises, however, that this definition says nothing about 
the points on the surface that are not represented by data. As an example, this 
function will fit points that lie in a plane to an ellipsoid by making the radius of 
the ellipsoid approach infinity. The points will lie on or very close to the surface, 
but the superquadric yielded is infinitely large, which is a false model of some finite 
surface. Instead, a second form of the surface is defined2: 

where a point (x, y, z) is on the surface of the superquadric if R equals zero. Using 
this function, the scale parameters along each axis (a1 , a2, and as) will be minimized 
along with the adjustments made to the other parameters. The new function R also 
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a, = a3<a2 
E,= 1 
E,= 0 

Figure 5. Sa,mple Superquadrics 
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has complications, however. It is clear that when any one of the scale parameters 
is zero, all points will be determined to lie on the surface (in fact any point will 
lie on the surface) which is clearly not the case. In general, this is avoidable by 
ensuring that the scaling parameters are large compared to unity, therefore R is the 
superquadric form of choice2. 

The function is clearly nonlinear and thus requires an iterative procedure to arrive 
at the correct parameters. The chosen method, named after its inventors Levenberg 
and Marquardt, is a standard for nonlinear least-squares fitting5 (Fig. 6). It requires 
three inputs: an initial guess for the eleven parameters, the gradient vector of the 
function with respect to the parameters at any point, and a means of measuring the 
“goodness of fit.” The input parameters are estimated from the data, the gradient 
vector was found using Mathematicatm (which accomplishes, among other things, 
symbolic partial differentiation), and the measure of the fit is defined as follows2: 

N 

i =I 

where x2 represents the “goodness of fit” and N is the number of points (x,y,z) 
which belong, according to the segmentation of the image, to a surface. 

The fitting begins by finding the error and a modified Hessian matrix for the input 
parameters. The solution to the matrix yields a vector of recommended changes to 
the parameters. The parameters are thus adjusted, and the new error and modified 
Hessian are computed. If the new error is smaller, the adjusted parameters are 
accepted and a new adjustment is calculated; otherwise, the adjusted parameters 
are dropped and smaller adjustments are calculated. This procedure continues until 
some criterion (insignificant error decrease or high number of iterations) is met, and 
the final best fit parameters are output5. 

Implementation on a Hypercube Concurrent Computer 

In this study, the implementation of the algorithm was in parallel on the hypercube 
processor. To understand how this was accomplished, a brief explanation of the 
hypercube architecture and parallel image processing is necessary. The hypercube 
consists of a set of 2” (integer n>=O> processors (also called “nodes”) that are 
linked as if they were the vertices of an n-dimensional cube. A Q-cube, for example 
is single node (2’=1) with no links (no other nodes to link with), while a 3-cube is 
composed of eight nodes (23=8), each of which is linked to three other nodes like 
the vertices of a standard cube (Fig. 7). Image data are distributed among the 
nodes of the hypercube in horizontal strips of the input picture (Fig. S). The result 
is a loosely synchronous SfMD (single instruction, multiple data) algorithm. Each 
node can operate on its part of the data, and communicate results to other nodes 
as needed. The goal of a good parallel program is to balance the workload of each 
node because the total time for execution of a program is the largest time for any 
single node. By balancing the number of data points on each node initially, this 
can be achieved approximately. 
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Leven berg- arcpardt modified Hessian 

M 

k- 1 
Solve: Co(jlkA 

For the set AOk 

And find a new set of parameters: 

@k= @ k + A @ k  

Figure 6. A single iteration of the Levenberg Marquardt Algorithm 
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3-cube or 8 node processor 4-cube or 16 node processor 

I @ = node 

I = connection between nodes I 
Figure 7. The Hypercube architecture (Figure by Dr. J. P. Jones). 

node # 
0 

1 
3 
2 
6 
4 
5 

7 

Image of a box 

Figure S 

node-distributed 
image of a box 

Given that equal strips of the range iinagc are distributed among the nodes of a 
hypercube, each node will have to process its part of each su~face. Clearly, more 
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than one node will have parts of any sizeable surface (imagine a vertical pole in 
the image-every node will have a piece of this image which contains points that 
are on the pole!). Thus each node must use the same parameters and parameter 
adjustments to find its local error of fit for any surface. Then, each node must 
tell every other node its results, so all nodes together compute a total error, and 
adjustments in the iterative procedure. 

Unfortunately, the problems of parallel computing begin to appear when the ad- 
justments are computed. Levenberg-Marquardt solves a modified Hessian matrix to 
find the adjustments. This matrix is 11 x 11 in the case of the eleven superquadric 
parameters, and it involves summation over the points on a surface, which means 
that it too must be communicated between all nodes. In floating point values (4 
bytes), the matrix for one superquadric alone is nearly 500 bytes. In a complex 
scene with many objects, the amount of data that is transferred between nodes be- 
comes very large. The manufacturer’s recommendation is that about 10KB (or 20 
superquadrics) should be communicated at a time. If each node processed only its 
own superquadric, many nodes would be idle (the difference between the number 
of surfaces and the number of nodes would be large-those nodes have nothing to 
do). If, however, only a single superquadric’s matrix is communicated at a time, 
the communication time beconies unwieldy and the speed of the machine is lost. 

The present implementation of the fitting routine solves most problems of paral- 
lelization, excluding the case of a large number of superquadrics. Since presently 
only simple or synthetic data are used, this has not yet been a problem. In addi- 
tion, the present implementation is readily adjustable for the study of a new class 
of problems that this work has revealed. Namely, when one surface converges (the 
best fit parameters are found), many nodes will no longer have some part of their 
data: that part which was on the surface that is finished fitting. This leads to a 
load imbalance among the nodes during execution, and algorithms for this type of 
dynamic load balancing have not yet been studied. 

