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STABILIZED GAUSSIAN REDUCTION OF AN ARBITRARY 

MATRIX 

TO TRIDIAGONAL FORM 

G .  A. Geist 

A. Lu 

E. L. Wachspress 

Abstract 

This report presents several ideas for improving the stability of Gaussian reduc- 

tion of an arbitrary real matrix to  tridiagonal form. First, we analyze conditions 

iinder which reduction algorithms break down or become: unstable. Second, we dis- 

cuss how methods of threshold pivoting decrease the probability of these conditions 

occuring. Finally, we present new methods for recovering from breakdown when it  

does occur. The class of matrices that can be successfully reduced is significantly 

broadened by these new recovery algorithms. 
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1. Introduction 

The reduction of a general dense n x n matrix A to a similar tridiagonal makrix is a 

difficult task that was studied intensively several years ago [7,11]. The most straightfor- 

ward approach is t o  reduce A to upper Hessenberg form 11 and then apply elementary 

similarity transformations to  H to reduce it to  tridiagonal form S. Unfortunately, large 

multipliers (small pivots) are encountered for some matrices, and the reduction suffers 

from instabilities or breaks down entirely [9]. Wilkinson [I61 discussed this situation in 

some detail and suggested possible remedies, none of which appeared adequate to  him. 

Our initial interest in reduction to tridiagonal form grew from the work of Wachs- 

press [14], who was solving the Lyapunov matrix equation, A X  + X A T  = C. He ob- 

served that if A could be reduced to tridiagonal form, S, then the equation S Z +  ZST = 

C, could be solved by AD1 iteration in O(n2)  flops [13,12]. Matrix C, is derived from 

C during the reduction of A to S, and X is recovered from 2 by the inverse of this 

reduction. The entire computation requires about 5n3 flops as compared with about 

15n3 flops for the standard method of Bartels-Stewart [l]. 

Computation of all the eigenvalues of a real nonsymmetric n x n matrix is one of the 

more demanding tasks in numerical linear algebra. The standard method, which is ro- 

bust and stable, involves reduction to Hessenherg form by Householder transformations 

followed by reduction to  real Schur form by a sequence of shifted QR iterations [lo]. 

The Ilessenberg reduction requires 5n3 flops. Experience with QR indicates that an 

average of two iterations are required to  find each eigenvalue. As each eigenvalue is 

found, the size of the remaining submatrix decreases by one. Each QR iteration on a 

matrix of order k requires 5k2 flops, so that, as k runs from 1 to n, a total of $n3 

flops are needed for the QR reduction to  Schur form. Thus, the Hessenberg and Schur 

reductions require a total of about 5n3 flops. On the other hand, if the matrix can be 

reduced to  tridiagonal form, then the QR iterations may be replaced by LR iterations, 

which, unlike QR, preserve the tridiagonal form. The implicit double-shift LR. iteration 

applied to a tridiagonal matrjx requires only 6k flops per iteration for a matrix of order 

k and commonly takes less than four iterations per eigenvalue for a total flop-count 

of 12n2. A reliable method of reducing a matrix to tridiagonal form would allow this 

great improvernent in speed to be realized. 

In section 2 we describe recent work on tridiagonalization algorithms, particularly 



- 2 -  

the early work of Wachspress [13] and the later work of Geist [3], which forms the basic 

algorithm on which our recovery methods are built. In section 3 we discuss methods 

for detecting when breakdown will occur, and in section 4 we describe new recovery 

algorithms that considerably broaden the class of matrices that can be reduced to 

tridiagonal form with elementary similarity transformations. In section 5 we apply 

these recovery algorithms to matrices that are known to be difficult to reduce. Section 

6 contains our conclusions. 

2. Recent Studies 

l h x  and Kaniel [a] described experiments with reduction from upper Hessenberg form 

to tridiagonal form using elementary similarity transformations. During the reduction, 

they monitored the size of the multipliers as follows. They defined a control parameter 

for the reduction of row k as mk = maz;,k+lJHk,i/Hk,k+ll. If m k  was greater than 

a specified value, then breakdown was said to  have occurred, and their algorithm 

aborted. They observed that for 100 random test matrices of order 50 x 50 the number 

of breakdowns as a function of the specified value rn was: 

m - 2 ‘  r =  16 12 10 8 7 
breakdowns 0 1 5 20 41 

Dax arid Kaniel referred to  Wilkinson’s detailed error analysis in [16] and concluded 

that there was a low probability of having large errors in eigenvalues computed with the 

tridiagonal matrix, even when using control parameters as large as 216. They report 

that their results differed from EISPACK by as much as for their test matrices. 

