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K. A. Williams 
C, R. Hudson I1 

Documentation is provided for a general purpose uncertainty 
analysis code entitled ORMONTE. The code is intended to be linked 
with FORTKALLT-?~ models designed by the user. ORMONTE is 
capable of performing sequential single-variable sensitivity studies 
(SVSS), elasticity analyses, and multivariable sensitivity studies 
(MVSS) by acting as a driver on the user’s model. The W S S  func- 
tion utilizes the Monte Carlo simulation method of probabilistic 
analysis. The model accessed by the ORiMQNTE driver code and the 
names and characteristics of the modeler’s uncertain variables are 
provided by the user. ORMONTE is essentially a boolrlreeping code 
which keeps track of‘ the inputs and outputs defined by the user, 
samples the user-defined uncertainty distributions, repeatedly runs 
the user’s model, and produces statistical data and output proba- 
bility histograms for the output variables uf interest to the uscr. 

QRltIOPJTE has been utilized extensively by the USDOE and 
its Oak Ridge contractors, Martin Marietta Energy Systems Inc., 
and its predecessor, Union Carbide Corp.; Nuclear Division, for the 
economic evaluation of large-scale energy projects for which com- 
puter models have been constructed fer performance and cost 
projection purposes. ORMONTE has been used on several computer 
systems including a Cray, several VAYes, twe IRM-360 mainframes, 
and DOS compatible PCs (along with the appropriate FORTRAN-77 
software). The detail documentation provided here deals mainly 
with the PC version to be utilized with RIVIIFORTRKN; however, 
installation on a mainframe is reasonably simple. An example 
problem and complete ORMONTE input and output therefrom are 
provided. 

Systems models driven by ORMONTE in the past include 
performance and cost models for new uranium enrichment plants, 
advanced nuclear power plants, coal fired plants, and defense mate- 
rials production reactors. Future applications include ORMONTE’s 
use as a driver for parametric costing models such as FAST-E and as 
a driver for a systems model such as that for the design and cost of a 
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fusion power plait. Some discussion of how QRMONITR results were 
used in evaluating advanced energy systems is included in the 
report. ORMONTE is structured such that it can easily be coupled 
to existing FORIPIUN models t n d  installed on a TC. 

-....__... -- 

As the use of probabilistic uncertainty/risk analysis 
Martin Marietta Energy Systems and the U.S. Department of 

has increased within 
Energy? it has become 

necessary to educate new ' s s e ~ s  ilz the installation anid operation of the Oli-'LMOPI'i'E 
Monte Carlo driver code so that it can bc m n  in conjunction with their own mathe- 
matical models of enerhgy systems. It should be mated, however, that ORMONTE can 
he used with any model, not just those that are energy-related Emphasis in lhis 
report is on DOE applications. It is also anticipated that the increasing speed and 
storage capabilities of personal computers will make the use of uncertainty analysis 
methodoloLgy available to an  imcr-easing number of potential users. Since the eco- 
nomic evaluation tasks of interest to DOW Uefense Programs (DP) iiivolve consider- 
able cost analysis, it was felt that documentation of the sernsitivity analysis code 
(ORMONTE), which will drive their parametric cost models (Ref. 1.1), was an 
important step in the irnplemcntation of the technique for this application. The 
documentation is also necessary in order that ORMONTE can be linked to 
proprietary parmetsic cost estimating codcs used by DOEKIP such as those in the 
FL4ST (Freiman Analysis of Systems Techniques) series. 

Chapter 2 will discuss the rationale for the use of uncertainty/ risk analysis 
and why it is an important tool for augmenting the usual base case or deterministic 
estimates generated by a cost, or performance model. Chapter 3 describes the 
backgmuiid of the ORMONTE code and how it has been successfdly applied in 
previous economic evaluation efforts f ~ r  the Department of Energy. Chapter 4 gives 
a brief description of thc nmnthtmatical basis and special features of the BRMONYE: 
code. Chapter 5 is a detailed discussion of the overall structure aid FORTRAN-77 
algorithms within the code with emphasis on the mathematical rnethodolo,gy util- 
ized, Chapter 6 discusses the considerations needed in designing or preparing the 
systems rnodel(s) which are diiveii by ORMONTE. Chapter 7 discusses the clevelop- 
ment of input data for ORMONTE and how one can convert uricertainty data 
obtained from an expert interview into the probability clisti*ibut,ion input form 
required by ORMONTE. Chapter 8 describes the interpretation of OXMONTE 
output, and Chapter 9 discusses the installation of ORMONTE on both Y C  and 
mainframe computers. A sample problem, which includes complete input and 
output data, is given in Appendix D. A listing of the mde is not included in this 
report. This ORMONTE code is available in electronic form from the DGE National 
Energy Software Center at Argonne National Laboratory. 

Throughout the report the attempt has been made to make the tcxt easily 
understandable by nonstatisticians or nonmat.hematicians. The hope is that both 
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technical and nontechnical persons faced with decision-making tasks will find 
ORP\IIONTE possibly useful in their analyses. The computer and statistical back- 
grounds of most technical and management staff should be adequate to at least 
understailif the power of this uncertainty analysis method and the meaning of the 
results obtained therefrom. 

If the reader wishes more detailed guidelines for process and economic 
modeling of emerging energy technologies, along with a highly detailed e:sample 
project utilizing an earlier mainframe version of the ~~M~~~~ uncertainly maly- 
sis code, Ref. 1.2 or 1.3 is recommended. References 1.2 and 1.3 are the same 
document and are available from the two sources listed in Sect. 1.1 below, 
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*;c-rie,'ice shows thzt deterministic p~rfo'ormance m d  cost estimates usually 
prove ic optimistic when examined iu  the IigLi, of prevailin? trncei tainties. '&is 
p~jblen:: is &scusscd from the btadpoillt of actual e x p r i e ~ e  iu Refs. 2 1-2 3 

tainty Enalysis can  answer the fnllowing: given what I k i ~ o ~  aboiit m y  systsm 
1lloJel 3113 it.: rlilLe inputs, 1iOK.v far ofl can my possible f i p w  nf merit outcome 
%e from my- ea;lie; iiiinistic projection, and 5.. hat is the prohzhility of attaining 
a fiiturn value less than Oi- equal to the piojected delerministic OutcomP? Tile 
geiic~al mcthcliolog~ for cxannininp this questioli is ofki2 called fisk analysis or 
probabilistic analysis Different matheaaticd tools fgr pursuing probabilistic 
analysis exist, among ihcw are Seeisioil ti ec malysis, Montc Carlo simulation, and 

n hypercube method, Such method:. have been used extensively in the last 
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FIX? vcry simplc linear naodels i t  has always becn le to calculate Ihs: 
"propagation of uncertainty" from inputs to outpuls vis dir 
using tlic statistical pmamc (the means mxd variaiic 
tainty in each input variable 
and jixvolve nonlinear re la t i~n 

eo perrcwm h1WS 
le the appIic3tion 

Qst gnodle~s, hWniCVer, are lnorC comlph~x 
algoritlims, thus aonanalytic techniques 

The availability of high-speed di g-ital coaiputcr.; 
nte Carlo technr ues to a wide range of' scimtific, 

engineering, and economics prohltms inwolvang complex models and multiple 
rancertainties. 
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Incorporated. three of theos pi-vc=sses involved high-technology hardware still in 
the basic laboratory stagcs, m+ 2ach had been demonstrated 011 thc proof-of- 
_ui<nc;ple level. L4 nlimber sf the key sck t i f i r  and cost issues relevant to scale-up of 
these proccs5es 7,ve~e highly uncrzrtD.iii Oi- left to be detciaincd; hence, there was a 
n e d  for an economic asscss~wnt activity in paallel  iSr;ih R&D suitable to these 
con+ 1 I t' ions. 

By the late 1970s, budgetary considerat Y &dated that l90E choose only 
e pLocesses for further R&U. Xach cnntractor labolatory was asked 
ontribiite for 9w.t re&w certain critical basic information on its 

proposed procxs candidate. Martin Maietta's ~ & ~ ~ s s o T ;  the IJnion Carbide 
Corporatioii-Nudczir ihsrision (UCC-NU) at Oak Ridge :vas asqigned the task of 
rnodeliiig and assessing the tcchriicd ,md ecanomic aspects of the three proposed 
AIS grocesses Along with extensive process models, t h ~  Monte Carlo Ji-ives code 
heie described played a key role in the Ma3 '1952 DOE T"lead,c~r,ai 
choose the &4VLlS proc2ss for fuiihei- e:-@n 
1980s budg?tary piibleus again dictated ihat i)OE mzke a process dect ion,  this 
t i i nn  bekwecn A V L E  arid the a d v a i c d  p i s  centrifuge (AGC) process The Marliii 
Marietta E n e i g ~  SystPms Coipoiation at Oak Xidgc %as ;?ssigned the task of again 
modeling a d  assessing the twhnical and economic a s p &  of the two rjroposd 
processes. Along w i t h  eAkAiSise process and cost n-~ndrls, the Montc Carlo driver 
code again played a key ro le ill the Jiifis 1985 DOE Sea  arters decisicm to chvose 
AVLIS 631- filrther developmeat. Reference 3.9 briefly dessrib~s the results of these 
uncertainty analysis studies. 

TII 1985 the ri-rdhiid was applied to augment deterministic p1 ojeciions of 
busbsr pawe: costs for coal-fired and ILUC~CZT plants coming on line in t h ~  year 2000 
( l b f  3.1 0). Other Oak !2iJ~tSc/L'r3E-spors~~-~~ applicatiolls of the m 
'OW:? space p w e ;  Y O U K P ~  fa- ',he Strategic: Uef'eiLse Initiative (§Ill) (Ref 3.11), cost 
estimatirig for ECZ ~ P W  pradilction reactor (NTR) conrepis (itef. 3.131, and cost 
estimatilig for two advanced liquid me%l ceartor (LMX) concepts (Re' 3.1 3). These 
last two applications werc also involve2 in a DOE decision-support prncess 

3.1 Caries, Ir?l H., "How Wrong Can Your Calculations Be?" Petroleum 
Refiner, Vol 37, No. 10, pg. 129-1 30 (Jll i?e 1 958). 

3.2 Cui-tisb, J. H., et  al., Monte CulLr Method, National B U I ' P ~ I  of Standards 
Applicd Mathematics Series, Vol. 1 2  (1 951). 
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Monte Carlo sirnulatioil methods can provide probability distributions in the 
form of histograms for both uncertain input variables and output figures of merit 
from a user's model. This is accomplisliit?d by making repeated evaluations of the 
system response (via the mode') using input variable values drawn randomly from 
appropriate di stribintions that represent the projected st,atistical properties cf each 
uncertain input variable. After performing a. large number of such evaluations, a 
statistical distribution or histogram of system response is obtained. Mcnriingful use 
of the Monte Carlo method icquires a user-supplied systems model adapter! to the 
Monte Carlo code here Jesciibed. 

4.1 Mathematical Description of Computational Procedure 

The Monte Carlo simulation procedure coiwists essentially of five steps. 
Figure 4.1 shows a flowchart for the sirnulatjon prscedurc 

1. Inpitt.  For each indqmdefit  input variable, Yi (i = 1 through Ni; where 
N I  - total izumber of input ...... variables), a distribution must be defined which gives the 
probability of occuirence for any pzxticiilar value within the variable range. [It 
should be noted that most Monte Garlo users utilize the term "&str;bution" to refer 
to a probability density function (pdfj.1 'fhe types of distributions for each variable 
aeed not bc the sms .  The subject of deterninhg the diskilbutim type aid input 
values for a given variable is disctissed in Chapter 7 and Appendix A. 

2. Sampling: Via a random number generator arid the input distributions, 
ORMONTE generates an ensemble or vector, Yi (i = 1, NI) of randomly selected 
input values for submission to the mer's model. Each ensem.hle of values is unique 
and represents a diRerent possible set of occurrences. [In order for a random num- 
ber (a real numbcx between 0 and 1) to be utilized, the. pdf must be integrated by 
ORMONTE to form a cumulative distribution function (cdf) with a maximum 
cumulative probability of unity, Le., the area under the pdf curve. The cdf is then 
algebraically inverted or transformed such that an  input variable value or "return 
value" can be calculated for each cdff probability -value selected hetween 0 and 1. 
This inversion procedure is sho.e;vn graphically in Fig. 4.2 2nd is described in more 
detail in Chap. 5 and Appi?n&ix Cl. ..II..... The ~ ......... baseline __I. or rde'erenca deterministic case will ....._ 

_I never ----_.._I be exactly ~ ~ reprodi.lced ......._... in this snx i~~ l ing  process. 

3. Simulation For each iteration the model calculates single values of the 
figures of merit, and other variables internal to the model whose ultirnale distribu- 
tions are desired by the analyst [these variables are designated as Y, (i = NI + 1, 
NT); where NT is the total number of . input - -  plus - output variables. Note that the 

overall Yi vector includes h t h  input and output vai-iables]. I t  is assumed that the 
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COLLECT DATA AND 
ULAI-E D l STA Q 3 UTI ONS 

Ipdf iY ,  11 
RELATIVE 

PROBABILITY 

RANGE OF 
VALLJ ES ,Y 1 

Fig, 4 1 .  Flowe 
procedure for evaluation of a system subject to multiple uncertainties. 
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NUMBER 
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ORNL-DWG H A C - 4 0 0 2 A  E T 0  

I M O D E  I 

\ I 

/ T H I S  C U R V E  I \ 

Y,, Isw Y l  Y,. h igh 

PROBABILITY DENSITY FUNCTION ( p d f )  
FOR A INPUT LSISTRlBVTtON 

Fig. 4.2, Generation of a returii input value from a random number and a 
cuinulative density function. 

e?nsemble of input variables submitted is internally consistert 2nd does nnt regre- 
S Z I ~  a physically or logically kpnssible or rnizreasonable situation, especially in thc 
s m v  of the system pcrformame model. If this problem exists, the usel's model 
should be restsnctured lo avoid the generation of smch caws 

4. Itemtioil a d  Storage: Once the figures of merit for a given iteration are 
evaluated, they are stored m d  znother ensemble of input vahaer; i s  submitted to the 
USBT'S nodel. l'he xiumber of iterations 01 C ~ S P S  needed is depe~drrhk some:.ihat on 
the mode! and thg uses's desired Bevel of accuracy (see hppmdix B). If an in@ 
ensemble rsi~sisiing of the means for each inpiit dis t r lht ion is submitted to the 
model (a separate calculation from the Monte Cade simulation), a mean output 
value results. If during the simulation the output values for each fig-ezre of merit are 
stored and tbn statistical mean for all iterations is recalculated after each additioilal 
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0.5952 
O . m  
n.OP76 
0.Ws% 
0 . 9 9 2  

0 . m 2  
0.- 
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1 

Fig. 4.3 Sample output probability histogmiil from ORMONTE MVSS 
option. 

variables, the output histogram v d l  usually take the shape sf a. bell-shaped distribu- 
tion. This observation is t rue if the gexnetr ic  fnrrns nf the i ~ p u t  d i s t rk t ims  
submit,txxl to the mode: have single peaks. The generation of noimal or quasi- 
normal outpiit distdbution forms is a ConseqIience of the Central Limit Theorem of 
statistics. 

The BRMON'TE driver code is designed to pes&xm the repetitive data 
submission task and a h  the hist,ogriarn-plotting and output data analysis task. 
ORMONTE calculates the statistical parameters saich as staiidard deviation, 



15 



16 

types of distributions Within a given iui7 of OHMONTE: ~ i i ; ~ d  types 01 
distributions c a  be used for a set of inputs. 
Following completion of all iterations ComplGiiig the simulation, ths stored 
:lata arc analyzed b y  ORMON'YX, and probability histograms are piriated 
for both input and oritput vaiiables These histograms x e  yroduced fwf 
outprit to the standard piriter eoiinecfxd to the z s d s  computer system. 
ORMONI'E can d s o  save the iiistogsm data fix m e  w i t h  plot programs 
such as DISSYLA, CHARTMASTFX, ILUWARD GWAPHICS, or LO'l'US 

&o includt-6 in this ORMONTE paekzge are ne<,% compute:- tools for the 
acquisition of raw probabilistic inpiit data and for the charactei Lation of 
such d a h  This PDA (Prebability Data Aslalysis) prkage requires the use 
of I,OTUS 1-2-3 aiid the softwarc pro-vided along w&h the ORMON1'E 
FGIU'RAN source files A major function of t,he "probability wheel" feature 
of thc PilA package i s  to elieit probabilistic P Z S ~ O ~ S ~ S  from an expert. 

