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ORMONTE: AN UNCERTAINTY ANALYSIS CODE FOR
USE WITH USER-DEVELOPED SYSTEMS MODELS
ON MAINFRAME OR PERSONAL COMPUTERS

K. A. Williams
C. R. Hudson 11

ABSTRACT

Documentation is provided for a general purpose uncertainty
analysis code entitled ORMONTE. The code is intended to be linked
with FORTRAIN-77 models designed by the user. ORMONTE is
capable of performing sequential single-variable sensitivity studies
(SVSS), elasticity analyses, and multivariable sensitivity studies
(MVSS) by acting as a driver on the user’s model. The MVSS func-
tion utilizes the Monte Carlo simulation method of probabilistic
analysis. The model accessed by the ORMONTE driver code and the
names and characteristics of the modeler’s uncertain variables are
provided by the user. ORMONTE is essentially a bookkeeping code
which keeps track of the inputs and outputs defined by the user,
samples the user-defined uncertainty distributions, repeatedly runs
the user’s model, and produces statistical data and output proba-
bility histograms for the output variables of interest to the user,

ORMONTE has been utilized extensively by the USDOE and
its Oak Ridge contractors, Martin Marietta Energy Systems Inc.,
and its predecessor, Union Carbide Corp.; Nuclear Division, for the
economic evaluation of large-scale energy projects for which com-
puter models have been constructed for performance and cost
projection purposes. ORMONTE has been used on several computer
systems including a Cray, several VAXes, twe IBM-360 mainframes,
and DOS compatible PCs (along with the appropriate FORTRAN-77
software). The detail documentation provided here deals mainly
with the PC version to be utilized with RM/FORTRAN; however,
installation on a mainframe is reasonably simple. An example
problem and complete ORMONTE input and output therefrom are
provided.

Systems models driven by ORMONTE in the past include
performance and cost models for new uranium enrichment plants,
advanced nuclear power plants, coal fired plants, and defense mate-
rials production reactors. Future applications include ORMONTE’s
use as a driver for parametric costing models such as FAST-E and as
a driver for a systems model such as that for the design and cost of a



fusion power plant. Some discussion of how CRMONTE results were
used in evaluating advanced energy systems is included in the
report. ORMONTE is structured such that it can easily be coupled
to existing FORTRAN models and installed on a PC.

1. INTRODUCTION

As the use of probabilistic uncertainty/risk analysis has increased within
Martin Marietta Energy Systems and the U.S. Department of Energy, it has become
necessary to educate new users in the installation and operation of the ORMONTE
Monte Carlo driver code se that it can be run in conjunction with their own mathe-
matical models of energy systems. [t should be noted, however, that ORMONTE can
be used with any model, not just those that are energy-related. Emphasis in this
report is on DOE applications. It is also anticipated that the increasing speed and
storage capabilities of personal computers will make the use of uncertainty analysis
methodology available to an increasing number of potential users. Since the eco-
nomic evaluation tasks of interest to DOE/ Defense Programs (DP) involve consider-
able cost analysis, it was felt that documentation of the sensitivity analysis code
(ORMONTE), which will drive their parametric cost models (Ref. 1.1), was an
important step in the implementation of the technique for this application. The
documentation is also necessary in order that ORMONTE can be linked to
proprietary parametric cost estimating codes used by DOE/DP such as those in the
FAST (Freiman Analysis of Systems Techniques) series.

Chapter 2 will discuss the rationale for the use of uncertainty/ risk analysis
and why it is an important tool for augmenting the usual base case or deterministic
estimates generated by a cost or performance model. Chapter 3 describes the
background of the ORMONTE code and how it has been successfully applied in
previous economic evaluation efforts for the Department of Energy. Chapter 4 gives
a brief description of the mathematical basis and special features of the ORMONTE
code. Chapter 5 is a detailed discussion of the overall structure and FORTRAN-77
algorithms within the code with emphasis on the mathematical methodology util-
ized. Chapter 6 discusses the considerations needed in designing or preparing the
systems model(s) which are driven by ORMONTE. Chapter 7 discusses the develop-
ment of input data for ORMONTE and how one can convert uncertainty data
obtained from an expert interview into the probability distribution input form
required by ORMONTE. Chapter 8 describes the interpretation of ORMONTE
output, and Chapter 9 discusses the installation of ORMONTE on both FC and
mainframe computers. A sample problem, which includes complete input and
output data, is given in Appendix D. A listing of the code is not included in this
report. This ORMONTE code is available in electronic form from the DOE National
Energy Software Center at Argonne National Laboratory.

Throughout the report the attempt has been made to make the texi easily
understandable by nonstatisticians or nonmathematicians. The hope is that both



technical and nontechnical persons faced with decision-making tasks will find
ORMONTE possibly useful in their analyses. The computer and statistical back-
grounds of most technical and management staff should be adequate to at least
understand the power of this uncertainty analysis method and the meaning of the
results obtained therefrom.

If the reader wishes more detailed guidelines for process and economic
modeling of emerging energy technologies, along with a highly detailed example
project utilizing an earlier mainframe version of the ORMONTE uncertainly analy-
sis code, Ref 1.2 or 1.3 is recommended. References 1.2 and 1.3 are the same
document and are available from the two sources listed in Sect. 1.1 below.

1.1 References

1.1 Gasperow, L.A., Hackney, J. W. and Hudson, K. K., Parametric Cost
Estimaiing; A Guide, U.S. Dept. of Energy, Office of the Assistant Secretary
for Defense Programs (DP 5.1), Washington, D.C., February 1987.

1.2 Williams, K. A., A Methodology for Economic Evaluation of Process Tech-
nologies in the Early Research and Development Stages, PhD Dissertation,
The University of Tennessee, Knoxville, August 1984; 475 pages (available
from University Microfilms International, 300 N. Zeeb Rd, Ann Arbor, MI
481086, publication # 8429631), or

1.3 Williams, K. A., A Methodology for Economic Evaluation of Process Tech-
nologies in the Early Research and Development Stages, Report #K/OA-
5684; Martin Marietta Energy Systems, Inc.; Oak Ridge Gaseous Diffusion
Plant, Oak Ridge, TN 37831; August 1, 1984; 475 pages (prepared for the
U.S. Department of Energy under Contract No. DE-AC05-840R21400;
available from National Technical Information Service, U.S. Department of
Commerce, 5285 Port Royal Rd., Springfield, VA 22161; order
#DEB4015863).



2. RATIONALE FOR UNCERTAINIS

For most research and develoom ent (u& ] ) Drograms, resesychers are
vequired to make projections regarding the futur riormance and/or cost of their
products ov systems. This has indeed teen the o e for energy vesearch programs
carried out by the Department of Energy and 1ts contractors in such areas as
nuclear Weapons, fusion, uranium enrichment, advanced nuclear reactors, synthetic
fuels, and reneweable energy sources. In evaluating ~u.rers projects, decision-makers
have usually had to rely on what are called "base case," "deterininistic,” or sngl.m

point" performance and cost estimates which rely on one set of input informalior
usually supplied by the project y nmuonnntv These performance and cost projections
Fel

arc often produced via a computer mode! and, in som apphcatif) s, 2 spreadsheet.
The inputs to the estimating process usually consist of "best guess" numericat
projections for those project-related variables tnat have significant leverage on the
figure of merit upon which th project might be ] unit cost or overail
reliability.

The punecmoub made for the key project inputs ave likely to be significantly
different from the values actuaily realized when the project is carried cut through
sc aleup and ae"olo_ym nt. Such disparity between pivjected and actual data is
caused by inaceuracy of early R&D results, unforeseen events, incomplete design

details, pugect scope changes, physical phenomena which are not understood,
scaieup difficulties; and chan ges in the economic climate; therefore, most inputs to a

projection have associated with them some f@g*ro of 1mf91‘tainty. The net result is
hat the uncertainty qsgomatnrl with one or siore mputs eventually propagates to an

uncerbamty in the figure of merit of interest for the project. When 2 deterministic
figure of merit is located within its unceriainty spectrum, one can then describe the
"risk" associated with the deterministic value and gauge its degree of optimism or
pessimisim.

2.2 Prababilistie Projections

F**“-a**ienw shows that deterministic performance and cost estimates usually
prove to be optimistic when examined in the light of prevallmq uncertainties. This
proble is discussed from the standpoint of actual experience in Refs. 2.1-2.3.
Uncertainty analysis can answer the following: given what I know about my system
model and 1f s uncertain inputs, how far off can my possible figure of merit outcome
be from my earlier deterministic projection, and what is the prohability of attaining
a future value lws than or squal to the projected deterministic outcome? The
general methodology for examining this question is often called risk analysis or
probabilistic analysis. Different mathematical tools for pursuing probabilistic

analysis exist; among these are decision tree analysis, Monte Carle simulation, and
the Latin hypercube method. Such methods have been used extensively in the last
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several years to evaluate health and safety related risks associated with energy
systems. The results of such analyses are often referred to as PRAs (Probabilistic
Risk Amessments) Several excellent references (Refs. 2.4-2.10) describz these
methods and their applications.

This report will describe a general computer code which uses the Monte Carlo
method to drive the user’s e;yqtem model such that a Multivariable Sensitivity Study
(MVSS) is performed on the user’s model. The user has the advantage that all input
variable effects on the figure of merit can be examined simultanecusly and the
resulis presented in terms of probabilities and statistical parameters. The computer
code described also has the capability to perform automated, sequential single-value
sensitivity studies (S8V88). This procedure is a needed predecessor step io the
multivariable sensitivity studies (MVSS). The applications described in this report
are related to economic projections rather than projections of accident or health/
safety risks.

2.3 References
2.1 Merrow, B. W., et al., & Review of Cost Estimation in New Technologies:

Implications for Energy Process Plants, The Rand Corporation,
R-2481-DOE, July 1973,

2.2 Memow, B. W., et al., Understanding Cost Growth and Performance
Shortfalls in Pioneer Process Plants, The Rand Corp., R-2569-D0OE, Sept.
1981,

2.3 Merrow, B. W., Understanding the Outcomes of Megaprojects, The Rand

Jorporation, B-3560-PSSP, March 1988,

2.4 Rish, W. RB., Approach to Unceriainty in Risk Analysis, ORNIL/TM-10748,
Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory,
August 1988,

2.5 Rish, W. R., Review of Studies Felated fo Uncertainty in Risk Analysis,
ORNIL/TM-10776, August 1988.

2.6 Dhunigan, T. H., A Portable Fypercube Simulator, ORNL/TM-10410, July
1987.

2.7 Worley, B. A., Determinisiic Uncertainty Analysis, ORNL-6428, Decem-
ber 1987,

2.8 Henrion, M., et al; "A Computer Aid for Risk and Other Policy Avalysis,”

Eisk Analjsw, & No. 3, p195-207, (1985).
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Henrion, M., The Value of Knowing FHow Little You Know: The Advan-
tages of a Probablistic Treatment of Uncertainty in Policy Analysis; PhD
Thesis; Carnegie-Mellon University, March 1282 (Univ. Microfilms
#8314544).

Cox, D. C,, et. al,, "Methods for Uncertainty Analysis; A Comparative
Survey;” Risk Analysis (1) No. 4, pp 251-258, (1981).



3. BACKGROUND OF THE MONTE CARLO
UNCERTAINTY ANALYSIS
METHODOLOGY

3.1 Historical Development

For very simple linear models it has always been possible to calculate the
"nropagation of uncertainty” from inputs to outputs via direct analytical means, ie.,
using the statistical parameters (the means and variances) describing the uncer-
tainty in each input variable (Ref. 3.1). Most models, however, are more complex
and involve nonlinear relationships in their algorithms, thus nonanalytic technigues
are needed to perform MVSSs. The availability of high-speed digital computers
made feasible the application of Monte Carlo techniques to a wide range of scientific,
engineering, and economics problems involving complex models and multiple
uncertainties.

Mente Carlo techniques are not new, and their historical use is well docu-
mented. Intense use of the techniques began as part of the Manhattan Project
during World War I1, mostly in the course of studies of the physics and design of the
atomic bomb. For example, Von Neumann and Ulam (Ref. 3.2) utilized the method
to simulate neutron diffusion in fissile material. Since then the method has been
utilized in nuclear reactor design, plasma physics, and many other research applica-
tions. In the early 19608, David B. Hertz (Refs. 3.3-3.5) was the first to apply the
method to economic and business analysis and projections. It soon became apparent
that the Mente Carlo method, along with modeling, could be utilized as an E&D tool
in the assessment of many processes or systems where technical and economic
uncertainties abound, such as weapons systems (Ref. 3.4), fusion (Ref. 3.7), and new
chemical plant ventures (Ref. 2.8).

3.2 Use of Monte Carlo Based Uncertainty
Analysis in Economic Evaluations
Performed at Oak Ridge

In Oak Ridge the intensive application of the Monte Carlo technique for
cost/risk MVSS had its reots in the Uranium Enrichment process economic evalua-
tion programs carried out in the Operations Analysis and Planning Division of the
Oak Ridge Gaseous Diffusion Plant (ORGDP). Simultaneous advancement of both
laser technology and plasma science resulted in significant R&D work on highly
innovative advanced isotope separation (AIS) methods for the uranium enrichment
step of the commercial nuclear fuel cycle. By 1978, three AIS processes were being
funded by the Department of Energy: the Molecular Laser Isotope Separation
(MLIS) Process, developed by Los Alamos National Laboratory; the Atomic Vapor
Laser Isotope Separation (AVLIS) Process, developed by Lawrence Livermore
National Laboratory; and the Plasma Separation Process (PSP), developed by TRW



Incorporated. All three of these processes involved high-technology hardware still in
the basic laboratory stages, and each ad been demonstrated on the proof-of-
principle level. A number of the key sci-entm(: and cost issues relevant to scale-up of
these processes were hlghly unceriain or left to be determined; hence, there was a
necd for an economic assessment activity in umallel with R&D emtablu to these

conditions.

.’3"

By the late 1970s, budgetary considerations dictated that DO choose only
onc of these thiee processes for further R&D. Each contractor laboratory was asked
to explore and contribute for peer review certain critical basic information on its
proposed process candidate. Martin Marietta’s predecessor, the Union Carbide
Corporation-Nuclear Division (UCC-ND) at Oak Ridge was assigned the task of
modeling and assessing the e hmua; and econoinic aspects of the three proposad
AIS processes. Along with extensive process models, the Monte Carlo driver code
here described played a key T 1 in the May 1882 DOYF Headguarters decision to
choose the AVLIS procsss for further engineering and development. DBy the mid
1980s budgetary probles again dictated that DOE make a process selection, this
time between AVLIS and the advanced gas centrifuge (AGC) process. The Martin
Marietta Energy Systems Corporation at Oak Ridge was assigned the task of again
modeling and assessing the foe‘hiical and economic aspects of the two proposed
processes. Along with extensive process and cost models, the Monte Carlo driver
code again played a key role in the June 1285 DOE Headquarters decision to choose
AVLIS for further development. Refersnce 3.2 briefly describes the results of these
uncertainty analysis studies.

In 1986 the method was applied to augment deterministic projections of
busbair power costs for coal-fired an d uclear plants coming on line in the year 2000

(Ref 3.10). Other Oak Ridge/20E usored applications of the methodology have
been: space power sources for the St ate l)efe; se Initiative (SDT) (Ref. 3.11), cost

aYayn!

estimating for DOE new production reactor \N?t{) concepts (Ref. 3.12), and cost
estimating for two advanced liquid me a] actor JMR) concepts (Ref 3.13). These
last two applications were also involved in DOE lecision-support process.

3.3 Baeferences

3.1 Cortes, R. H.,, "How Wrong Can Your Calculations Be?" Petroleum
Refiner, Vol. 37, No. 10, pp. 129-130 (June 1958)

3.2 Curtiss, J. H., et al., Monte Cuirlo Method, National Burean of Standards
Applied Matm,matlcq Series, Vol. 12 (1951).

3.3 Hertz, D. B., "Risk mlvsvs in Capital Investment," Horvard Business
Review (January-Fe bz uary 1964),
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Hertz, 1. B., Thomas, L., Risk Analysis And lis Applications;, Wilay, New
York, 1983,

Hertz, 1. B. and Thomas, ¥, Proctical Risk Analysis: An Approoch
Through Case Histories; Wiley, New York, 1984,

Timson, ¥. 8., "Measurement of Technical Performance in Weapon Systern
Development Programs: A Subjective Probability Approach,” Report No.
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4. BRIEF DESCRIPTION OF THE MONTE CARLO
TECHNIQUE FOR MULTIVARIABLE
UNCERTAINTY EVALUATION

Monte Carlo simulation methods can provide probability distributions in the
form of histograms for both uncertain input variables and output figures of merit
from a user’s model. This is accomplishad by making repeated evaluations of the
system response (via the mode!) using input variable values drawn randomly from
appropriate distributions that represent the projected statistical properties of each
uncertain input variable. After performing a large number of such evaluations, a
statistical distribution or histogram of system response is obtained. Meaningful use
of the Monte Carlo method requires 2 user-supplied systems model adapted to the
Monte Carlo code here described.

4.1 Mathematical Description of Computational Procedure

The Monte Carlo simulation procedure consists essentially of five steps.
Figure 4.1 shows a flowchart for the simulation procedure

1. Input: For each indepgendent input variable, Y; (i = 1 through NI; where
probability of occurrence for any particular value within the variable range. [It
should be ncted that most Monte Carlo users utilize the term "distribution” to refer
to a probability density function (pdf).j The types of distributions for each variable
need not be the same. The subject of determining the distribution type and input
values for a given variable is discussed in Chapter 7 and Appendix A.

2. Sampling: Via a random number generator and the input distributions,
ORMONTE generates an ensemble or vector, Y, (i = 1, NI) of randomly selected
input values for submission to the user’s model. Each ensemble of values is unique
and represents a different possible set of occurrences. [In order for a random num-
ber (a real number between 0 and 1) to be utilized, the pdf must be integrated by
ORMONTE to form a cumulative distribution function (cdf) with a maximum
cumulative probability of unity, i.e., the area under the pdf curve. The cdf is then
algebraically inverted or transformed such that an input variable value or "return
value" can be calculated for each cdf probability value selected between 0 and 1.
This inversion procedure is shown graphically in Fig. 4.2 and is described in more
detail in Chap. 5 and Appendix C]. The baseline or reference deterministic case will
never be exactly reproduced in this sampling process.

3. Simulation: For each iteration the model calculates single values of the
[igures of merit and other variables internal to the model whose ultimate distribu-
tions are desired by the analyst [these variables are designated as Y; (i = NI + 1,
NT); where NT is the total number of input plus output variables. Note that the

overall Y; vector includes both input and output variables]. It is assumed that the
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Fig. 4.1. Flowchart for Monte Carlo-based multivariable sensitivity analysis
procedure for evaluation of a system subject to multiple uncertainties.
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Fig. 4.2. Generation of a return input value from a random number and a
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ensemble of input variables submitted is internally consistent and does not repre-
sent a physically or logically impossible or unreasonable situation, especially in the
sense of the systern performance model. If this problem exists, the user’s model
should be restructured to avoid the generation of such cases.

4. Tteration and Storage: Once the figures of merit for a given iteration are
evaluated, they are stored and ancther ensemble of input values is submitted to the
user’s model. The number of iterations or cases needed is dependent somewhat on
the mode! and the user’s desired level of accuracy (see Appendix B). If an input
ensemble consisting of the means for each input distribution is submitted to the
model (a separate calculation from the Monte Carlo simulation), a mean output
value results. If during the simulation the output values for each figure of merit are
stored and the statistical mean for all iterations is recalculated after each additional
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iteration, it will be found that this mean will eventually approach the calenlated
mean evaluated off-line using the inpui distribution means, Iteration can be ter-
minated when the difference between the two output means reaches an arbitrarily
small fraction of the off-line calculated mean. {(One method for determiving the
required number of iterations is described in Appendix B.) Experience indicates
that for most complex models at leasi a few hundred evaluations or iterations are
needed. Using additional evaluations improves the statistics and the geometrical
appearance {(shapes) of the input and output distributions; however, depending on
the complexity of the model, the hardware, and accounting procedures, the price in
mainframe machine computation time and compuier input-output units (-Os) can
be high.

4.2 Nature of Ouiput from a Monie Carlo MVES Run

The Mounte Carlo simulation technigue allows consideration of hundreds of
different off-baseline cases. If the analyst wishes, every case could be sxamined
individually by printing full cutput tables for every iteration or case thal represents
submissicn of a new set or ensemble of input values. In reality, the user is probably
interested only in output of 2 Hmited number of crucial variables or figures-of-merit.
The design of ORMONTE allows the user the option of chovsing whatever variables
he desires for display and analysis. The vector compesed of sampled and caleulated
values, Yigk [i=1 {0 NT; where NT = NI + NO = total number of variables (input plus
output), k = a particular iteration] is stored for each iteration, m, of the simulation.
At the end of the simulation (m = M iterations), a very large array Y of dimension
M x NT is available for siatistical analysiz and plotting of histograms. The values
stored in this array are for both input and Higure-of-merit variables.

By saving the actuzl input values sampled by the random nuwmber gener-
ation, the user can check how well the total input samples drawn approxiragie the
inpui probability density function chosen. If the approximation is poor, ie., the
statistical parameters for the sample and input distribution definition differ sig-
nificantly, then the user must specify more iterations.

4.2.1 The generation of output histograms

The array of ¥ values (inputs plus ocutpuis) generated by the simulation
essentially represents the collection of M (number of iterations) responses per Y,
value obtained by the submission of M sets of deviations or sets of nonbassline
sampled inputs submitted to the overall model.

This outpul is best understond if plotted in the form of a velative probability
distribution or pdf, These distributions take the form of histograms constructed
from the M Y-vectors available for analysis. If small egual size bins of width AY,

. X A " i,
are specified for a given Y;, each Y, value out the fotal of M can be assigned to the
2

bin which containg the boundaries that encompass its value. The result is a his-
togram as shown in Fig. 4.3. If the particular Y, is a function of two or more input
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Fig. 4.3 Sample cutput probability histogram from ORMONTE MVSS
option.

variables, the output histogram will usually take the shape of a bell-shaped distribu-
tion. This observation is true if the geometric forms of the input distributions
submitted to the mode! have single peaks. The generation of normal or quasi-
normal output distribution forms is a consequence of the Central Limit Thecrem of

statistics.