With some understanding of the parallel problems, other problems intrinsic to the 
fitting routine are now introduced. Fitting a surface which depends only on eleven 
parameters to a set of M>>11 points is termed an overdetermined optimiAation 
problem’. Essentially, the surface is overconstrained when trying to adapt to all M 
data points. In the algorithm, this is seen as a very large number for the “goodness 
of fit” or error value. In particular, when the squareness parameters becomc very 
small, their reciprocals (which are used in the definition of the surface) become 
very large exponents. Overflow errors are common in attempts to fit square figures 
because this requires the exponents to approach infinity. The limits set on just how 
high the exponents can go depends on the number M because the summation over 
all M points of the various partial derivatives (in the Hessian matrix) is usually 
the quantity that overflows. In addition, the problem of not allowing the scale 
parameters to approach zero (recall the incorrect solution that this yields) means 
that, they must remain above unity, and their product (recall the definition of R) 
can be a large number when summed over all points. A possible solution to this 
problem can be found in the literature and consists of disregarding data points whose 
individual error is beyond a threshold2. This possibility has not been investigated. 

Additionally, the use of the volume-constrained function R rules out some classes 
of objects. A very thin object, for example, must have one of its scaling paameters 
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set low, but this leads it to be less than unity, and the iterative procedure is quickly 
dragged to a halt by making it zero. Some researchers have used the addition of 
Poisson distributed noise to the data during the iterative procedure to eliminate 
local minima of the error function in the eleven dimensional parameter space, but 
exactly when to add that noise and to what types of images is not specified'. These 
same researchers show an error function which decays exponentially with further 
iterations, a result which has not been found under this project'. One last problem 
which appears to have been solved elsewhere is the initialization of the parameters, 
the input "guesses" to the Levenberg-Marquardt algorithm. Some researchers claim 
that "canonical" guesses (simply constants that are equivalent for every surface) 
suffice for a quality fit2, and again, this conflicts with the results of the present 
study, which found that rather tedious procedures are needed to approximate the 
true parameters before the iterations begin. 

Conclusions 

Summary 

The parallel code for the representation of three dimensional data with superquadric 
surfaces was written in C on a hypercube concurrent processor. The irnplementa- 
tion of this study differed from others in its parallel nature and in the use of real 
range data. Both of these innovations have lead to severe complications in addition 
to other problems that are inherent to the method, and overall the program still 
remains in a,n experimental stage. The next step in the work consists of communi- 
cation with other researchers in the area for resolution of some disagreements, and 
no doubt improvements in the programming. This communication has already been 
initialized with the group of Dr. R. Bajcsy from Pennsylvania State University. 

Recommended Future Work 

The laser range scanner must be correctly calibrated for the segmentation programs 
to work. In addition, the segmentation programs nwd modification to deal with 
a larger class of images (from simple to complicated scenes), and should be data- 
independent. Finally, the surface fitting routine has many problems, eg., choos- 
ing input parameters, adding noise, allowed range for different parameters, limited 
choice of shapes, etc. which remain to be resolved. 

Acknowledgements 

I would like to thank the entire group of scientists working in the CESAR laboratory 
for what has been a most rewarding experience. In particular, though, I am grateful 
to Dr. Judd Jones for programming help, Dr. Chuck Glover for general methodology 
advice, and Dr. Reinhold Mann for supervising this project. 





13 

References 

1. F. Solina and R. Bajcsy, “Range Interpretation of Mailpieces with 
Superquadri~s,~~ Proceedings of the USPS Advanced Technology C o n -  
ference ,  472-481, Washington, D.C. (1986). 

2. R. Bajcsy and F. Solina, “Three Dimensional Object Representation 
Revisited,” Proceedings of t he  Fir& In te rna t iona l  Conference o n  Com- 
p u t e r  V i s ion ,  231-240, London, EIigland (1987). 

3. T. Boult and A. Gross, “Recovery of Superquadrics from 3-D Informa- 
tion,” SPJE Vol. 448 Intel l igent  Robots  and C o m p u t e r  Vis ion:  S i x th  
in a Ser ies  358-365 (1987). 

4. M. Gardiner, “The Superellipse: A Curve That Lies Between the 
Ellipse and the Rectangle,” Scient i f ic  A m e r i c u n ,  (September 1965). 

5 .  W. Press, B. Flannery, S. Teukolsky and W. Vetterling, “Numerical 
Recipies” , Cambridge University Press, Cambridge, England (1986). 





15 

ORNL/TM-11198 

INTERNAL DISTIUBUTION 

1. M. Beckerman 
2. J. R. Einstein 
3. C. W. Glover 

4-8. J. P. Jones 
9-13. R. C. Mann 
14. F. C. Maienschein 
15. H. S. Payne 
16. F. J. Sweeney 

17-21. C. R. Weisbin 
22. EPMD Reports Office 
23. Central Research Library 
24. ORNL Technical Library 

25-26. Laboratory Records 
27. ORNL Patent Office 
28. Laboratory Records-RC 
29. B. R. Aypleton 

EXTERNAL DISTRIBUTION 

30-34. Mike Finley, Transylvania University, Lexington, KY 40508 

35. Office of Assistant Manager, Energy Research and Development, Oak 
Ridge Operations Office, US/DOE, P.O. Box 2001, Oak Ridge, T N  
37831 

36-45. Office of Scientific and Technical Information, US/DOE, Oak Ridge, 
T N  37831 