5 .  

1-2-3. 
6. 
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s the "base case" IX ~ ~ t e ~ i ~ i ~ ~ , ~ ~  input data fbr i ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~  the 
Y-7ector (which is 

MQDL -- Reads the nonsen 

- Prints out the dat 
anytime it is new 

cvelop this routine. 

lg defines the desired 
thc ennccrtain input figures of merit 

lation of a single- 

output variables ~ ~ - ~ e c ~ ~ ~ ~ : ~  conespo 
fkgr a given iteration. 3"i:sseratidly, 
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A 50 charactcc title identifyiilg the data set 

'l 'he input uliit used by SUSROUTTNE 113MAS'F for sensitivity 
variable iitializatiorn (INMAST = 8 far the example problem) 

'iiic iiipiit unit uses by SURROIJTLNE XCDMODL to read in the 
noli-sensitivity ;ala for the 11ser's smdel (usually INMA:C,T T 5) 

Thc inpait, unit used to 1-ead in instr.&ions and datal for thr single- 
v d w .  sensitivity study optioa (ISVSS = 11 for the example problem) 

The input unit used to i*ead in instructions mid data for the multi- 
variable sensitivfiiity study optinn (IWSS -z 9 for tlie example 
problem) 

T ~ P  input uliii u s d  to read in imt i  uctions mri Gat8 fir the elasticity 
aulalysis optioz (TELIS - 12 for the exampls: p-oblersa) 

The output unit fh- nor~IiaI OXMON1TZ printing ( u s ~ ~ ~ a l l y  IPPtNT L_ 6) 

The outpiit unit foi- siltpiit data which i s  savcd for off-line plotting 
(1PLOT 

'l'he oiitpiit unit used for del;iiied dcbugghg printout (IBIjG 2 141 

-- 

1 5 j foor SVSS and MVSB options ordg 

[Y-vectar piintL.llt] 
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The last varia 

NTQT - .o output) ~f sensitivity variables to bc rcad in 
ST. "his value must be smalrer than the sin? 

t%rmnsl or eqaral 8,n 

.3,2 s NE 
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Y-vector. RDMAST also reads the designated variable names corresponding to 
each variable i ~ l  the Y-vector, OMMON MASTEW statement makes the 
conneci;en kretwcen the values designated hy the val-iahle r imes  in the user's iriodrl 
and the Y-vector utilized b y  the OHMONTE sensitivity drivel- options. The data are 
read in fmn  data set MASTN1.UkT (example shorn on Table 5.2; note that each Pine 
of a data set is called a "card"). in addition to a title card (50 characters maximum), 
NTOT initialization data cards are read in via the DO-loop in RDMAST. This fills 
in vector elements Y(1) thrfiiag1-n Y(N'I'0T). For the Y-vector values in this group 
which represent output vaiables, a value of -1 is entered. The varhbles must _I__ be 
ordered .___-___ the same way as __I they are in the /MAS'TEI?f ... . .. COMMON block with inpiit _I 

variables . ..... ___ followed by output variables. . ..- The following variables are read from each .. 
card: 

NA.MEN(l,J) The mnemonic variable name for variable Vi) chosen by the 
USCP and used for a seinsiii-vity vziable name in his model. The 
index T is the s a n e  2s that for Y(1). Since N M E N  has a 

CIIMLUX'EIWI Data type, the index J (incrern~ntcd from 1 to 

6) allows a six clnclracter maximum vziablc name. If longer 
names are desired, the range of index J car1 be increased to 8 by 
altering the source code. 

The numerical value for this input element of the 76-vector, for 
output variables enter -1. ("be model will later calcdate the 

miinistic values for Y-vector output elements.) If an 
i q u t  variable happens to have a value of -1 the code will know 
that the vwiable is still ai input rather than an output, siiice a 
later data set (MVSS.DAT9 actually defiines the number of 
inputs and outyuts. 

- 

Y(I) - 

Table 5.2. Sample input data set 
for SUBROIJTINE KDMAST 

T I T L E :  14 VARIABLE TEST CASE: DSN-MASINI .DAT 
ALPHI 200. 
ALPHZ 50. 
BETA3 10. 
BETA4 1. 
ZETA5 1. 
EXP6 1 .  
G P N W ?  8 ,  

GX.1WW2 10 . 
P H I 9  18. 
E P S l O  1. 
NUYI1 1. 
PERF -1. 
PCOST -1. 
CUN r - -1. 
___ 
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5.?3*4 



3 2 



25 



26 

Per fo rmance 
Drivers A h P i-s i 

GAVM.98 
NUM11 

Per for  rn an ce  
Algor i thms 

Cost -Scat ing 
A lgor i thms 

AlGori t h n i  

CLPNIT 
(Unit cos t :  
the Major 

Figure of M e r i t )  
~~~~ 

PERF 
(Process 

Pe r far manc e 1 

i ig i j res  of rvie:it 
(U nce r ta i  (I 0 u t  pu  i Va r i ab I es 1 

Prod U c t  i 0 n 
c o s t  
Dr ivers  

E x a m p l e  
Model 

Fig.. 5.3. ExamplP and schematic of user-provided MOT)EE subroutine and 
INCLIJUE file. 
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Pig. 5.3 (continued) 
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STJTm@BITiNE SYRXUP is an automated driver for performing selected 
one-at-a-time cx single variaLle scizsitivity studizs (SVSS). Ths  step is usually a 
precursor tu MV96 in that it c a n  be used to establish in advance those input vari- 
ables which have the most lewaage or img;.,-t on thc raesirsd output figunes of merit. 
The dala p-roduced by this bdroutirrb-: can E x  hipveri for later plotting in thc form 
shown b j  the sapnplc $ot on pig. 5.4. .!% typical set of plots (for* the exmpk mode! 
in i?ig 5 3) would be cf thr form CUNW VR ALPS1 ~ CTJ-NIT vs AIAPH2: CUNIT vs 

where (using the variable nazes from the example user's model) the 
unit cost CUNI'I' is o m  of the three dcsircd iigurcs of merit, and AEVkI.1, ALBH2, .... 
NTIM11 , ~ T P  uncestajn inputs. [ N ~ t e  that in the driver cob, which includes sub- 
routim SVSSOP, CUNIT is rtally Y(14) and ALPMI tl-irsugh NUMI1 are vector 
elements Y(1) through Y(1f) ~espectivdy.1 

ORN?. -DWG 89 -4202  E T D  

3 

2.6 

2 

1 .E? 

1 

8 6  

6 

4 F: ----. ...--.-- ................... ----.- ........ - .- 1 :  1- .&' 

4 ~~~ ~ i 

3.6 I , ! -  - - /I- 

I I I I I 
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Table 5.3. Saniple input data set for SUBROUTIWE SYSSOP 

P l o t  1 

P l o t  2 

P l o t  3 

P l o t  4 

P l o t  5 

P l o t  6 

P l o t  7 

P l o t  8 

P l o t  9 

P l o t  1 0  

Card # 
TITLE: SVSS CJRIVER T E S T  C A S E  DSN=SVSS.OAT - 1 .............. ........... .................... 

2 00002 003 12 13 14 
3 001 ALPHl 06 100. 150. 200. 300. 
4 400. 500. 

000 

5A 001 
h 002 100. 

__ 5 

00001 003 12 13 14 
100. -- 2 

3 002 ALPH2 04 25. 50. 0. 

4 
5 000 
2 00001 003 12 13 14 
3 005 BETA3 04 6. 8. 10. 12. 
I> 

5.. m o  .................... .................... .̂ __ 
2 00001 005 12 13 14 
3 001, BETA4 05 .n .9 1 .oo 1.1 
4 1.5 
5 000 
2 00001 005 i z  '15 14 
3 005 ZETA5 05 .75 0.9 1. 1.1 
4 1.2 

.................... .................... .................... - 

......... .......... .................... .................... ~ 

.................... .................... .......... 5 000 

2 00001 003 12 13 14 

3 006 EXP6 05 0.5 

5 000 
4 2.0 

?5 1 .o 1 . 5  

2 00001 003 12 13 14 
3 007 GAMMA7 05 5 .  6.5 a. 9.5 
I) 11. 

............ ............. . .................... .................... 5 000 

2 00001 003 12 13 14 
3 008 GAMMA8 06 5 .  7.3 10. 14 .  

4 18. 22. 

5 000 
2 00001 003 12 13 14 

3 
4 30. 

2 00001 003 12 13 14 

3 
4 1.3 

5 
2 00003 003 12 13 14 

009 PHI9 05 5. 12. 18. 24.  

ll.ll.l..l ~ ~ . .  .................... ...-...... - ....... ~ 

000 -... A_.___ 

010 E P S l O  05 0.8 0.9 1 .o 1.1 

. .......... .......... 
000 

011 RlUMll 05 0.9 0 . E  1. 1.08 
1.15 

P l o t  11 ( 5A Ool 
h 002 100. ., 

llll--ll-__- 

5A 002 
6 001 300. 
7 002 100. 

Curve  1 

Curve  2 

one c u r v e  
pe.  p l o t  

one  c u r v e  
p z r  p l o t  

one c u r v e  
p e r  p l o t  

o n e  c u r v e  
p e r  p l o t  

onc  c u r v e  
p e r  p l o t  

one c u r v e  
p e r  p l o t  

one c u r v e  
p e r  p l o t  

one curve 
p e r  p l o t  

one c u r v e  
p e r  p l o t  

Curve  1 

Curve  2 

Curve 3 
\ -  ' .......... __ -. .......... - 

.......... __* ......._._I- ............. EOF oo%o 
.- 
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NFOM is the? nanmber of figures of merit (or nates) which will be tabulated 
(In the example t are three figures of 
IT. Pn this case N = 9103, and all three 

of ALPIIP. (For printer width reasms NFOM is 
L may have more than 5 FOMs, but odgr 5 can be 

be tabulated as 
ted to 5.1 'Phi? US 

printed on a summary table by SVSSOP fr,r a given case. 

FOM(I) is the pointer to the WOlLI varnabl be printed, Each 
the Y-wctar index of the ciesircd * 111 the example 
=I%, FERF=Y(I 2), PCOST=Y(P 3) IT=Y(P 4); therefore 
~~~~~~~~~, and INT)FOM(3)44. Up ko iive ~~~~~)~ ele- 

ments can be specified. 

I C2rd _._  ̂
3: This car contains the data for the sensitivity input v a ~ a b l e  which 

ivnuld appear on the abscissa of a plot. 

INDEX is the Y-veCtfx index of that vaPia le. [For the example ALP 
therefore TNDEX=001.] 

NhMEN i s  the user's name for the input variable (AI;PW1 in the example 

p~oblemj which can have six or less CHA AC!'FER*l characters. 

a array containing tihe 1 to 8 differ- 
DEX) to be submitted by SVSSOP to MODEL, 

AD(6) are read 
e. Card 3 can 

accommodate the 

( 5 )  through r n E  ($1. This card is 
8 bl2m 

Card 5 and 5A: NJMCHG is used mainly for parameter definition for those 
cases in which more than one curve appears on a M VS" -y[IrnEX) plot. 
NUMCWG tells SVSSQP how many input variables in th vector will be altered to 
nonhaselim values ibr the requested curves, Usually DO more than ~ W O  Y(I1 values 
(I cannot equal INDEX) are altered for a parametric study. Consider the fifth card 
in the i?rs2; plot of the example pivblem (Table 5.3). NUMCHCL 011 card 5 for the 

LPHI sensitivity study, i.e., no Y(I) values er than y(1) are 
aseline values. Card 5A tells the code that for the second curve, 
r which K#P, will have its value altered, Le., INUMCI-TG = SOP]. 

~ -_I.--.I. 
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.... Card ~ ..... E; through Card (5+-MTJMCHGj: ~.~ For each of the NUMCMG Y-array 
values which are altered tho followiiig mi js t  be pro.v<ded: 

DTD(1): 'lhc Y-vector index of tine parameter to be altcred. IND caiiliot be 
e q r d  to LNDEX. C a d  6 csntai-iis INU(1) and Card (5+NTJMCMG) contains 
INU(NUMCEG>. In thc example problem (plot 1: cixme 2)  ALPHI is the sensitivity 
variable arnd hLPrli2 is the paraneter-; theiefcze, since ALPH2-Y(Z)j iNn{l1=002 

VhL(1): 'This is the sonbasdine value assumed by Y LiND(T)I for- this particu- 
lar curve For the example problem (plot 1, cui-ve 21, Y [LND(2>1=100. 

-- Next Card: I If NUMCRV.GE.3, a sequencc of c a d s  starting with a card 
similar to card .SA but with rlew datz is submitted This will add a r ie4 \7  c u r ~  to the 
plot data. Plot I1 of the cxmiple p-a,SPem (Aippcndiix 3) shows such a case. 

all the data fci the N?!MCKV cumes on a particular plot have been 
read and the cases calculate?, a new sequence of cards c a i  be read svhlch \.y?11 
produce plot, data for the next input sensitivity variable. Each new sequence (or 
plot) will start with a car6 similar to C a d  2 ahnve. c ~ y  second 01" greater CULVC 

within a given plot will begin with a c a d  similar io 5A above. At the end of all the 
stacked data a3 end of filc (EOF) c a d  typed "00000" will cause the pog iam to exit 
SVSSOP and r d u r n  to the MAIN. 

SVSSOP does not p - f o i m  any matheaatically compkx tasks. it is merely a 
dri-vc:. which k e e p  track of variable ifidices and ilaiiles, and it autoinates what 
wculd De a tedious a d  cumbersome tzsk involving many s e p z a t e  runs of MOL)EI,. 
Several DO loops accomp:lsh the &-iver task and the logic should be easily under- 
stood from examination of a souxe listing. Table 5.4 shows tlir: example problem 
unit IPLOT o u t p i  data uscd to preduce the SVSS plot in Fig. 5.4. I t  should be 
noted that numerical data prodixced by MODEL will be printed for every poilit -iised 
to produce the Fig. 5.4 plot. For unit 1PPtB-T output, SVSSOP p~irits a header for 
each MODEL outuut 5gLire of merit, identifying w-hirh plot, curvc, vziable, and 
point valuc the case repesents (see sarrnple output in Appefidix D). The plot data 
SulIniaXy (Table 5.4) is priated on un i t  IPLOT and is stored in a file FOrZTi5 for the 
example problem. Since the plot data format is uniform, a graphiks program could 

to ailtomatically access this data a.nd pn?duce graph 

- The . . . . . . . . . . user should . . . . . . . . . . . . . . . . note . . . . . that..fo?,,.gy-~ inciv p lot . . . . . . . 3ny, . . . . . . ,. .... 
Y-vectcr values ~ P C  reset to their Saseljne values -r>rior to i*esubriission to MODEL. 

h 9V!s;SOIJ above the __. use1 ehmses the iionbaseline values or points for 
whatever Y-vector input qariahle he is exmihing. In ELAS'?' the ORMONI'E driver 
chooses two values for the icpuf, Y-vector variable, one 0.5% above the baseline 
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able 5.4. P"Orti44n of SVSS summary table 
produced by SU 

f 
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Data: t . , lAST.DAl  

TITLE: SaMPLE ELASTICITY A N A L Y S i S  DATA OSE-EL5ST.DAT 
$ OF INPUTS: t 111 6 nF FIGS a i  K R I T :  [ 31 

/MASTER/ Y (  ) I ‘ W C E S  F c f .  5:FS PF E.F’;IT:lZ 13 14 00 00 

I 

PiKF Unused 
I a d i c e s  

8.5 

0 

-9.5 \ 
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3. 

4. 

5, 

6. 

h DO loop (111, NFOM) with the foEBowimg staf,emeni now captures thc 
slightly deviated FOMs- 

The s m c  proccdurc is repeated for a 0.5% upwzrd deviation in Y(J); thus, 
creating YCr/,J) and YTOMG(1). 