The ORMONTE driver code is designed to perform the repetitive data
submission task and also the histogram-plotting and output data analysis task.
ORMONTE calculates the statistical parameters swch as standard deviation,
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median, mean, and selected percentile probability ranges for all specified variables,
Y, (both input and cutput).

The 5 and 95 percentiles for each histogram are raost useful since the analyst
is most often interested in the middle 90% range of a distribution. For a normal
distribution these percentiles approximate the I1.85¢ region (¢ = standard devia-
tion). If the user’s model is sufficiently robust, there 1s little danger in discarding
the cases representing the 5% "tails” at each end of an output histogram. By dealing
with the middie 90%, the user 1s considering the more representative cases or
outcomes.

{n many cases discontinuities, raggedness, or “spikes” will occur in the
output histograms. Two causes contribute to this appearance, poor input statistics
(due to insufficient sample size) and/or the existence of discontinuous functions
within the user’s model. If a large number of iterations is used, the former factor
will have a reduced effect; howewver, the latter can arise as a result of reoplimization
within the model (which will drive the variable being optimized to {ind a discon-
tinuity) and the fact that some entities in the user’s model may ocour as discrete or
integer quantities.

4.3, Special Features of the ORMONTE Code

The ORMONTE code is very general in nature and in moest cases can be run
in conjunction with an already existing code, with usually only minor modifications
to the latter. Among the salient features are:

paury
H

In addition to performing Monte Carlo MVESS, the driver code can also
perform automated single-value sensitivity studies (8VSES), run only the
base case, or perform elasticily analysis (% change in an output per %
change in an input). The SVSS and elasticity options procedures, when
applied to the user’s model, can help in selecting which variables are impor-
tant enough to merit becoming MVSS input variables. Variables having
significant leverage on the output figure of merit should be chosen. The
Pareto principle implies that out of many possible input variables, only a
Hmited number ave likely to exert significant laverage.
A large number of input and output variables can be handled in each
simulation. The sum of the number of uncertain input and cuiput variables
can be up to 180, Minor changes to the source code could increase this sum.
3. A master COMMON block 18 used to pass inpus and cutput data back and
forth between the user’s model and the ORMONTE driver code. The
INCLUDE feature of most FORTRAN-77 compilers allows coding of this
master COMMON block only once, rather than coding it into every
SUBROUTINE in the user’s model.
4, The user of ORMONTE has nine different input probability distributions
from: which to choose for describing input data uncertainty. A histogram
option is also available and can be used to approximate other more complex

%
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types of distributions. Within a given run of ORMONTE, mixed types of
distributions can be used for a set of inputs.

Following completion of all iterations comprising the simulation, the stored
data are analyzed by ORMONTE, and probability histograms are printed
for both input and output variables. These histograms are produced for
output to the standard printer connected to the user’s computer system.
ORMONTE can alse save the histogram data for use with plot programs
such as DISSPLA, CHARTMASTER, HARVARD GRAPHICS, or LOTUS
1-2-3.

Also included in this ORMONTE package are new computer tools for the
acquisition of raw probabilistic inpiit data and for the characterization of
such data. This PDA (Probability Data Analysis) package requires the use
of LOTUS 1-2-3 and the software provided along with the ORMONTE
FORTRAN source files. A major function of the "probability wheel” feature
of the PDA package is to elicit probabilistic responses from an expert.

At Oak Ridge, ORMONTE has been successfully run with FORTRAN-77 compilers
and linkers on the foliowing mainframe systems: IBM 3038, VAX (several models),
PDP-10, and the Cray XMP. Its use on an IBM PC reguires FORTRAN-77 compiler

f o/ S

and linker software such as Ryan McFarland or Microseft “CRTRAN.
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5. DETAILED DESCRIPTION OF THE ORMONTE CODE

This section describes the MAIN and the various subroutines which consti-
fute the ORMONTE code. (The PDA options ave described in Sec. 7.2.) In addition
to this description, the FORTRAN source code itself is liberally commented such
that the user should have little difficulty following the code’s logic structure. The
FORTRAN source code is available in electronic form from the National Energy
Software Center at Argonne National Laboratory.

5.1 Basic Coding Structure

from the beginning ORMONTE has been desigped such that 1t can be easily
integrated with exisiing user models written in FORTRAN 77 or its predecessor
FORTRANs. The principal problem in connecting a driver code such as ORMONTE
to an existing code is establishing comunication of input and cuiput variables
between the codes without forcing the user to deal with a whole new set of variable
names. ORMONTE circumvenis this problem by use of a COMMON block named
/MASTER/ which appears in both ifs own drivers and the user’s waodel. In the user’s
mndel /MASTER/ contains all of the sensitivity variables of interest, both inputs and
outputs, and retains the vanable names preferred by the user. In the ORMONTE
driver MASTER/ holds a wector Y(150) in which each element Y(I) corvesponds to a
variable in the user’s model. The mput and output to ORMONTE, however, can
utilize the wvarizble names appearing in the user’s model. COMMON blocks
MASNAMY and /PABAM/ handle the bookkeeping needed to accomplish this task
The use of the MASTER/ COMMON block has another advantage in that it allows
easier debugging of the user’s code if a Monte Carlo simulation fails before all
iterations have been complefed. By printing the ¥Y-vector passed via /MASTER/ the
useyr can look at the set of inputs and outputs associated with a particular iteration
of bis model and see if any physically impossible or basically inconsistent sets of
inputs were chosen during the sampling process; if so, the problem is with the
inputs chosen or the user’s model and not with the driver code itself. Use of the
MASTER/ COMMON block is made for all four driver options available in OR-
MONTE: the baseline or deterministic estimate (DETQ), stacked one-at-a-time or
single value sensitivity studies (SVSE), multivariable sensitivity studies (MVSS:
the probablistic method using Monte Carol methodology), and the elasticity analysis
(ELAS), (which is a special type of single-value sensitivity study).

5.2 The MAIN Program

The MAIN consists of a sequence of calls to the various subroutines constitut-
ing the code. The following subroutines are called during a run as shown on
Fig. 5.1 ‘

READQCP - Reads the drviver option desived by the user, the inpui/output unit
specifications, and the number of sensitivity vaviables to be processed
by the code.
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Reads the "base case” or deterministic input data for initializing the
Y-vector (which is passed via /MASTER/).

Reads the nonsensitivity data specific to the user’s model. The user
must develop this routine.

Prints out the data read by RDMAST. This routine can also be called
anytime it is necessary to ascertain the current values of the variables
in the Y-vector.

~ This 1s the user’s model and mathematically defines the desired

figures of merit (FOMs) or outputs in terms of the uncertain input
variables. This first call to MODEL allows calculation of a single-
point, "base,” or deterministic case. (For USDOE applications, this
model was often several hundred lines of FORTRAN simulating the
projected performance, design, and life cycle costs of a scaled-up
energy-related process undergoing R&D. Applications of ORMONTE
are by no means limited to this type of model.)

This routine is called again to print out both the input and calculated
output variables (Y-vector) corresponding to the deterministic case or
for a given iteration. Essentially, WRMAST writes out the current
contents of / MASTER/.

One of the following subroutines is called depending on the sensitivity
analysis option desired by the user. All three of these subroutines call MODEL;
MVSSOP calls other subroutines which are described later in this chapter.

SVSSOP -

MVSSOP -

ELASTI —

Single-Value Sensitivity Study (SVSS) Option. This driver allows the
user to specify alternate or non-baseline values for a particular input
variable and have the desired figures of merit calculated for each case.
By stacking the input data, several variables can undergo SVSS
analysis within a given run. Since these are one-variable-at-a-time
sensitivity studies, all other input variables in the Y-vector are held at
their deterministic values, i.e., for a study on a particular variable Y,
Y = Y pase for ki

Multi-Variable Sensitivity Study (MVSS) Option. This Monte Carlo
driver option allows the user to consider multiple uncertainties in his
model inputs. Input variable uncertainties must be expressed in
probabilistic form. Probability histograms are then plotted for the
figures of merit of interest.

This subroutine calculates the elasticity or coefficient-of-sensitivity
(CO8) for all of the input sensitivity variables handled by the Y-
vector. The elasticity is the percent change in a desired figure of
merit divided by the percent change in a given input. This analysis is
useful for determining which input variables have the most impact on
the FOM.
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At the beginning of any of the three options am:)‘v‘:,, one deterministic case is
riun using the base inputs read by RDMAS T At the end of an ORMONTE run, the
MAIN prints out a measage letting the user know that the run is complete and that
normal termination of the run has cccurred.

5.3 Description of Data Entry Subroutines
Jtilized for All Thivee Sensitivity
Analysis Options

Regardiess of the sensitivity analysis option chosen, input subroutines
READOP, RDMAST, and RDMODL are alwayvs called by the MAIN. One data set is
associated with each of these routlines. These data sets can be opened, read, and
closed on sither the same or separate input units. In the example problem described
in this report, input units 4, 8, and 5 are utilized by REANOP, RDMAST, and
REMODL Le%yecnvel} Short descriptions of the data requirements and logic for
each dala eniry subroutine are given below. Sample data sets for the example

fam 4

problem are given in this chapter and in Appendix D.

5.3.1 SUBROUTINE BEADOY

AEADOP reads the data on unit 4 from a dataset named OPTIODAT. An

example uat'—z et is shown on Table 5.1. The following, mostly INTEGER variables

are read:

TITLE -~ A 80 character title identifying the data sst

INMAST -~  The input unit used by SUBROUTINE RDMAST for sensitivity
variable initialization (INMAST = 8 for the example problem)

INMOD  — The input unit used by SUBRCUTINE RDMODL to read in the
non-sensitivity data for the ussr’s model (usually INMAST := 5)

ISVSS - T } e input unit used to read in instrictions and data for the single-
value sensitivity study option (ISVSS = 11 for the example problein)

IMVSS  — The input unit used to read in instructions and data for the multi-
variable semsitivity study option (IMVSS = 2 for the example
problem)

ELAS -- The input unit used to read in instructions and data for the elasticity
analysis option (IELAS = 12 for the example problem}

IPRNT —  The output unit for normal ORMONTE printing {usually IPRNT = 8)

IPLOT — The output unit for output data w’iicH is saved for off-line plotting
(IPLOT = 15) for SVSS and MVES options only

IRUG —  The output unit used for detailed d buggmu printout (IBUG = 14)

[Y-vector vrintont]
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Table 5.1. Sample input data set
for SUBROUTINE READOP

TEST CASE: DSN=CPTIO.DAT 14 VAR. TEST CASE
IHPUT UMIYS cINMAST ([ &) INMOD [ 5)

ig¥ss (11 IMyss (9] TIELAS [12]
DUTPUT UNITS:IPRHT [ 6] 1PLOT (15] 1BUG  [14]
OPTIOM: [ELAS]T { DETO,SVSS,MVSS,0R ELAS)
TOTAL MO, DF INPUT + DUTPUT VARIABLES: [ 143

The following CHARACTER*4 variable allows the user to select a sensitivity
analysis option:

OPTION — The character constant read in for OPTION selects the sensitivity
option as follows:

TETY — Run only a deterministic or "base” case using the data in
MASINLDAT

'BVES - Ruwo a single variable sengitivity study (SVSS)

MVSH — Bun a multivariable sensitivity study (MVSS)

TLAS — Runan elasticity analysis

The last variable read in is INTEGER®Z formo:

NTOT —  The total number Gnput + output) of sensitivity variables to be read in
and initialized by RDMAST. This value must be smaller than the size
of the Y-vector, i.e., NTOT is less than or equal £o 150

The CHARACTER*®n data type variables ALL, AL2, Bi4, ete., which are read

in along with the above variables, are included to make the data set OPTIO.DAT
self-explanatory and to reduce the chance of column misalignment during data set
editing. The characters read in for these variables will net affect the code
calculations.

it should be noted that the unit designator INOPT must be defined in
READOP prior to opening the data set OPTIO.DAT. After all of the data is read
READOP prints out a near replica of the data set OPTIO.DAT on unit IPENT and
confirms that all cards (lines of data) were read. COMMON /OPTION/ passes the
read in data to the rest of the code,

5.3.2 SUBROUTINE RDMAST

The function of RDMAST is to initialize the Y-vector with deterministic or
base case input values for each of the input sensitivity variables or elements in the
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Y-vector. RDMAST also reads the user-designated variable names corresponding to
each variable in the Y-vector. The COMMON /MASTER/ statement makes the
connection between the values designated by the variable names in the user’s model
and the Y-vector utilized by the ORMONTE sensitivity driver options. The data are
read in from data set MASINLDAT (example shown on Table 5.2; note that each line
of a data set is called a "card"). In addition to a title card (50 characters maximum),
NTOT initialization data cards are read in via the DO-loop in RDMAST. This fills
in vector elements Y(1) through YINTOT). For the Y-vector values in this group
which represent output variables, a value of -1 is entered. The variables must be
ordered the same way as they are in the /MASTER/ COMMON block with input
variables followed by output variables. The fellowing variables are read from each
card:

NAMEN(,J) - The mnemonic variable nams for variable Y(I) chosen by the
user and used for a sensitivity variable name in his model. The
index I is the same as that for Y{I). Since NAMEN has a

CHARACTER*1 Data type, the index J (incremented from 1 to

6) allows a six character maximum variable name. If longer
names are desired, the range of index J can be increased to 8 by
altering the source code.

Y(I) — The numerical value for this input element of the Y-vector, for
output variables enter -1. (The model will later calculate the
correct deterministic values for Y-vector output elements.) If an
input variable happens to have a value of -1 the code will know
that the variable is still an input rather than an output, since a
later data set (MVSS.DAT) actually defines the number of
inputs and outputs.

Table 5.2. Sawple input data set
for SUBROUTINE RDMAST

TITLE: 14 VARIABLE TEST CASE: DSN=MASINI.DAT

ALPHT 200.
ALPHZ 50.
BETA3 10.
BETAA 1.
ZETAS 1.
EXP6 1.
GAMMAT 8.
GAMMAS 10.
PHI9 18.
EPS10 1.
NUM11 1.
PERF -1.

PCOST -1.
CUNIT -1.




BRDMAST fills the unused Y-vector positions with zerces for Y(INTOT+1)
through Y(150). The unused NAMEN(LJ) positions are filled with ™#*¥** charac-
ters. The subroutine prints out the Y-vector data, including the index, name, and
value of each variable. At the end of RDMAST a message printing out the unit
number (INMAST) confirms that all input RDMAST data have been read.

5.3.3 SUBROUTINE WRMAST

WRMAST is predominantly a diagnostic routine used to print the contents of
the master Y-vector whenever WRMAST is called. The WRITE format is similar to
that of RDMAST. The MAIN calls WERMAST immediately alter calling RDMAST as
a means of con{irming that the initializing Y-vector data have been read corcectly
and are available through COMMON /MASTER/. Since the print flag TFLAG is
equal to zero at this point, WEMAST prints on unit IPRNT. If WRMAST is used as
a debugging tool during SVS8 or MVSS, the value of IFLAG is greater than zero and
WRMAST wall print on unit IBUG. If during an MVSS run, execution abnormally
terminates prior to completion of all iterations, it is useful to call and print the
Y-vector using WREMAST for the {ailed iteration. Iu this manner the problem within
the user’s model can be readily isolated and identified. Usually the problem turns
out to be the submission of a sef of inputs that are logically or physically tnconsis-
tent from the standpoint of the relationships and algorithms within the user’s
model.

5.3.4 SUBROUTINE RDMODL: A user-provided subroutine

The user of ORMONTE must take his model and separate the sensitivity
variables {those uncertain inputs and outputs which will be in the Y-vector) from the
non-sensitivity variables (these certain imputs/cutputs which will not be manipu-
lated by the ORMONTE driver). The sensitivity variables were read by RDMAST
above. RDMODL reads the nonsensitivity variables specific to the users application
and passes them to his model via COMMON /USEMOIY. The reason this read
subroutine is disconnected from the user’s model and called by the ORMONTE
driver MAIN is as follows: during the course of an MVSS, the user’s model is called
bundreds of times by the Monte Carlo driver; it is wasteful of CPU time and I/0s to
have the user’s model reread its nonsensitivity input data every time it is called.
The READ formatting and number of and names of the input variables are solely at
the discretion of the user. The source code listing in Fig. 5.2 goes with the S8UB-
ROUTINE MODEL example in this chapter and also is the RDMODL subroutine
designed for the example problem in Appeundix 1D, The input data set MODL.IDAT is
also shown on Fig. 5.2.

5.4 SUBBOUTINE MODEL: A User-Provided Routine

Most users of the ORMONTE driver code will find it necessary to convert
their particular application or code to a subroutine callable by ORMONTE called
MODEL. This will mean converting the original user’s MAIN io SUBROUTINE
MODEL; bowever, MODEL will continue to call any other subroutines that are part
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Source File: RDMODL.FOR

c AR R R R R R A AN R A AR A T A A e A A A A AR ARN AN R T AN N AL ARARRERY
SUBRGUT INE RDWODL
c RRANA RN AN E L AL NN AR A A AT NS AL L L ANN RN RARANA NN XARLALS
C DECLARATIONS
CHARACTER*72 TITLE
CHARACTER*6 MAMVAR
C 1-O DATA IS PASSED BY THIS COMMON BLOCK
CORMCMACPTION/ INOPT, INMAST, THNGD, TSYSS, INVSS, [ELAS,
*IPRNT, IPLQT, 1BUG,OPTICH ,HTOT
C THIS COSBION BLOCK PASSES THE READ IN DATA TO SR. HGREL
C AMD WILL HAVE DIFFERENT ELEANSMTSE FOR SACH APPLICATION
COMMON /USEHOD 01,02, C3
DIMENSICH NARVAR(3)
C DATA IS BEAD IN OM UNIT “IMNCO®
CPEM{UMIT=IMMGT, FILE=/ ¥O0L DAT )
C FORWATTIMG FOR THIS S.R IS AT THE USER’S DISERETICH
READCIN¥CD, 1) TITLE
READ( 130D, 1)NAMVAR{1),C1
READLINHTT, 1)NAKVAR(2),C2
READ{ 130D, 1)NAHYAR(3),C3
11 FORMAT(ATZ)
1 FOR¥AT(A6,F20.3)
7 FORMAT(’ +,AS%,2X,F20.3)
C PRINT OUT THE DATA:
WRITECIPRNT,22)TITLE
22 FORMAT(1',A72,/)
RITECIPRNT, 7)NAMYAR(1),C1
WRITECIPRNT, 7IMAMVAR(2),CZ
WRITE(IPRNT, 7)NAMVAR(3),C3
WRITECIPRNT,3) [NMCD
3 FORMAT(’ MODEL NOM-SEWS. DATA READIN CCHPLETED oM UNIT!
* 10 12)
C CLOSE THE FILE
CLOSE (UM T=1¥00, STATUS="KEEP' )
RETURN
END

b -

i7t
17E

7
T
T

Data File: MODIL.DAT

TITLE: COMSTANTS C1,C2 & €3 FCR 14 VAR. EXARPLE DSN=MODL _DAT

c1 1.5
c2 2.0
c3 50.

2. Example of user-provided RDMODL subroutine and input data set

o

Fig.

thereto.
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of the user's code. The major changes that must be made to the user’s code are as
follows:

1. These COMMON blocks must be added to MODEL and many of its eonstitu-
ent SUBROUTINES:

MASTER/ The user-defined variable names should be uged. Each name
corresponds directly to a particular Y{(1) variable (element in
the Y-vector) in the ORMONTE driver. If the user’s model
has several subroutines, the INCLUDE statement can be
used to place COMMON /MASTER/ near the beginning of
each routine while only having to type the COMMON state-
maent oncs. This FORTRAN-77 feature is especially helpful if
a large number of sensitivity variables are used, since it
reduces the chance for COMMON variable alignment prob-
lems and misspellings.

JUSRMOD/ This COMMON allows transfer of the user’s nonsensitivity
data from SUBROUTINE BEDMODL.,

/OPTION/ This COMMON transfers the unit numbers needed for output
(WRITE) statemenis.

[PRINT/ Print control information is transferred by COMMON/PRINTY/
ITERINTERIPRIFLAG. If an MVSS is requested, the user
will probably not want g full MODEL output for each of the
hundreds of iterations which are calculated. The following
string should precede every WRITE siatement in MDDEL in
order to suppress printout:

IFITER. LE.IFR)

where:

ITER = The number of the current Monte Carlo iteration

PR = The maximum number of iterations for which
full printout from MODEL is desired (can be
ZEY0)

INTER = An extra variable saved for special uses (e.g., the

programmer could print out every 50th iteration
if the proper tests were inserted in MODEL)

IFLAG = The flag used to designate the WRITE unit for
SUBROUTINE WRMAST.