Watkins [15] made Dax and Kaniel’s reduction from Hcssenberg to  tridiagonal form 

more robust by incorporating a recovery method, performing an implicit shifted LR 

iteration on the matrix when breakdown occurs. The iteration preserves the structure of 

the partially reduced matrix and produces a matrix similar to the pre-recovery matrix. 

Moreover, it often eliminates the breakdown condition. The cost of the LR iterations 

can be significant, but the iteration brings the matrix closer to  triangular form, so the 

work is not entirely wasted even if breakdown persists. 

Wachspress’ reduction algorithm is applied after the matrix is first reduced to  up- 

per Hessenberg form by Householder transformations. ‘L‘he reduction is performed by 
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X 

X 

columns, starting with the last column. If a large multiplier is encountered, the offend- 

ing column is skipped rather than reduced. This yields a “striped” tridiagonal matrix 

with a few columns containing nonzeros above the superdiagonal as shown: 

X 

X 

X 

X 

X 

X 

X X 

X 

X 

The stripes have little effect on the arithmetic complexity of the AD1 iteration, since 

nonzeros do not propagate €rom the stripes during the solution of the AD1 equations. 

When Wachspress developed a precursor to the recovery method describes in sec- 

tion 4, the earlier scheme of leaving a striped matrix was abandoned. Instead, a reduc- 

tion algorithm was used that attempts to eliminate all columns of a Hessenberg matrix 

one at  a time starting with column n using elementary transformations. He applied his 

recovery method whenever multipliers larger than 1000 were detected. 

Hare and Tang [5] describe a reduction method where the unitary transformations 

used to reduce the matrix to Hessenberg form H and the elementary transformations 

used to  reduce II to  tridiagonal form are interlaced. The interlacing allows a permu- 

tation that reduces the number of multipliers polentially greater than 1 from S ( n 2 )  to  

O ( n ) .  Hare and Tang also employ a recovery method if any of these multipliers exceed 

a preset bound. They observe that the relative error of the eigenvalues grows as the 

bound is increased, and at their recommended setting of 100, they observed errors as 

large as lom8. 

In 131, Geist presents an algorithm that reduces the original matrix directly to 

tridiagonal form, avoiding the intermediate Hessenberg form. ‘The algorithm reduces 

column 1, then row 1, and so on down the matrix using a method of threshold pivoting 

to  control the size of the multipliers. Elementary siInila.rity transformations are used 

throughout the reduction. In his report, the multiplier bound is set to 10, and a 

variation of Wachspress’ recovery method is employed whenever this bound is exceeded. 
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Geist reported that this bound was not exceeded when reducing random dense matrices, 

and the accuracy of the eigenvalues did not show the degradation observed by Dax and 

Kaniel [2]. His report also presented a class of matrices that are difffcult to reduce 

to tridiagonal forin. Throughout this paper we will refer to Geist's algorithm as the 

threshold pivoting approach. 

3. Anatomy of Breakdown 

Because the threshold pivoting approach appears the most successfill of recent tridiag- 

onalization methods, we have chosen to  study how this method breaks down. 

At step k of the threshold pivoting algorithm, the matrix has the forin shown in 

Figure 1. If v or wT = 0, then the matrix has been deflated, and step k can be skipped. 

Figure 1: Partially rediiced matrix. 

If v and wT # 0, then the threshold pivoting approach first perniiites rows and columns 

greater than k to maximize the product ) V ~ W ~ ) ,  Let i n k  be the maximum iniiltiplier 

at  step k. If m k  < mmaz, where mmaz is a prescribed value chosen to control error 

growth, column k and row E are reduced by elementary similarity transformations. An 

inherent measure of the stability of this reduction is the value of Icos('u, w)I, as shown 

below. 

Theorem 1. Using Figure 1 as  a reference, let m, and m, be the maximum multipliers 

in column k and row k respectively. If column k is reduced first, then 

Proof. Given that column k is reduced first by an elementary similarity transformation 
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BAR-', the expression for m, is obvious. The form of R is 

Substituting lwTvl =I/ v 11 I( w 11 Icos(v,w)I we get the result. 