Thr diikences or deviations are now cdedated: 

If YDAS(J)=O, a 'rLarning message foi division by zero is pinted and no 
If Y MAS(tJ&O the aversge fmactional input deviation is elasticity is calculated 

calculated. 

7. 

8. 

9. 

F'igtxre 5.6 shows grapliically how the elasticities and slopes are calculated 
for one FOM and one input. .,4ppen&x D contains a partial output of ELASP for the 
example problem. Figure 5.5 displays in graphical form the parlid results of 
XiAST for one figure of merit, PERF, in the example problem. 
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'8FoWIG:I) .......... \.\I...,.......\\\........~..... ..,... \......AS. ... . 

i YL6& 
j /  

Off-baseline 
Pwlnt 

6, 
lysis 

has the capability of handling up to 15 b p u t  p h s  output1 vari- 
fferent types of probability distributj on fcw the inputs. Basically 

SSOP perfoms the fo1Bowing tasks am1 this order: 
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5. It  tempoixily stores the P-vectoi for   very itciation until all iterations ale 
complete; the resulting Y-ai.1 d y  contains M Y.vectors, where M IS the number 
of iterations. 
TJsing thc Y-atidy data i t  performs a statistical analysis on every in~u'c and 
output variable. 
It divides the railge of occurrence for czch ilncnrt&r1 variable into equal size 
bins and pl-oduces frequeccy histograms for all variables. 
I t  inst1,ucts the printer to write out the histogipms and statistical analysis 
for esch variable. 

6. 

7. 

8. 

The sdmxitincs called by MVSSOQ and the vaiioiis steps listed ahwe will be 
described in peakc,. det&1 below. 

- 
tc'or deteiuknistir estimates and S'JSS studies 2 sin& mlug fer each of the 

Y-vpctor variabks is specihd ixi the input data 111 an ?v"IySS a range of possible 
values axid the piiobabJities of these values witliin that range are specified in the 
input data ility disti+buLion and t,he choice of its 
parameteis $-lovide the MVSS Monte driver with the inforniation needed to 
assign t,he probabilities with tilc C:PR; 2. 'ik riain function of RDMVSS is to 
read in thz Jistl5htion type 2nd p i i l d ~ e t r ~ ~  for each inpikt varidde of interest 
(which mList, be one of those in the input ptortion of the Y-vector). 

'l'iie choice of thi: type pr 

The MVSS data appear on file MVSS.DAT (example from Appendix Tp shown 
on Tablo 5.5) and ale z-ad on unit TMVSS. instructions for data entry appear on 
COMMENT statemrnts witliiii RDMVSS; however, the instructions wdl be r e p e n t d  
lie1 e. 'The followhg lines of data are reqjliid: 

Card #2* NITER. The i:;rirr*ber ~ f '  MoiliP C Z W ~  itentions to lac: cornpkted by 
the driver. NiTER is a riglit justiilcd 1WTEGX-i variable appearing in ccpli~mns 8-13 
and has a rznge of 1 to 99999. If a negaiive sign appezm ii7. coluffin 8 (in front of 
Nl'YER), pLitoui of i& varia3le probability histograms is suppressed. NITER is 
5000 [or the exafiipG problem. 

1PX: The niimber of desired iterztions foi which 2 full printout froin th2 
W K T X  statenents in MODEL on unit IPRW13 is produced. For mcst applications 
1PR=O. IPPt is 5 f o ~  the exampk p r ~ b h n .  

N'P'ER: l'iils variable is nct preseiitly used. By use of the correct tests 
involving ITER a d  IN'PEIZZ, the user could generate full printout for evcry nth 
iteration. (ITER is the iteration counter and has 2 valuc betwen 1 arid NiTER 1 
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'INDEX: The Y-vec'cnr index for the variable whose &stnihntion parameters 
will appear on this card. The nunibes ef cards of this type must equal the number __.._ of 
-. sensitivity .................. input variables. ......... INDEX can have m integer value from 1 to 149 niid 
c j ~ ~ i p i e s  columns 3 t h r ~ i ~ g h  5 (right, justified). "less;.: c a d s  should be ordered 
sequentially with the input variable Y-indices. 

XNAME: The mer-clnose:~ -. name ......... (not value) for t,he input variable Y(INUEX). 
XZNAME should be the same as the variable name NAMEN (i,J) read by SUB- 
lKlBTTIFJE RDMAST (six characters or less). 'i'he same comments appearing in the 
last paragraph in Section 5.4 apply to XN,WlE as well as NAMEN. X N M E  
occupies columns 7-12 (right justified3. 

J " E :  J'I2TPE identifies the type of distribution whose parametws are to 
follow. If &TYPE is negative, a parzneter-defined distribution is called. For such 
disiribintioi-xs, nuathprr, atical procedures in SIJBXOUTINE XVAL UE are invoked tn 
build up the FrobabilityN-vdue relationships from the parameters. In esse~rce 
these are what might be called "canmed" or pre-packaged distributions. ' P ' h  integel 
value nftJml'E, if a negative value fr'ron -1 to -9, designates the functional form of 
the probability function as shown in Table 6.6 below. If JTYTE=O, Y(INL9EX) will 
assume a constant value, 2nd no pmbability distribution is sampled. Use of this 
JTTPE=O feature allows the user to input a deterministic value for YUNDEX) 
different than that read in by SUBROUTINE RDMAS'd' for the baseline case. If 
tJ"YPE is a positive integer, the probability distribution is a user-constructed or 
empirical histogram with the positive -s.alue of J'I'YPE indicating the numher of 
histogram boxes of equal width. In this case tine probabilitym-valuc relationship is 
directly supplied in the data rather than being calculated from distribution 
parameters. IJp to twenty histogmm boxes can be iitilized with additional cards 
needed to input the probability associaled with ~ a c h  box. JTYPE occupies columns 
18-20 (right justified) 

Xl ,  X 2 >  X.?: and X4: These values arc the parameters which mathematically 
d~f i i ie  the distribution to be sampled for variable Y(1NP)EX). Table 5.6 shows each 
parameter depending on the value of JYTPE. (Figure 5.7 shows the ge=.metsic forms 
for each distribution 2nd J'I'YPE co~~espoid ing  to the data in Tabln, 5.5.) These 
parameters can be entered in floating point or exponential format using columns 12 
characters wide (Cols. 21-32; 33-44; 45-56; 57-68). Use of floating poilit entries 
avoids the plsblem of right justification. Card 5 has "v" pointers lyhich assist in 
keepirig these entries within their designated co l~mns .  Note that for some distribu- 
tions, X1, X 2 ,  e k  may actudly designate 1ocatioiis on the abscissa or Y(1) axis 
With pdfs, do not think of Y(I) and X as a set of rec tanghr  co-ordinates. 

Output Variable Designator --.I.-. ........ Cards: ___ After all input distribut,ion parametcr 
cards have heen read, RDMVSS requires definition of tine output variables or figures - 

of merit for which probability histagrams are to be plotted. A card similar to an 
input card accomplishes this task. 'The followring variables are read: 

INDEX: The Y-vector index of the output variable (Columlis 3-5). 
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# I  1 able - 5 6. U c f n h g  parameters fo:- non-histogmm input distributions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... 

TYPE: of Di.stl+;ibutiofi J'rypX x1 x.2 x3 X4 

Constant 

Triangle 

0 

-1 

Normal -2 

i 1 ,___ 1 i rlllcated normal with upper -3 
limit 

Log-transformed triangle -4 

Log-transformed normal -5 

Trapezoid -6 

Triincatcd normal with lowei - 7  
limit 

'Truncatccl normal with upper -8 
and lnwer limits 

IJniform -9 

Value 

Mode Min Max 

Mcan 

Mean Max 

Mode Mill Max 
( =Median) 

Mean S-parai~~etcr 

Min Vertex-1 Vertex-2 

Mczri Min 

Mean Mi n 

Miri Max 

Max 

Max 

XNLUvE: 'fhc use~-desig;isicd output variable name (Columns 7-12). 

J'I'YH'E: Set J T ' Y P E d 9  to designate ai output variable whijse probability 
histogram it; to be pi5nted. 

JTYYE: Set J ' lY PE--88 to designate an output variable whose probability 
histoglam is not to be pi-iimted. 
(Columns 18-20) 

No distribution parmeters  are necJcd on these zaids, since for these vaffi- 
ables iiisstributions d l  he built up b y  storing mid sorting Ihe output of  the numei- 
ous iterations sf MOl9I;;L The ^ _ . _  number of *ut cards shoiild equal the ninmber of 
output variables, 2nd ~ I__ the cards shmld be in sequmtial order with the Y-indices of 
the outpiits. The program knows &e number of ?;juts and num%r of outputs 
counting the 1-1 srnher of ca;-ds for both. 
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of in t e rns  of most like337, most pessimnisfic (or optimistic), ox most optimistic (or 
ppssimistie), respectively. 

T k  l w c  paaameters definirig the arimd Sistrihution am the mean (Xl or p) 
and the stnn&:ard d&ation (E or 0). SiriCS the domain of the normal distributioil 
extends tm infinity in both &irec'eions;;, some tmiicatioii of this distribution must be 
used for this computer application. The rcturu values are limited to a range of plus 
or minus six sigmas (us or standad deviatious; from tlie rn~an.  'Yo prevect the 
occurrence nf negative retam vali:ea witbin this range: the lowest value a positj v e  
retam vala:e csn assurnc is the rnearJ50 (XlEia or jiiS0). Other tmncatioris of the 
ncirma'l diskibutioil's tails are possible if the options J'TYTE--3: -T ,  or  -8 are used. 
The 6 sigma witcPSon insed for this option (Jl7'i%E=-2) includes 99.99% of the points 
wlr;ch WOUH be reyresented by a distribution where no truncation of tails oc~uics. 
Ne@ive valiies for Xl 01 X2 are not pemitted. The mathematical methodology fm 
yeaerating tlw 11mma1.Iy distribated random iiiirmzknss is d ribkt2 in tlic: section on 
SUUXUUTrnT, X-VhLxJE. 

Thhit? variatioii of the normal distiribution requires tlirer parameters for its 
definition: Xl e m ,  X2=standard deviation: and X;d=input variable v a h c  for 

ifiincnted. Note that X l  and X2 have the ~ ~ ' i i i e  defkitions as for 
elre JTWE=-2 option dwvc. X3 must lie within .! 6 sigmas of the mean (XI! as 
above. Negative d u e s  for Xl  through X.? are not, p t - L t t c d .  If a aom2l ly  distrih- 
ait,cd input value g ter than X3 i s  returned f'om subroutine XVALTJE? it is &s- 
carded and a m w  randcm input value is chosen. 

which iiight tail 

This variatiorz of the triiacgle distribution results when the logarithm oE the 
input, variable on the abs&sr, is assumed to be triangularly distributed, i.e., the logs 
of the triangle h s c  lengths to thc le% and light of the mods are used in the ealcala- 
tion of B return value. As th the br;aii&a disir-ibution (3TY2"E=--L >, the three 
pa-arwters X l ,  X2, and X3 are the mcdc, minimum, a d  maximum input variabk 
valucs i-cspcSvely. This Jkfribcltion has the pmprrty that the medim is forcgd 
closer to the msdq i.c., the 1o;atian of the most probable value teiids to split the area 
b ~ n m t k  the curve into tv+a quasi-triangles of Jl'j Z q U d  llle haIHIJIf2 Illude 
obtained fi*om this dist&iitiorn differs sem ew from the pmmeter XI depmnding 
on the skewiiess, i e., the relative distar~ce ofX2 froxn X1 compzred to the distance ef 
X3 irom XI. If the value of X 2  = IK3 the mode of the resiiltaiit 'log triangle sample 
d! approximate 1.0. This is B useful distiibution for costs in which the high ernd 
valse of the range is further f~wm the mode than the Bow end value of the range, lout 
w h ~ r e  the U S ~ Y  wlshcs that the rn value split the sample such that 50% of the 
mmpled paints (costs) lie &eve the nwde and 50% of the points (costs) lie below the 
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these are merely the endpoints of the variable's allowable range. X1 is the mini- 
mum and m is the maximum. 

The user must determine the relative probabilities fix each of thc N boxes 
constituting the histopam. These boxes must bc of equal width, and the relative 
probabilities or fractiles must sum to 1.0. The input card descriptkn above explains 
the input parameters and their formatting. Note that this distribution can be used 
to approximate other distribution forms not included in the "canned" distribution 
list abwe. As an example a Weibull distribution could be represented by a series of 
narrow boxes with heights drawn to approximately fit the shape of a Weibull c~irve. 
Dividers a d  a i~iler can be used to determine the relative probability values. The 
user should also note that SUBROUTINX EDMVSS scales the relative p~*obability 
values that are read in so that they slim to 1.8. Figure 5.7 shows a sample his- 
togmill with five boxes. 

SUBROUTINE PR1NTX merely prints out a table of the input variable 
distribution parameters read by RT)MVSS. When the probabilitics associated with a 
uscr-defined histopam (positive J;PTTYcPE) are printed, they are printed in cumulative 
rather than relative prohability form. The two large arrays LDTYPK and XUATA 
are used to ordpr, identify, and transfer the pararwter data. 

5.7.4 SmpTzOvTm UE: Calculation of return values 
from the input distribution parameters and the 
random numbers 

XVALUE 1s esscntialally the lieart of the ORMONTE code in the sense that for 
each iteration it selects the random values for the scnsitivity inputs submitted to 
NOBEL. WGth the assistame of a random number generator, XVASATJR makes sure 
that over the course of a Monte Carlo simulation the input samples actually drawn 
approximate the distribution forms specified by the parmeters read by RDWSS.  
The random values for the sensitivity inputs are usually called "rcturn values," and 
for each Monte Carlo iteration, the input poit:~on of the Y-vector or ensemble of 
return values is submitted to MODEL for calculation UT figures of merit (the output 
portion of the Y-vector). 'I'his 
mathematical pre~cess (using a uniformly cIislribs_lted ra~~dnrn ~ i l ~ ' r 3 e r  h ~ t ~ e m i  0. 
a i d  1 .O in coiijjunction -4th disti-ibution-de@aing parameters to genei ate return 
values) is known as inversion. This section will explain how iiiversion is accom- 
plished for each distribution type. (The generation of uniformly distributed random 
numbers i s  discussed in Appendix E.) 

Figure 4.1 shows this process in schcmatie forix. 