A schematic of an example MODEL, its source listing, and its /MABTER/
COMMON block (in an INCLUDE file) are given in Fig. 5.3 and arve used to illus-
trate use of this code. It is a very simple and hypothetical economic model with 11
input variables and 3 output figures of merit. This ORMONTE driver, however, can
be used with very large codes which become SUBROUTINE MODEL. Martin
Marietta Energy Systems has used the ORMONTE driver on 10,000+ Iine codes
where each iteration might require optimization procedures within MODEL and
several seconds of CPU time on a CRAY-XMP or a few minutes of CPU time on other
mainframes.
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Uncertain lnput Variables

AL FPHA EXPS

Pe”og‘:f‘v”ff’i ALPH2  GAMMA? ALBH1 | Production
©fS 1 BETA3  PHI9 GAMMAES | Cost
BETA4  EPS10 NUM11 | Drivers

ZETAS NUM1

PR —— Y

]
Performancea Cost-Scaling
Algorithms Algorithms
Example
S — - Model
ER - c
P F Unit PCOST
e GOSE !
Algorithm /
- GuNIT |
(Unit Cost: |
the Major
Figure of Merit)
_ Yo I .
PERKF PCOST %
(Process (Production
Performance) Cost)

Figures of Merit
(Uncertain Output Variables)

Fig. 5.3. Example and schematic of user-provided MODEL subioutine and
INCLUDE file.
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Source File: MODEL.FOR

C AEXARREREHART A AT AEATHHIREIRRAAAARRCRRACTARTE T hh ke hhw ik

SUBRCUTTHE MODEL

WHRERRGEEREAETTELR VARSI TNV AR Sdb b d Rt dhddbadandirhtiohk

EXAMPLE USER’S MODEL TO ILLUSTRATE USE OF ORMONTE CODE
FwkkhRhkkihbdddraddh b ot b druwdhwdi i hdhh b dhRdhihdh i i i
THIS MODEL HAS 11 INPUT AND 3 OUTPUT VARTABLES (FIGURES
OF MERIT) FOR AN NTOT OF 14. THE CODING IS A FOR A HYPO-
THETICAL PROCESS WHOSE PERFORMANCE DEPENDS OM 10 UNCER-
TAIH INPUTS AND WHOSE PRODUCTION COST DEPENDS ON 2 UNCER-
TAIN VARIABLES. THE DESIRED UNCERTAIN FIGURES-OF-MERIT
ARE THE PERFORMANCE(UNITS PRODUCED), PROBUCTION COSY
(ANNUAL COST TO PRODUCE THEM), AND THE UNIT PROD’N COST
{THE QUOTIENT OF PRCD'H COST & 0. OF UNITS)
THE PROCESS AND ALGORITHMS ARE TOYALLY FICTITIOUS.
THE MOM-SENSITIVITY DATA (CONSTAMTS C1,C2,8C3 ARE
READ IN BY 5.R. ROMODL PRIOR VO THE FIRST CALL YO
THIS ROUTINE. /MASTER/ MAKES THE VARIABLE MAMES IN THIS
ROUTINE EQUIVALENT THE APPROPRIATF Y-ARRAY ELEMENTS
IN THE REST OF ORMONTE
TREEREEITREAEERAAREARREXARAA AR AR R EAR L IR E AR AR AT R SRR ks
THE /MASTER/ COMMON BLOCK COMTAIMING THE USER’S MODEL
VARIABLE NAMES RESIDES IM THE FILE MASTER.FOR. WHEN
THIS FILE (MODEL.FOR) IS COMPILED, MASTER.FOR IS
AUTOMATICALLY PICKED UP AND INSERTED INTO THE MODEL.CBJ
FILE. THIS INCLUDE STATEMENT SHOULD ALSO BE USED iM
SUBKOUTINES CALLED BY SUBROUTINE MODEL WHICH UTILIZE
ANY OF THE /MASTER/ VARIABLES. THE INCLUDE FEATURE
ELIMINATES THE NEED TO TYPE OUT THE POSSIBLY LARGE
COMMON/MASTER/ STATEMENT AND ELIMINATES ERRORS DUE 7O
MISALIGNMENT OF COMMON DATA BETWEEN SUBROUTINES.
E*i************************tt***t***ﬂ**ﬁ***ﬁ****ﬁ***t****
C ALL USER DEFINED SEMSITIVITY VARIABLES IN COMMON/MASTER/
C MUST BE REAL*4 !
c**iw*******iﬁﬁ***k***********«ﬁ******************ﬁ******

INCLUDE TMASTER.FOR’
C 1-0 AND OPTION DATA READ IN EARLIER ARE PASSED VIA
C THIS COMMON BLOCK:

COMMON /OPT 1ON/ THOPT, INMAST , INMCD , 15VSS, 1MVSS, 1ELAS,

*IPRNT, IPLOT, IBUG,OPTION, NTOT
£ PRINT CONTROL

COMMOW/PRINT/ITER, INTER, IPR, IFLAG
C /USRMOD/ PASSES THE USER’S DATA FROM S.R RDMODL

COMMON /USRMOD/C1, €2, C3
C ALL INPUTS MUST BE REAL*4
REAL*4 NUM11

O 0 O 0 00

£ M M OO O DN 00000 0000 0 T

Fig. 5.3 (continued)
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Source File: MODEL.FOR (Continued}

THIS SIMPLE COST/PERFORMAMTE MCDEL FOR A FICTITIOUS
PROCESS CONZI3TS OF CMLY THREE ALGORITHMS
PERFORMANCE {UNITS PRODUCED) AS A FUXCTIOH OF

TEN UNCERTAIN VYARIABLES

™0 O 00

PERF=(CI*ALPH1/BETAR + C2*ALFH2 + C3*BETAL +
ANUMTT* (GRBITSEPSIDI*E(-EXPS) )/ (ZETAS*PHIS)

THE PRODUCTIOH COST IS A FUNCTION OF THREE UMCERTALX
VARIABLES: MUM1T1,GAMMAD,ZALPHI

(o BN o TN o BN )

PCOST=CT*MLIAT 1 *CAMMAB*ALPH1/200. + 10

(%]

C CALCULATION 2F UMIT PRODUCT COST

(]

CUNIT=PCCET/PERF

FOR AN MYSS THZ MODEL KNOWS WHICH ITERATICM 1S IX
PROGRESS. IPR IS THE RUMRER OF ITERATICH FOR WHICH THE
USER DESIRES A FULL PRINTOUT OF WIS MODEL’S CALTULA-
TIONS

ITER IS ALSO PRINTED FOR EVERY 10TH ITERATICH AS A DRREUGGING
AID AND TO ALLCY THE USFR TO OBSERVE THE PROGRESS OF A RUM
OM THE SCREEN IF A YDT i3 USED

YOO C D 000000

1F((MCDCITER, 100)) . EQ.C)MBITECIPRNT ,22) ITER
22 FORKAT(/-/,15)
IFC1TER.LE. IPRIWRITEC(IPRRT, 22 1TER
2 FORMAT(TH1, PRINTCUT OF USERS MODEL FOR ITERATION £ 1,
*lQ"I)
IF (iTER.LE.IPR}L®ITECIPRYT,)CT, 02,03
3 FORMAT(! CONSTANTS (MOM-SE¥RITIVITY):',//
* 11X, 7C1=7,F10.3,/, 11X, fC2= ,F10.3,/, 11X,
#1037 F10.3,//)
TECITER.LE. IPROWRITE(IPRNT, 4)A1PH1, ALPHI  RETA3,BETAA,
*ZETAS ,EXP6, GAMMAT, GANNMAT, PHID, EPS10, MUK
4 FORMAT(! INPUT VARIABLES (UMCERTAIN SENS. VARS.):’,//,
*11%, ‘ALPH1=1 ,F10.3, 10X, ' ALPHZ=" , £10.3, 10, 'BETA3=" ,F10.3,/,
*11%, 'BETA4=',F10.3, 10X,  ZETA5=/,F10.3, 10X, 'EXP6 =*,F10.3,/,
*11X, 1CAMNAT=" , F10.3, 9K, GAMAB=/  F10.3,9K, "PHI9 =/,F10.3,/,
*11%, 'EP510:, F10.3, 10X, 'M#11=/ ,F10.3,//)
IFCITER.LE. IPRYWRITECIPRMT,SIPERF, PCOST, CUMIT
5 FCRUAT(! OUTPUT VARIABLES C(UNCERTAIN FIGURES-OF-MERIT):!,
*//,11X, ' PERF=1,F10.3,10X, 'PCOST=/, £10.3, 10X, ‘CUkIT=',F10.3,
*//)

Fig. 5.3 (continued)
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Source File: MODEL.FOR (Continued)

C FOR THIS EXANPLE THE VALUES OF PERF,PCOST,ECUMIT WILL HAVE
€ THEIR CALC. VALUES STORED IN ELEMENTS {923,713, AMD Y14}
C DF THE Y-ARRAY
' RE TURN
END

Source File: MASTER. FOR

ik dohdddfhdd fRiAdhdbdddddfaddoidk dd b kg ol o ok

COMMON BLODK /MASTER/ 13 1M THIS “INCLUDE® FILE
VRASTER.FORY, THE COMPILATION STEP PITKS 1T UP.
THE INCLUDE STATEXENT SHOUHD 8% THSERTED AT TRE
BEGINNING OF $.R. MODEL AND MANY OF THE $.R.5
THAT 1T MIGHT C&LL

FERAEHEAEERERERREEARARRER2R G LI EERAE S bR S oe G o dh b b o

THPUTS 2

COMMON/MASTER/BLPRY, ALPH2, BETAT, BETAL  ZETAS,

*EXPE, GAVMAT, GAMMAS, PHI® EPS 10, HUBTT,

¢ OUTPUTS:

*PERF, PCOST , CUNTT , DL 1363

[ GRRALEERACERRLEANEEARSEFRDENT R RAREARIRETARERE NS

C BE VERY CAREFUL OF SPELLING OF VAR. NAMES HERE!

e eI ¢ a2 )

£ O

Fig. 5.3 (continued)

The sensitivity variables passed through /MASTER/ must be REAL¥4 type
variables and have names that are eight or fewer characters in length. It 18 not
necessary for the variable names read in earlier as NAMEN(LD) to be identical to
the variable names used in comon block /MASTER/ in subroutine MODEL. The
NAMENSs are used o label the print output only and are never compared io the
variable names in the program. In fact, there is ne way to do that; if there were, we
would not need to use a common block to sed up the variables. It follows {rom this
that the variable names in /MASTER/ may be more than six characters and may
even be arrays, although they must be the same type and precision as ¥ (e,
REAL*4). The NAMENg should match the variable names if possible, however,
understandable abbreviations may be used. Alse, the code can be changed to
increase the mazimum size of NAMEN. Chapier 8 will present considerations
needed when constructing a new model to be linked with ORMONTE.
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5.5 The SVER Dyiver: SUBROUTINE 8VE£S0D

SUBROUTINE SVSSOP is an automated driver for performing selected
one-at-a-time or single variable seusitivity studies (SVSE). This step is usually a
precursor to MVES in that it can be used to establish in advance those input vari-
ables which have the most leverage or impact on the desived output figures of merit.
The dala produced by this subroutine can e saved for later plotting in the form
shown by the sample plot on Fig. 5.4, A typical set of plots (for the example model
in Fig. 5.3) would be of the form CUNIT vs ALPHI, CUNIT vs ALPH2; CUNIT vs
BETAZ, ste; where (using the variable names from the example user’s model) the
unit cost CUNIT is one of the three desired figures of merit, and ALPH1, ALPH2, ...
NUMI11 are uncertain inputs. [Note that in the driver code, which includes sub-
routine SVESCP, CUNIT is really Y(14) and ALPH1 through NUMI11 are vector
elements Y(1) through Y(11) respectively.]

ORNL -DWG 89--4202 ETD
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G R SN U T R 1
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ALPH

Fig. 5.4. Sample plot made {rom data generated by ORMONTE SVSS option
and the example model.



™

31

The user selects one or more values for the given input (ALPHI for example)
and holds all other inputs (e.g., ALPH2 thro NUMIL) at their deterministic or
baseling values, e, at their initialization values read in by RDMAST. The driver
then picks up each new value of ALPHI and runs a deterministic estimate using the
new, now-altered Y-vector. New figure of merit values (CUNIT in the example) are
calculated corresponding to each new input (ALPHIL) value altered from the
baseline. SVSSOP has the capability to produce sensitivity tables for up to five
outputs or figure of merit variables for each input variable altered. {(In the example
problem three cutputs, PERF (performance), PCOST (production cost), and CUNIT
(unit cost) are utilized.)

A special feature of SVSSO0P is the capability to produce the data for
parametric plots in which one or more inpul variables arve altered from their
baseline variables and held constant while another input variable assumes differing
values from case to case. (Example: ALPH1 is the sensitivity variable, BETAS thru
NUM11 are held at their baseline values while ALPHZ is held at a constant non-
baseline value for all values of ALPHI1. In essence ALPH2 1s a parameter as shown
in the plot on Fig. 5.4. The upper CUNIT versus ALPHI curve is for ALPHZ held at
its baseline value and the lower curve represents CUNIT versus ALPHI for ALPH2
at a larger, nonbaseline value. SVSSOF can accommeoedate several such parametric
curves on a given plot if the input instructions are correctly followed.

By stacking cages, several SVSS output tables can be produced in one batch
execution of ORMONTE. From these tables, plots similar to Fig. 5.4 can be pre-
pared using "Chartmaster," "Harvard Graphies,” "Lotus,” or other graphics software.
{ORMONTE itself is not a plotting routine. The plots in this document were pre-
pared using "Harvard Graphics.”)

§.5.1 Preparation of SVSSOP inpui data

SVSS0P does not have a read subroutine sepavate from itself. As the data
are read on unit ISVSS (from the dataset BVSS.DAT) it performs the SVSE for each
case (or plot) before moving on to read another case (Table 5.3 1s a sample input data
table). The input cards (lines of data) are as follows:

Card 1: A dataset title card which can have up to 72 chavacter positions

{variable name: TITL, type: CHARACTER*72).

Card 2: Descriptive data for the first plot. For the fivst plot the first sensi-
fivity variable (ALPH1 in the example) would be the abrissa variable. WUMCRV
gives the number of curves which will appear on that plot. If NUMCRV > 1 a
parametric study as deseribed in paragraph above is to be performed If
NUMCRV=1 the only variable which will assume nonbaseline values is the abscissa
variable (ALFPHI in the example) and only one curve would appear on a plot. For
the data in Table 5.3 the data for two sensitivity curves on one plot (Fig. 5.4) will be
generaled for the SVSE on variable ¥(1) or ALPH1 [INUMCRY = 00002].
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Table 5.3. Sample input data set for SUBROUTINE SVSSOP

Plot

Plot

Plot

Plot

?1ot

Plot

Plot

Piot

Plot

Plot

Plot

Card #
1 TITLE: SVSS URIVER TEST CASE  DSN=SVSS.DAT
2 00002 003 12 13 14
3 001 ALPHT D6 100. 150. 200. 300. }
A 400. 500.
5 000
5A 001 |
6 002 100. |
2 00001 003 12 13 14 )
3 002 ALPH2 04 25. 50. 75. 100.
4
5 000
2 00001 003 12 13 14
3 003 BETA3 04 6. 8. 10. 12.
4
5 000
2 00001 003 2 i3 14
3 004 BETA4 05 .75 .9 1.00 1.1
4 1.3
5 000
2 00001 003 2 i3 14
3 005 ZETAS 05 75 0.9 1 1.1
4 1.2
5 000
2 00001 003 12 13 14
3 006 EXP6 05 0.5 .75 1.0 1.5
A 2.0
5 000
9 00001 003 12 13 14
3 007 GAMHAT 05 5. 6.5 8 9.5
4 .
5 000
9 00001 003 12 13 14
3 008 GAMMAB 06 5. 7.5 10. 1. l
4 18. 22.
5 000 J
9 00001 003 12 13 14
3 009 PHI9 05 5. 12. 18 26.
A 30.
5 000
5 00001 003 12 13 14 )
3 010 EPSI0 05 0.8 0.9 1.0 1.1
4 1.3
5 000
P 00003 003 12 13 14 \
3 011 ®WUMI1 05 0.9 0.95 1 1o |
4 1.15
5 000 ,
TTSA oo )
- _boz 100. S J
5A 002 1
6 001 300.
7 002 100. J
EOF 00000

Curve 1

Curve 2

orie

one
per

oiie
per

one
per

one
per

one
per

one
per

one
per

one
per

curve

- plot

curve
plot

curve
plot

curve
plot

curve
plot

curve
plot

curve
plot

curve
plot

curve
plot

Curve 1

Curve

™

Curve 3
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NFOM is the number of figures of merit (ordinates) which will be tabulated
as a fanction of the abcissa variable. (In the example there are three figures of
merit (FOMs), PERF, PCOST, and CUNIT. In this case NFOM = 003, and all three
will be tabulated as a function of ALPHI. (For printer width reasons NFOM is
limited to 5.) The user's MODEL may have more than 5§ FOMs, but only 5 can be
printed on a summary table by SVSSOP for a given case.

INDFOM(I) is the pointer to the NFOM variables to be printed. ¥ach
INDFOM represents the Y-vector index of the desired FOM., In the example
problem where NFOM=3, PERF=Y(12), PCOST=Y(13) and CUNIT=Y(14); therefore
INDFOM(1)=12, INDFOM(2)=13, and INDFOM(3)=14. Up to five INDFOM ele-
ments can be specified.

would appear on the abscissa of a plot.

INDEX is the Y-vector index of that variable. [For the example ALPH1=Y(1);
therefore INDEZX=001.]

NAMEN is the user’s name for the input variable (ALPHI in the example
problem) which can have six or less CHARACTER#*1 characters.

NPTS is the number of different Y(INDEX) values or number of abscissa
points which will appear on each curve. (In the example problem, six different
values for ALPHI are submitted to MODEL, and six values for the FOMs will be

calculated.) Up io eight points can appear on each curve or in each table
(NPTE=06].

YREAD(I) is the "points data” or abscissa array containing the 1 to 8 differ-
ent values of the input variable YUINDEX) to be submitted by SVSSOP to MODEL,
In the example problem NPTS=6; therefore YREAD(1) through YREAIX6) are read
in by SVSSOP te replace the baseline value of ALPH1 for each case. Card 3 can
accommodate the first four YREAD values.

Card 4: Contains the values for YREAD(5) through YREAD(8). This card is
a blank line if no values for YREAD(S to 8) are used.

Card 5 and 5A: NUMCHG is used mainly for parameter definition for those
cases in which more than one curve appears on a FOM vs. YANDEX) plot.
NUMCHG tells SVSSOP how many input variables in the Y-vector will be altered to
nonbaseline values for the requested curves. Usually no more than two Y(I) values
(I cannot equal INDEX) are altered for a parametric study. Consider the fifth card
in the first plot of the example problem (Table 5.3). NUMCHG=000 on card § for the
first curve in the ALPHI1 sensitivity study, i.e., no Y(I) values other than ¥(1) are
altered from their baseline values. Card 5A tells the code that for the second curve,
one variable Y(K), for which K#1, will have its value altered, i.e., INUMCHG = 001].
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Card 6 through Card {(3+NUMCHG): ¥For each of the NUMCHG Y-array

values which are altered the following must be piovided:

IND(I): “The Y-vector index of the parameter to be altered. IND cannot be
equal to INDEX. Card 6 contains INIX1) and Card (5+NUMCHG) contains
IND(NUMCHG). In the example problem (plot 1, curve 2) ALPHI is the sensitivity
variable and ALPH2 is the parameter; therefore, since ALPH2=Y(2), INIX1)=002.

VAL(I). This is the nonbaseline value assumed by Y[IND(I)] for this particu-
lar curve. For the example problem (plot 1, curve 2), Y [IND(2)]=100.

Next Card: If NUMCRV.GE.3, a sequence of cards starting with a card
similar to card 5A but with new uata % submitted. This will add a new curve to the
plot data. Plot 11 of the example problem (Appendix D) shows such a case.

Cnzs all the data fer the NUMCRV curves on a particular plot have bee
read and the cases calculated, a new sequence of cards can be read which will
produce plot data for the next input sensitivity variable. Eack °W sequence (or
plot) will start with a card similar to Card 2 above. Every sec or greater curve
within a given plot will begin with a La -d similar to SA above. A;t the end of all the
stacked data an end of file (EOF) card typed "00000" will cause the program to exit
SVSSOP and return to the MAIN.

5.5.2 8VESOP algorithm

[44]

SVES0P does not perform any mathematically complex tasks. It is merely a
duve; which keeps track of variable indices and names, and it automates what
vould be a tedious and cumpersome task involving many separate runs of MODKI
SEVelal DO loops accomaplish the driver task and the logic should be easily under-
stood from examination of a scurce listing. Table 5.4 shows the example problem
unit IPLOT output data used to produce the SVSS plot ia Fig. 5.4. It should be
noted that numerical data produced by MODETL will be printed for every point used
to produce the Fig. 5.4 plot. For unit IPRNT output, SVSSOP prints a header for
cach MODEL output figure of merit, identifying which plot, curve, variable, and
point value the case represents (see sample cutput in Appendix D). The plot data
SUMIMary ('—‘able 5.4) is printed on unit IPLOT and is stored in a file FORTIS for the
example problem. Since the plot data format is uniform, a grapbics program could
be written to automatically access this data and produce graphs similar to that in
¥ig. 5.4. The user should note that for every ncw plot any pi reviously altered

Y-vector values are reset to their baseline values prior to resubmission to MODEL,

5.6 A Drriver for Elasticity Analysis: SUBROUTINE ELAST

In SVS8OP above the user chooses the nonbaseline values or points for
whatever Y-vector input variable he is examining. In ELAST the ORMONTE driver
chooses two values for the input Y-vector variable; one 0.5% above the baseline
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Table 5.4. Portion of SVSS summary table
produced by SUBROUTINE SVSS0OP

Plotted
Data
(Fig. 5.4)
ITMDEX , NPTS, HUMCRY
6 2
# OF PARAMETER CHAMGES= 4]
PT# ALPHT PERF PCOST CUNTT
1 1.00000E+D2 $.17361E+00  1.750008+01] 1.90745€+00
Curve 1 2 1.50000£402 $.59028E+00 2.12500£4D1] 2.21579E+00
3 2.00000£402 1.00069E+01 2.500008+01][2. 4982 fE+00j— Baseline
4 3.00000E+02 1.08403£+401 3.25000£+D1| 2.00808£+0G0 Point
5 4.00D00E«02 1.16736E+401 4.0D000E+01| 3.47453£+00
6 S.00000E+02 1.25D69E+01  6.7S000E+01| 3.797H0E+00
# OF PARAMETER CHAWDES= i
2 ALPHZ  100.000
pPT# ALPHT PERF PLOST CUMIT
1 1.00000E+02 1.47292E+01  1.7S000E+01] 1.7188126+00
Curve 2 2 1.500006+02 1.51658£+01 2. 125008401 1.40303£+00
3 2.00000E+02 1.55025E+01 2.50000E+01] 1.40643£400
& 3.00000E+02 1.63958E+01 3.ZS000E+01] 1.982218+00
S 4.00DN0EN2  1.722926+01  4.D0CODE+DY] 2.32184E+00
&  5.00000£4D2 1.80625E+01 &.7500CE+D1| 2.&2076E+00

value and one 0.5% below the baseline value. Subroutine ELAST of ORMONTE
then calculates the resulting percent changes in the desired figures of merit and
reports the elasticity [also known as the coefficient-of-sensitivity (CQOS)] which is
calculated as the average percent change in output divided by the average percent
change in the input. For the example problem this would be the same as:

[(PERF/PERF(base) IALPHI/ALPHI (base)] .

The ELAST driver performs this calculation for all of the input variables in
the Y-vector. For a given input variable Y(I), elasticities can be calculated for up to
five FOMs selected by the user. The resulting table of elasticities or table of 00Ss is
useful for studying the relative leverage of model inputs on the important outputs.
ELAST can help the analyst determine if his model is working correctly and if
figures of merit are behaving as expected when a deviation in an input variable is
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xperienced. This step and the SVES procedure discussed earlier ave useful precur-
org to MVSS sinece they r auuy ide t;f y the inputs having the most leverage on the
mode!l cutputs. Figure 5.5 shows an elasticity plot for one of the FOMs, (PERF), in
the example problem.

m
n

ORNI.—DWG 834203 ETD

Data: ELAST.DAT

TITLE: SAMPLE ELASTICITY ANALYSiS DATA DSH=ELAST .DAT
# OF INPUTS: [ 11) # OF FIGS OF ¥& {3
/MASTER/ Y( ) IMDITES FCR FIGS OF MER i3 14 00 00

R

|
|

PERF Unused
Indices

ZETAL, PHI?