Corollary 1. An upper bound on rn, is given by m, 5 .&, and is independent of 

the method used to reduce column I ; .  

Proof fi _< 1 and wl _< 1. 

Several observations are possible given these results. Reducing v with a unitary 

transformation will maximize 51, and since .1Zj,.ij, = wTv, w1, the pivot for the re- 

duction of row k, is minimized. For this reason we do not recommend using unitary 

transformations during the reduction to tridiagond form. 

In the threshold pivoting approach, if wTv = 0, then rnaz(lv;l, Iwi1) is permuted into 

the pivot position before the recovery routine is begun. This permutation attempts to  

minimize the maximum product mcm,. This effect can be seen by forming the product 

of the terms rn, and m, in Theorem 1. 

There can be occasions when the mas(m,,m,.) is sm 

before column b. This happens when for some i > 1 

ller when row IC is reduced 

But the threshold pivoting algorithm as given in [3] always reduces the column first. 

One goal of threshold pivoting could be to  minimize the maximum multiplier over 

the entire reduction. This goal is not practical because of the high complexity required. 
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But it is possible to find the  pivot that minimizes the maximum multiplier at each step 

k efficiently using the expressions for m,, m,, and their row-first coiinterparts just 

discussed. It requires only n - k flops to evaluate each of the four expressions for all 

possible pivot choices plus an additional n - k flops to evaluate the inner product. 

We have implemented this pivot selection scheme and compared it to  the original 

heuristic pivoting scheme, which chooses the permutation that maximizes 1 ~ 1 ~ 1  I. First, 

the additional time required to  evaluate rn, and m, is insignificant compared to the 

overall reduction time, as expected. Second, we found this pivot scheme, which can 

be viewed as a greedy algorithm, is not as good as the heuristic scheme at minimizing 

the maximum multiplier over the entire reduction. For random matrices larger than 

80 x 80, the optimal method often failed to  meet the prescribed tolerance. Moreover, 

the eigenvalues were at  least as accurate and often better using the original heuristic 

pivoting scheme. 

An alternate goal of threshold pivoting is to  minimize the condition number of 

M ,  where MAM-I  is tridiagonal. Let M = Rn-2Cn--2Rn-3Cn-3 . . .XICI,  where Ck 

reduces column k ,  and Rk reduces row k .  A suggested heuristic [6] that tends to  reduce 

this condition number is to  minimize the maxinium entry in RkCk at each step. The 

where c, are the column multipliers, T;  are the row multipliers, and cy = 1 + rTc. (If 

the row is reduced first, then CkRk has a dense ( n  - k) x ( n  - k) submatrix, and the 

minimization is very dificult.) We have already described how the multipliers can be 

minimized. The (Y term can be simplified to  (Y = 2 - vIwl//wTvI (using the notation 

in Figure l), which allows the efficient evaluation of a for all possible permutations at 

step k. Notice that the original heuristic term wlwl appears in (Y and may explain why 

this heuristic often works well. We have implemented a pivoting scheme that minimizes 

the maximum entry in RkCk and foutid it to  be comparable to the original pivotiiig 

scheme in accuracy. 'The new pivoting scheme is also more robust than the original 

heuristic because it leads to a smaller maximum multiplier over the eritire reduction. 

We are continuing to investigate other heuristics, which also attempt to  minimize the 
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condition number of M .  The original threshold pivoting scheme can be improved by 

using the new heuristic scheme. 

4. Recovery from Breakdown 

In most of the tridiagonalization schemes, including the threshold pivoting scheme, 

breakdown is defined to  be the situation where a multiplier has exceeded some tolerance. 

When breakdown occurs, a number of options are available to circumvent the problem. 

Sometimes a local transformation can decrease the size of the multiplier such that the 

reduction can continue [5], but local methods cannot be robust because the tridiagonal 

form is unique once the first column and row of the transformation matrix M are 

fixed [8]. Thus, if the unique form has a small pivot, breakdown cannot be avoided 

without changing the first row or column. In [16], Wilkinson states that if a breakdown 

occurs, one can go back to  the beginning and apply the transformation N1.4Nl-l in 

the hope breakdown will not occur again. No method of choosing N1 has been found 

that guarantees that the breakdown condition found in A will not exist in N1ANl- l .  

This choice is still an open research area. 