A first step in most inversion techniques is t,o convert the specified relative 
probability distrilnution into a cumulative distribution. This task is accomplished by 



hlkgmtioa of the f11nction efining the relative ~ r o ~ a ~ i I i t y  dist.i.-ibu 
Y (the input). he total area under the relative probability curve or 
density functio must be equal to 1 .OO. The area from the left endp in t  of the pdf to 
any location Yi on the variable range beneath the pdf curve envelope (on the 
abscissa) must be number greater than zero d less than or equal to 1. 
value is h o w n  as the cumulative probability a represents the probability 

IF will have a value of Yi or less. If the cumulative probabilities are plotted 
against the variable range, the familiar S-shaped cumulative probability curve 
results as in Fig. 4 2  The ordinate of  this curve has a maximum value of 1.0 aid a 
minimum of 0,o. 

e uniformly dist om number (UDRN) also has a range of 0 
artkular LT&IDRN value within this range (e.g., 0.6781) has the s 
uwenee as any other value (say 0.0231), if we now say that our TJ 

sent23 a curnulati 
1, can assoeiati;isni 

ility value or cumulative density function 
Ui> axid an actual value of the input, Yi can 

be made via the S-curve as shown on Fig. 4.2. If this association process is repeated 
many times, however, the analyst will soon note that ultimately the values of Yi 
chosen, i.e., the rpturn values, will not be uniformly d i s t r h t e d  along t.he abscissa 
(UPII@SS the Blniform d iibution f o n i  was requested). The tribution of the 
return byi) values will >. U-values will 
tend to group mo often around the region ofthe S-curve which is steep and less 
oRcn aruund the tter regions (see Fig. 4.2.) The JTYPE chosen fbr the input pdf 
(and its parameters) determine the shape of pdf(Td,) and therefore also for c a y i ) .  

s and cdflY,) assure that over the course of the Monte Carla simulation, 
rn value sample histogram approximates nicely the shape of the parameter- 

end on the shape of the S-cul-ve or cd 

quires a floating point unifo 
Far mainframe computers, a 

ly distributed random number 
ilt-in library function call such 

ly a new UDRN every time it is called. For Personal 
Computers such XWAT series, the user must supply his own UDx;N 
generator. The t p used in the machine will affect the UDKV gencra- 
tor algorithms, since these algorithms are based on the overflow characteristics of 
the PCs internal arithmetic. The UDIW generator supplied in the actual coding 
(f'iles RANSET and T C T W )  is writtcn in both FORTRAN axid machine language 
for purposes of C:PU time enhancement. It is applicable for an IBM-PCIAT OF 

ccmpatible wi n 80287 processor and was written by T, C. Tucker of Martin 
Marietta Ener stems. A short description of this UDEW generator and others is 
given in Appendix E. 

rs require use of a ''seed" argument to start generating 
s integer argument (IU in this program) is set once in 

AL'CJE and is regenerated by the U RN generator algorithms for the second and 
d1 subsequent random numbers+ 
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Since the disti-ibintirlas based i i n  variations of the normal distribution have 
complex functiorid idationships betwwn l'L)F(Y), Y, p, and 0, the algebraic calcula- 
tion of Y fi om CnFiqX), 1 1  B nd 5 (i.e. invet $inn t would be veci difficult aid probably 
require an iterative numerical i6uti.m. If a normdilly disti<buted random number 
(NULW-) viere available, the retum value Y could ire cdculated in terms of the two 
parametcrs p and c-i as follows: 

where 

/A is the mean ( X l  in the HLdMVGS parameter list) 

e the standard deviation (X2 in the 1t3WIVSS parmieta  list) 

psI)RN is cssentially the mxmber of stalidard deviations awqy from thr 
rn~an, p, occop;ed by the input varkble (retun1 value) Y,. FIJNCTION RNOR 
calciilates a NDXN froin a series of UDRNs by use of the Centra! Limit Theorem of 
Statistics. This theorem states that unde: rather general cnnditioas, sums and 
means of samples of K U ~ C J ~ B  mmsilrements (or values) draw3 from a population 
tend to possess, approximately, a bell-shaped or ilormal distribution iiprin repeated 
sampling. ItNOR takes l hc  rlumber -6.0 and adds to it twelve diEermt TJL9RNs (all, 
of course, hetween 0. and 1.0). If this call to RNOH is repeated many times and ,a 
large ntamber of UDKNs are available, the NDI'LNs calrbilated will have a normal 
distribution with a sample mean of 0. and dl lie between -6.0 and 6.0 It can thus 
be stated that a given NDPtN tells how many standard deviations I(, lie3 from a 

given mean and that Y, will ilever be m o w  than six s tandad  deviations away from 
the mean. l'lr~s lirnitation is i d .  a pnohlein since 99.99% of all possible occuvrences 
will bc covered It should be noted tliai somz mainfraiiie computers have a libvav 
fuc t io i i  capable of supplyjns NDI'LNs. 

For each iteration of a Monte Carlo sindation, MV'SSOP calls XV,4LUE 
once. Each call to XVALIJE geiier ates one input eriscrnble 01- partial vector, Y, (i = 3 ~ 

NI), of return values which are thcn transferred to MODEL via the Y-array and 
COMMON/ MAS'P'EW. A loop using iNDEX from 1 to NTOT or NVAR'L' (the total 
number of sensitivity vaiables) controls the l o ~ c  of XVAIJJE. For each input 
variable INDEX (the Y-vector index) is associated a .J'I'YPE which selects the correct 
inversion algorithms for the spec~resl distlihtiiun. If JTWE--99 or -88 is 
encountered, the variable is ail output variable [Y, (i > NIcl)] zrd no inversion is 
necessaiy. in the FOKl'RAN cgdinAfor subroutme XVALIJE the g:cne::.ic name for 
-__- the retirrn value being calculated ~ is X. After inversion the pzrticular Y(1NDEX) of* 
Y, being calculate2 is assigned the valuc of X and inversion of the next input distri- 
h t i o i i  proceeds. This piocedure is repeated clntil all of the input Y-army positions 
have becta filled w3th return; -dues .  'The "X" nomcnchture wdl bc used for the 

. -  

~~ - . 
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k'or the trapsnrdsl disti-ibutioil ( P J m E  -6),  calculation of the r e t u r ~ a  value 
is accoriiplished by breaking the tiapezoid iliio iw-o ti-iangles znd a uniform distribu- 
t im  The geometiic an:* d g b r  aic details of the inversion are i:icluded in the 
COMMEN'I' statements within the source code listing. 

Calculation of a Ietaril value fism a user-defined liistogkam [ J f P E =  I 
(liiimbei. of boxes)] is also veiy straiglitfo :d Calculation of the cJf was accom- 
plished in SUBIWLJ'I'INZ PRIN'l'X by ctimulative addition of the rcad-in pdf fl-ac- 
tiles. The ~ 3 1 1 1 ~  of ths ilnifordy distributed 1a11dom number, Q, is compared to thc 
cdf values for each box of the histog1 ala. Once the box whose cdf i ange envelops Q 
is idedified, a correspondence is made hetwecSn Q and the incremental X-value 
range ;.,ssociated nith the particcrlai- box Iiitcrpolat,ion is used io loezte a Sistiiict X 
within that i-alige 'The dssociated algebra is r lemlbcd in t b ~  s ~ u x e  code COM- 
TvlI3N'I'' statements in XVAT,UE. 

If the user wishes to have discrete valiies rather ihzn boxes on the horizontal 
axis of his IiisLogram, h~ needs to ilwer'; a discretization siibroutirie ill his model 
such that rouiided Oia intcgcr leturn values zre av.ailab?e So SUBM??JTlNE 
~ ~ A I L J E .  

Now that a rei:Lfii value X ic, c~lcirlated for vaL;a'sle Y(I1, it is stored by the 
statement U(1NDEX) -X and calculation of a r e h m  value for Y(1NDE:Xi ? ) begins, 
qpia i i i l g  X as t h e  generic name far the return value. Aftt.r all input Y values 
have rciurli values, the iiiput part of the Y-vectm- and the input part of /MASTEW 
COMMON block is fuii and control is returned to MVSSOL', which then uses the 
return valiies for m e  iteration of SIJRROTJ'YlNE MODEL 



53 



5 4 

where 

Y(K) PS the variables value 

M (or 1) is the vzsiable idera.ti6cation index for the Y-array 

OT thc N T E E  ~ a l u c s  of a particdm V(I) which ate partitiwed, count milst 
be kept of the numb2t zf times a Y-vdue fdls  within a given bin. The array NHIST 
is used to keep the count cver-y time bils ,'I is encountered: 

where X is the variable index and J' is the bin number. 

Once dB NITER values for a psaticular Y(1) have been ''l~l~ined,'' the code 
counts from the left and calculates h t h  the relative and cumulative percentages of 
occurreaces from the !eRmost b i ~  to the bin of interest. These percentiles are then 
printcd next to each bin. A separate table is also plimtcd which displays the mini- 
mum, 5%, 58%, 9596, azld maximum vdues for ersch va-iable. In order to print 
histogrmis, a character must !x associated with each occurrence or nonoccurrenae 
in a pwticular bin. A ''A'' is used to iiidicaie one or more oecumences and a blank 
(" "> a noiioccumerxe, If there are many iterations n * may indicate more than m e  
occurrmce arid the r imher  of cccui~ence5 p e ~  * (NSCAT,E) is noted on the output, 
The vas;aLPe NSCASR is cdculated by noting the nurnhr of occurrences in thc 
t,allest bin and making sur(: that the associated "*******" bar -will not run OR the 
page. $'or a 132-charnckr line length printer, 75 "w characters are allowed. Figure 
5.8 shows the variable nomenclatuce on an exzmpPe h l s t ~ g a m .  

I 

Normally MTSSOZ' ~ ~ 3 1  print histograms for both the input and output Y(1) 
variables in the /MASTEP.@OIb?MQN 'o1m-k. If a inegative s i p  is placed in front of 
the ninmb~r of itcvations in the RDMVSS input table, only the designated *ut - 
variables (-with dW1'E = -99) - d l  have histograms printed. If a constant or delta- 
function distribution (J'TYPE=O) is utilized for input or JrlTWE - -88 for output, no 
histogram is grint.ed. 

Oncz all histograms are printed, the large amount of data (the Y-array) 
stared in output unit L'TEMP is scratched. Unit 1PII3QT can be used t~ store the 
h is togra~  building infornatiori in the Event that the user wishes to use !PISSPLA or 
other plotting sofiw-are to plot the data The PDA option described in Sect. 7.2 can 
$2 tlsed to convcrt pdf h i s tng rms  into edf data amenahk to plotting and data 
characterization, Tile HPLOT fcrmat, can be directly read by iNTOMLST.EXE within 
the directory of the PDA option. 

Chntrs! of the program is now rrturmed to the FA4IN and an "end of run" 
message is printed. 
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'I'he followiiig guidelines, if observed wk;en constructing 2 ziodel for your 
application: will grzatly enhaiice I t s  compatibility with ORMOWYE and minimize 
the chance for executiou eriors. 

Vm-iahle names ia ihe MAPTZR. C ~ M i 1 i O i ~  block may be laiiemonic arid up to 
eight characieis lolig If OXMONTE is to be 
connected with an existirig model where nm-RELh,L*c4 variables are important, the 
11SPi- should write insert the Tie sary p i  epmscssing and conversion routines for 
re:iz,ning vaiiables pi50i- io and after awes by OE-MONTX. These routines 
s h o ~ l d  be part of the USPI'S riiudc?. The 1 ing iiames (alphamer+c variables 
XNAME alid NAMEN(1,J) can Le tip to six charxters long (See  comirlents in last 
paragL n!iL of Sxt ioa 5 4 .) 

They s h u l r l  he of type X"LPiI,*4 

If the mudding application reqiiims many loops or itciations w i t h i n  each 
iteratior1 of ORMONTE, the M V S S  i-iIn may take z very long time to execute If the 
timp to run a single deterministic case is lorig, the tiilic to  rim an MVSS will be 
2ppoxiiiiaiely NITFrL tiir~es a s  lnng. 

All of the u ~ c e :  t a i  i r  inpat variables should be sfatistically independent, i.e., if 
the valuc of OIIC input rhang i t  should lrot affect the value of aiiother. Consider a 
process r~iodcl i a  which som f the operatiilg conditions a12 uncertain; such as tlic: 
temperature within a vessel. Another unrertairi variable might be a rate coefiicierit 
foi a chemical reactiorl taking place within t l ~ e  vessel. In rezlity these two possible 
ifiput vari2Llt.s aie iiot independent, since rate cnetxcients usually vany with 
temperature. 'L'lie modeler would be udent to  make the telriperpture an uncertain 
independent sensitivity varjable and create an algorithm or look-up table withiii his 
model ii,hic'n keys the rmst likely value of the rzte coefficient t u  the temperature. 
1;ie uilc&ainty in thc rate coefficient coiiltl then bc handled by use of an uncertain 
multiplier which affects this temperature-keyed most likely rate coefikien'; value 
1Ls  procediiw is often c a l l d  "keyring" variables and is a very usefii! modeling 
techniqu? 

I !I 

I \  

Many models m-c design4 such that the program c?:<iilatPS a maximum oi 
minimum f jgi~re of merit for a given set of inprh variables. This p~ocedure ~ s a m l l y  
involves nested loops or the repeated use of imrnericd algorithms to semch for the 
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7.1 Some DOE Expesience-Based Guidelines to Assist 
in the Selection of Numerical 

Input Bm-ss Vd-ues 

Since the results obtained from a n y  Monte Carlo simulation are only as good 
as the icput data, the quantitative determination o f  M’SSS input variable ranges 
and distributions is of paramount inportarm to a yrobzbillistic analysis. Unfor- 
tunately, there is no clear-rut or robust pi ocedurc which guarantees consistency and 
accuracy in the selection of iiiput parameter values. This is an especially bel”ious 
problem where comparison of competing systems or technologies is in progress and 
where consistency of evaluation minst be maintaiiied in Q W ~ T  to protect the 
evaluator’s objecti-vity and faiirness 

Since many inputs require projection now sf wh2t their values will be at the 
time of future large-scale system implementation, the evaluator finds himself in the 
realm or“ teciinological forecasting; aid he caii benefit from exploring .aY-hat this 
heuristic science can offer as an aid to inpht selection. One useful forecasting 
principle gleaned from the literature is that of coileclive judgment utilizing expert 
opinion. Policy makers often use fcrmalized procedures, siich as the Delphi methsrl, 
to obtain a qualitative view of fiiirture development trends. ..bonymity is maintained 
among participants, arid written viewpoints are exchanged until consensus evolves. 
In this manner 1x1 W C H - ~ O W ~  or dominant individual cah pei-smade others on the 
basis of his starsding in his field alone. 

For the quantitative task of determining MVSS input variable ranges and 
distributions, consistency of evaluation; and assignation is more important than 
consensus and the associated participant anonymity. Since raxiges rather than 
single values are to be determined, consensus need not focus on one deterministic 
value, hut rather on whether the iaiige cf input values is iiiZee.3 possible. Less 
forma! face-to-face discussion and debate among pwrs, i.e., peer review, with a 
consistent set of pound rules lias beern found to be a useful procedure and was 
successfully used as part of the selection procedure for the Department of Energy’s 
choices of advanced isotope separation prucesses for u r a i u m  eizr-ichanent (Re?. 3.9) 
in Sotb 1982 and 1985. The “peers” in this case consisted of technical personxiel 
from DOE and the participating development and process evaluation contractor 
organizations. 

The primary task of a peer rev5ew is to sort out the important technology, 
modeling, an3 cost issues from the insignificant issues that might be erected by 
competitors as diversions to dalay considerations of technical arms where real 
prohlems cxist in their own applications. Partieipants in such a venture rnmzst have 
access to technical documentat ion znr! rclevant experimental data for the 
alterna-tive technologies. If alternative technologies are not being considered, peer 
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he mode input values o not necessarily have to coxrrspernd to the base 
or reference case. The ;analyst must deQem: 
inputs and keep in mind that a baseliaie sup 
likely to inelude optimistic values; however 
developer might s u  mit an overly cainservata line. 115 report 
l<almemm (Ref 7 ,  ) and c a p n  
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The pmxx-hg  discussion is, in a general sense, related to tlw measurement 
of the va;isbi;ity of F, physical quantity. Thai is: the pacamcter is associated with 
SOm&h;llg that can De yhysicdly measured. There arc,  however, many times when 
thc v z ~ i d d e  n i  interest cannot be physically meas;zred l~wause the variable 

paiarnete:*s for a new or scaled-up pr'ocess, eesLdreveriuea for a f i l t i i~  eqnipment 
item, future escalationlinriiatioa rates zlame orJy a fc-v of the possible variables khat 
cannot 'uc immediaksly me~sured. The uncertainty ira vadab'les of this type has Eezn 
charactsi'ized throingh a riumbar af techniques which develop a collective jud,ment 
baser! on experk opinioil. The ezrliei--mentioned Delphi method is o m  of the more 
well lcmnvn in this class. 

d e s c ~ b e s  SQPnPcthing that may exist o d y  in the m u r e .  For example, output 

Another technique that has beec used a t  OL'dL (He6 3.13) tn qiia.-tify 
uncertain paramekrs based on expert cpinioii is called the 3521 Prokabi?ity Enc~ding 
Method. Develnped in the 1970s at SRI International: this method seeks to min- 
imize biases in the expert's response vAde extiactiiig the expert's kPlswlcdge on the 
topic. It is a structured intel-sziew technique which is conducted by a trained inky- 
viewe;. It is beyond the scape of this report to fully descLihe the SRP Rmoding 
Method. A summary or̂  'the ;?lreihod hi ib  been writtzn in the techical literature 
(Rsf 7.5). Certain aspects of the method will be discnswd hcre, how eve^, to relate 
them to a supporting software bc3. that has been developed at OXWE. 