I , 1

b S,

-0.5 0 0.5

% Changa in lnput Variable Y{I)

=

Iig. 3.5, Sample plot made from data generated by ORMONTE ELAST
option and the example mod 1
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Note that the elasticity is calculated only around the baseline input variable
value. If the figure of merit is not linear with that input, a diffevent elasticity would
appear about a nonbaseline input value. The analyst should be aware of nonlinear
"¢liff” situations in his model, i.e., input ranges for which the elasticity rises or falls
abruptly.

5.6.1 Inputs to the ELAST driver

Three lines of data are needed for the BLAST driver. These are stored in file
ELAST.DATA and are read on unit IBLAST. Bach card is described below and a
sample data set is shown on Fig. 5.5.

Card 1: The data set can have a 71-character title. The variable name is
TITL and is of type CHARACTER*71.

Card 2: NSIN: The pumber of input variables in the Y-vector (11 in the
example problem)

NFOM: The number of figures of merit for which an elasticity
will be calculated. (NFOM.LE.B) NFOM = 3 in the example
problem)

Card 3: INDFOMI): The Y-vector for the NFOM figures of merit. Up to
five indices may be specified. [For PERF, PCOST, and CUNIT in
the example problem, INDFOMI(1), INDFOM( 2), and INDFOM(3)
equal 12, 13, 14 respectively].

5.6.2 Brief Description of the ELAST Driver Algorithms

ELAST considers deviations in both inputs and caleuiated model outputs
from their base case values. The base case inputs were read in earlier by RDMAST,
and the base case or deterministic outputs were caleulated by the first call to
MODEL by the MAIN. COMMON block/MASTER/ transfers these values to this
routine. A new vector called YBAS(150) accepts these baseline Y-vector values for
future reference by ELAST. IPR is set to -1 to prevent the detailed printout of
MODEL results for every nonbaseline case.

After ELAST reads the data, a DO loop is entered in which the following
sequence 18 performed on all NSIN {(total number of inputs) input variables in the
Y-vector:

i. A slightly lower-than-baseline value for input Y(.I) is calculated
YLD = C.995%YBASE)  (-0.5% deviation)
ITYBAS(S) = 0. the value YL = -.00005 is subshitubed,

2. Y{J) is now set to YL{I) and MODEL is called.
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3. A DO loop (I=1, NFOM) with the following statement now captures the
slightly deviated FOMs:

YFOMIL(I) = Y[INDFOM(I)]

4. The same procedure is repeated for a 0.5% upward deviation in Y(J); thus,
ereating YG{J) and YFOMG(I).

5, The differences or deviations are now calculated:

Inputs: DELYL=YBAS(J)-YILJ)
DELYG=YG{J)-YBAS(J)

Outputs: DLFOMID=YBAS[INDFOM(D]-YFOML(I)
DLEFOMG(=YFOMG(I)-YBAS[INDFOM(D]

6. The fractional deviation in the inputs are now calculated:
XFRAL=DELYL/YBAS(J)
XFRAG=DELYG/YBAS(J)

If YBAS(J)=0, a warning message for division by zero is printed and no
clasticity is calculated. If YBAS(I)0 the average fractional input deviation is
calculated:

XFRA=(XFRAL+XFRAG)/2.

7. The same procedure is used to calculate fractional deviations in the figure(s)
of merit or outputs:

YFRAL(D=DLFOML(YYBAS[INDFCM(I)]
YFRAG(D=DLFOMG(I/YBAS[INDFOM()]
YEFRA(D=YFRALD+YFRAG(D)/2.

8. The elasticity or COS is caleulated for each of the I=1, NFOM figures of
merit:

ELAST(D=YFRA{I)/XFRA
9. The average slopes for cach FOM are also calculated as follows:

Lower: SLOPEL(DN=DLFOML(I/DELYL
Upper: SLOPEG(D=DLEFOMGI)/DELYG
Average: SLOPE(D=ISLOPEL(D+SLOPEG(DV2.

Figure 5.6 shows graphically how the elasticities and slopes are calculated
for one FOM and one input. Appendix D contains a partial output of ELAST for the
exaimple problem. Figure 5.5 displays in graphical form the partial results of
ELAST for one figure of merit, PERF, in the example problem.
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Fig. 5.8. Graphical interpretation of ELAST algorithms.

5.7 SUBROUTINE MVSS0OP: The Monte Carlo Driver

for Multivariable Uncertainty Analysis

MVSSOP has the capability of handling up to
ables and ten different types of probability distributi
MVSSOP performs the following tasks in this order:

150 (input plus ouiput) vari-
ons for the inputs. Basically

1. It calls SUBROUTINE EDMVSE to read the parameters defining the type
and parameters of each input’s probability distribution.

2. It calls SUBROUTINE PRINTX to write cut the information read by
RDMVSS.

3. For each iteration it calls SUBROUTINE XVALUE, which samples the input
distributions {(via a random number generator), and fills the input positions
of the Y-vector with an ensemble of random values.

4. It submits these values to SUBROUTINE MODEL, which calculates the

figures of merit and fills the output positions of

the Y-vector.
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5. It temporarily stores the Y-vector for every iteration until all iterations are
comiplete; the resulting Y-aivay contains M Y-vectors, where M is the number
of iterations.

S. Using the Y-array daia it performs a statistical analysis on every input and

output va.*lable.

It divides the range of occurrence for each uncertain variable into equal size

bins and produces frequency histograms for all variables.

8. It instructs the printer to write out the histograms and statistical analysis
for each variable.

~

The subroutines called by MVSSOP and the various steps listed above will be
described in greater Jdetail below.

5./7.1 SUBROUTINE RDMVES

For deterministic estimates and SVSS studies a single value for each of the
Y-vector variables is specified in the input data. In an MVSS a range of pO%%lbl"
values and the probabilities of these values within that range are specified in the
input data. The choice of the type probability distribution and the choice of its
parameters provide the MVSS Monte Carlo driver with the information needed to
assign the probablhtles with the desived range. The main function of RDMVSS is to
read in the distribution type and parameters for each input variable of interest
(which must be ene of those in the input portion of the Y-vector).

The MVSS data appear on file MVSS.DAT (example from Appendix D shown
on Table 5.5) and are read on unit IMVSS. Instructions for data entry appear on
COMMENT statements within RDMVSS; however, the instructions will be repeated
here. The following lines of data are reguired:

Card #1: Up to 72 characters can be provided for a title for the dataset. The

variable TITLE 1s of type CHARACTER*72

Card #2: NITER: The number of Monte Carlo iterations to be completed by
the driver. NITER is a ugu‘ Juetmcd \ TEGER variable appoaﬁng in columns 8-13
and has a range of 1 to 29999, If a negative sign appears in column 8 (in front of
NITER), printout of input variable probability histograms is suppressed. NITER is
5000 for the example probles

TPR: The number of desired iterations for which a full printout from the
WK ITE statements in MODEL on unit IPRNT is produced. For moest applications
IPR=0. TPR is 5 for the exampls problem

INTER: This variable is nct presently used. By use of the correct tests
involving ITER and INTER, the user could generate full printout for every nth
iteration. (ITER is the iteration counter and has 2 value between 1 and NITER.)
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Table 5.5. Sample toput data set for SUBROUTINE MVSSOP

Card #
1 TITLE: 14 VARTABLE MVSS TEST CASE
2 HITER [ 50007 (PR {51 IMTER § 13
3 DISTRIBUTION DATA:
b INDEX  XNAME JTYPE %1 X2 3 Xé
5 oy v v y v y
1 aLpHt -1 200. 100. 500,
7 ALPH2 G 50.
3 BETAS -$ 6. 12,
4 BETAL -2 1. .08
Tnput 5 ZETAS -3 1 .98 1.2
var. 8 EXPS -4 q 8.5 2.
desig- 7 GAMMAT -8 5, 7 10. 44
nators 2 GAMMAS -5 10. ¢.20
9 PHIP 5
5. 5, .1 2 % .2
10 £PSI0 -7 1. 08 .8
11 WM -8 . 08 R It
Output g 12 PERF -99
Var. 13 PLoOET -
dgg;;i_gm E\ 14 CUNIT -G9
nators

IPR and INTER are passed to MVSSOP by COMMON/PRINT/. NITER is

passed by COMMON/PARAM/. The CHARACTER#*n variables ALL, ALZ2, and AL3
are optional and are used to provide mnemonic variable name information for this
data card. Their use simplifies the editing process when altering an existing MVSS
data set.

Cards #3-5: These cards contain character data that are not used by the code
but are useful for preparing and editing MVSE data sets. Card 3 prints out the title
"Distribution Data.” Card 4 prints out column headings for the actual distribution
parameter cards (Cards 8 and above). Card 8 contains "V" markers to assist the
preparation and editing of the following cards. Once these cards are typed (see
example data set) they need not be altered.

Input Variable Designation Cards: The following instructions apyply to each
imnput variable (one variable per card). These cards contain the parameters that
define the probability distributions. A more detailed discussion of cach type of
distribution will appear in subsection 5.7.1, and Appendiz A. COMMON/PARAMN/
passes this data to the other parts of the Monte Carlo driver which need it.
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INDEX: The Y-vector index for the variable whose distribution parameters
will appear on this card. The number cf cards of this type must equal the number of
sensitivity input variables. INDEX can have an integer value from 1 to 149 and
occupies columns 3 through 5 (right justified). These cards should be ordered
sequentially with the input variable Y-indices.

XNAME should be the same as the variable name NAMEN (I,J) read by SUB-
ROUTINE RBMAST (six characters or less). The same comments appearing in the
last paragraph in Section 5.4 apply to XNAME as well as NAMEN. XNAME
occupies columns 7-12 (right justified).

JTYPE: JTYPE identifies the type of distribution whose parameters are to
follow. If JTYPE is negative, a parameter-defined distribution is called. For such
distributions, mathematical procedures in SUBROUTINE XVALUE are invoked to
build up the probability/Y-value relationships from the parameters. In essence
these are what might be called "canned" or pre-packaged distributions. The integer
value of JTYPE, if a negative value from -1 to -9, designates the functional form of
the probability function as shown in Table 5.5 below. If JTYPE=0, Y(IINDEX) will
assume a constant value, and no probability distribution is sampled. Use of this
JTYPE=0 feature allows the user to input a deterministic value for Y(INDEX)
different than that read in by SUBROUTINE RDMAST for the baseline case. If
JTYPL is a positive integer, the probability distribution is a user-constructed or
empirical histogram with the positive value of JTYPE indicating the number of
histogram boxes of equal width. In this case the probability/Y-value relationship is
directly supplied in the data rather than being calculated from distribution
parameters. Up to twenty histogram boxes can be ntilized with additional cards
needed te input the probability associated with each box. JTYPE occupies columns
18-20 (right justified).

X1, X2, X3, and X4: These values are the parameters which mathematically
define the distribution to be sampled for variable Y(INDEX). Table 5.6 shows each
parameter depending on the value of JYTPE. (Figure 5.7 shows the geometric forms
for each distribution and JTYPE corresponding to the data in Table 5.5.) These
parameters can be entered in floating point or exponential format using columns 12
characters wide (Cols. 21-32; 33-44; 45-56; 57-68). Use of fleating point entries
avoids the problem of right justification. Card 5 has "v" pointers which assist in
keeping these entries within their designated columns. Note that for some distribu-
tions, X1, X2, etc., may actually designate locations on the abscissa or Y{I) axis.
With pdfs, do not think of Y(I) and X as a set of rectangilar co-ordinates.

Output Variable Designator Cards: After all input distribution parameter
cards have been read, RDMVSS requires definition of the output variables or figures
of merit for which probability histograms are to be plotted. A card similar to an
input card accomplishes this task. The following variables are read:

INDEX: The Y-vector index of the output variable (Columns 3-5).
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Table 5.6. Defining parameters for non-histogram input distributions

Type of Distribution JTYPE X1 X2 X3 X4
Constant 0 Value - - -
Triangle -1 Mode Min Max -
Normal -2 Mean - -
Truncated normal with upper -3 Mean Max -

limit

Log-transformed triangle -4 Modae Min Max -
(=Median)

Log-transformed normal -5 Mean S-parameter - -

Trapezoid -6 Min Vertex-1 Vertex-2 Max

Truncated normal with lower -7 Mean Min

limit

Truncated normal with upper -8 Mean Min Max

and lower limits

Uniform -9 Min Max

XNAME: The user-designated output variable name (Columns 7-12).

JTYPE: Set JTYPE:=-99 to designate an output variable whose probability
histogram is t¢ be printed.

JTYPE: Set JI'YPE=-88 to designate an output vaviable whose probability
histogram is not to be printed.
(Columns 18-20)

No distribution pararmeters are needed on these cards, since for these vari-
ables distributions will be built up by storing and sorting the cutput of the numer-
ous iterations of MODEL. The number of output cards should egual the number of

output variables, and the cards should be in sequential order with the Y-indices of

counting the number of cards for both.
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Histogram Ionput Data Cards: If JTYPE is positive on an input variable
definition card a box type histogram with JTYPE boxes is designated. The card(s)
following this card should contain the following data:

XDATACNT): The mindmum possible value of input Y(INDEX), ie., the
value designating left side of the leflmost histogram box.

XDATANCNT+1): The width of each of the JTYPE histogram boxes in the
same units as YINDEX).

KDATACNT+2) through XDATATEND): The relative probability fractiles
associated with each of the JTYPE boxes.

The format for XDATAD input 18 7TEL10.3 (column widih of 10). The user can
use F-format and reduce the chance of a vight justification error. More than one
data card of this type may be required for histograms with more than five boxes. It
is suggested that no more than 20 boxes be specified.

ICNT: A counter used to index all distribulion parameters for the KDATA
array for both canned and histogram distributions. The XDATA avray iz used to
transfer all distrnbution parameters to SUBROUTINE ZVALUE. The LDTYPE
array is a pointer array used to correctly assoviate XDATA elements with the corract
distribution forms as identified by JTYPE. LDTYPE is also used to transfer data to
XVALUE. NAME is used to transfer the user-defined variable names. All of thess
transfer arrays appear in COMMON/PARAM/.

As the MVEE.DAT dataset is read, RDMVES also prints oul the card images.
At the end a message confirming the completed read of 2ll data is printed.

5.7.2 Input Distribution Descriptions and Parameters

Unless noted, negative numbers are permissible within the range of a dis-
tribution. Exceptions are described below for each distribution type.

The trianguiar distribution (JTYPE=-1)

The three parameters defining the triavgular distribution are the mode value
(X1), the leftmost value or minimum (X2), and the rightmost value or maximuem
{X3). No value of Y(INDEX) less than X2 or greater than X3 will ever be used in a
sample. Values of Y(INDEX) in the vicinity of the X1 mode will be selected move
frequently than those near the endpeints. The triangular distribution has the
advantage that any degree of skewness (see Appendix A for definition of skewness)
can be easily represented by the choice of mode value X1 relative to the two endpoint
parameters X2 and X3. For an isoaceles triangle the mode is equal fo the median,
since 50% of the area under the triangle lies on either side of ¥1. The triangular
distribution is popular because the parameters X1, X2, and X3 can often be thought
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of in terms of moest likely, most pessimistic {or optimistic), or most optimistic (or
pessimistic), respectively.

The novaial distribution (JTYPE=-2)

Thie twe parameters defining the normal distribution are the mean (X1 or yt)
and the standard deviation ( or ). Bince the domain of the normal distribution
‘:uends to innnity in both directions, some truncation of this distribution must be
used for this computer application. The return values are limited to a range of plus
or minus gix sigmas {Us or standard deviations) from the mezn. To prevent the
occurrence of negative return values within this range, the lowest value a positive
return value can assume is the mean/50 (X1/80 or ii/50). Cther truncations of the
normal distribution’s tails are possible if the options JTYPE=-2, -7, or -8 are used.
The 6 sigma criterion used for this option (JTYPE=-2) includes $3.99% of the points
which would be represented by a distribution where no truncation of tails occurs.
Negzative values 1or X1 or X2 are not permitted. The mathematical methodology for
genarating the normally distributed random nurabers is deseribed in the section on
SUBROUTINE XVALUE.

The right-truncated normal distribution (JTYPE--2)

This variation of the normal distribution requires three parameters for its
definition: Xl=mean; X2=standard deviation; and X3=input variable value for
which right tail is truncated. Note that X1 and X2 have the sawme definitions as for
the JTYPE=-2 option above. X3 must lie within +8 sigmas of the mean (X1) as
above. Negative values for X1 through X3 are not permitted. If a normally distrib-
uted input value greater than X8 is returned from subroutine XVALUE, it is dis-
carded and a new randerm input value is chosen.

The log-triangle distribution (JTYPH=-4)

This variation of the triangle distribution results when the logarithm of the
input varizhle on the abscissa is assumed to be triangularly distributed, i.e., the logs
of the triangle basc lengths to the left and right of the mode are used in the calcula-
tion of a return value. As with the triangular distribution (JTYPE=-1), the three
parameters X1, X2, and X3 are the mcde, minimum, and maximum input variable
values vespectively. This distribution has the property that the median is foreed
closer to the mods, i.e., the location of the most probable value tends to split the area
bensath the curve into two quasi-triangles of nearly equal arca. The sample mode
obtained from this distribution differs scmewhat from the parameter X1 depending
on the skewnessg, i.e., the relative distance of X2 from X1 compared to the distance of
X3 from X1. If the value of X2 = 1/X3 the mode of the resultant log triangle sample
will approximate 1.0. This is 2 useful distribution for costs in which the high end
value of the range is further from the mode than the low end value of the range, but
wherg the user wishes that the mode value split the sample such that 50% of the
sampled points (costs) lie above the mode and 50% of the points (costs) lie below the
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mode. Figure 5.7 shows the shape of such a typical rightward skewed log triangle
distribution.

The log-normal distribution (JTYPE=-5)

The log-normal distribution occurs whenever one encounters a variable which
is such that its logarithm has a standard normal distribution. This rightward
skewed bell-shaped distribution is often defined by y, and G% parameters in statig-
tics textbooks and has a complicated functional form. For purposes of this code, two
alternate parameters are used to define the distribution. X1 is the median value for
the input variable, and X2 is the "S-parameter” analogous to the standard deviation
but on a logarithmic scale. The S-parameter can be calculated as follows:

S =ln(X1/X%,),

where X, is an input value one standard deviation (or 1) below the median X1.
Note that 5 is not the same as ln ¢. Figure 5.7 shows the shape of the log-normal
distribution. In the example problem the normal and log-normal distributions each
have parameters that have been chosen to generate samples with nearly similar
bell-shaped histograms. X1 and X2 may not have negative values.

The trapezoidal disiribution (JTYPE=-8)

This distribution combines features of the uniform and triangle distributions.
X1 designates the minimum attainable input variable. X4 designates the maximum
attainable value, Between values X2 and X3 a value for the variable Y(I) has an
equal chance of being drawn, i.e., the distribution is uniform between these values.
The following parameter value ordering must be used: X4 > ¥3 > X2 > X1.

The left-truncated normal distribution (JTYPE=-7)

This distribution is similar to JTYPE=-3 above except that the parameter X3
represents the minimum value attainable by the input variable. X3 must lie within
6 standard deviations (X2s) to the left of the mean, Xi. XI through X3 must be
positive.

The left and tight fruncated normal distribution (JTYPE=-8)

This distribution combines the features of JTYPE=-3 and JTYPE = -7 above.
X3 is the minimum value for the input variable, and ¥4 is the maximum value. X1
through X4 must be positive.

The uniform distribution (JTYPE=-9)

If an input value has the same probability of occurrence over its entire range,
the uniform distribution should be utilized. Two parameters, X1 and X2, define it;
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these are merely the endpoints of the variable’s allowable range. X1 is the mini-
mum and X2 is the maximum.

The empirical or histogram distribution (JTYPE= +IN)

The user must determine the relative probabilities for each of the N boxes
constituting the histogram. These boxes must be of equal width, and the relative
probabilities or fractiles raust sum to 1.0. The input card description above explains
the input parameters and their formatting. Note that this distribution can be used
to approximate other distribution forms not included in the "canned" distribution
list above. As an example a Weibull distribution could be represented by a series of
narrow boxes with heights drawn to approximately fit the shape of a Weibull curve.
Dividers and a ruler can be used to determine the relative probability values. The
user should also note that SUBROUTINE RDMVSS scales the relative probability
values that are read in so that they sum to 1.0. Figure 5.7 shows a sample his-
togram with five boxes.

5.7.3 SUBROUTINE PRINTX

SUBROUTINE PRINTX merely prints out a table of the input vawviable
distribution parameters read by RDMVSS. When the probabilities associated with a
user-defined histogram (positive JTYPE) are printed, they are printed in cumulative
rather than relative probability form. The twe large arrays LDTYPE and XDATA
are used to order, identify, and transfer the parameter data.

574 SUBROUTINE XVALUE: Calculation of return values
from the input disiribution parameters and the
random numbers

XVALUE is essentially the heart of the CRMONTE code in the sense that for
each iteration it selects the random values for the sensitivity inputs submitted to
MODEL. With the assistance of a random number generator, XVALUE makes sure
that over the course of = Monte Carlo simulation the input samples actually drawn
approximate the distribution forms specified by the parameters read by RDMVSS.
The random values for the sensitivity inputs are usually called "return values," and
for each Monte Carlo iteration, the input portion of the Y-vector or ensemble of
return values is submitted to MCDEL for calculation of figures of merit (the output
portion of the Y-vector). Figure 4.1 shows this process in schematic form. This
mathematical process (using a uniformly distributed random number between 0.
and 1.0 in conjunction with distribution-defining parameters to generate return
values) is known as inversion. This section will explain how inversion is accom-
plished for each distribution type. (The generation of uniformly distributed random
numbers is discussed in Appendix E.)