The initial recovery method proposed by Wachspress [13] is to return to the begin- 

ning (in his case, the bottom) of the matrix and apply an Nl of the form 

where p is initially set to 1. This transformation changes the three nonzero entries in 

row n and column n and introduces a nonzero in the (n  - 2, n )  position. This “bulge” 

is then chased up the matrix to the point of breakdown with elementary similarity 

transformations. The procedure is mathematically equivalent to an implicit shiEt LR 

iteration that is truncated at the point of breakdown. Assuming the breakdown oc- 

curs at column k, this chasing procedure fills in column b + 1, which must then be 

annihilated to return the matrix to  its pre-recovery structure. The elimination of col- 

umn k + 1 requires O ( k 2 )  flops and accounts for the majority of the work performed 

during the recovery. If breakdown occurs during the recovery, or if the original break- 

down condition persists after the recovery step, the recovery method is repeated with 



p incremented. After a fixed riurnber of consecutive recovery failures, the algorithm 

aborts. 

A modification of this recovery method is described in Geist [3] for the threshold 

pivoting approach. There are four main differences. First, since the threshold pivoting 

approach reduces the matrix starting with row 1 and column 1, rather than column n, 

the bulge is formed at  the top of the matrix and chased down to the breakdown. Second, 

since the breakdown can occur in the column or row reduction, two forms of N1 are used 

to  start the recovery depending on whether the large multiplier is above or below the 

diagonal. They are shown in Figure 2. Third, the value p used in Wachspress’ recovery 

Figure 2: Two Forms of N1 used in threshold pivoting recovery. 

method is replaced with a random value iiniformly distributed on [.1,1]. Finally, after 

three consecutive recovery failures, the multiplier tolerance is increased by a factor of 

10. Then if the tolerance ever exceeds 1000, the algorithm aborts. 

We propose two further modifications to the existing threshold pivoting recovery 

method. These modifications are designed to help avoid the problems reported in [3] 

that follow from Theorem 2. 

Theorem 2 .  Using Figure 1 as a reference, let b be the subdiagonal part of the first 

column of Bk+ll and let uT be wT without element 1 ~ 1 .  Assume the pivot tu1 = 0. If 
uTb = 0 then the threshold pivoting recovery method will not change the value of w1. 

Proof. Assume the recovery method is applied, and a bulge is being chased down the 

matrix. When the bulge is eliminated a t  IC - 2, row k - 1 becomes ,flu7’, where /3 is the 

multiplier formed at step k - 2. The small pivot, q, is unaffected by the recovery lap 

to  this point. Let c be the element (k - 2 , k ) .  After row k - 1 is eliminated a second 

time, Z U ~  = tu1 -+ !u’b. 

The first modification addresses the problem when urb = 0. This modification has 

a natnral column version dual to  the row procedure, just as the bulge chase does, so we 

will describe only the row version. Assume the situation described in Theorem 2. Let 
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lbzl be the maximum value in the first column of l ? k + l .  Add row i to row k and subtract 

column k from column i, so that 201 is now the largest element in column k + 1. This 

local similarity transformation also introduces a nonzero in position (k - 1,i).  Now 

apply NlANl-' and chase the bulge. The nonzero is eliminated, dong with the rest 

of row k - 1, during the bulge chase. The local transformation not only increases the 

magnitude of wl, it also changes the value of wTv. Since N1 is random, IuiTvl cannot 

be guaranteed to  increase, although if the value is small, there is a high probability 

that it will. 

There are still cases when this modified recovery method will fail. The example 

shown in Figure 3 is such a case [3]. A small number of consecutive failures of the 

A =  

20 1 
19 1 

18 1 
. .  

. .  
. 1  

1 1 

Figure 3: A matrix for which the modified recovery method fails. 

recovery rnethod is usually indicative of a matrix with a large number of small inner 

products. Rather than abort after repeated failure of the modified recovery method, 

the following method will often find a similar matrix that does not have this property. 

The algorithm is simple and efficient to  apply, requiring only O(n2)  flops to  execute. 

It involves applying N21V1AoN1-1N2-1 where Ao is the original matrix and N1 and N2 
have the form shown in Figure 4. Column 1 of N1 and row 1 of N2 contain random 

numbers uniformly distributed on [0,1]. It should be considered a method of last resort 

because it requires restarting the reduction. 

(2) ( 0  Y UT I )  

Figure 4: Forms of N1 and N2 matrices. 
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5 .  Results 

We incorporated these recovery methods into the threshold pivoting algorithm and 

compared their performance against the original reduction algorithms. 