As mentioned z h ~ m ~ ,  the method involves a staxtiired interview pmaeess 
between a trained intez-viewet and a subjwt who is an expcrt on the topic at hand. 
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The heart of the l'-'h)A package is R Lotus 1-23  spreabshect file, PDA.WK1. 
When retrisvirng thc file in Lotus 1-2-3, the file appears as a tyyicd spreadsheet. 

functiofiing of the syxeadsheet and to collect and record cumulr,tive probability and 
quantity data for uncertain pmamete~s, This Maera is invoked by an PJt-W 
Izejrstrok.;.. 'The operation of the AJt-W Macro suppa-ts an indirect response method 
used in tlzc SET enmding pi-m@ess which uses a probability wheel (also ralled in less 
scientific cirdes a w,?ih~el of fortune) as n visual aid in eliciting responses from the 
inier&wec. [Wattelks and Vaiinia W-bite arc not included1 In an indirect responsc 
mode, the subject is asked to choose between two alternatives; one rehting to  the 
parameter of intmest an4 the other based on a raidorn chance device such as a 
e~hsel of fortiriia or pobability whecl. Figure 7.2 shows the faacs of  the wheel with a 
shaded arca being Shc "winning" zegian. In gencrd, the shaded area is increased or 
decz-eascd until the subjwt is indifferent aho~lf; choosing betwcm an outcome related 
to thc wheel and one related ti, the unccrtaiin parameter. f ? ' c ~ -  axample, a question 
could he askcd of  the subject, "Would jou rathe1 wager on 8 spin of the ivhcel with 
this much "wipnalrrg" arm 01 that the operating mailability f rzc t i~n  of System X will 
bp at, le& 0.78?" When the expert is indifh-ent, the relative mea on th9 wheel 
corresgmds to thF* expert's opinion of the probability of the parameter conditions 
posed in the cpestioi~. This type of qritlstioning can be repca.ttd to develop a set of 
p;.bability/qumtity oaatcorncs. It  is very impwtant that the reader note th& this 
line of questioning i s  ~ d y  one of several methods used in the encoding procsss, and 
that reliable results ale only obtained when the intcrviewe~ is knowledgeable of the 
complete cncoding poccss as well as the  ianderlying statistical rules. 

Therc :s, hO'r\ievCT, %I set of Macro iustraetions which allow the 3-1ser to automate the 

- 

Fig. 7.2. Example yrabability wlicel display. 
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CLEAR to imet the tsmpoi-aly wcrkiiig storase areas and pepare  the spreadsheet 
for a ilev,r ailalysk. I’adurc to CLhAR the program bcfcce starting- a nwv analysis 
cafi causc d c j  data values i r l  certain walking areas to be idus ied  in the current 
analysis, thus coir upting Lhe evaluation. CLEAI“L the progialii before yon begin a 
nevd aiialysis! Slhoilld the v.70rk areas be empty a l r e d y  wher, C1,EAI”L is selected, arr 
ei*ror message will be issued: and the usei slioulC: press E X  followed by another 
Alt-Ti. and proceed az t h m g h  the CTkAR Lad been succ 

Aftcr C1,EARiiig the work am?; the U S ~ T  must select R base ckarzcteri&ion 
of the ci~miiilative pcbability data as  being either normally oi lognorma~ly dis- 
tributed. Actually both distiibution types can be k&~! hy sclcctin; NOKMATl or 
LCG-NORMAL &om the rne;i:i and inoviilg tiit: c~.~tsoi” to the desired rofi of the 
‘l’oplc column. ‘Th? impoltant point is that one or both Gaussian di:;stribution types 
i-ntist he checked first befort. the trian.qilar distributions can he evaluated. ’l’& 

-2 is necessary baduse the prograln preserits the t i i m g u h  distributioas in 
compai-kon to the Gaussian distributions. As atn example, the Jhts shown in 
Fig 7.8 .A ;E be evaluatd ‘l‘hesc ciiiiiillativc piobability data were Jeveloped from 
noi-cia1 probability tables for a m e m  of50  and a standard deviation of 10, so in this 
examplc we expeci io see an idcal fit in the NOEMAL selection. 

When either the NORMAL or LOC-P,TOlthlI,4!I option is selected, a linear 
reg;-essiori is pcrforrrd oil the d a h  to explicitly solve for the Eean and deviation 
This is possible due t3 the pLopcnty of thc standard 11011na: distlibiitinn that the 
s ta r lchcdi~~d ra~~doi-fi iai-iablc 2, defined as. 

C a l i  be rnatchcd to a given value of 1 by thc sssociated probability providcd by the 
user for that value of x. ‘Thus; regression pairs of z and Y are formed such that the 
ahave equation, wheii rczii-anged as 

is of the linear form y :: miz + b.  ‘ l h  mean arid standard deviation are then directly 
& k r & m A  by regression w!t!i the resdtiiig output showii in Fig. 7.9. A prh t~p .  
si1 mmary of tlhe regressiora analyses can he obtained by  selecting the HJMML4RIZE 
optioli 011 the T . ~ I ~ u .  

A plot of the resulting parameter-dcfinnnd (u,u)  distiillution and ihz raw 
iiiput data is very iispful in jcidgii~g the appl;pL*iateness of the distributioi~ as a 
descriptor of the r a w  data. Oacc: the no1 1 an&or hg-nollaal n=egressioa(s) are 
performed, the PLOT opiioil may t c  selected to view the distributions. An a2ded 
feature of the PDA spreadsheet p r ~ g ~ a ~  is that the usei- may alter or “fifie-tune” the 
distributioii parairlctei s (11, o for the Gaussian optioiis), if desired, duiiilg the PLOT 
option to adjust the disii*;butioil sliape (via thc standat d deviation parameter, 0) aid 
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location (via the mean d u e ,  p) .  A plot of the resulting normal distribution in the 
above example is shown in Fig. -/.I@ 

As mentioned earlier, tlic normal or log-iioifiial analysis (and associated 
PLO1') xi tisf be performed before the triangular distributions can be considered. 
When the normal and/or log normal distiibutions have been cliecked, the TRI- 
AKGLS optioii may be selected to evaluate either a triangular or log-triangular 
distribution against t11c input, data. 'l'hc TRiANG1,E option is different from the 
NOKMATl oc T A X  NORMAL choices in that no explicit calculation of the distribu- 

Rather, the 
user must select the parameters for h s t  or nealrst fit in an iterative process from 
the g1dp11ks i n a p  develope2 r a i h r  by the progcam for the normal o r  log- normal 
evaluation. With an 80?86 based processol (AT-type PC), the response in this 
iterztive pnr'~iw1 of the program is quite fast. Ihwever, this process ;nay be rather 
time consumiilg for those oprratil-lg with the earlier 8086-based I'Cs. E'igcire 7 11 
shows a marfit ti idr~gu:ar distribution to the normal distribution shown in 
Fig. / . I O .  

(Le., minimuln, mode, and ~ilaxiinum) can be made. 

1 ,  

Fig 7.10 Plot of Fig. '7.8 r a w  data points and liarma1 distrihiion obtained 
by using garameters calculated From regressioll analysis in Fig. 7.9. 
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7.4 Kiyhanowski, I, ~ et al., 'Monte Carlo Simulation and Capital Expenditure 

ilccisions -.4 Case Study,' Y'he Engheering Ecoiiornist, L 8(2), (1 972) 

7.5 Miky W. Me:.!ahof~!r, "Qwntifying Judgmental Uncertainty: Methodology, 
i.;xpwiences, &id Insighks", iEEE Tramactions on Systems, Mrrv, nizd CySer- 

netics, Volume SMC-1YI, Numbei. 5, September/Bct,c!bcr 1987, pp. 741-752 
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,*Jthougl? there is ai imrpkd m ~ d e  value in the outycnt distLhtion of a 
G p r c - s f  mczit, then e is no assoeiatetd "1 Iiaximiim li keiihood" set oiii~puts. 'rhus, one 
cacnot easily "diswct" the r ~ d e  case; it inay not even exist (or perhaps sevcrd 
may?, Note also that it" several figures-of-merit m c  tabulated, t h e  is imlikply to Ee 
a single case (particular iteration) that mawmizpr all of them. That task, a h -  all> 
must be lnazdled by trade-03s w(ithiil t,he :1se!Ts' madel. 
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W S E T . F O R  

TCTRM.ASM 
TCTRAN-OBJ 
OPTIO.DAT 
MASlNl. DAT 
MODLDAT 
SVSS. DAT 
MVSS.DAT 
EEAST.DAT 

Fortran 77 source code FUNCTIONS UNI, RNBR, 
U M N D  

Machine language W I N T  
Compiled mach. l a g .  RANlMT 
Data (example problem) 
Data (example problem) 
Data (example problem) 
Data (example problem) 
Data (example problem) 
Data (example grdolem) 

The PDA files are listed in Sect. 9.2. 

3. TJsing the RMFortran software (Version 2), each XXX.FOR file should be 
compiled such that XXX,OBJ modules are created (the command is RMLFOKI? XXX). 
When MODEL.FOR is compiled, the INCLUDE module MASTER.POR will 
automatically be picked up and compiled within MODEL.FOR to form MODEL.OBJ. 
If changes are made to MODEL or the ORMONTE source code after a rim, these 
source files should be recompiled, 

4, The user should create the following file named ORMONTE.LNK using an 
editor: 

The RMFoPtran command PUNK86 QORMONTE vvill link-edit the above 
string of XXX.OBJ modules and create an  executable output load module entitled 
0RMQNTE.EXE. Other output load module names may be used by changing the 
file name after the word OUTPUT in the LNK file above. If changes to source code 
are made after a run, the LNK file should be relinked afkr recompilation. 

5. At the "C:\ORMONTE\>" prompt, typing ORMONTE will ca~xse execu- 
tion to commence using the XXX.DAT files resident in the /ORMONTE\ subdircc- 
tory. Output will be to the screen unless other DOS commands such as > P,aT or > 
PRN are utilized. 

6. Output, on units other than 6 (which is normally unit IPIZNT) will be 
written to output files FOR= where XX is the outpiit unit numbei. (e.g., SVSS 
summary tables are written on file FORTI 5). 

7. If during a run the program "hangs up" and produces no output, the usw 
should check data set MVSS.DAT m d  he sure that the X-parameters are in the 
correct order. 
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Installation on the VAX 8600 was very simple and involved only one simple 
FORTRAN change, The procedure is as follows: 

1. Transport the XXX.FOR and the XXX.DAT files from the floppy io your 
user area on the V M .  KEXMIT or other communication software can accomplish 
this task. 

2, Using a VAX editor delete the last part of module RANSET.FOR, leaving 
only FUNCTION TINI(X) and FUNCTION RNOR(X). Add the statement INTEGER 
X to F ~ ~ ~ I ~ ~ ~ X )  and change VnvtWn(X) to R A N ( X ) .  You are now invoking the 
pseudo-random number generator in the VAX system library instead of the one 
supplied as TCT .OBJ for the PC application. 

3. Compile all XXX.FOR files using the VAX command: FORTFUN XXX. 
Whcn compiling MODEL.FOR, the VAX will pick up the INCLUDE module 

.FOR md include it in the module MODEL.FOR. 