A first step in most inversion techniques is to convert the specified relative
probability distribution into a cumulative distribution. This task is accomplished by
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integration of the function defining the relative probability distribution in terms of
Y (the input). The total area under the relative probability curve or pdf (probability
density function) must be equal to 1.00. The area from the left endpoint of the pdf to
any location Y, on the variable range beneath the pdf curve envelope (on the
abscissa) must be number greater than zero and less than or equal to 1.0. This
value is known as the cumulative probability and represents the probability that the
varigble will have a value of ¥, or less. If the cumulative probabilities are plotted
against the variable range, the familiar S-shaped cumulative probability curve
results as in Fig. 4.2. The ordinate of this curve has a maximum value of 1.0 and a
minimum of 0.0.

The uniformly distributed random number (UDRN) also has a range of 0.0 to
1.0, and a particular UDRN value within this range {e.g., 0.6781) has the same
chance of occurrence as any other value (say 0.0231). If we now say that our UDRI
value represents a cumulative probability value or cumulative density function
value [cdf{Y}}], an association between cdf{Y;) and an actual value of the input Y, can
be made via the S-curve as shown on Fig. 4.2. 1If this association process is repeated
many times, however, the analyst will soon note that ultimately the values of Y,
chosen, i.e., the return values, will not be uniformly distributed along the abscissa
(unless the uniform distribution for Y, was requested). The distribution of the
return (Y,) values will depend on the shape of the S-curve or cdflY,). Y-values will
tend to group more often around the region of the S-curve which is steep and less
often around the flatter regions (see Fig. 4.2.) The JTYPE chosen for the input pdf
(and its parameters) determine the shape of pdfY,) and therefore also for cdf(Y)).
The UDRNs and cdf(Y)) assure that over the course of the Monte Carlo simulation,

the return value sample histogram approximates nicely the shape of the parameter-
defined pdf(Y,).

Random Number Generation

ORMONTE requires a floating point uniformly distributed random number
between 0.0 and 1.0. For mainframe computers, a built-in library function call such
as RAN(ID) or UNI(I) will supply a new UDRN every time it is called. For Personal
Computers such as the IBM XT/AT series, the user must supply his own UDRN
generator. The type of microchip used in the machine will affect the UDRN genera-
tor algorithms, since these algorithms are based on the overflow characteristics of
the PCs internal arithmetic. The UDRN generator supplied in the actual coding
(files RANSET and TCTRAN) is written in both FORTRAN and machine language
for purposes of CPU time enhancement. It is applicable for an IBM-PC/AT or
compatible with an 80287 processor and was written by T. C. Tucker of Martin
Marietta Energy Systems. A short description of this UDRN generator and others is
given in Appendix E.

Most UDRN generators require use of a "seed” argument to start generating
a sequence of numbers. This integer argument (IY in this program) is set once in
XVALUE and is regenerated by the UDRN generator algorithms for the second and
all subsequent random numbers.
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Since the distributions based on variations of the normal distribution have
complex functional relationships between PDF(Y), Y, U, and G, the algebraic calcula-
tion of Y from CDF(X), 1, and & (1.e. inversion) weould be very difficult and probably
require an iterative numerical routine. If 2 normally distributed random number
(NDRN) were available, the return value Y could be calculated in terms of the two
parameters { and o as follows:

Y =+ NDRN* ¢
where
W is the mean (X1 in the RDMVSS parameter list)

G the standard deviation (X2 in the RDMV arzmeter list)

NDREN is essentially the number of standard deviations away from the
mean, U, occupied by the input varizble (return value) Y,, FUNCTION RNOR
calculates 2 NDRN from a series of UDRNs by use of the Central Limit Theorem of
Statistics. This theorem states that under rather general conditions, sums and
means of samples of random measurenients (or values) drawn from a popalation
tend to possess, approximately, a bell-shaped or normal distribution upon repeated
sampling. BNOR takes the number -6.0 and adds to it twelve different UDRNs (all,
of course, between 0. and 1.0). If this call to RNOR is repeated many times and a
large number of UDRNs are available, the NDRNs calculated will have a normal
distribution with a sample mean of 0. and all lie between -6.0 and 6.0. Tt can thus
be stated that a given NDRN tells how many standard deviations Y, lies from a
given mean and that Y. will never be more than six standard deviations away from
the mean. This limitation is not a problem since 9.99% of all possible occurrences
will be covered. It should be noted that some mainframe computers have a library
function capable of supplying NDRNs.

XVALUE logic

For each iterationn of a Monte Carlo simulation, MVSSOP calls XVALUE
once. Each call to XVALUE generates one input ensemble or partial vector, Y, (i =
NI), of return values which are then transferred to MODEL via the Y-array and
COMMON/ MASTER/. A loop using iNDEX from 1 to NTOT or NVART (the total
number of sensitivity variables) controls the logic of XVALUE. For each input
variable INDEX (the Y-vector index) is associated a JTYPE which selects the correct
inversion algorithms for the specified distribution. If JTYPE=-92 or -88 is
encountered, the variable is an output variable [Y, (i > NI+1)] and no inversion is
necessary. In the FORTRAN coding for subloutmn XVALUE the generic name for
the return value being calculated is X. After inversion the particular Y(INDEX) or
Y, being calculated is assigned the value of X and inversion of the next input distri-
bution proceeds. This procedure is repeated until all of the input Y-array poqitions
have been filled with return values. The "X" nomenclature will be used for the




following descriptions, even though we may be describing locations on the Y(I) axis
(abscissa) for a particular pdf.

Inversion algorithms

For distributions based on the normal distribution (RDMVES JTYPE=-2, -3,
-7, or -8) the inversion process is simple and is based on use of the normally disirib-
uted random number BNOR(Y) or N, For the untruncated normal distribution
(JTYPE=-2) the user-specified parameters XMEAN and SIGMA are used along with
LN to caleulate the retwrn value X as ollows:

X = GNESIGMA + XMEAN
where

SIGMA = XDATA (ISTART +1) = ¥2 and
EMEAN = X1

In order to keep X positive, a minimum value of XMEAN/S0 is assigned to X
if the above resull is negative. For the truncated normal distributions for which the
user defines the truncation values (JTYPE=-3, -7, or -8) simple tests are applied to
the X as calculated above. If X falls outside the truncation values, a new QN is
drawn, and the X calcwdation and test are repeated. This procedure ensures that all
Xs fall within the truncation boundaries.

For the log-normal distribution (JTYPE=5), the user defined parameters are
SIGMA (the 8-Value) and XMEAN (XMEAN in this case is really the desired
median). The return value ¥ 18 calculated as follows:

X= XMEANF¥EXP(QN*EIGMA) .
No truncation opiions are available with this distribution.

The triangular distribution (JTYPE=-1) is defined by three parameters; a
minimum - value [XDATASTART+L)] or X2, a madmum value [XDATA
(ISTART+2)! or X3; and the mode value [XDATAISTART) or XMEAN] or X1.
Calculation of the return value is performed by integration of the pdf function
defining the iriangle’s sides and obtaining the odf function equation (keeping in
mind that the area under the entire iriangle iz always 1.0). The algebraic steps
required for the integration and subsequent inversion {(solving for X as a function of
the uniformly distributed randoms number @ and the three triangle-defining
parameters below) are described in detail in the source code as COMMENT state-
ments and in Appendix C. Since the base lengths of the two right iriangles (formed
by the altitude at the mode value X1) comprising the overall triangle are an impor-
tant part of this calculation, transformation of coordinates ig utilized to move from



52
an origin-based frame of reference to a mwode-basad frame-of-reference [base length
A = (mode-min value); base length B = (max-mode value)l.

i 1

Calculation of 2 return val 2 for th 105 tviangle distribution (JTYPHE=-4) is

very similar to tudt for the tniangular distvibution except for the fact that the
logarvithms of the right triangle bage lengths are used and ars defined as follews:

A = In(min/mede)

B = ln{max/mode).

Caleulation of 2 return value from a uniforin distribution (JTYPE=-9) defined by
maximum and minimum endpoints is straizhiforward and involves use of the
umformxy distributed rardom number a11d a coordinate transformation. If
XMEAN ig the leftmost e'ﬁjr oint and XDATA(ISTART+1) is the rightmost endpoint,

x

the following cxpression car b ugzd to caleulate X:
X = XMEAN + Q=XDATA(ISTART+1) — XMEAN) or X = X1 + Q*X2 —X1).

or the t eraidal distribution (JTYPE:-86), caleulation of the return value
is acconmhsh g by bwakmg the trapezoid into two triangles and a uniform distribu-
tion. The geemetric and algebraic detaile of the inversion are included in the
COMMENT statements within the scurce code listing.

Calculation of a return value from a user-defined histogram [JTYPE=+
(number of boxes)] is also very straightforward. Calculation of the cdf was accom-
plished in SUBROUTINE PRINTX by cumulative addition of the read-in pdf frac-
tiles. The value of the uniformly distributed random number, Q, is compared to the
cdf values for cach box of the histogram. Once the box whose cdf range envelops Q
is identified, a correspondence is made between Q and the incremental X-value
range associated with the particu}ar box. Interpolation is used {o locate a distinet X
within that range. The associated algebra is described in the source code COM-
MENT statements in XVALUE.

If the user wishes to have discrete values rather than boxes on the horizontal
axis of his histogram, he needs to insert a discretization subroutine in his model
such that rounded or integer return values are available to SUBRQOUTINE
XVALUE.

Stovage of retura values

Now that a return value X is caleulated for variable Y(I), it is stored by the
statement Y(INDEX)=X and calculation of a return value for Y(INDEX41) begins,
again using X as the generic name for the return value. After all input Y values
have return values, the input part of the Y-vector and the input part of /MASTER/
COMMON block is full and control is returned to MVSSOP, which then uses the
return values for one iteration of SUBROUTINE MODEL.



5.7.5 Use of MVESOP for Statistical Analysis and
Display of MVSS Resuits

After each call to MODEL by MVSBEOP, the output variable positions of the
MASTER/ YV-vector are filled. These values constitute the figures of merit [rom the
user’s model. The input and output values now gtored in the Y-vector constitute one
complete case or iteration of the MVES. Qutput unit IBUG can be used fo store and
write the Y-vectors resulting from every ileration if desived. Normally the tempo-
rary sterage unit, LTEMP, (preferably on a hard disk) 15 used {0 store this data for
statistical analysis and graphical presentation. MVSS0P calculates a cumulative
sum and cumulative sum-of the-squares for each Y(I) such that the mean and
variance can be calculated for all variables after the last iteration. The computation
of the variance will vield meaningless results if the variance is very small compared
with the mean. This is dug to taking the difference of two nsarly egual nusbers
whose real difference is smaller than the sccumulated truncation ervor. Tesls are
also performed to make sure no variable has any value below 107 or above 107,

After all ilerations arve complete, NITER or M values for each variable Y(I)
are stored in the ¥Y-array. The analyst is now interested in the statistics for the Y(D
values resulting from all NITER submitted cases (NITER = 5000 iterations for the
sample problem). For input Y-variables the analyst is interesied in verifving that
the resuliing sampling distribution approximates the inpot disteibution specified.
For output Y-variables the analyst is interested in the uncertainty range and calcu-
lated statistical parameters for the important Sgures of merit. Such data is much
pasier to visualize if it is presented in histogram formo in addition to prezentation of
the usual caleulated statistical parameters (mean, variance, perceniiles, muax, min,
ete.). The balance of subroutine MVSS0P is concerned with the "binning” of the
data for each variable and the preparation of histograms capable of display from a
line printer.

In order to construct a histogram, every value of ¥(1) must be locatad within
4 bin on the range from the lowest occurring value of ¥(I) to the highsst. Selection
of the proper bin size depends on factors such as the size of the page available for
printout, the ratio of the maximum Y(I) to the minimum ¥(I), the desirahility of
having a rationsl or round number for the bin width, and the character width and
line width for the printer or screen. The algorithms and tests used to determine the
histogram bin width are documented in detail by COMMENT statements in the
source code listing.

Once the histogram boundaries and bin widths bave been determined for all
input and cutput variables, the code must put the input sample and oulput resulis
into the bins. This process is accomplished one tteration at a tiwse. The bin number,
counting from the left, is calculated as foliows for a given Y(I) or Y(K) value for 2
given iteration:

J = (YEPELOWEKVXDIFFE) + 1,
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Y(X) is the variables value
K (or 1) 1s the variable identification index for the Y-array
XLOW(K) is the lowest value encountered for Y(X) over all iterations

XDIFE is the bin width for variable Y(¥).

Of the NITER values of a particular Y(I) which are partitiored, count must
be kept of the number of times a Y-value falls within a given bin. The array NHIST
is used to keep the count every time bin J is encountered:

NHIST(K,J)=NHIST(K.J) + 1
where X is the variable index and J is the bin number.

Cace all NITER valves for a particular Y(I) have been "binned,” the code
counts from the left and calculates both the relative and cumulative percentages of
occurrences from the lefimest bin to the bin of interest. These percentiles are then
printed next to each bin. A separate table is alse priated which displays the mini-
mumn, 5%, $0%, 95%, and maximurma values for each variable. In order to print
histograms, a character must be associated with each occurrence or nonoccurrence
in a particular bin. A "*" is used to indicate one or more occurrences and a blank
(" ") a nonoecurrence. If there are many iterations a * may indicate more than one
occurrence and the number of cccurrences per * (NSCALE) is noted on the output.
The variable NSCALE is calculated by notmg the number of occurrences in the
tallest bin and making sure that the associated "¥¥¥*¥*¥*¥" har will not run off the
page. For a 132-character line length printer, 756 "*" characters are allowed. Figure
5.8 shows the variable nomenclatuie on an example histogram.

Normsally MVSSOP will print histograms for both the input and output Y(I)
variables in the /MASTER/COMMON block. If a negative sign is placed in froat of
the number of iterations in the RDMVSS input table, only the designated output
variables (with JTYPE = -99) will have histograms printed. If a constant or delta-
function distribution (JTYPE=0) is utilized for input or JTYPE = -88 for output, no
histogram is printed.

Cnce all histograms are printed, the large amount of data (the Y-array)
stored in output unit LTEMP is scratched. Unit IPLOT can be used to store the
histogram building information in the svent that the user wishes to use DISSPLA or
other plotting software to plot the data. The PDA option described in Sect. 7.2 can
be used to convert pdf histograms into cdf data amenable to plotting and data
characterization. The IPLOT fermat can be directly read by INTOHIST EXE within
the directory of the PI?A option.

Control of the program is now returned to the MAIN and an "end of run”
message is printed.
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6. SPECIAL CONSIDERATIONS WHERN CONSTRUCTING
AMODEL TO BE DRIVEN BY ORMONTE

The following guidelines, if observed when constructing a model for your
application, will greatly enhance its compatibility with ORMONTE and minimize
the chance for execution errors.

6.1 Variable Naming

Variable names in the MASTER common block may be munemonic and up to
cight characters long. They should be of type REAL#4. If ORMONTE is to be
connected with an existing model where non-REAL*4 variables are important, the
user should write insert the necessary preprocessing and conversion routines for
renaming variables prior to and after accessing by ORMONTE. These routines
should be part of the user’s model. The labeling names (alphameric variables
XNAME and NAMEN(I,J) can be up to six characters long. (See comiments in last
paragiavh of Section 5.4.)

6.2 Imterual Loops

If the modeling application requires many loops or iterations within each
iteration of ORMONTE, the MVS55 yun may take a very long time to execute. If the
time to run a single deterministic case is long, the time to run an MVSS will be
approximately NITER tines as long.

6.3 Independence of input Variables

All of the uncertain input variables should ke statistically independent, 1.e., if
the value of onie input changes, it should not affect the value of another. Consider a
process model in which some of the operating conditions are uncertain, such as the
emperature within a vessel. Another uncertain variable might be a rate coefficient
for a chemical reaction taking place within the vessel. In reality these two possible
input variables are not independent, since rate cecefficients usually vary with
temperature. 'The modeler would be prudent to make the temperature an uncertain
independent sensitivily variable and create an algorithm or look-up table within his
model which keys the most likely value of the rate coefficient to the temperature.
The uncertainty in the rate coefficient could then be handled by use of an uncertain
multiplier which affects this temperature-keyed most likely rate coefficient value.
This procedure is often called "keying" variables and is a very useful modeling
technique.

6.4 Recpilimization Within a Medel
Many models are designed such that the program calculates a maxiraum or

rainimum figure of merit for a given set of input variables. This procedure usually
involves nested loops or the repeated use of numerical algorithims to search for the



corabination of input values that produce the optiroum case. The user of OEMONTE
should take care not to mix uncertain ORMONTE input variables with optimization
should remain unchanged within that iteration. If an opticuzation variable were
used for an ORMONTE input, the final value optimized value of that input varvigble
is very unlikely to be the same value ag the initial sample input value. A model can
be designed which will optimize every Monte Carlo iteration with respect to the
optimization variables for a given set of uncertain ORMONTE input variables that
remain unchanged during that iteration. Reference 1.2 discusses this model desigm
problem in greater detail.

6.5 Beduction of Ouiput

Models that print extensive output tables for deterministic cases usually
vequire some modification before use in conjunction with OEMONTE. Print sup-
pression logic must be added to the WRITE statements such that every iteration
does not produce a complete set of output tables. For some mainframe computers
such as the CRAY, it may be necessary to COMMENT out many of the WRITE
statements and their FORMATS in order 1o renize the full computing efficiency and
speed of these machines.
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7. ACQUISITION AND CHARACTERIZATION
OF INPUT DATA

7.1 Some DOE Esperience-Based Guidelines to Assist
in the Sclection of Numerical
Input MVES Values

Since the results obtained from any Monte Carlo simulation are only as good
as the input data, the quantitative determination of MVSS inputl variable ranges
and distributions is of paramount importance to a probabilistic analysis. Unfor-
tunately, there is no clear-cut or robust procedure which guarantees consistency and
accuracy in the selection of input parameter values. This is an especially serious
problem where compavison of competing systems or technologies is in progress and
where consistency of evaluation must be maintained in order to protect the
evaluatoi’s objectivity and fairness.

Since many inputs require projection now of what their values will be at the
time of future large-scale system implementation, the evaluator finds himself in the
realm of technological forecasting; and he can benefit from exploring what this
heuristic science can offer as an aid to input selection. One useful forecasting
principle gleaned from the literature is that of collective judgment utilizing expert
opinion. Policy makers often use formalized procedures, such as the Delphi method,
to obtain a qualitative view of future development trends. Anonymity is maintained
among participants, and written viewpoints are exchanged until consensus evolves.
In this manner no well-known or dominant individual can persuade others on the
basis of his standing in his field alone.

For the quantitative task of determining MVSS input variable ranges and
distributions, consistency of evaluation and assignation is more important than
consensus and the associated participant anonymity. Since ranges rather than
single values are tc be determined, consensus need not focus on one deterministic
value, but rather on whether the rangs of input values is indeed possible. Less
formal face-to-face discussion and debate among peers, i.e., peer review, with a
consistent set of ground rules has been found to be a useful procedure and was
successfully used as part of the selection procedure for the Department of Energy’s
choices of advanced isotope separation processes for uranium enrichment (Ref. 3.9)
in both 1982 and 1985. The "peers" in this case consisted of technical personnel
from DOE and the participating development and process evaluation contractor
organizations.

The primary task of 2 peer review is to sort out the important technology,
modeling, and cost issues from the insignificant issues that might be erected by
corapetitors as diversions to delay considerations of technical arsas where real
problems exist in their own applications. Participants in such a venture must have
access to technical documentation and relevant experimental data for the
alternative technologies. If alternative technologies are not being considered, peer
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review among the various project teams working on a single project can still be
useful as a preliminary to uncertainty analysis. Such a procedure can be instituted
among R&D, engineering design, cost estimating, and operations analysis teams.
Fach group represents expertise in different disciplines; hence opinion may vary
widely.

Once the peer review has identified the important issues, the analyst must
submit the values going into the system model and relationships within the model
itself to peer review. Although the latter task may be time-consuming, it is impor-
tant that all participants have confidence that the models driven by ORMONTE
adequately represent the systems and canse/effect relationships considered. Since
first-of-a-kind technologies vary so widely in their descriptions and velevant
phenomena, no generalized quantitative rules can be set forth for assigning input
ranges. Along with the gualitative properties of the various previously discussed
probability distributions, the following guidelines are given for assignment of
numerical values.

1. The mode input values do not necessarily have to correspond to the base
or reference case. The analyst must determi»~ the reasonableness of the baseline
inputs and keep in mind that a baseline supplied by a development organization is
likely to include optimistic values; however, there are cases in which a confident
developer might submit an overly conservative baseline. In reports by Tversky and
Kakneman (Ref 7.1) and Capen (Ref. 7.2), tendency of estimators, regardless of
their sophistication, to state overly narrow confidence intervals is discussed.
Tversky and Kakneman believe this tendency is due to a hsuristic of thinking
common to all people that an estimator anchors the expected range to the original
best estimate chosen by the estimator., A report by Tonn and Goeltz (Ref. 7.3)
explores how subjects mentally combine estimates of uncertainty in probabilistic
and evidential contexts.

2. Even if all the input distributions have as their mean the baseline value
for each input, the Monte Carlo driver or sampling program will never reproduce the
base case exactly, i.e., no single design is produced in which all the input distribu-
tions have their baseline values chosen hy the random number generator.

3. It should be qualitatively ascertained whether any ensemble of random
input variables selected by the ORMONTE Monte Carlo driver might represent an
inconsistent or physically nonrealizable set of input data. If so, there are depend-
encies between variables or logic problems within the user’s model itself which need
correction. By using WRMAST to print out the input distribution return values and
output figures of merit every couple of iterations, one can get ensembles of random
data to inspect for possible problems of this nature. L. Kryzanowski, et al., (Ref. 7.4)
suggest a means of handling dependencies between variables which impose condi-
tional probabilities via "base” and "keyed” variables.
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7.2 PDA (Probability Data Analaysis) Sofiware for Analysis
and Characterization of Raw Data

The effectiveness of using a2 computerized tool haq long been known to be
dependeiit upon the ﬂuahty of the input data (i.e., garbage in-garbage out). The
()PMON'l““ coge and the model(s) it drives ave no ulffekem, in this respect. This
section will address the scurces and methods of representing data for ORMONTE
variables whose values ars unceriain. While not exhaustive, tec‘miques which have
been successiuily used in conjunction with the CRMONTE code will be described.
PC seftware which has bween developed at ORNL for analyzing and characterizing
raw data will algo be discussad.

7.2.1 Souvces of Data

Data related to an uncertain variable can come from several different
sources. If the variable of interest is a process parameter capable of guantitative
measurgment, then data on the variability of the parawmeter can bhe collected as
measurement observations and stored in a computer file. Many times, automated
data logging equipment can be used to measurs and record literally hundreds or
thousands of individual observations (data points) for a given parameter. In the
next section, a softwave toal which can analyze this raw data will be described.