We present the results of three test matrices that exercise each of the features of the 

modified algorithm. The first matrix is representative of a class of Lyapunov matrices. 

Our interest in this particular 48 x 48 dense matrix arose when Wachspress’ algorithm 

failed to reduce it to tridiagonal form because of off-tridiagond growth. His attempts 

to  circumvent this problem by permuting rows arid columns prior to the IIessenberg 

reduction also failed because thc Hessenberg matrix did not preserve the desired scaling. 

In contrast, the threshold pivoting algorithm rediices this same matrix to  tridiagonal 

form with no multipliers exceeding 10. The success of the threshold pivoting approach 

on this matrix was due to  the algorithm’s ability to move large off-tridiagonal entries 

to  the superdiagonal or subdiagonal and thus avoid the large off-tridiagonal growth. 

The second matrix came from a set of unsymmetric eigenvalue test matrices found 

in [4] and has the form 

Repeated breakdown was observed for an 8 x 8 version of this matrix. When Wachspress’ 

algorithm was used, over 30 recovery steps were required to reduce the matrix to 

tridiagonal form, and multipliers as large as 2961 were observed. When the origiiial 

threshold pivoting algorithm was used, 5 consecutive recovery steps were required. 

After the 5 recovery steps filled in the matrix at step 2 of the reduction, the algorithm 

proceeded to the end without further problems. For larger versions of this matrix both 

of the above methods fail because they exceed their bounds on consecutive recovery 

steps. 

When the improved threshold pivoting algorithm was applied to the 8x8 matrix, one 

recovery was performed at step 2 and one was performed at step 4 of the reduction. The 

incorporation of the local similarity transformation into the recovery routine eliminated 

the need for consecutive recoveries in this problem. Larger versions of this matrix can 
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be reduced using the improved algorithm. 

The third test matrix is shown in Figure 3 and is described in [3] as a matrix the 

original threshold pivoting algorithm failed to reduce. The original algorithm aborted 

after 9 consecutive recovery attempts before step 4 of the reduction. Off-tridiagonal 

growth occurs rapidly for this matrix, and its structure prevents threshold pivoting 

from permuting all the large elements to the superdiagonal and subdiagond. The 

incorporation of the local similarity transformation had little effect on this behavior. 

However, rather than abort, the new algorithm applied the second recovery method 

discussed in section 4. The algorithm then reduced the modified matrix to  tridiagonal 

form without further breakdowns. 

The accuracy of the modified threshold pivoting algorithm is often better than that 

of the original algorithm. The eigenvalues of the tridiagonal matrix differ from the 

eigenvalues of the original matrix by as much as for the three test matrices. 

We do not see an increase in the number of breakdowns as the matrix size grows as 

reported in [5 ] ,  but we do observe a decrease in accuracy as the matrix size increases. 

For example, reducing dense random matrices of order less than 20 produced errors of 

but matrices of order 200 produced errors as large as lo-". Since multipliers 

routinely exceed 1 in our reduction, the correlation between error and matrix size is 

not unexpected. 

6. Conclusions 

We have analyzed the conditions under which reduction to tridiagonal form breaks 

down or becomes unstable, and have sbown how this behavior is characterized by 

Icos(w, w)I, where 1) is the column being reduced and wT is the corresponding row. We 

have discussed how heuristic methods of threshold pivoting attempt to minimize the 

maximum multipliers used during the reduction, and how unitary transformations can 

maximize the maxiniuni multipliers. 

We have presented efficient methods for recovering from breakdown when it occurs. 

These recovery methods require only O(n2)  flops a.nd significantly extend the class of 

matrices that can be reduced to  tridiagonal form. One of the methods requires the 

reduction to restart at column 1 and row 1 and is recommended only as a method of 

last resort. Moreover, complete failure of tridiagonalization is not catastrophic. One 
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can always resort t o  QR reduction for those relatively few cases where the faster but 

less robust method fails. 

The Lyapunov equation solver with AD1 iteration applied to the tridiagonal system 

succeeded as predicted by theory with no difiiculties once the matrix was reduced to 

tridiagonal form. The modified threshold pivoting method is now being added to  the 

solver to improve the robustness of the reduction step. The incorporation into the 

solver will require the accumidation of the transformations, which could also be used 

to calculate the eigenvectors of the matrix. A detailed report on the numerical solution 

of the Lyapunov matrix equation is in preparation. 
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