4. Link edit all of the XXX.ORJ files into a load module: 
BP,RDMAST,MrRMAST,RDMODL,MODEL,SVSS,MV$S, 

~~~~~~A~~~~ 
The load module will have the name MA1N.EX.E 

5. To w n  with the XXX.DAT files use the following command 
UN MAIN 

Somewhat similar steps woul be needed for the C M Y ,  PDF-lQ, and other 
mainframes. Use on an IBM mainframe requires a JCL (Job Control Language) 
program tailored for this application. 

9.2 Installation af PDA (Probability Data Analysis) Options 

Using DOS copy all files from the PUA diskette to your LOTUS-1-2-3 direc- 
tory (usually \123\), 

The following files are provided on the PDA diskette: 

- Filename Type Purpose 

i;otus 1-2-3 Spreadsheet file for performing probability data 
analysis (PDA). Holds user-supplied input data 
and presents PDA results. Contains macro- 
instructions for automated operation. 
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XVr\.L.I)AT 

XUR P ~ 9 AT 

Source code for BEGW.EX3 

Use2 in co~jurictian with PDAWXI. Performs a 
look-lip f u i i c t h  iiz a s t a d a d  noma1 data hble  
to provide a z-value for a given probability. 

IJsed in conjunction wj th  PDA.WM1, Pei-foms a 
look-up Cumtion in a staadard i iomal data table 
to pr.si;ide the comespoa&ag probability for a - &vel2 Z-vdlle. 

Passes m e m  and standard deviatirzn results from 
i"egressi011 alalysis iii PDA.WX1 to REC OUT- 
.Ern .  

Standard ilorifia: data file. 

Contains x-axis values for ,a given m e m  and 
s i p  a. 

Csntzins y-axis values for r, given mean and 
sigma. 

Passes sum. af.tlie squares average error of 
pobability from RECCUT.EXE to P'DA.WX1 

Converls r a w  data or d a t i v e  probability his- 
togram par dr7ef?rs into Cuu lUla t ive  distribution 
data. 
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MATHEMATI R 
VrnLABLE PRO R 

The principal difficulty in applying a simulation approach to economic 
evaluation lies in developing the probabilistic input representations, i.e., distribu- 
tions (probability density functions or pas), for pertinent sys tern performance 
and/or cost-driving variables. In the usual investment risk analysis applications 
such as those described by Hertz (Ref, 3.3), many of the input probability distribu- 
tions used in simulation studies can be developed as frequency histograms from 
historical or marketing data. However, since a technology development project is 
often a unique, nonstate-of-the-art project, the accumulation of historical economic 
or p r o ~ u c t i ~ t ~  data is €ten not possible. us, some alternative P- 
ing input ~ r o ~ ~ b i l i ~ y  istributions must used. It should b at 
input probability distributions are in essence mathematical models from which the 
Monte Carlo driver code can draw samples. At the end of the simulation, each input 
\vi11 have its own frequency histogram which should approximate the fuunctional 
form of the specified input pdf. 

4x1 the area of investment analysis, several contributor 
solutions Lo the problem of developing probability ~ i ~ t ~ ~ ~ t ~ ~ n $ ~  
present the argument that probability distributions can be based on subjective 
judgments made by the manager or decision-maker. procedures, three 
subjective estimates for each investment outcome are obtain a most likeely, an 
optimistic, and a pessimistic. 

In su 

For evaluations invohiing cost projections, no robust selection p 
exists; however, the P A ~ e t ~ ~ ~ ~ l ~ ~  described in See. 7.2 shou e very useful in 
obtaining data from perts. Selection of the input nu es defining the 
desired range of the distilbution is the most difficult step, follow y determination 
of the correct type or shape of probability distribution to ~ ~ C C J  s, or in essence 

stribution of these values. It is tlje purpose of this appendix to discuss 
a few types of important distributions and their appropriate applications. Reference 
A I  also discusses the problem of distribution selection. 

The input variable probability distribu lions one encounters in Monte Carlo 
simulation reyrescnt the probability ensity functions (pdfsi of the random variables 
from which single point input vdues, ri (i = 1, NI, where I = &@ nuJ.&es sfinput 
variables) are selected for each input vector, Yiy suhmitt to tlae rSro&l. ‘rhe pdf 
shows only the relative probability for each Yi. 
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Amscg the parametess of interest for a given distribution are the mode, 
median, and mean. The mode represents the most frequently occurring value, i.e., 
the incremental raiigr or "bin" in which the most samples fall or the maximum of 
the defiriing pdf cu~ve.  The median or 50 percentile represents the value for which 
any rardoni variable on the distribution has an equal chance of falling above or 
below. Half of the area under a pdf curve will lie to each side of this point. The 
m e m  represents the expected value which would be calculated from the random 
variables. It is calculated during the Monte Carlo procedure by taking the arith- 
metic average cf all the samples taken. The skewness or departure from symmetry 
of a distribirtion can be qualitatively assessed by looking at the position of the pdf 
mean relative t o  the pdf mode. The value of of the mean relative to the mode is the 
indicator of the distribution skewness. The following definitions apply: 

positive skewness: mean > mode 
negative skewness: mean < mode 

A dimensionless nxasure of skeu.mess can be calculated as follows: 

The above two symmetry attributes are sometimes referred to as Pearson's Erst and 
second ccefficients of skewness. 

Another characterization parameter is t i e  kurtosis or "peakedness" of a 
distdoution, expicssed 3s the fourth moincnt about A 

(x  - x)A  
0" 

Motmnt coefficient of  kurtosis, a4 = ~ 

where G is the standard clevistion and ( C T )  is the average deviation from the 
distribution mean. A lqtokurtic, or highly 
peaked distribution, has an a4 value greater than 3 ;  a platykurtic, or lightly peaked 
distribution, has an u4 value less than 3. Kurtosis is useful in comparing the 
shapes of distributions. 'The properties and uses of a few selected distributions will 
now be discussed, with continuous distiibritions to be considered first. 

For the normal distribution, a4 - 3 

Normal distribution The normal, bell-shaped, or  Gaussian distribution is 
desmiptive of the distribution obtained for ki?ost measured natural variables. The 
mathematical form is expressed as: 

whcre: 
p = the mean of the distribution, 
ci2 : ' z  the variance (0 is the standard deviation), an9 
00 < x < M, where x is a continuous raidom variable. 



The mean and standard deviation ~o~~~~~~~ determine the distribution and are the 
rieed he supplir: in the input data. Since the domain o f x  

to infinity in both directions, some truilcation must bc used in conipgller 
ons. The return values am limited .to a range off60 from the mean for the 

e utilized in lhis 

The use of the normal disti-ihution, by definition, usuaPly implies that saxm 
type of measurement, sample, or historical data are available to the analyst, Even 

tn.ibut.im, the user 
y fits this type of 

ough o d y  two parameters are ne  
so assumes that the information 

to define the nornid 
plans to input inhe 

curve. 

This distribution is pcssitivelg skewed and is often used in economics and for t he  
representation of time distri 

recess amcertainty aazaaysis, ful for representing natural parameters 
where inaccuracy in measurement causes their values to span more than cne order 
of magnitude, such as d9l'~cult-t6,-rnetlsiire minute spectroscopic cross sections. 

, The triangular distribution has the advanlaqe 
This is 4 t h  situation repre- 

an. Triangular distaibutions 
efined by a minimum, n.isde, a maximum value. The iniutmz arid maxi- 

probability tails 

that any degree of' SkPwness can be easily representc? 

mum are absolute, i t ? . ,  they do azot 

sented when the mode di&m from the median or 

ve the long, clrrtrenicliy 
that eharaeteri ze the normal and exponential distributions. 

The triangu3ar distdbution h a s  always been popular with decjsion makers 
and analysts. Because of the ease with which the triangular distribution can be 
comprehended y decision makers and implemented by the analyst, it  is used 
frequently in making economic projections. 

ree subjective estimates (nnin, mode, and max) fbr each input vnri-iable are 
rm the tjri angular distributions. Geneaxlly speaking, the op trmistic csti- 

mate is the range endpoint vdue which would produce the lowest unit cost if a 
single variable sensitivity arialysi s were pesfarmcd over the entire range of tine 
d n, This is the hieh might be experienceel if good Puck i3 expwi- 
e everything in t design, and construction rogsarn goes w e l l ,  The 
pessimistic estimate represents the opposite outcome, a result which can occiir if 
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development, schedule, or cost disappointments are experienced. The most likely or 
modal estimate is the "best gtiess" value f ~ r  the parameter of interest. This esti- 
mate should he expected io appear most frequently over the population of all ensem- 
bles during the course of the simulation. This value can be, but is not necessarily, 
the baseline input value (Yi)bagp. 

Control of skewness can designat,e the evaluator's degree of optiinism or 
pessimism concerning the range of a given variable; for example, experience in- 
dicates that hardware cost variables are more likely to increase than decrease; 
hence an unit cost distribution is geiie4lg. skewed toward values above the mode. 

I_ Log-triangle distribution. The relationship betwecn the log-triangle and 
triangle distribution is analogous to that between the normal and log-normal dis- 
tribution. By use of a log-triangle distribution, which appam as a triangle with a 
slightly curved side as in Fig. 5.7, one can arbitrarily pick a mode and two endpoints 
and foice the mode and m d a n  to be fairly close together, especially when input 
data span orders of magnitude. This latter typc of distribution is frequently ern- 
ployed for theoretical process science related variables used in performance models 
and for cost variables. This distribution is also useful for variables used as multi- 
pliers which lie on both sides of a mode of 1 .O. I t  has the property that the mode and 
median are the same if distribzition range endpoints l / Z  and +Z are used (% is a 
multiplier times a fixed d u e l .  The use of the log-triangle forces the median closer 
to the modc Cor positively skewed triangles. 

- Other ._ contirluozls distributions. The followirig distributions, like the 
triangular, are mentioned because of th& matliematical simplicity and intuitive 
appeal to the analyst. 

The uniform distribution. If 2 variable has an equal proha-bility of occur- 
i n g  over the range of interest, its distribuiioii can be represented as a horizontal 
line or flat distribution. This type of distribution is used where a most probable 
value is not knowr, but for which the variable range call be determined. Use of 
imiform distributions in costhisk aiialysis is often called "range estimating" (Cur- 
ran. Ref. A.2.) 

- Trapezoidal __ distrihtion. The trapezoidal distribution requires four 
values for its determination and is a hybrid of the triangular and uniform 
distributions 

Discrete distributions, If one cannot find a continuous ydf that represents 
his data, the use of a spike-histogram or a diiscrete distribution is warranted. 
Discrete distributions are also often used where integer quantities are considered or 
"yes-no" derisions are encountered such as in decision tree analysis. Some of the 
more rnatheniatically complex ones require that the analyst have some intuitive 
reason for their application aid for fitting them to a particular class of data. Among 

__  .........- 
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such distributions we the binomial, geo geometric, a n  
tributions. Others, such as the histogram descriked below, can be used 
in a more subjective manner and can be easily constructed by the usey of this 
methodology. 

* Tsvo types of histogr utions are con- 
such as s h o w  in Fi discrete values 
st, i.e., n equds mber of 'boxes. If the 

cumulative distri s easily calculated by 
summation. The return value is found by checking to see whi 
t o g r m  box the random number intersects and then supplying t 
range 011 the integer Y as a return value. When adjacent box-type histograms arc 
used, one is really dealing with several adjacent unifo~m distributions. 





9 1  

The running of e 
proccss m d e l  c m  requ 
methodology WheFE the 
number of iterations (MI 

ssj iteration of a 
cn&x proposcs a 

SS nm calculates the n~aximum 
the charact,crfist,ics of the I.esults 

stufied. The user reduce the riurnber nf ittmitioris 
still be provided r esigned limits. tmpl~mentatio-ri of' this 

capability should be relatively simple, 

The advantages ofthis p 
mainframe computer costs. The 

e important figure§ sf 
ed for tPlt?nu before an 
figures of merit ?Till have laearly normal 

nd give some thought to the levels of accu- 
This prt>cedure assllmes run is submitted. 

ss histograin output. 

ith this statistical procedure, the tme ss results are a set of statistics 
calculated from a sample! number of observations talien from an ~ ~ ~ ~ ~ ~ ~ ~ e l y  large 