The preceding discussion ig, in a general sense, related to the measurement
of the variability of a physical quantity. That is, the parameter is associated with
something that can be physically measured. There are, however, many times when
the variable of interest cannot be physically measured because the variable
describes something that may exist only in the future. For example, output
parameters for a new or scaled-up process, costs/revenues for a future equipraent
item, future escalation/inilation rates name only a few of the possible variables that
cannot be limmediately measured. The uncertainty in variables of this type has been
characierized through a number of techniques which develep a collective judgment
based on expert opinion. The earlier-mentioned Delphi method is one of the more
well known in this class.

Another technique that has been used at ORNL (Ref. 3.13) to quantify
uncertain pardmetcrs based on expert opinion is called the SRI Probakility Encoding
Method. Developed in the 1970s at SRI International, this method secks to min-
imize biases in the expeil’s response while extracting the expert’s knowledge on the
topic. It is a structured interview technique which is conducted by a trained inter-
viewer. It is beyond the scope of this report to fully describe the SRI Encoding
Method. A summary of the method has been written in the techuical literature
(Ref. 7.5). Certain aspects of the method will be discussed here, however, to relate
them to a supporting seftware tool that has been developed at ORNL.

b )

As mentioned above, the method involves a stiuctured interview process
betweern: a trained interviewer and a subject who is an expert on the topic at hand.
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Fig. 7.1. Typical cumulative probability S-curve.

It is important to stress that the interviewer needs to be knowledgeable of the 58RI
¥uncoding Method in order fo minimize biases that can erronsously influence ‘H’m
expert’s responses. In general, the outcome of an encoding session is a cumulaiilv
probability function curve describing the expert’s opinion of the par twu‘éa
parameter. An example of such a curve is shown in Fig. 7.1. The curve can be
interpreted such that for a given probability on the Y-axis the associated guaniiiy on
the X.axig (a unit eleciric power cost in Fig 7.1} will be equal o or less than the
value indicated by the curve.

In developing the curve, probabilities will be associated with specific quan-
titative values. In arriving at an appropria m probabil 1tkudumw combination,
several types of questions (as discussed in Befl 7.5) may be posed to the subject,
some of which usge a visual aid known as a probability wued m u;,ol&t in the assess-
ment. In such an assessment at ORNL, an electronic version of the probability
wheel was developed and is contained within a PC-based software tool known as the
Probability Data Analysis or PDA software package. The following parage raphs will
discuss this p portion of the PDA package. The data analysm features of the package
will be discussed in Sect. 7.2.2.
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The heart of the PDA package is a Lotus 1-2-3 spreadsheet file, PDA.WKI1.
When retrieving the file in Lotus 1-2-3, the file appears as a typical spreadsheet.
There is, however, a sel of Macro instructions which allow the user to automate the
functioning of the spreadsheet and to collact and record cumulative probability and
quantity data for uncertain parameters. This Macro is invoked by an Alt-W
keystroke. The operation of the Alt-W Macro suppoits an indirect response method
used in the SRI encoding orocess which uses a probability wheel (alse called in less
scientific civcles a wheel of fortune) as a visual aid in eliciting responses from the
intervieswee. [Batteries and Vanna White are not included.] In an indirect response
mode, the subject is asked to choose between two alternatives; one relating to the
parameter of interest and the other based on a random chance device such as a2
wheel of fortune or probability wheel. Figurs 7.2 shows the face of the wheel with a
shaded area being the "winning" region. In general, the shaded arsa is increased or
decreased until the subject is indifferent about choosing between an outcorae related
to the wheel and one related to the uncertain parameter. For example, a question
could he asked of the subject, "Would you rather wager on a spin of the wheel with
this much "winning" area or that the operating availability {raction of System X will
be at least 0.787" When the expert is indifferent, the relative area on the wheel
corresponds to the expert’s opinion of the probability of the parameter conditions
posad in the question. This type of questioning can be repeated to develop a set of
probability/quantity outcomes. It is very important that the reader note that this
line of questioning is only one of several methods used in the encoding process, and
that reliable results ave only obtained when the interviewer is knowledgeable of the
complete encoding process as well as the underlying statistical rules.

ORNL..-DWG 89—-4808 ETD
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Fig. 7.2. Example probability whee! display.
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When the Alt-W Macro i8 inveked in PDA WXL, the user will see a menu at
the top of their screen similar to that shown in Fig. 7.3. Selecting BEGIN and
placing the cursor in the appropriate row of the Topic column will allow the user to
select a new or existing parameter topic for study. As shown in Fig. 7.4, a topic or
variable name is provided, in this case TEST DISTRIBUTION, and the first guan-
titative value desired {0 be analyzed is entered. Next, the program will present an
example probability wheel image on the screen. Any keystroke will clear the imnage,
and the user will be expected to provide his own probability value corresponding to
the gquantitative value under consideration. As mentioned, this Macro is designed to
support the wheel type of questioning, but a final probability value may be entered
at this time if another interview technique has been used. As this point, using the
menu, the user may CONTINUE manipulating the probability wheel or KEEP the
current value. The user may continue to invoke the Alt-W Macro to enter additional
data points for the variable or topic of interest. When the Alt-W menu is present,
the user may QUIT the automated macro and return to a2 manual spreadsheet mode.
In the manual mode, data may be entered in the probability data storage area
directly.

Twe other features available in the Al-W yoode are the PLOT and SPIN
choices. In conducting the probability wheel questioning, it may be useful to demon-
strate the effects of "spinning” the wheel for a given "winning” fraction on the wheel.
The SPIN option will use a random number generator to electronically "spin the
wheel” and determine a win or loss on a given spin. This option may be repeated as
many times as desired to demonstrate the randomness of outcomes. When several
quantity/probability data points have been obtained, such as in Fig. 7.5, il is useful
to look at the general shape of the cumulative distribution the expert is providing.
The PLOT option will plot the cumulative probability curve for the current topic as
shown in Fig. 7.6. This feature is helpful 1o resolving certain discrepancies that
may appear in the responses such as the negative slope in part of the cumulative
curve shown in Fig. 7.6. When PLOT is selected, the raw data in the probability
data storage area of the spreadsheetl are automatically sorted in ascending quantity
sequence as shown in Fig, 7.7,

It should be noted that in using PIDA WKL when the carsor is on a spread-
sheet cell that already has a value that is satisfactory to the user, a simple return
keystroke will continue operation of the Macro.

7.2.2 Characterization of the Input Data

As discussed in the previous section, uncertainty data that are based upon
variability of a physical quantity can be developed by repeated measurements. For
use in a code such as ORMONTE, such raw data, which may number inte the
thousands of points, must be reduced to a form which can serve as input to the
program. A histogram is a useful mechanism to describe this type of dats, and a
FORTRAN utility program called INTOHIST.EXE is provided with the PDA
software package to characterize such data into a histogram form. The program is
self-prompting and expects the input raw data file to consist of single records for
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Fig. 7.4. Screen display showing topic name and variable value for which
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Topic Data values Probability
TEST DISTRIBUTION 2090 Q.00
30900C 1.00
150G .70
10C0 0.45
500 0.07 A
2C00 0.88
250¢ .94
70¢ .15
4C0 0.05
200 0.2C
1200 0.5¢C
1009 0.30
1504 ¢.7%

g, 7.5. Screen display showing complete set of value/probability data
obtained by questioning.
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Fig. 7.6. Data from Tfig. 7.5 as drawn by PLOT option.
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each data pointl (i.e., a line feed/carriage return after each point). The output of the
program 18 cumulative probability/quantity data suitable for use in PDA WK1 (see
Fig. 7.7). INTOHIST.EXE also optionally provides the relative probability his-
togram parameters (number of bing, bin width, etc.) in the same format as produced
for cutput unit IPLOT by ORMONTE. A second option of INTOHIST picks up
relative probability histogram parameter data (in IPLOT format) and converts it to
cumulative probability/quantity data suitable for use in PDA.WXKI.

The remainder of this section will discuss the analysis and data characteriza-
tion capabilities of the PDA WK1 spreadsheet program. As discussed in Chap. 5,
several types of statistical distributions are available to describe the parameter
uncertainties. The PDA software package allows the user to determine if the cumu-
lative probability data for a given variable can be effectively described by either a
normal, log-normal, triangular, or log-triangular distribution.

Similar to the data entry portion of the PDA WK1 spreadsheet program
described in Sect. 7.1, the data analysis routines are Macro controiled. The analysis
is started by entering an Alt-R keystroke. Initially, a menu such as shown in Fig.
7.8 will be presented at the top of the screen. As a first step, the user should select
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CLEAR to reset the temporary working storage areas and prepare the spreadsheet
for a new analysis. Failure to CLEAR the program befecre starting a new analysis
can cause old data values in certain working areas to be included in the current
analysis, thus corrupting the evaluation. CLEAR the program before you begin a
new analysis! Should the work areas be empty already when CLEAR is selected, an
eITOL S ill be issued, and th er should press ESC followed by the:
CITor message wilt o€ iSsued, anda € usSer sSnowa press rhaow 101lowe Yy anoiner
Alt-R and proceed as though the CLEAR had been successful.

After CLEARIng the work arvea, the user must select a base characterization
of the curnulative probability data as being either normally or lognormally dis-
tributed. Actually both distribution types can be tried by seclecting NORMAL or
LCG _NORMAL from the menu and moving the cuvsor to the desired row of the
Topic columu. The important point is that one or both Gaussian distribution types
must be chiecked first before the triangular distributions can be evaluated. 'This
procedure is necessary because the program presents the triangular distributions in
compariscn: to the Gaussian distributions. As an example, the dats shown in
Mig. 7.8 wiil be evaluated. These cumulative probability data were developed from
normal prooability tables for a mean of 50 and a standard deviation of 10, se in this
example we expect to see an ideal fit in the NORMAL selection.

When either the NORMAL or LOG_NORMAL option is selected, a linear
regression is performed on the data to explicitly solve for the mean and deviation.
This is possible due tc the property of the standard normal distribntion that the
standardized random variable z, defined as,

Z = —-——(x _; 'Ll) N
[§)

can be matched to a given value of x by the associated probability provided by the
user for that value of x. Thus, regression pairs of z and x are formed such that the
apove equation, when rearranged as

is of the linear form y = mx + b. The mean and standard deviation are then directly
determiined by regression with the resulting output shown in Fig. 7.9. A printer
sumraary of the regression analyses can he obtained by selecting the SUMMARIZE

option on the menu.

A plot of the resulting parameter-defined (u, o) distribution and the raw
input data is very useful in judging the appropriateness of the distribution as a
descriptor of the raw data. Once the normal and/or log-normal regression(s) are
performed, the PLOT option may be selected to view the distributions. An added
feature of the PDIA spreadsheet program is that the user may alter or "fine-tune" the
distribution parameters (n. ¢ for the Gaussian options), if desired, during the PLOT
option to adjust the distribution shape (via the standard deviation parameter, o) and
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location (via the mean value, y). A piot of the resulting normal distribution in the
above example is shown in Fig. 7.10.

As mentioned earlier, the normal or log-normal analysis (and associated
PLOT) must be performed before the triangular distributions can be considered.
When the normal and/or log normal distributions have bheen checked, the TRI-
ANGLE option may be selected to evaluate either a triangular or log-triangular
distribution against the input data. The TRIANGLE option is different from the
NORMAL or LCG_NORMAL choices in that no explicit calculation of the distribu-
tion parameters (i.e., minimum, mode, and maximum) can be made. Rather, the
user must select the parameters for best or nearest fit in an iterative process from
the graphics image developed earlier by the program for the normal or log- normal
evaluation. With an 80286-based processor (AT-type PC), the responge in this
iterative portion of the program is quite fast. However, this process may be rather
time consuming for those operating with the earlier 808G-based PCs. FKigure 7.11
shows a nearfit triangular distribution to the normal distribution shown in
Fig. 7.10.
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Fig. 7.11. Plot of attempt to fit triangular distribation S-curve to normally
distributed raw data in Figs 7.8 and 7.10.

Onee it is determined with the PDA software that the raw data for a given
ORMONTE input variable can be accurately characterized with one of the statistical
distributions discussed above, its parameters can be used as input into ORMONTE
as described in Sect. 5.7, Of courss, should the vaw data not be amenable to a
description in this manner, the raw data can always be represented as a histogram
for input into ORMONTE. The necessary parameters for a histogram input are
given in Section 5.7 as well.
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8. INTERPRETATION OF THE OUTPUT
STATISTICS AND HISTOGRAMS

8.1 Understanding the Quiput of MVSR0OD

Figure 8.1 presents a typical histograms output for a figure of merit in an
MVES rup from OBRMONTE. Sabroutine MODEL was accessed 5000 times in order
to produce this data. The first item of lotervest is the table at the fop of the figure
which presenis the summary statistics for all 5000 values of the figure of merit
CUNIT calculated by MODEL. The minimum is the lowest value and the maximum
the highest valus encountered over all BOD0 cases. The mean, standard deviation,
and variance have the same meaning as for any large sample of 5000 items. The
percentiles pass on very useful information to the analyst; for exaraple, the data on
Fig. 8.1 say that CUNIT has a 2.5% chance or less of belng less than 0.913 and a
95% chance of being less than 4.73. The median or 50% value for CUDIT ig 2.62.

The histograms themselves produce useful data. The highest bin (between
CUNIT values of 2.2 and 2.4) or the one with the most occurrences (380 out of 5000)
represents the narrow value range for which Jle occurrence of CUNIT is most likely.
The PROB and CUME values to the left of the "™**¥¥" giack in cach bin give the
relative and cumulative probabilities bonnding the bin's left CUNIT boundary. The
number of iterations or occurrences corresponding to each bin is also pranted inume-
diately to the left of the histogram "*"g.

It is of inferest to consider the locabtion of the determicistic or baseline case
on the probability specirum. In this case the baseline value of CUNIT (2.488) lies
just to the right of the mode; hence, the analyst chose a deterministic baseline with
a 4b% probability of the cost goal actually ccourring, 1.8, there is g 458% chance of
the unit cost being $2.50 or less. The next subsection (8.2) discusses how this
comparisen of deferministic and probabilistic results can be useful in economic
comparisons of emerging technologies. ORMONTE bhas been frequently used by
DOE and Martin Mavietta Energy Systems to make this type of comparison,

8.2 Location of the Best-Guess Deferministic Figure of
Merit Estimate Relative to the Probabilistic
Figure of Merit Spectrum

P

For systems in the early R&D stages, performance o economic visk may be
defined as the likelihood that the system will not work as well as predicted or not
veach the sconomic goal established by its proponent. [Note that this definition of
rigsk is not exactly the same as that for uncertainty, although the words are fre-
quently synonomous in commen usage.] The proponent’s deterministic, model-
. generated figures of merit for the baseline design, along with associated best-guess
single-point input values which support i%, are sometimes referred o as the "base

"

case,” "baseline,” or "point design.”
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If enserbles of data (¥ from sampled inpui distributions (rather thav one
set of single-point values) are fed 10 the process model, the arr ay rapresenting the
cost figures of merit calculated is displayed in the form of a probability histogram
which approximates the shape of a normal distribution. The baseline figure of merit
can be represented as a spike or single point value on the same abscissa as the
histogram. Figure 8.2 illustrates such an example, in this case 2 unit cost. Hince
the area under a probability density function bhas a value of 1.0, ’%’%' fraction of the
area that lies above the base case value can be said fo be a vepresentation of the risk
that a system will not meet its economiz goals. vaamdy tha m m}mmluy of
success may be defined as the area lying to the left (e, lower unit cost) of the base
case. This left-lying area can be used if cne defines mtu project success as the
attainment of a given base line unif cost, Gy ., ov less (most often representl ; the
result of baseline deterministic inputs submitted to the model by & proponent). One
can integrate the curve pdf(Cyy) from its lower Hmif -m ‘W s A0 2881571 2 pmo%uL
ity to attainment of that point. If CH base 1168 above (Le., to the vight of) the mode of
pdfiCyy), the probability of success is more likely than not. This result means that
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Figure 8.2. Locating a baseline unit cost on a hypothetical unit cost output
histogram.
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the developer has been very conservative in defining his baseline system. If Cy pase
lies to the left or below the imode, one states that the aconomic risk is considerable,
ie., the probability of success is not high given that "successful” is defined as meet-
ing or .,ettdmg the base case. In this situation the developer has been overly
optimistic in defining his bdsehn\,, and the future scaled-up technology runs a
considerable nsk of experiencing unit production costs well over the baseline predic-
tioni. Whezn used in evaluating alternative or competing systems this type of infor-
mation is aspecially meaningful, particularly if the pdf curves (histograms) and
singie-point estimates for each process ars compared on the same axes.

5.2 A Cauticn Regarding Mode Values
in Outpud Histograms

Although there is an implied maode value in the output distribution of a
figure-cf-merit, there is no associatad "maximum likelihood" set of inputs. Thus, one
cannot easily "dissect” the mode case; it may not even exist (or perhaps several
may). Note also that if several figures-of-merit are tabulated, there is unlikely to be
a single case (particular iteration) that maximizes all of them. That task, after all,
must be he 1dleub trade-oifs within the users’ model.



79

8. INSTALLATION OF ORMONTE

9.1 Installation of Sensitivity Analysis Program

In this section, the installation and execution of ORMONTE on a personal
compuler and a mainframe computer is discussed. The personal computer system
assumed to be used is a IBM/PC-AT or AT-compatible with the following iters.

One hard disk drive

One or more {loppy drives

One laser-jet or dot matrix printer

One video display terminal

DOS 2.1 or higher

LOTUS 1-2-3 version 2.01 or higher (for PDA oplion enly)

RM (BEyan McFarland) FORTRAN softwars (version 2 or higher)

Type 80287 memory chips in the AT

Software for editing and creating DOS (ASCID files (Word Pevlfect is
acceptable)

Installation on a mainframe, such zs the BTO/VAY 8800 discussed here,
presumes that the user has a means of copying the necessary files from floppy to his
mainframe user avea and has a mweans of editing these files.

8.1.1 Installation and Execution of OREMONTE on o PO

1. Create a subdirectory entitled NORMONTEN on your hard disk,

2. Using DOS copy all files from the OBMONTE floppy to the DRMONTE
subdirectory.

The following files are provided on the ORMONTE floppy:
P Py

Filename Type Resident FORTRAN subroutines

MAIN.FOR Fortran 77 source code MAIN

READOPFOR Fortran 77 source cods READOP

ROMAST FOR Fortran 77 source code BOMAST

WERMAST.FOR  Fortran 77 source code WERMAST

RDMODLFOR  Fortran 77 source code RDMODI{example problem)

MODEL.FOR Fortran 77 source code MODEL{example problem)

MASTERFOR Fortran 77 source code INCLUDE statement for
SUBRQUTINE MODEL

SYVSS FOR Fortran 77 source code SYEE0P
ELAST.FOR Fortran 77 source code ELASTI
MVESS.FOR Fortran 77 source code MVSSOP ROMVES, PRINTY,

KVALUE, FUNCTION INTT
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RANSET.FOR Fortran 77 source code FUNCTIONS UNI, RNOR,

URAND
TCTRAN.ASM  Machine language RANINT
TCTRAN.OBJ Compiled mach. lang. RANINT
OPTIO.DAT Data (example problem)
MASINI.DAT Data (example problem)
MODL.DAT Data (example problem)
SVSS.DAT Data (example problem)
MVSS.DAT Data (example problem)
ELAST.DAT Data (example problem)

The PDA files are listed in Sect. 9.2.

3. Using the RMFortran software (Version 2), each XXX.FOR file should be
compiled such that XXX.OBJ modules are created (the command is RMFORT XXX).
When MODEL.FOR is compiled, the INCLUDE module MASTERFOR will
automatically be picked up and compiled within MODEL.FOR to form MODEL.ORJ.
If changes are made to MODEL or the ODRMONTE source code after a run, these
source files should be recompiled.

4. The user should create the following file named ORMONTE.LNK using an
editor:

FI MAIN,READOP,RDMODL,RDMAST,WRMAST MODEL,SVSS,ELAST,MVSS,
RANSET, TCTRAN QUTPUT ORMONTE

The RMFortran command PLINK86 @ORMONTE will link-edit the above
string of XXX .OBJ mecdules and create an executable output load module entitled
ORMONTE.EXE. Other output load module names may be used by changing the
file name after the word OUTPUT in the LNXK file above. If changes to source code
are made after a run, the LNK file should be relinked after recompilation.

5. At the "C:\ORMONTE\>" prompt, typing ORMONTE will cause execu-
tion to commence using the XXX.DAT files resident in the \ORMONTEN\ subdirec-

tory. Output will be to the screen unless other DOS commands such as > PRT or »
PRN are utilized.

6. Output on units other than 6 (which is normally unit IPRNT) will be
written to output files FORTXX where XX is the output unit number (e.g., SVSS
summary tables are written on file FORT15).

7. If during a run the program "hangs up" and produces no output, the user
should check data set MVSS.DAT and be sure that the X-parameters are in the
correct order.
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9.1.2 Installation of ORMONTE on a mainframe
computer (VAX 8600)

Installation on the VAX 8600 was very simple and involved only one simple
FORTRAN change. The procedure is as follows:

1. Transport the XXX.FOR and the XXX.DAT files from the floppy to your
user arvea on the VAX. KERMIT or other communication software can accomplish
this task.

2. Using a VAX editor delete the last part of module RANSET.FOR, leaving
only FUNCTION UNI(X) and FUNCTION RNOR(X). Add the statement INTEGER
X to FUNCTION(X) and change URAND(X) to RAN(X). You are now invoking the
pseudo-random number generator in the VAX system library instead of the one
supplied as TCTRAN.ORB.J for the PC application.

3. Compile all XXX.FOR files using the VAX command: FORTRAN XXX.
When compiling MODEL.FOR, the VAX will pick up the INCLUDE module
MASTER.FOR and include it in the module MODEL.FOR.

4. Link edit all of the XXX.0OBJ files into a load module:
LINK MAIN,READOP, RDMAST,WRMAST,RDMODL,MODEL,SVSS,MVSS,
ELAST RANSET
The load module will have the name MAIN.EXE

5. To run with the XXX.DAT files use the following command
RUN MAIN

Somewhat similar steps would be needed for the CRAY, PDP-10, and other
mainframes. Use on an IBM mainframe requires a JCL (Job Control Language)
program tailored for this application.