population. Inherent in any sample's estimate i s  an error or d e v i h m  from the true 
value in the population. The objective is to select a sample size that minimizes the 
number of MVSS iterations while still meeting n t~x imum error tolcramaces, 

2 

n,, = 

For exmple: li' a 95% confidence interval i s  desire (Z =: 1.96) and required 
accuracy is one-tenth of a standard deviation, 
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= 384 

The above calculation must be done for each important figure of merit to be 
reported. The largest value for nmnx calculated is the maximixm number of MVSS 
iteratioris to be run. This number is input as NITER into the MVSB driver. 

Step 2: Determination of Actual Number of MVSS Iterations Needed 

For each important figure of nierit in the results, the analyst should deter- 
mine, wherever possible, the absolute value of any acceptable error in the estimate. 
For example, it may be decided that for a iunit cost, the maximum acceptable error is 
$2/unit. 

The MVSS driver could be programmed to automatically complete 30 itera- 
The tions, stop, and calculate the standard deviation for each important figure. 

number of iterations required can be dcu la t cd  using this formula: 

s = Estimated standard deviation 
emor = Maximum acceptable e r ~ ” ~ i -  

For example: If a 95% confidence interval is required (2 = 1.96), s is calcu- 
lated to be $12/unit, and the maximum acceptable error is $2/unit. 

L(1.96) ( 1 2 ) j 2  
2 n r q  = 

= 138 

Si-milar calculations are done for each important figure of merit. The number 
of required iterations is the largest of the values calculated. 

In the above example, an additional 108 iterations are to be run. The esti- 
mated standard deviation is recalculated, and if the iiewily calculated standard 
deviation is larger than tile initial estimate, additional iterations are required. 
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ix 

1 .Q 

0.0 

Fig. C.1 I Inversion of the trianfllar 



The inversion routine will consider the triangular distribution broken into 
two right triangles, and hdghz. separ-ated by the altitude at the mode, Xw Wc 
want to calsulate the total area under the two t r i a n g 1 ~ ~  and obtain an expression for 
the area, Qj under one or  h t h  triangles from X ,  to X ,  as a function ofX. 'The area 
under the entire triangle must sum to 1.0 by definition of the cumulative probability 
for X over the entire range. 

First solve for the triangle altitude &= in terms of the base lengths €or the two 
i-ight triangles: 

The use of the magnitude of the two right triangle basses, A +- 33, allows us to  
avert the algebraic coordinate transformation required to dip d l  calculations in 
terms O M ,  x,, m d  &. 

Wc rni.lst next dekrmiiie whether the - d u e  Xo associated -with a given 
random iiumhm Q lies within the left (A-base) or right (&base) triangle. The areas 
of these two triangles are. 

Left: ACP2 Right: BD/2 

The variable P is an indicator of which triangle will contain "H, and has tlzc geomet- 

r i c  representation shown below. 

Solving for P:  

A67 [ '=@ - -  . 
2 

If P is negative, X, lies beneath the Beftmost triangle 
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TfP is positive, X, lies beneath the right most triangle. 

For the left most triangle wc now solve for Xr, in term of Q: 

The hypotenuse of the left triangle has an equation of the form 

Y =  X + Z  

where CIA is its slope and Z an intercept. For now the origin is assumed to be at  

Xz = 0, hence Z = 0 

h 

(area under A from 0 to Xo) is found by integration 

AC Solve for the square of the return value X,, substituting P i. --2- for 

DILsJSG = X 2  -- 2AO -TL A?- + 2pA 
0 -- , 7--- * 

For ORMONTE applications, we are interested in using She triangle mode as 
the frame of reference. T tells how far from Lhe mode the true return value will lie 



(for a return value in the leftmost triangle, T will be negative as shown below). 

The return value la' for subroutime XVALIJE is then calculated as follows: 

X : - % j + f + a . .  

For an X, in the rightmost triangle (P > 01, using X,, as the origin> Q is 
Note that the origin is at X, to avoid dealing with an calculated as follows. 

iiiteieeept. 

leftmost rightmost slope 
A A 



T tells how for to the right of the rmide the actual return value lies 

, I  I :I B -xo , 

and again for subroutine XVALUE 

x-=x,w +’I’ . 





99 





10 1 
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for 

Single Variable Sensitivity Analysis (SVSS) Option 
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I n p u t  Data f o r  SVSS O p t i o n  

U n i t  4 :  Opt ion  Data .. -.. _- ........._._I_ 

U n i t  $ E  Base Case Data (Sens i t i . v : i t y  Va~j.ables) ... _~.__I. ..,.. _-ll_l___ __-.- 

TITLE:  I4 VARIAYLE TEST CASE: BSM=MASIMI.BAT 
200 " 

50 1 

IO. 
1.  
1. 

1. 
8. 
10. 
18. 
1 .  
1. 
-1. 
- 1 .  
-1.  

TITLE: CQMSTAMTS C1,CZ 8 t3 FOP. 14 VAH. EXAMPLE DSN=PIC?OL.DAT 
c1 1.5 
C 2  2.0 
c3 50. 
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__L 

U n i t  11: SVSS Oata ____._ -____- - - 

TITLE: SVSS DRIVER TEST CASE 

00002 003 12 13 14 
001 ALPHl 05 100. 

400. 
000 
001 
002 100. 
00001 003 12 13 14 
002 ALPH2 04 25. 

000 
00001 003 12 13 14 
003 BETA3 04 6. 

000 
00001 003 12 ' 13 14 
004 BETA4 05 .75 

1.3 
000 
00001 003 12 13 14 
005 ZETA5 05 .75 

1.2 
000 
00001 003 12 13 14 
006 EXP6 05 0.5 

2.0 
000 
00001 003 12 13 14 
007 G A W l A 7  05 5. 

11. 
O K  
00001 003 12 13 14 
008 GAMMA8 05 5 .  

l a .  

000 
00001 003 12 13 14 
009 PHI9 05 5. 

30. 
000 
00001 003 12 13 14 
010 EPSlO a5 0.8 

1.3 
000 
00003 003 12 13 14 
011 NUMI1 05 0.9 

1.15 
000 
001 
002 100. 
002 
001 300. 
002 100. 

150. 
500. 

50. 

a. 

.9 

0.9 

.75 

6.5 

200. 

75. 

10. 

1 .oo 

1. 

1 .o 

8. 

300. 

100. 

12. 

1.1 

1.1 

1.5 

9.5 

7.5 10. 14. 
22. 

12. 18. 24. 

0.9 1 .o 1.1 

0.95 1. 1 .OS 

00000 
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DEBUG ou tpu t  from SVSSOP oc U n i t  14 or lYUG (one p o i n t )  

TITLE: SVSS DRIVER TEST CASE DSK=S'U'SS.DAT 

ALPHI 6 0.4003GE+03 0.'15000E+33 0.203OOE+03 C.30000E+03 
0.40030E+O3 0.503GOEt33 C.OGOCOE+00 G.O0003E+C;D 

fOR ALP$'I EGUAL 70 0.100COE+X TME Y ARRA'I' IS G I V i H  BY:  

2 0.50000E+02 
6 0.10000E+OI 

10 O.?0DOOE+@1 
4 . 4  0.19076E+01 

18 0.00000E+00 
22 0.OCDOOE+00 
24 0.00000E+00 
30 C).OOOOOE+OO 

34 0 .00000€+0@ 
38 E. 00000€+00 
42 C .000COE+00 
46 G. GBO@O€+GO 
50 0.00O00€+@0 
54 0.00000E+00 
58 0.000OOE+00 
62 0.00000€*00 
66 0.00000€+00 
70 O.C10000E+G0 
74 0. UOOO@E+OG 
73 a. 0000OE+00 
82 0 .OOOOOE+00 
85 0.00000E+00 
90 0.00000€+00 
34 0 .  D00G0€+00 
98 0. C0600E+00 

9 02 c. 0000OE+CO 
9 06 0.000OOE+00 
1 9 0 0.0000OE+00 

3 0.4 000OE+02 
7 0.8GOOOE+Ol 
: 1 0. 10300€+03 
: 5 0 .B0O0O€+O0 
;3  C.O0000E+00 
23 0.40000€+00 
27 0.00000€+D0 
31 0.00000E+00 
35 0.00000E+00 
39 3.00030E+00 
43 3.00000E+00 
47 0. @000DE+00 
57 0.000OOE+00 
55 0.00000E+00 
59 0.00000€+OU 
63 0.00@00E+OU 
57 e .  000POE+00 
71 G. 00000E+CO 
95 G.O0OO0€+00 
79 0.0000OE*00 
&3 0.000OOE+00 
87 0.00000€+00 
9 i 0.0000@E+00 
95 u. 00000€+00 
99 U.00000€+00 
03 O.OBDOCE+0O 

107 0.0000GE+00 
'1 1 f 0.00000E+00 

4 0.10000€+01 
B 0.100I)OE+O2 

12 O.?in6E+3: 

'I 5 3.00000E+~O 
20 0.000GOE+OC 
24 4 .i)COOOE+00 

28 0.00000E+00 
32 0.00000E+00 
36 0.00000E+OO 

44 U. 00C00E+CO 
48 0. GOGOOE+@O 
52 0.OBOOOE+00 
54 0.00000E+00 
60 0.00000€+00 
64 0.00O00€+00 

72 0.3GOG0€+00 
76 0.0000OE+00 

4.5 0.00COOE+fr0 

68 0.3GC)OOE+-JO 

90 0.00000E+00 
84 0.000U0E+00 
88 0.00000E+00 
92 0 .  G3000E+GO 
96 0.00000E+C.0 
100 O.OOCOGE*CO 
16: 0.00600€+60 
308 O.OOOOOf+OO 
11 2 0.00000E+QO 
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d 35 

Input  Data for  E l a s t i c i t y  Op t ion  

TEST CASE: DSN=OPTIO.DAT 14 VAR. TEST CASE 
INPUT UNITS :INMAST [ 81 I N  

ISVSS [I11 IHVSS I 9 1  IELAS t121 
OUTPUT UWI7S:IPRMT C 141 IPLOT l l S l  IBUC fl41 

OPTION: EELASI C DETO,SYSS,MWSS,CR ELAS) 
TOTAL 110. OF INPUT + WTWT VARIABLES: L 141 

T t T L E :  14 VARIABLE TEST CASE: DSN=HASIWI.DAT 
ALPHI 

ALPHZ 
BETAS 
BETA4 
ZETRS 
EXP6 
GAXMA7 
GAMMA8 
PHI9 
EPSlO 
MUM1 1 
PERF 
PCDST 
CUN I T 

200 
513. 
10. 
1. 
1.  
1. 
8 .  

I O .  

18. 
1. 
1. 
- 1 .  
-1. 
-1. 

TLTLE: COMSTAHYS Cl,C2 & C3 FOR 74 VAR. EXAMPLE DSN=MODL.DAT 
e l  1 .s 
c2 2.0 
C3 50 I 
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Flat?€ UF W R l T  82 F.O.W. Y M E :  PSO5: F.O.W. I K E Y  f 13 BASE dALUE: 2 5 .  OOOnOC 

*** UEYIATIOWS OF IHPUT VARIASLE AN0 f - O * #  FRW BASElIIE VALUES **' 

X I G H  E?& DEi.?A SEUS.L'AP: O.?SOOCO COslRESP. DELTA F . C . H . :  0.000004 

la t N O  OEiTA SEl4S.VA.O.: 0.250000 CORRESP. OELTA F.O~R. : 0.3503OC 

*-' EtASTitiTY S SLW'E *** 



CO 

................................................................. 
OfLLZO'O- :3boiS 33YU3AV 

Lwzo'o- :3ms axa mi ZWLZO'O- :3mis ot(3 Y~EW 

........................................ ZIidlV ............... 



PERF vs .  BETAS 

B A S E  V A L E :  'lO.CUXl08 

FlJJRi O f  WE117 I :  F.O.4. UME: PERF F.0.U. ! H E X  P 12 BASE VLLUE: :0.006945 

*** ALTERED ICWT I U D  ALTERED F - 0 - R  VALUES: *** 

hlGk EM0 SENS YARIABLE:  10.55UOW CORRESPCIIDIMG f.O.M.1 9.99&652 

LC& Ell0 BEUS VARIABLt: P.ROOOO CMLRESWOIUE F ~ 0 - a . :  10.015320 

*** DEVIATIOUF Of iWWI YARIAlLE AXQ f - 0 - R  CUG# BASELINE VALUES *** 

H 1 5 H  END DELTA 5EHS.VAK: t1.050000 @XRESP. DELTA F.0.R.: -0.008292 

LW END C E C l A  SEKS.VAR.: 0.05UiiW CWRESP. DELTA F.0.M. : -0.008175 

*I* FRAC'IWAL DEYIA1:CUS 3F 1YWT V I R .  AND r -0 -M FRO1 BASELINE YALUES *** 

HLGH ENB i P A C 1  DELTA SEX4 VAR: 0.OcKOo6 CORRESWWO!WG FRACT DELTA F.O.M,: -0.00@382& 

rS1 EM0 FRACP DELTA SEMS VAR.: 0.005Wii CORRESPCMING PRACT DELTA F.O.M.: -0.30083694 

AVERAGE FRACT DELTA SENS.VAR.: O.I)[)SWK; C O R R E S W I N G  m c r  DELTA F,o.R.: -0.000832i-a 
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I n p u t  Data f o r  PWSS 0pt:ion 

u n i t  4 :  O p t i o n s  

TEST CASE: DSN=OPT10.5AT 14  VAR. TEST CASE 
INPUT U N I T S  :1CIMAST C 81 INMOD E 51 

lSVSS Clll IHVSS I 9 1  I E L A S  1121 
WTWT UNITS:IPRWT 1. 61 lPLQT 1151 IBUG E141 
W T I O N :  tHVssl ( DETO,SVSS,MVSS,OR ELAS) 
TOTAL WO. OF I N P U T  + OUTPUT VARIABLES: [ 141 

Unit  8 : Base Case I n p u t s  ( S e n s i t i v i  ti Variab les )  - .- - 
TITLE: 14 VARIABLE TEST CASE: DSN=MASINI .DAT 
ALPH1 
ALPH2 
BETA3 
8ETA4 
ZETA5 
EXP6 
GAMMA7 
GAMMA8 
P H I 9  
EPSlO 
NWl1 

PERF 
PCOST 
CUN I T 

200 
50. 
IO. 
1. 
1.  
1 .  
8 .  

IO. 
18. 
1. 
1. 
- 1 .  
-1. 
-1. 

u n i t  ~ 5 : 

T I T L E :  CONSTANTS Cl,C;! & C3 FOR 14 VAR. EXAMPLE DSN=MOOL.PAT 
c1 1.5 
C 2  2.0 
CS 5 0 ”  
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I W ? C t N T I : E S :  2.5% 137. 

5000 POINT HlSlOGRAW 

PRDB 

0.0016 
0.00611 
0.0174 

0.01Sd 
0.0210 
n.0274 

0.0314 

0.0388 
0.0426 
0.Q460 
0.04% 
0.056;! 
0.0436 
0.0430 
O.Gb16 
0.0672 

0. 0J'B 
0.038~. 

n.ms2 
0 .  0290 
0.0322 

0.0534 
n . 0 2 ~ 4  

0.0220 

o . n m  

0.0216 

0.024z 

0 , O Z h i )  

0.018L 
0.0163 
0.01M 
0.0170 
0,0116 

0.0112 
o m o a  
0.0066 

0.0060 
0.0048 
0.0028 
0.0004 

CWE 

n.oooo 
0.0016 
0 . W  
0.0208 
0.0396 
U . 0 6 0 6  
0 . W  
D. 1194 
0.158Z 
0.2008 
0.24MI 

O.HM 

0.3526 
0.3962 
0.4392 
0.4808 

0.5616 
rJ.6014 
0.6366 

0.6656 
0.6978 
0.7312 
0.74M 

0.11042 

0.8540 

0.8800 
0.8984 
0.9152 
0.92&4 

n . m o  

0.7822 

t) . a284 

o.%w 
0.9574 
0.9686 
0.9294 
0.9860 
0.9920 

0.9968 
0 . w  
1. OOOO 

VALUE 

1rro.n 

1'10.0 
120.0 
150.9 
140.0 

150.0 
1m.o 
170.0 
1m.o 
190.0 
200.0 
210.0 
270.0 
250.0 
240.0 
250.0 
260.0 
270 0 

ZeO.0 
2w.0 
300.0 
510.0 
320.0 
330.0 
340.0  

350.0 
360.0 

370.0 
380.0 
390.0 
400.0 

410.0 
420.0 

430. o 
44u.o 

450.0 

460.0 

470.0 
480.0  

L(io.0 

50ti.O 

V7.57. 4L6 5.0% 1LS. 50.0% 255. c5.m 423. 

+ c LPOINTS 

8 

34 
62 
94 

105 
137 
157 
194 
213 
230 
248 
281 
218 
215 
208 
21 1 
i 93 

1w 
176 
145 
161 
167 
147 

is 
t i n  
121 
128 
130 
92 

84 

M 

85 
sa 
56 
54 

33 

30 
24 
1L 
2 



srArisTics FOR i w u i  VARIABLE BETAS ( 3)  

H I N I W  6.0047 MAXIPluhl  11.996 

MEAY 9.0301 VARIANTE 3.0376 

PERCENTILES: 2.5% 6.16 

5000 POiUi XISTCGRA,% 

PIC8 

0.0310 
0.0330 
0 .0340  

0.0320 
0.0790 
0.0300 
0.0218 
0.0366 
0.0338 
0.0328 
0.0336 

0.0336 
0.0728 
0.03Tz 

0.0356 
0.0310 
0.0330 
0.0302 
0.0320 
0.0324 
0.0324 
0.0306 
0.0340 
0.0304 
0.0380 
0.0336 
0.03?3 
0.0332 
0.0324 

0.0772 

CU% 

0.0000 
0.0310 
0. MOO 

0.1030 
0.1350 
0.1640 
0.1940 
0.2238 
0.26OL 
0.2?42 

0.3270 
0.- 
0.3942 
0.4270 
0 . 4 66 2 

0 . i m a  
0.5308 
0.56JR 
0.5P40 
0.6760 
0.6584 
0 .6MB 
0 . 7 7 i 4  

0.7351 
0.7858 
0.8238 

0.3574 

0.8Q72 
0.93OL 

0.9628 

1 ,0000 

VALIJF 

6.000 
6.200 
6 , 4 0 0  

6.600 
6.800 
7.000 
7.200 
7.400 
7.600 
7.800 
8.000 
8.200 
8. 400 

8.6CO 
8.WO 

9.000 
9.200 
9.LOO 
9.600 
9.300 
10.00 
10.20 
1O.LO 
10.60 
10.80 
11.00 
11.20 
11.40 
11.M) 
11.80 
12.00 

155 
190 
170 
160 
145 
150 
149 
1 a3 
159 
164 
168 
168 
164 
1% 
1 78 

155 
165 
151 
16U 
162 
162 
153 
170 
152 
15-3 
1c8 
159 
1M 
162 
1M 

5 . G  6.30 

= 3POINTS 

JTYPC-  -9 SWP?.D!ST TYPE: UNIFORH 

S i D . D E V I A T I O U  1.7L29 

5 0 . 0 X  9.00 % . O X  71.7 97.5% 11.9 



PWMl CWE 

" 180 
"LOO 
,220 

.2LO 
2 6.0 

,280 
"300 