9.2 Installation of PDA (Probability Data Analysis) Options

Using DOS copy all files from the PDA diskette to your LOTUS-1-2-3 direc-
tory (usually \123\).

The following files are provided on the PDA diskette:

Filename Type Purpose
PDA. WK1 Lotus 1-2-3 Spreadsheet file for performing probability data

analysis (PDA). Holds user-supplied input data
and presents PDA results. Contains macro-
instructions for automated operation.



REGVAL.DAT

REGOUT.DAT

NPROB.DAT

SWIDAT

RAW.DAT

XVAL.DAT

XMAP.DAT

AVGERR.DAT

INTOHIST.FOR

INTOHIST.EXTE

FORTRAN

Executable

Data

Data

Data

N
FIARE

FORTRAN

Executable
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Source code for REGIN . EXE

Used in conjuncticn with PDAWKI. Performs a
look-up furction in a standard normal data table

to provide a z-value for a given probability.

REGIN.EXT

L‘_s

Cutput from I

Source code for REGOUT.EXE
Used in conjunction with PDAWK1. Performs a
look-up function in a standard normal data table
to provide the corresponding probability for a
given z-value.

robability output from REGOUT.EXE
n and standard deviation results from

regression analysis in PDA WK1 to REGOUT-

Passes mear

Standard normal data file.

Indicator nsed by REGIN.EXE and REGOUT.EXE
to identify logarithmic analysis.

A

Passes user-su pp‘i d raw input data from
PDAWKI to REGIN.EXE and REGOUT.EXE.
Contains x-axis values for a given mean and
sigma.

Contains y-axis values for a2 given mean and
sigma

Passes sum-of-tlic-squarss average error of

probability from REGQUT.EXE 1o PDA WK1

Source code for INTOHIST EXE
Converts raw data or relative probability his-

togram parameters into cumulative distribution
data.



TESTRAW DAT

RAWOUT-DAT

HISTPAR DAT

LMRBPLOT.DAT

PLOTOUT.DAT

Dhata

Data

Data

Data

33

Raw test data for input inte INTCHIST.EXE.
Containg 200 vandom selections glong a normal
curve with mean ~ 50 and sigma - 10.

Curmulative probability data ocutput from IN-
TOHIST.EXE using TESTRAW DAT as input.

Histogram paramelers (bin widths, number of
occurrences, ebe)  for  data  avalyzed by
INTOHIST.EXE.

Sample data set of histogram parameters created
on UNIT IPLOT of ORMONTE during zu MVSS
run.

Cureulative  probabilily data cutput Hom 1N
TOHIST.EXE using LMRPLOT DAT as input.
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Appendix A

MATHEMATICAL FORMS FOR INPUT
VARIABLE PROBABILITY DISTRIBUTIONS

The principal difficulty in applying a simulation approach to economic
evaluation lies in developing the probabilistic input representations, i.e., distribu-
tions (probability density functions or pdfs), for pertinent system performance
and/or cost-driving variables. In the usual investment risk analysis applications
such as those described by Hertz (Ref. 3.3), many of the input probability distribu-
tions used in simulation studies can be developed as frequency histograms from
historical or marketing data. However, since a technology development project is
often a unique, nonstate-of-the-art project, the accumulation of historical economic
or productivity data is often not possible. Thus, some alternative means for develop-
ing input probability distributions must be used. It should be remembered that
input probability distributions are in essence mathematical models from which the
Monte Carlo driver code can draw samples. At the end of the simulation, each input
will have its own frequency histogram which should approximate the functional
form of the specified input pdf.

In the area of investment analysis, several contributors have suggested
solutions to the problem of developing probability distributions. Hertz and others
present the argument that probability distributions can be based on subjective
judgments made by the manager or decision-maker. In such procedures, three
subjective estimates for each investment outcome are obtained: a most likely, an
optimistic, and a pessimistic.

For evaluations involving cost projections, no robust selection procedure
exists; however, the PDA methodology described in Sec. 7.2 should be very useful in
obtaining data from experts. Selection of the input numeric values defining the
desired range of the distribution is the most difficult step, followed by determination
of the correct type or shape of probability distribution to encompass, or in essence
model, the distribution of these values. It is the purpose of this appendix to discuss
a few types of important distributions and their appropriate applications. Reference
A1 also discusses the problem of distribution selection.

Distribution Parameters

The input variable probability distributions one encounters in Monte Carlo
simulation represent the probability density functions (pdfs) of the random variables
from which single point input values, Y, (i = 1, NI, where NI = the number of input
variables) are selected for each input vector, Y, submitted to the model. The pdf
shows only the relative probability for each Y.
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Among the parameters of interest for a given distribution are the mode,
median, and mean. The mode represents the most frequently occurring value, ie.,
the incremental range or "bin" in which the most samples fall or the maximum of
the defining pdf curve. The median or 50 percentile represents the value for which
any random variable on the distribution has an equal chance of failing above or
below. Half of the area under a pdf curve will lie to each side of this point. The
mean represents the expected value which would be caleculated from the random
variables. It is calculated during the Monte Carlo procedurs by taking the arith-
metic average of all the samples taken. The skewness or departure from symmetry
of a distribution can be qualitatively assessed by looking at the position of the pdf
mean relative to the pdf mode. The value of of the mean relative to the mode is the
indicator of the distribution skewness. The following definitions apply:

positive skewness: mean > mode
negative skewness: mean < mode

A dimensionless measure of skewness can we calculated as follows:

skewness = ST mode
standard deviation

The above twe symmetry attributes are sometimes referred to as Pearson’s first and
second ccefficients of skewness.

Another characterization parameter is the kurtosis or "peakedness” of a
distribution, expressed as the fourth moment about x
o

Moment coe fficient o f kurtosis, ay = ~—=
o

where o 1s the standard deviation and (x —x) 1s the average deviation from the
distribution mean. For the normal distribution, a, = 3. A leptokurtic, or highly
peaked distribution, has an a, value greater than 3; a platykurtie, or lightly peaked
distribution, has an a, value less than 3. Kurtosis is useful in comparing the
shapes of distributions. The properties and uses of a few selected distributions will
now be discussed, with continuous distributions to be considered first.

Normal distribution. The normal, bell-shaped, or Gaussian distribution is
descriptive of the distribution obtained for most measured natural variables. The
mathematical form is expressed as:

Naewo) = [1(V2x )] e 0iewo?

where:
p = the mean of the distribution,
o2 == the variance (c is the standard deviation), and
oo < x < oo, where x 1s a continuous random variable.
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The mean and standard deviation completely determine the distribution and are the
only parameters which need be supplied in the input data. Since the domain of x
extends to infinity in both directions, some {runcation must be used in computer
applications. The return values are limited to a range of 60 from the mean for the
ORMONTE driver code utilized in this document.

The use of the normal distribution, by definition, usually implies that some
type of measurement, sample, or historical data are available to the analyst. Even
though only two parameters are needed to define the normal distribution, the user
also assumes that the information one plans to input inherently fits this type of
curve.

Log-normal distributions. The parameters for the log-normal distribution
are similar to those for the normal distribution. If one considers a random variable
% where Y = In x is normally distributed with mean py, and variance oy, a logavith-
mic transformation to obtain y, and ¢,/ in terms of ¥ 1s necessary:

1 s

N (X;}.LI ,I’J'x) = m

This distribution is positively skewed and is often used in economics and for the
representation of time distributions in queueing problems. For application in
process uncertainty analysis, it can be useful for representing natural parameters
where inaccuracy in measurement causes their values to span more than cne order
of magnitude, such as difficult-to-measure minute spectroscopic cross sections.

Triangular distribution. The triangular distribution has the advantage
that any degree of skewness can be easily represented. This is the situation repre-
sented when the mode differs from the median or mean. Triangular distributions
are defined by a minimum, mode, and maximum value. The minimmum and maxi-
mum are absolute, i.e., they do not have the long, extremely low probability tails
that characterize the normal and exponential distributions.

The triangular distribution has always been popular with decision makers
and analysts. Because of the ease with which the triangular distribution can be
comprehended by decision makers and implemented by the analyst, it is used
frequently in making economic projections.

Three subjective estimates (min, mode, and max) for each input variable are
used to form the triangular distributions. Generally speaking, the optimistic esti-
mate 1s the range endpoint value which would produce the lowest unit cost if a
single variable sensifivity analysis were performed over the entire range of the
distribution. This is the result which might be experienced if good luck is experi-
enced and everything in the R&D, design, and construction program goes well. The
pessimistic estimate represents the opposite outcome, a result which can occur if
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developrent, schedule, or cost disappointments are experienced. The most likely or
modal estimate is the "best guess" value for the parameter of interest. This esti-
mate should be expected to appear most frequently over the population of all ensem-
bles during the course of the simulation. This value can be, but is not necessarily,
the baseline input value (Y)), ...

Control of skewness can designate the evaluator’s degree of optimism or
pessimism concerning the range of a given variable; for example, experience in-
dicates that hardware cost variables are more likely to increase than decrease;
hence an unit cost, distribution is generally skewed toward values above the mode.

Log-triangie distribution. The relationship between the log-triangle and
triangle distribution is analogous to that between the normal and log-normal dis-
tribution. By use of a log-triangle distribution, which appears as a triangle with a
slightly curved side as in Fig. 5.7, one can arbitrarily pick a mode and two endpoints
and force the mode and median to be fairly close together, especially when input
data span orders of magnitude. This latter type of distribution is frequently em-
ployed for theoretical process science related variables used in performance models
and for cost variables. This distribution is also useful for variables used as multi-
pliers which lie on both sides of a mode of 1.0. It has the property that the mode and
median are the same if distribution range endpoints 1/Z and +7Z are used (7Z is a
multiplier times a fixed value). The use of the log-triangle forces the median closer
to the mode for positively skewed triangles.

Other continuous distributions. The following distributions, like the
triangular, are mentioned because of their mathematical simplicity and intuitive
appeal to the analyst.

The uniform distribution. If a variable has an equal probability of occur-
ring over the range of interest, its distribution can be represented as a horizontal
line or flat distribution. This type of distribution is used where a most probable
value is not known but for which the variable range can be determined. Use of
uniform distributions in cost/risk analysis is often called "range estimating” (Cur-
ran: Ref A.2)

Trapezoida! distribution. The trapezoidal distribution requires four
values for its determination and is a hybrid of the triangular and uniform
distributions.

Discrete distributions. If one cannot {ind a continuous pdf that represents
his data, the use of a spike-histogram or a discrete distribution is warranted.
Discrete distributions are also often used where integer quantities are considered or
"yes-no" decisions are encountered such as in decision tree analysis. Some of the
more mathematically complex ones require that the analyst have some intuitive
reason for their application and for fitting them to a particular class of data. Among
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such distributions are the binomial, geometric, hypergeometric, and Poisson dis-
tributions. Others, such as the histogram distributions described below, can be used
in a more subjective manner and can be easily constructed by the user of this
methodology.

Histogram distributions. Two types of histogram distributions are con-
sidered. In the "box" type histogram such as shown in Fig. 5.7, only discrete values
or ranges of the random variable exist, i.e., n equals the number of boxes. If the
intervals of each box are equal, the cumulative distribution is easily calculated by
summation. The return value is found by checking to see which cumulative his-
togram box the random number intersects and then supplying the midpoint of that
range on the integer Y as a return value. When adjacent box-type histograms are
used, one is really dealing with several adjacent uniform distributions.

REFERENCES

A1l  McGrath, E. J., et al, "Techniques for Efficient Monte Carlo Simulation, Vol
1: Selecting Probability Distributions;” ORNL-RSIC-38 (Vol. 1); Union Car-
bide Corp., Nuclear Division, Oak Ridge National Laboratory; April 1975.

A2  Curran, M. W.; "Range Estimating Operating and Manufacturing Costs",
Transactions: American Association of Cost Engineers (1986); pg. F.1-F.1.8.
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Appendix B

DETERMINATION OF NUMBER OF
MULTIVARIABLE SENSITIVITY STUDY
ITERATIONS REQUIRED

3. L. Hanline
Martin Marietta Energy Systems, Inc.

The running of each Multivariable Bensitivily Study (MV3S) iteration of a
process model can require significant computer time. This appendix proposes a
methodology where the analyst making the MVSS run calculates the maximum
number of iterations (NITER) required, based upon the characteristics of the results
to be studied. The user of the MVSS driver can then reduce the number of iterations
and still be provided results within his designed limits. Implementation of this
capability should be relatively simple.

The advantages of this procedure are rednced turnarcund time and reduced
mainframe computer costs. The disadvantage is the analyst must designate which
results are important figures of merit and give some thought to the levels of accu-
racy needed for them before an MVSS run is submitted. This procedure assumes
that such figures of merit will have nearly normal MVSS histogram output.

With this statistical procedure, the true MVSS results are a set of statistics
calculated from a sample number of observations taken from an infinitely large
population. Inherent in any sample’s estimate is an errvor or deviation from the true
value in the populaticn. The objective is to select a sample size that minimizes the
number of MVSS iterations while still meeting maximum ervor tolerances.

Step 1: Determination of the Maximum Number of MVSS lterations Required

For each important figure of merit in the results, the analyst must determine
within what fraction of a standard deviation the MVSS result must be estimated.
Secondly, the analyst must specify the desired confidence interval. The maximum
number of iterations required for a figure is calculated by this formula:

()

4 = Number of standard deviations corresponding to a
percent confidence interval for a normal distribution.
f = Fraction of a standard deviation accuracy required.
For example: If a 95% confidence interval is desired (Z = 1.96) and required

accuracy is one-tenth of a standard deviation,
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£ 1.96\?
Pmax =\ 0T

= 384

The above calculation must be done for each important figure of merit to be
reported. The largest value for n,  calculated is the maximura number of MVSS

iterations to be run. This number is input as NITER into the MVSS driver.
Step 2: Determination of Actual Number of MVSS Iterations Needed

For each important figure of merit in the results, the analyst should deter-
mine, wherever possible, the absolute value of any acceptable error in the estimate.

For example, it may be decided that for a unit cost, the maximum acceptable error is
$2/unit.

The MVSS driver could be programmed to automatically complete 30 itera-
tions, stop, and calculate the standard deviation for each important figure. The
number of iterations required can be calculated using this formula:

Areq = ( ZS”)2

emax Ed

s = Estimated standard deviation

€., = Maximum acceptable error

For example: If a 95% confidence interval is required (Z = 1.96), s is calcu-
lated to be $12/unit, and the maximum acceptable error is $2/unit.

Nyog = [wj 2

=138

Similar calculations are done for each important figure of merit. The number
of required iterations is the largest of the values calculated.

In the above example, an additional 108 iterations are to be run. The esti-
mated standard deviation is recalculated, and if the newly calculated standard
deviation is larger than the initial estimate, additional iterations are required.
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Appendix C

ANALYTICAL INVERSION OF THE
TRIANGULAR DISTRIBUTION

Fal

Consider the triangular distribution for variable X in g, C.1 with minimum
X,, mode X, and maximum X, We wish to relate X, a point on the disturibution,
with a random number, §, representing the cumulative disiribution for X, To get
the cdf we need to integrate the analytical expression for the triangle’s sides from X
to a generic X . This area, &, represents lhe area under this triangle from X, (a
known value) to X and also represents the cumulative probability of

arable X
being less than or equal to X, @ has a known value between 2 and 1 and also
represents the uniformly distributed random number drawn for variable X during
an iteration as shown in Fig. C.1. We wish to find the analytical expression for X,
in terms of §.

1.0 ORNL-DWEH 884- 4880 £TD

y Mo g

cdflx) = area fif- 0 = RANDOM

7
£
!
NUMBER |
1Z2RAN20 |
FOR nth i
ITERATION :
|

| - RETURN VALLUE Xp

] FOR nth ITERATION
|
I
0.0 4

Horgnge e
CUMULATIVE DEMNSITY FUNCTION {d$)
FOR A INPUT DISTRIBUTION
MODE
pdfi{x}

Xy X5 Xg X

PROBABILITY DENSITY FUNCTION (pdf)
FOR & INPUT DISTRIBUTION

Fig. C.1. Inversion of the triangular distribution.
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The inversion routine will consider the triangular distribution broken into
two right triangles, A, 4 and An,ght separated by the altitude at the mode, X,,, We
want to calculate the total area under the two triangles and ebtain an expression for
the area, @, under one or both triangles from X; to X, as a function of X. The area
under the entire triangle must swm o 1.0 by definition of the cumulative probability
for X over the entire range.

First solve for the triangle altitude C in terms of the base lengths for the two
right triangles:

(A + B) C/2 = area under both right triangles = 1.0
Therefore,
C=2/(A+B)
The use of the magnitude of the two right triangle bases, A + B, allows us to

avert the algebraic coordinate transformation required to do all calculations in
terms of X, X, and X,

We must next determine whether the value X, associated with a given
random number  lies within the left (A-base) or right (B-base) triangle. The areas
of these two triangles are:

Left: AC/2 Right: BD/2.

The variable £ is an indicator of which triangle will contain X, and has the geomet-
ric representation shown below.

Solving for P:
r-p-2C

If P is negative, X, lies beneath the leftmost triangle

i
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If P is positive, X, lies beneath the right most triangle.

S ™
’ \\\ o
~ S
o= g
SQ E- Hop o
; p
.;i",/ | E_J b
X, X Xo X, Xy Xy Xe

For the left most triangle we now solve for X, in term of @:
The hypotenuse of the left triangle has an equation of the form
C
Y - (X) X + Z

where C/A is its slope and Z an intercept. For now the origin is assumed to be at
X; =0,hence Z=10

The area @ (area under A from O to X;) is found by integration

Xo Xo
0T () m=(5)
0 0
_CXp?
Q=55 -
Solve for the square of the return value X, substitating P + -~ for §

2 2A0 o  2PA
DISC =X W_C_MWA + T

For ORMONTE applications, we are interested in using the triangle mode as
the frame of reference. T tells how far from the mode the true return value will lie
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(for a return value in the leftmost triangle, T will be negative as shown below).

T=-A+Xo

The return value X for subroutine XVALUE is then calculated as follows:
X = XM +7T .
For an X, in the rightmost triangle (P> O), using X; as the origin, @ is

calculated as follows. Note that the origin is at X to avoid dealing with an
intercept.

o
AD BD D
Xo

/N /

leftmost rightmost slope
A A

_(A+B)D DXp?
) )
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Substituting Q =P + %[2 and solving for 2

DISC =X? =B? - & P .
T tells how for to the right of the mode the actual return value lies
T=B-X, ,
and again for subroutine XVALUE

X=Xy +T .
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Appendix D

SAMPLE PROBLEM






101

Data for and Output of ORMONTE
for
Single Variable Sensitivity Analysis (SVSS) Option






1G3

Input Data for SVSS Option

Unit 4: Option Data

TEST CASE: DSM=OPTIO.DAT 14 VAR. TEST CASE
INPUT UNITS :IMMAST [ 8] INMCD [ 5]

15v88 1111 1MV8S [ 93 1ELAS 112
OUTPUT UNITS:IPRNT [ )  IPLOT {151  (BUG (14
OPTION: (5VSS] ( DETO,SVSS,MVS3,0R ELAS)
TOTAL HO. OF INPUT + OUTPUT VARIABLES: ( 143

Unit 8: Base Case Data (Sensitivity Variables)

TITLE: 14 YARIABLE TEST CASE: DSH=MASIHI.DAY

ALPH 200,
ALPHZ 50,
BETA3 10.
BETAG 1.
ZETAS 1.
EXPS 1.
GAMMAT 8.
GAMMAS 10.
PHID 18.
EPS10 1.
HUM11 1.
PERF -1.
pPCOSY -1.
CUNTY -1.

Unit 5: Non-sensitivity Data for User's Model

TITLE: CONSTANTS C1,02 & €3 FOR 14 VAR. EXAMPLE DSN=MODL.DAT
c1 1.5
c2 2.0
3 50.
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Unit 11: SVSS Data

TITLE: SVSS DRIVER TEST CASE
00002 003 12 13 14

001 ALPHY Q& 100.
400.

000

001

002 100.

00001 003 12 13 14

002 ALPHZ 04 25.

000

00001 003 12 13 14

003 BETA3 04 6.

000

00001 003 12 " 13 14

004 BETA4 05 .75

1.3

000

00001 003 12 13 14

005 ZETAS 05 .75
1.2

000

00001 003 12 13 14

005 EXP6 05 0.5
2.0

000

00001 003 12 13 14

007 GAMMAY 05 5.
11.

600

00001 003 12 13 14

008 GAMMA8 06 5.
18.

000

00001 003 12 13 14

009 PHI9 05 5.
30.

000

00001 003 12 13 14

010 €PST0 05 0.8
1.3

000

00003 003 12 13 14

011 NUM11 G5 0.9
1.15

000

001

002 100.

002

001 300.

002 100.

00000

DSN=SVSS.DAT

15

0.

500.

50.

0.9

.75

6.5

7.5

22.

12.

0.9

0.95

200.

75.

300.

100.

1.

1.5

9.5

24.