.J?O 
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PERCEWTILES: 2.5XO.842 

sooa . m u ~  tIlSTDG2W 

PRDB 

O.OOfl2 
0.0016 
0.0026 
0 . 0 D i O  

0.0118 
0.0168 
0.0314 
0.0399 
0.0565 
0. Mix 

0. OR 1 4  

0.0912 
0.0966 
0.1010 
0.0938 
0.0812 
O.Ob26 
0.0550 
0.0412 
0.0282 
0.0182 
0.0110 
0.0064 

m E  

0.0000 
0.0002 
0.0018 
0. OWL 

0.0114 
0.0232 
0.0400 
0.0714 

0.11w. 
0.1650 
0.2%6 
0.3158 
0.4070 
0.5014 

0.6024 
0.5962 
0 . m 4  

o..%oo 
0.3950 
0.9362 
0.301.4 

0,9576 

0.W36 
1 .ooflo 

VALUE 

0.7400 
0.7600 
0.7800 
0.8000 
0.8200 
0.v-00 
0. E500 
0.0900 
0. poflo 
0.9200 
0.Q100 
0.9600 
O.Pen0 

1.000 
1.020 
1.010 
1.060 
1.080 
1.100 
1.120 
1.140 
1.160 
1.190 
1.200 

5.020.866 5O.OX1.000 95.0% 1.13 97.5x 1.15 

= 7POINTS 

1 
8 

13 
35 
59 
M 

157 
185 
273 
34 7 

407 
456 

472 
505 
b68 

406 
313 
2T5 
2 M  
141 
91 
55 

32 
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STAYISTICS fM I Y P V T  VARIAOLL EXP6 ( 6 )  JTYPE- - 4  SIMPL.DIS1 TYPE: LOC-TRI 

M I Y I W  0.50536 WlW 1.9857 

WEAN 1.OL10 VARIANCE 8.60484E-02 STD.DEYIATIOU 0.29334 

PERCENTILES: 2.5XO.575 

5000 WIN1 HlSTOCRM 

PROB 

0.0106 
0.0288 
0.0320 

0.0468 
0.0486 

0.0.504 
0.0582 
0.0680 

0.06% 
0 . o m  
0.0688 
0.0570 

0.0554 

0.0502 

0.0638 
0.0372 
0.0258 
0.0306 
o.oz14 

0.0160 
0.0178 
0.0168 
0.0120 
0.0080 
0.0072 
0.0030 
0.0018 
0.0016 
0 . o m  

n .0246 

C W E  

0.0000 
0.0106 
0.0394 
0.0714 
0.1182 
0.1666 
0.2272 

0.2654 
0.3534 

0.6228 

0.4% 

0.5652 
0.6222 

0.6776 
0.T278 

0.7716 
0.8088 
0.8386 
0.8692 

0.8906 
0.9152 
0.9312 
O.%W 
0.9656 
0.9778 
0.9858 

0.9930 
0 . m  
0.9978 
0.9994 

1 .oooo 

VALUE 

0.5000 
0.5500 
0.6000 
0,6500 
0.7000 
0 I n o 0  
0.8000 
0.8500 
0.9000 

0.v500 
1 .om 
1.050 
1.100 
1.150 
1.200 
1.250 
1.300 
1.350 
1.400 
1 .&SO 
1.500 
1.550 
1 .600 
1.650 
1.700 
1.750 
1 .En0 

1 .a50 
1.900 
1 . e o  
2.000 

53 
144 

1MI 
234 
243 

302 
291 
340 
347 
368 
364 
2885 
277 

2s 1 
219 
186 
149 
153 
107 
123 
80 

8Q 
84 

60 
40 

M 
1s 
9 
8 

3 

5 ~ O X D .  61 7 50.0% 1.00 9s.a 1.60 97.5% 1.69 

* = S W I Y T S  
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STATISTICS FOR IMWT VARIABLE LW'VA7 ( 7) J i Y P t =  - 6  SpWri?t.DIST TYPE: TRAD7010 

N I N l x l P l  5.0L23 WXIR!M 10.96;! 

M5hV 8.19We V A R l h W C i  1.8270 S i D . D E V I A T I W  1.3516 

PERCENTILES: 2.5% 5.69 

5000 POIKT H I 5 T M ; R A M  

PROS 

0.0018 
0.0060 
0.010? 
0.0164 
0.0156 
0.024.L 
0.0282 
0.03LO 

0.0372 
0.0448 
0.0474 
0.0518 
0.04bL 

0. w9.2 
0. W.?5 

0.0444 

0.044 
0.0656 
0.0456 
0.0440 

0.0422 
0.n422 
0. W,fA 

0.0414 
O.LU5C 
o.LU10 
0.02iz 
0.0210 
0.0122 
0.0055 

C l F E  

0.0000 
0.0018 
0.0078 
0.Olnn 
0,0344 
O.OLP6 
0.0742 
0.1024 
0 . 1 w  
0.1Tjb 
0.21& 
0.2658 
0.3176 
0.3620 
0.4102 
0 . 4 m  
0.4Pi2 
0.5655 

0.5912 
0.6368 
0 . m  
0.7230 
0.7652 
0.8112 
0.8526 
0.8980 
0.9390 
0.w12 
0 . 9 3 2  

0 . W L  

1 .0000 

VALUE 

5.000 
5.200 
5.400 

5.600 
5.800 
6.000 
6.200 
6.LQO 
6.600 
6.300 
7.000 
7.200 
7.400 
7.600 
7.840 
8,000 
8.200 
8.400 

8 . t O O  
8.mQ 

9.W0 
9.700 
9.400 
9.600 
9.800 

10.00 
10.20 
10.40 
10.60 
1o.m 
11.00 

5.0% 6.00 5 0 . 0 ~  e.zi 95.0% 10.5 97.5% 10.5 

= 4PCIIMTS 

9 
30 
51 
82 
77 

122 
141 
1 i o  
1% 
224 
Z J i  

257 
222 
24 1 
215 
222 
2i.1 
223 
278 
220 
21 1 
21 1 
230 
207 
227 
205 
111 
105 
61 
28 



I 7 7 

VALUE 

6.580 

5.000 
5 .so0 
6 .  000 
6.500 

1.000 

7 . m  
8.000 
9.500 
9.0m 

9.900 

1n.m 
I0.50 

11.00 
11.50 
12.M 
12.50 
r3.m 

14.00 

14.SQ 
95.00 

i 3 . m  

1 5 . w  
'16.00 
96.50 

17 50 
tr.ao 

i 9 . m  

18.50 
19.00 

20.00 
20.5a 

21.50 
LZ " 00 
22.50 

iv.50 

71 .oo 

2 

9 

14  

t S  
106 
1 74 
2B9 

3% 
478 
475 

1 76 
516 
443 

389 
317 
z a  
'I 69 
1 1 5  

PI 
bo 
54 
39 

26 
P 
6 

a 
7 
J 

2 
0 
1 
0 
5 
0 

0 
1 

EIO.OEY1RTIMI 2.0358 

50.0x 10.0 95.0% 17.8 17.5X '16.9 
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STITISTICS FOR INPUT Y A P I I B L E  P H I ?  ( 91 

H l Y l W X  5.0130 MAX1rU.W 29.9% 

MEAN 17.589 VAPIAMCE 32.112 

FERCE#TILES: 2 . 5 %  6.31 

5001) PO!#? HISTOGR.4PI 

PROB 

0,0478 

0.0474 

0.1052 

O,OQL6 

0,1978 

0.2010 

0.0910 

O.IOC1, 
0,0560 

0. OlW 

CUME VALVE 

0.0000 5.000 
0.0478 7.500 
a . m 2  i0.00 
0.2001 12.50 

0.2950 15.00 

o . w a  17.50 

o.moa 22.50 

0.69% 20.00 

0.8952 25.00 

0.9512 27.50 

1.0000 30.00 

239 

237 

526 

173 

989 

1005 

485 

522  

290 

244 

5.0% 7.62 

= l4POilTS 

JlYPE= 5 SAM"L.01ST T f P E :  HlSlOCRR 

S i O . D E Y I A T I C C I  5 .M9b 

50.G% 17.6 %.OX 27.4 97.5% 28.7 



I79  

SfATISYICT fCM IWPlJT VARIABLE EPSlO 0: 10) JTYPES - 7  S W L . O I S T  TYPE: )tORH-YIU 

R I M I W  0.60128 M A X I W  1.2817 

MEAN 1.0022 VARIANCE 4.26762E-03 STD.OEVIAT1DU 7.91bR3E 02 

PSC4 

0.0056 
O"G114 
0.01-m 
0.1?78(, 
0.0434 

0.0518 
0.0684 
0.0?24 

n . rs94 
0.0808 
0 . m  
0.WkU 

0.0814 
0.0702 
0.0551) 
a. o m  
0.0304 

0.0204 
0.0102 
0. w55 
0 . u w  
9.0016 
0 0004 
0. uc02 
0 .no02 

CLHE 

o . m a  
0.6055 

U.0170 
0.9340 
0.0626 
0.1MO 
0.1516 
0.2260 
0.2984 
0.3978 
0 . 4 m  

0.6816 
0.7630 
0.8332 
0.8&32 
0. w66 
0.9570 
0.9774 
0. Pa75 
0.9932 

0.9974 
0.9992 

0 . W 6  

0.1998 
1 .DO00 

0.51174 

VALUE 

o .aoco 
0. a2~0 
O.&LQO 
0.R6oo 

0 . W O  

0. woo 
0.9200 

0.9400 

0,9600 
0.9800 

1 . 0000 
1.020 
1 .010 
I .O&J 

1.080 
1.100 
1.120 
1.110 
1.160 
1.180 
1.200 
1.220 
1.260 
1.260 
1.290 
1.300 

97.52 1.16 5.oxO.871 su.0x 1.00 95.0% 1.14 

.- WOIMTS 

2s 
57 
E5 
143 
217 
258 
362 
362 
637 

456 

695 
SN 

407 
35 1 
275 
192 
152 
1 G2 

51 
28 
22 

8 

2 
1 
1 



PERCFWTILES: 2.5ZO.BC8 

5000 "?IYT H I S T W R A M  

? R O B  

0.02% 
0.0310 
0.03% 
0.3402 
0.0426 
0.0476 
0.0520 
0.0558 
0 .  M 0 2  
O.Ml2  
0.0548 
0.0554 
0.0526 
0.  @/.a* 
C.0512 
0.G448 

O.OLt.2 

0.333'- 
0.3360 
3.3250 
3.32% 

3.3298 
3.0174 
0.3126 
3 .0?08 

cI:n: 

0.0000 
0.02% 
0.0508 
0.0w2 
0.13?L 
O.lR?O 
0.2296 
0.2816 
0 .3376  
0.3976 
0.45- 
0.5136 
0.56VU 
0.6216 
0.6702 
0 . 2 1 4  
0.7652 
0.8124 
0 .@/.Sa 
0.9818 
0.9098 

0 . V j o 4  
0.9592 
0.9764 
0.9892 
1 , nono 

VALlJE 

o.wo0 

0.9100 
O.FiO0 
0 . ? J m  
O.?iCO 
0 . B C O  

0. Pa0 
O.9T i lO 

0. FSOO 
0.9900 

1 .000 
1.010 
1.020 
1.030 
1 . P U  
1.350 
1 .uo 
1 . 0 i O  

1.080 
1 . 096 

1.100 
1.110 
1.120 
1.130 
1.140 
1.150 

1 h? 
I - -  

133 

192 
2 0 i  

213 
2 3  
250 

279 
30 1 
300 

i i 4  

2 ii 
263 
243 
256 
224 
231 
167 
1RO 
140 
113 
101. 
87 
63 
54 

5. ~ ~ . 9 T  7 50.0% 1.01 95.0% 1.12 97.5% 1.13 

' = 5POIWTS 
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PERCEWIILES: 2.5% 4.38 

5om POIWT H?S'IrnRB# 

PRW C W E  VALUE 

5 .  uuo 
6.006 
7 . m  
B.uO0 

9.000 
10.00 
11.00 
1Z.M 
l3.lHI 

1.L.m 
15.w 
1t.W 

l?,.oo 

lI.M 
lv.w 
M.00 
21.00 
22.00 
21.00 
24.00 

P5.W 
ZL.li0 

27.00 
28.W 
29.00 

30.00 

32.00 
33. fN 

u.00 
35.90 
M.QO 
37.011 
3% 00 
39.00 
40.00 
L'i.00 
42.90 

43.00 

46.W 

s1.m 

5.0% 4.93 

= WltdTS 

59 **-* 

S1D.OEWlATIW 6.GPyl 

S0.m 13.2 95.0% 26.0 77.5% 31.6 
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S T A T I S T I C S  FOR UJTFUi V l R I A a l F  D M S T  ( 13) JTYPC~-W § A W L . D 1 5 T  TYPE: H O T - A W L  

W I N I X W  15.301 LAXIWM 81.777 

REAM 30.676 VARIAI1ICE 65.110 STD.DEYIATIGY 8.0691 

PERCEWTILES: 2.5% 18.8 

5000 WI!iT HISIffiSW 

PRW 

0. ooca 
0.0080 
0.0410 
0.0722 

0.0964 
0.1079 
0.1088 
0.1012 
0.0874 
0.0'7% 

0.6572 
0.0526 
0.04'56 
0 . o w  
0.0782 
0.0214 
0.0158 
0.0093 
o.Ow2 

0.0060 
0.0032 
0.00i6 
0.0008 
0.0010 
0.0006 
0.0000 
0. OOW~ 

0.0000 
0.  0002 
o.oori0 
0.0000 
0.0000 
0.0000 
0.0002 

amE 

0.0000 
0.0008 
0 . 0 ~  
0.0498 
0.1220 
0.21B9 
0.3ZM1 

0.4348 
0.5360 
0.5236 
0.6988 
0.7- 
0.81% 
0 .8652  

O . M I S  
0.9288 
0.9512 
0.9470 
0.9769 
n . PEL50 
0.9920 

0.9952 
n.wta 
0.W76 
0.998% 
0.W92 
0.9992 

0 . W  

0.9996 
0.9993 
o . m a  

o . m a  
0.3p98 

0 . m E  
1.0009 

VALUE 

14.00 
16.00 
18.00 
20.00 
22.00 
24.M 
26.00 
2B.GO 

30.00 

32.00 
34.00 

36.00 
38.00 
40.00 
42.00 
44.00 
L6.00 

48.00 
50.00 
52.00 
54.00 
56. Or) 

58.00 
60.00 
62.00 
64.00 
66.00 
68.00 
70.00 
72.00 
74.00 
76.00 
Td . on 
90.00 
82.00 

4 
40 

205 
361 
LRC 

536 
544 
506 

437 
377 

346 

263 
733 
182 
141 
107 
i 9  

49 
46 

30 
16 
8 
4 

5 
3 

0 
2 
0 
1 
0 
0 
0 
0 
1 

97.5% 49.6 5.0% 20.0 50.0X 29.3 G5.m 45.9 

= CPOIYTS 
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STATISTICS FOR wiwr V A R I ~ B L E  C ~ J N ~ T  ( 14; 

M I N I M  0.49148 MAXlHVn 7.8217 

MEAN 2.7276 V I R l A W C E  1.2089 

PERCENTILES: 2.5m.913 

5000 POlWT HISTOGRAM 

PQ58 

0.0012 
0.D102 
0.0240 
0.0892 
0.0377. 
0.0462 
0.0530 
0 . W  

O.Oi-58 
0.0760 
0.0714 
0.orJ4 
0.0714 
0.0556 
0.0546 

0. ME32 
0.0378 
0.0350 
0.02bo 
0.0206 
0.0166 
0.0132 
0.0116 
3 . o m  
0.0058 
0.0042 
0. 0026 
0.0034 
U.5032 
0.0018 
0.0018 
0 " oooz 
0.0002 
0.0OIu 
0. 0004 
0.0004 
o sow, 
0.0002 

C W E  

0.0000 

0.01 14 

0.0354 
0 . W 6  
0.1018 
0.1480 
0.2010 
0.2692 
0.5450 
0.4210 
3.4921 
0.5658 

0.6372 
0.7026 
0.7570 

0.8052 
0.8450 
0.0780 
0 . ~ 1 4 ~ 1  

o.noi2 

0.9246 
0.9412 
0.9544 
0 . v m  
0.9750 
u . v a m  
o.vaso 
0.9876 
0.5910 
0.')942 
u.9>m 
0.W78 

0.WLM 

0.9986 
0 . W  

0.9994 

O.yW8 
1 . 0000 

n . we2 

VALUE 

O.kOC0 

0. moo 
0.8000 
1.000 
1.200 
1 .LO0 
1 .a0 
1 .BOO 

2.209 

2.400 
2.600 
2.m 
3.000 

2. ooa 

.LZOO 
3.400 
3.600 
3.800 

4.050 
4.200 
6.400 
L.600 
&.e00 

5. GO0 
5 .  zoo 
5.400 

5.600 

s . m  
6.000 
6.200 
6.400 
6.600 
6.8~0 
7.000 
7.200 
7.405 
1.600 

7.800 
8.005 

5.0% 1.10 

* i 6POIHTS 

6 
51 

120 
146 
186 
231 
265 
341 
319 

m! 
357 
367 
157 
327 

272 
241 

189 
175 
130 
1 Of 
83 
M 
58 

45 
8 

21 
13 
17 
It 
V 
9 
1 
1 
7 
2 

2 

1 

JlYPE--W SlMPt. .OISl  fY?E: YOI-APPL 

STO.OEVIAllON 1.WQ3 

5U.m 2.62 95.0% 4.73 97.5% 5.20 
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type ranrm. f o r  
c Random number genera tor  f o r  Ryan-McFsrland ( R M )  F o r t r a n  

f unct i on  random( dunmy) 

t r a n s l a t e d  f rom Ref E.2 by 

c****  

c 
c T.C.Tucker 
c Computing and Telec6mnunications D i v i s i o n  
C M a r t i n  M a r i e t t a  Energy Systems, Inc.  
c**** 

rea l *4  random 
rea(*8  a,m,secd,ternp 
comnon /ranumb/ seed 
d a t a  a/16807'.0/, m/2149483647dO/ 

temp = a * seed 
seed = temp - m * dint( temp/m> 
random = seed / m 

C 

C 

r e t u r n  
end 
sub rou t ine  ranseed( i y )  
r e a l * 8  seed 
in tege r *4  i y  
cornon /ranumij/ seed 
seed= i y 

r e t u r n  
end 
block data randseed 
r e a t * 8  seed 
C O ~ O R  /ranuntb/ seed 
da ta  seed / 1.0 / 
end 

Fig. E.1. Random number generator for Ryan McFar1ai-d Fortran. 



t ype  r a n m  f o r  
c Random number genera to r  f o r  R i c r o s o f t  F o r t r a n  
C 

f u n c t i o n  random(dum3y) 

t r a n s l a t e d  from Reference E.2 by 
T . C ~ Tucker 
@cmp,t ing  a d  TeLccomricnicat i on5 D i v i s i o n  

c**** 

C 

C 

c 

C M a r t i n  M a r i e t r a  Fnet-gy Systems, Inc .  
c"*L* 

rea l *&  random 
r e a l * 8  a, In, seed, temp 
ccmmcn /ranumb/ wed 

d a t a  a/16807.0/, m/2147683647d0/ 

tmp = a * seed 
seed = temp - m dint( ternp/m) 
random - seed / in 

r e t u r n  
end 
s u b r o u t i n e  ranseediiy) 
real*EI seed 
in tege r *&  i y  
cornon /ranurn& seed 
seed i y  
r e t u r n  
end 

C 

C 

Fig. 2.2 .  Handom numbw generator for Microsoft Fortran. 



type sarl.~”s 
Pascal random nLrmber generator  from Ref F . 2  

prog ram testran; 
v a r  seed,u : r e a l  ; n : integer ;  
function rariricam: rea I ; 
cons t  

a = 16807.0; 
rn = 21474.83642.0; 

Va r 

temp : real ;  

temp := a“seecl; 
seed := temp - m*t~‘unh:b:tels,Pbkllj; 

bcg in 

random I =  seed/m; 
end; 

begin 

seed := 1.0; 
fcor n := 1 t o  10009 do 

u : = randc>lm; 
uriteln(”The current v a I w  o f  seed i s  : ’,seed); 

end ” 





19 1 

APP 

LIST OF ACR s 

ACC! 
AIS 
,4VLIS 
CDF or c 
cos 
C&TD 

DOE 
DOS 
DP 
EOF 
ETD 
FAST-E 

Advanced Gas Centrifuge 
Advanced lsotope Separation 
Atomic Vapor Laser Isotope Separation 
Cumulative Density Function 
Coefficient of Sensitivity 
Computing and Telecommunications Division 
of Martin Marietta Energy Systems, Inc, 
U S .  Department of Energy 
Disk Operating System 

End-of-File 
Engineering Technology Dieision ( 

ee of Defense Proparns; U.S. DOE 

Frein1ara Analysis of Systcms Technique - Equi 
arnetric cost model) 

Liquid Metal Reactor 
Molecular Laser Isotope Separation 

miable Sensitivity Study 
ally Distributed Random Nuaher 

New Production Reactor 
ivision of OPtGDP 

Plasma Separation Process 
Ryan McFarland ~~~~~~~ software) 
Strategic Defense Initiative 
Single Value Sensitivity Study 
Union Carbide Cor 
Uniformly Distribukd Random Numb,r 

ration ~ Nuclear Division 
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5. 
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4.7. 

20. 
21. 
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6%". 

68. 

69. 

70. 
71 * 
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93" 

34. 
35. 
36. 
37. 
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20585 
B. J. Rock, NE-46:6TN7 Department of Energy, Washingt 
x. Rodwell, Electric Power Research Institutc, P.O. Box 
CA 94303 
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