Output of Unic IPRNT or (6)

TEST CASE: DSN=OPTIO.DAT 14 VAR. TEST CASE

INPUT UNITS :INMAST [ & INMOD [ 51 [HOPT [ 41
ISvss {11} IMVss [ 9 TELAS [12]

QUTPUT URITS:IPRNT ([ 6] 1PLOT [151 IBUG  [14]

OPTION: [SVSS] ( DEYQ,SVSS,MVSS,OR ELAS)

TOTAL NO. OF INPUT + QUTPUT VARIABLES: [ 14]

L Output of REAPOP

READIN OF SENS. OPTION DATA OM UMIT 4 COMPLETED

TITLE: 14 VARIABLE TEST CASE: DSN=MASINI.DAT
1 ALPMY 200.000
2 ALPH2 50.000
3 BETA3 10.000
4  BETA4 1.000
5 ZETAS 1.000
6 EXPS 1.000
7 GAMMA? §.000
8 GAMMAS 10.000 —— Output of RDMAST
9 PHI9 18.000
10 EPS1O 1.000
11 NUMTY 1.000
12 PERF -1.000
13 PCOST -1.000
14 CUKIT -1.000
READIN OF /MASTER/ INITIALIZATION DATA
ON UNIT & COMPLETED

c01



TITLE: CONSTANYS €1,C2 & €3 FOR 14 VAR. EXAMPLE

(o] 1.50¢
i2 2.00¢
3 55.000

MODEL NON-SEMS. DATA READIN COMPLETED ON UMIT

5

OSN=MCDL .DAT

Output of RDMODL

VALUES IN /MASTER/ FOR ITERATION MO 0

TITLE: 14 VARIASLE TEST CASE: DSM=MASINI.DAT

1 ALPHA
2 ALPH2
3 BETA3
4  BETAL
5 ZETAS
5 EXPS
7 GAMMAY
8 GAMMAS
9  PRIY
10 EPS1O
11 kUKt
12 PERF
13 PLOST

14 CUNIT

200.900
50,000
10.000

1.000
1,000
1.000
8.000
10.000
18.000
1.000
1.009
-1.009
1.000
1.000

—Output of WRMAST {before call to MODEL]

901



PRIKTOUT OF LISERS
CONSTANTS (NON-SE
Ci=

{2=
c3

MODEL FOR ITERATION # o
RSITIVITY):
1.500

2.0060
50.000

INPUT VARIABLES (UNCERTAIM SENS. VARS.):

ALPHY=
BETA4=
GAMMAT =
-EP51Q=

OUYPUT VARIABLES

PERF=

200.000 ALPHZ= 50.000 BETA3=
1.000 ZETAS= 1.000 EXPS =
8.000 GAMMAS= 10.000 PHI? =
1.000 NUM11= 1.000

(UNCERTAIN FIGURES-OF-MERIY}:

10.007 PLOST= 25.000 CUNIT=

10.000
1.000
18.000

2.498

" Output of MODEL (Base (assa)

FAN



VALUES IM /MASTER/ FOR ITERATION NO 0

TITLE: 14 VARIABLE TEST CASE: DSN=MASIMI.DAT

1 ALPHY 200.000

2 ALPKZ 50.000

3  BETA3 16.000

4 BETA4 1.000

5 2ETA5 1.00C

6 EXP6 1.000

7 GAMMAT7 8.000

8  GAMMAS 10.000

9  PHI9 18.000

10 EPSTD 1.000

11 KUMY 1.000

1:2 PERF 10.007 Base Outputs
13 PCOST 25.000 Now Appear
14 CUNIT 2.498

OPTION = SVSS

TITLE: SVSS DRIVER TEST CASE DSN=SVSS.DAT

NO. OF /MASTER/ Y{150) SENSITIVITY VARIABLE LOCATIONS
USED {INPUT + QUTPUT:

14
BASELINE VALUES OF Y(3) THROUGH Y{NTOT)

0.20C00E+C3
0.10000E+01
0. 1000CE+C1

0.100002+02
0.10000£+02
0.250008+02

0.50000E+02
0.800C0E+01
0.10007E+02

G.100GOE+01
0. 10000E+01

0.100C0E+C1
0. 18000E+C2
0.24983E+01

——0Output of WRMAST {after cail to MODEL)
Base Y-array values are stored

— Output of SVSSCP
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SVSS CASE OR PLOT NUMBER 1

NO. OF CURVES ON THIS PLOT = 2

NO. OF FIGURES OF MERIT FOR TABLES: 3
THESE QUTPUTS & THEIR INDICES ARE:

PERF OR  Y{ 12)
PCOST 0R  Y( 133
CUNET OR  Y( 14)

THE INPUT VARIABLE IS ALPHT OR Y( 1)
& OIFFERERT VALUES ARE CONSIDERED FOR EACH CURVE

ENDEX HPTS, NURCRY

b—— Qutput of SVSSOP

1 5 2

CASE OR PLOT NO: 1

INPUT YARIABLE: ALPHYT OR Y{ 13

CURVE KO, 1 OF 2

POIKT HO. 1 0OF 6

VALUE FOR THE INPUT VARIABLE iG: 100.0400

KO, OF XUN-BASE PARAMETER VALUES FOR THIS CURVE: O
PARAMEYER VALUES ARE:

CHE. K. HAME & Y-ARRAY POS. VALUE

]
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PRINTOUT OF USERS MUDEL FOR ITERAVION # ¢

COMSTANTS {(NON-SENMSITIVIYY):

Cl= 1.500
c2= 2.500
£3= 50.509

INPUT VARIABLES (UNCERTAIN SEMS. VARS.):

ALPH1=  100.000 ALPH2= 50.000
BETA4= 1.000 2ETAS= 1.000
GAMMAT= £.00C GAMMAS= 19.009
£Pg10= 1.000 KUM1i= 1.09C

GUTPUT VARIABLES (UNCERTAIN FIGURES-OF-MERIT):

PERF= 9.176 PCCST= 17.500

BETA3=  10.000

EXPS = 1.00C

PHID = 18.000
CUNIT= 1.908

— Output of MODEL (first non-baseline

point)

CASE OR PLOT MO: 1

{HPUT VARIABLE: ALPHY OR ¥Y{ 1)

CURVE WO, 1 OF 2

POINT KO. 2 OF 6

VALUE FOR THE INPUT VARIABLE 1S:  15G.GOCO

NO. OF MOM-BASE PARAMETER VALUES FOR THIS CURVE: 0
PARAMETER VALUES ARE:

CHG.#. NAME & Y-ARRAY POS. VALUE

MO PARAMETERS ARZ ALTERED FRO¥ BASE VALUES

l

=—0utput of SVSSOP (second non-baseline
point)
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PRINTOUY OF USERS

CONSTANTS (NON-SE

Ci=
2=
C3=

INPUT VARIABLES (

ALPH1=
BETA4=
GAMMA7=
EPS10=

MODEL FOR ITERATION #

NSITIVITY):

1.500

2.000
50.000

UNCERTAIN SENS. VARS.):

150.000 ALPH2=
1.000 ZETAS=
8.000 GAMMAS=
1.000 NUM11=

¢

50.000
1.000

10.000

1.000

OUTPUT VARIABLES (UNCERTAIN FIGURES-OF-MERIT):

PERF=

$.590 PLOST=

21.250

BETA3=
EXPS =
PHIG =

CUNLIT=

10.000
1.000
18.000

2.216

—— QOutput of MODEL (second non-baseline
point)

PLEASE NOTE:

End of partial output of SVSS run.
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DEBUG output from SVSSOP on Unit 14 or IBUG (one point)

TITLE: SVSS DRIVER TESY CASE DSN=SVSS.DAT

1 ALPH1 6 0.9009CE+03 0.150002+03 0.20000€+03 €.30000E+03
5.40000E+03 0.500G0E+93 0.000C0E+00 ©.00D0CIE~CD
FOR ALPHT EQUAL TO 0.70000E+03 THE Y ARRAY 1S5 GIVER BY:

1 0.10000E+03 2 0.50000e+02 3 0.10000£+02 4 0.10000e+0%

0. 10000E+01 6  0.10000E+01 7 0.806000E+01 3 0.10000£+02
0.180G0E+02 10 0.70000E+01 11 0.10060E+01 12 9.917368+0%

13 0.175C08+02 14 0.19076E+01 15 0.00009E+00 16 9.00000E+00
17 0.00000E+00 18 0.0800CE+00 19 C.DCOCOE+00 26 0.900GOE+QOC
27 0.GO0COE+0D 22 0.000OCE+0D 23 0.00000e+C0 24 0.0000CE+00
25  0.00000E+00 26 0.00000E+00 27  0.00000E+00 28  0.00000£+00
2%  0.0000C0E+00 3¢ 0.0000CE+00 31  0.00800E+CO 32  0.000C0E+00
33 $.0000CE~00 34 0.00000E+00 35  0.00GO0E+00 36  0.00000E+Q0
37  C.0OCODCE+CO 33  C.0000OE+Q0 3%  0.00000e+00 439 0.00C0DE+CO
4 £.00000E+00 42 G.D000OE+00 43 0.DODOCE+0D 44 0.COCUDE+CO
45  G.0COOCE+D0 46 0.G00COE+CO 47 0.00000E+00 43 0.00COCE+CO
49 0.0000CE+00 56 0.00000E+00 51 0.00000E+00 52  0.0CO0OCE+CO
53  0.00000E+00 54  0.00000E+09 55  0.00000E+OC 56  0.00000E+00
57  0.00000E+00 58  0.00000E+00 59  0.00000£+00 66 0.00000£+00
51 0.00000E+00 62  0.00000E+00 65  0.00000E+QC A4 0.00000£+00
65  9.000C00E+0D 66  0.0000CE+00 67  £.00000£+00 68  0.00000£+30
69  J.00000E+00 70 0.00000g+00 71 G.00Q0QE+GD 72 0.000C0g+00
73 0.CODO0OE+DT 74 0.0000CE+0D 75 0.0COCOE+00 76 0.0C000E+00
77 0.0000CE+Q0 78 0.00000£+00 79 0.0000Q0E+0Q 8¢  0.0C000E+00
8%  0.00000E+00 g2 0.0CC00E+00 83  0.0COCOE+00 84 0.00000E+00
85  0.00000E+00 85  0.00000E+0C 87  0.000GUE+00 88  0.G0000E+00
89  ©.0000CE+00 90 0.0000OE+00 91 0.00000=+00 92 0.00000E+GO
93 ¢.000D0E+DD 94 D.00QCOE-Q0 95  0.DO0OCE-DD 96  0.000C0E+CO
97  C.0C00CE+R0 98 C.GO0COE+00 99  0.00COCE+00 100 0.GOCOCE+CO
101 C.0C000E+CO 102  0.DO0COE+GC 103 0.00000E+00 164 0.0O000E+GO
105 0.00000E+00 196  0.00000E+00 107  0.0000CE+0C 108  0.000Q0E+00
109 0.000008+00 110 0.000005+00 111 0.00000E+00 112 0.00000£+00
113 0.C0000E+00 144 0.00000£+00 115  0.000C0E+00 1154  0.000DO0E+D0
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117
121
125
129
133
137
141
145
149

Foo TN o K s T o N o B o Y oo BN 6 Y ]

.G000UE+00
. OCOB0E+00
.00B00E+0C
.00000E+CT
.00000E+G0
.00000E+00
.00000E+00
.00000E+00
.00000E+00

118
te2
126
130
134
138
142
146
150

0.00000E+00
©.00000E+0C
©.00000E+00
0.00000E+00
0.0000CE+Q0
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+Q0

119
123
127
131
135
139
143
147

©.00000E+00
©.00000E+00
0.060000E+00
0.00000€E+00
0.00000E+C0
0.0000GE+00
0.00000E+00
0.00000E+00

120
124
128
132
136
140
144
148

0.00000E+00
0.00000E+C0
0.00000E+00
0.00000E+0C
0.00000E+00
0.00000E+00
3.00000E+00
0.00000E+Q0
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OUTPUT of SVSSOP on Unit 15 or IPLOT
{summary tables for plot preparation)

TITLE: SVYSS DRIVER TEST CASE OSH=SYSS.DAT

¥O., OF fMASTER/ Y{150) SEMSITIVITY VARIABLE LOCATIONS
USED (IK®UT » CUTPUT)
14
BASELINE VALUES OF Y{1) THROUGH Y(NTOT)
0.20000£+03 0.50000E+02 0. 10000E+02 0.100008+01 0. 10000E+01
0.16000+01 G.80000E+01 £.500002+02 0.180C0E+02 G.10000E+01
0.105006£+01 G.10007E+02 0.25000g+02 0.24983£+01
TMDEX, NPTS, NUMCRY
1 6 Fd
# OF PARAMETER CHAMGES= 0
pT# ALPHI PERF pPCOSY CUNIT fulababebeded ek
9 1.00000E+02 9.1736%E+00 1.75Q00E+01 13.90765E+00 0.C0COCE-01  C.COO0OE-C1
2 1.5000C0E+02 9.590285+0C 2.72500E+0% 2.21579E+0C 0.000002-01  0.0UCOCE-CY
3 2.0000CE+02 .000695+0% 2.50C00E+01 2.49827E+0C 0.0000CGE-0%  G.COCOCE-CY
4 3.00000E+02 1.08403:+01 3.2500CE+01 2.99808E+00 0.00000£-0% 0.0000CE-01
5 4 ,0B000E+02  1.16736E+01 4.00000E+0% 3.42653E+0C 0.00000E-0%  0.COCOCE-01
6 5.000006+02 1.25069E+01 4.75000E+01 3.79789E+00 0.00000E-0% {.00000E-01
# OF PARAMETER CHAMGES= 1
2 ALPH2 10C.060¢C
PT# ALPHY PERF PCOSY CUNIT Fkdkkkk Fkkdkdek

1 1.00000E+02 1.47292E+0% 1.75000E+C%1 1.18812£+08 0.00000E-01  G.COCOOE-C1
2 1.50000e+02 1.51458E+01 2.125008+0% 1.403038+00 0.0000CE-01 0.00000%-04
3 2.000008+02 1.556256+01 2.50000£+0%1 1.5606438+00 0.00000E-01 0.00000E-01
4 3.000C0E+02 4.63958E+071 3.25000E+01 1.98221E+00 9.00000E-01  0.0000CE-91
5 4 .GOOCOE+G2  1.72292E+01 4.0GO00E+DT 2.32964£+00 0.060G0E-01 0.0CG000E-01%
6 5.00000E+02 4.80625E+01 4.750C0E+01 2.62976E+00 C.COOCOE-C1  0.00060£-01

Val|



PHDEX, NPTS, NUNCRY
2 4 1

# OF PARAMETER CHANGES= 0

PT# ALPHZ
% 2.50000E+01
2 5.00000E+G1
3 7.30000E+01
4 1.00000E+02

[RDEX, KPTS , NUMCRY
3 4 i

PERF
7.22917E+00
1.00069E+01
1.27847E+01
1.55625E+01

# OF PARAMETER CHANGES= ¢]

PT# BETA3

PERF

PLOSY
2.50000e+01
2.500008+01
2.50000E+01
2.50000E+01%

PLUST

CUNIT
3458218400
2.49827E+00
1.95546£+00
1.60643E+00

CUNIT

fRRRhk Tty
3.000008-01  §.00000E-OY
$.00000E-01  0.00000E-D1
0.00000E-01  0.00000E-01
0.00000E-01  0.00000E-0%

KANEEY e 23 2

1 6.00000E+00
2 &,00000E+00
3 1. 00000E+01
4 1. 20000034

1.11181E+01
1.04236E+01
1.00069E+01
9. 72917E+00

2.500006+01
2.500008+01
2.50000e+01
2.50000€+01

2.24859E400
2.39840E+00
2.49827E+00
2.56959E+00

0.00000E-01  0.00000E-0%
.00000E-01  0.00000E-01
0.00000€E-01  0.00000E-01
$.00000E-01  G.DOOGOE-§1

INDEX, NPTS, NUMCRY
& 5 1

# OF PARAMETER CHANGES= 8

PT# BETAL
1 7.500008-01
2 9.000008-01
3 1.00000E+00
4 t.10000E+00
5 1.30000E+00

PERF
9.31250E+400
$.72917E+00
1.00069€+8%
1.02847E+01
1.08403E+01

PCOST
2.30000E+01
2.50000E+01%
2.50000E+01
2.50000E+01
2.30000£+01

CUKTT
2.68655E400
2.56959E+00
2.49827E+00
2.43079E+00
2.30621€+00

ERNRAR Laa 31

0.00000E-01  ©.0000DE-0Y
G.00000E-01  §.00000E-01
0.000008-C1  0.00D0OE-(Y
3.000008-01  0.000008-01
0.000002-01  0.00000E-01

¢t



INDEX, NPTS, NUMCRV

APLOsY

.5000GDE+C1
.5000CE+0
.50C0CE+(1
L50C0CE+01
.50C0CE+01

CUN:T

.873702+00
L 24844E4 00
L49B27E+GO
LT4809E+CO
L9YPGR2E+CD

ek ve de e W

.000C0E-D1
LOCO00E- O
LOGOCIE-C
.00G0CE-01
.0020CE-0

9.
.00000g- 0
L0coocs-0
.009C0E-0%
.800c0os-

R R KN

J00G00E-01

5 5
# GF PARAMZTER CHAMGES= {
PT# ZETAS PERF
1 7.500C0E-0%  1.33425E+C1
2 9.00CG00E-0%  1.71188E+01
3 1.03C00E+00  §.00069E+Q
4 1.10CO0E+CC  9.097228+00
5 1.20600E-0C  8.33912E+00
IMDEX, KPTS, NUMCRV
6 5
# OF PARAMEYER CHAMGES= J
TR EXPS PERF

3 5.00000E-0%  1.00796E+01
2 7.500002-07  1.00117E+DY
3 3.900002+00  1.00069E+0%
4 1
5 1

NN

e

PCOST

.50000E+C1
.50000E+3%
.50000E+01%
.500002+01%
.50000g+31%

CUNIY

<49510E+G0
L49708E+00
L4982 7E+GD
LL9939E+CD
L49978E+00

o ek ke

.O0000E-C1
.00000E-0*
.000090E- 0%
.00000€- 07
.GOCOGE-01

*kkkirk

.OC00CE- 0"
.00000E-0%
.00060E-01
.CO0GIE-D1
.COOCOE-01

1.5C000E+00  1.0G025E+91
2.0G000E+G0  1.0GIG9E+01
TMDEX, MPTS , NUMCRY
7 5 1
# OF PARAMETER CHANGES= 0
PT# GAMMAT PERF
1 5.0000CE+C0  1.0071%1E+05

2 6.5C0090+C0  1.0COB5E+0Y
3 8.00000e+00  1.0C049E+01
4 9.50000e+00  1.0COS8E+Q1
5 1.10000E+07 1.00057E+01

PCOST

.500008+04%
.50000e+04
.50000E+01
.50000£+01
.50000E+01

CUNTY

L9TEEESGY
L49TESE+0D
J49B27E+0)
.49854E+00
L49874LE+00

W de ke ke

. 00909E-01
.0000CE-01%
.JCC0CE-01
.00C0CE-01
.00000E-01

dedkkdkok ke

.00000£- 01
.C00C0E-T1
.COICDE- 01
.0OC00E-01
.00000E-01
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INDEX, NPTS, NUMCRY

PLOST

. 75000E+31
.12500E+31
-50000E+01
. 10000E+01
. TOO0DE+01
. 30000e+01

CUNIT
1. 768796+00
2.12353e+00
2.49827E+00
3.09785E+00
3.69743E+00
4. 29702E+D0

HETERE

.00CA0E-01
.00000E-01
.0OGOCE -0
.0000DE- 01
00000 - 01
.000D0E-01

WhkEhds

. O0UD0E 01
.00000E -84
.00000E - 01
.DO00DE -1
. 00000E - 01
,DO000E-01

g8 & 1
# OF PARAMETER CHANGES= 4]
pT# GAMMAS PERF
1 5.00000E+00 1.00069E+01
2 7.50000E+00 1.00069£+01
3 1.C0000E+31 1.00069E+01
4 1.40000E+01 1.00069E+01
5 1.BOOODE+0} 1.00089E+01
& 2.20000E+01 1.00069E+01
INDEX, NPTS, NUMCRV
9 5 1
# OF PARAMETER CHANGES= 8
pT# PHIO PERF
1 5.00000E+00 3.60250£+01
2 1.20000E+01 1.50104E40%
3 1.B0000E+0] 1.0D069E+01
& 2.60600E+01 7.50521E400
5 3.00000E+07 &.00417E+00
INDEX, NPTS, NUMCRY
1 5 1

# OF PARAMETER CHANGES= O
eTH# EPS10 PERF

it

B.00C00CE-01  1.000878+01
$.00000E-01  1.00077E+0Y
1.00000E+00  1,0006%€+01
1.10000E+00  1.00063E£+0%
1.30000E+0C  1.000538+01

AV I SR )

PLOSY

500008401
.50000E+31
.50000E+01
.S0000E+01
.5000CE+01

PCOST

. 50000E+C1
.50000E+51
.500008+01
.50000E+31
.50000E+01

CUNIT
6.93963€-01
1.66551E+00
2.49827E+00
3.33102E+00
4 A63F7E+0D

CUNIT
2.49783E+00
2.49807E+00
2.49827e+00
2.498426+00
2.4985TE00

AKX AN

.0000CE-01
.00000E-01
. 03000 - 04
.D0000E- 01
. 00000E -1

fem sy

.00OG0E-31
.00000e-01
.00000E - 01
.00000E-01

kxR

.G000CE - 01
000008 -01
.0O000UE~0Y
.00030E-01
.00000E-01

wAAKAN

.U0000E-01
000008 -1
.Q00CCE-~ 31
.G0000E- 01
.D0000E -0

LTI



INDEX, KPTE, NUMCRY

11 5 3
# OF PARAMETER CHANGES= 0
PT# NUMTS PERF PCOST CUNTT FHk ko ekkkeok
] 9.00000E-0%  1.00063E+07 2.350008+07 2.34853E+00 C.00CO0E-01 0.900C0E-{1
2 9.50000E-01 1.00066E+01 2.42500E+01 2.42340E+00 0.00000E-01 0.000C0E-01
3 1.00000E+00  1.00069E+07 2.50009E+01 2.49827E+CC 0.00000£-01 §.000C0E-01
4 1.08000£+00 1.00075e+07 2.62009E+01 2.61804E+00 0.00000E-01 0.0J090E-01
5 1.950008+00  1,00080E+07  2.72500E+0%  2.722835+00 C.000C0E-CY  0.00600E-01
# OF PARAMETER CHANGES= 1
2 ALPH2 100.000
PT# NUMT1 PERF PCOST CUNTY faledaialaled falabakudall
1 9.00000E-0%  1.55618E+01 2.35000E+01 1.510141E+0C ©.000005-01 0.00000E-01
2 9.50000-01  1.55622E+0%1 2.42500E+01 1.55827e+00 G.CO00JE-G1  ¢.00000E-07
3 1.0000CE+00  1.556258+0% 2.50000E+01 1.60643E+00 G.COD0DE-CGT  §.0000)E-01
4 1.08000E+00  1.556312+01  2.62C00£+01 1.68347E+00 (0.COOGOE-CGT1  C.GOBOOE-C1
3 T.150008+00  1.55635E+0% 2.72500E+01 5.75089E+00 G.GOJOOE-G1  §.COOGOE-G1
# OF PARAMETER CHAMGES= 2
1 ALPHY 306.000
2 ALPE2 100.000
PTH NUMTY PERF PLOST CUNIT Fkkdk ok Fkkk ko
1 9.C0000E-01 1.63951E+01 3.02500E+01 1.84506E+00 9.00000£-0% 0.0000CE-05
2 9.50000E-071 1.63955E+01 3.13750E+01 1.91364E+00 0.900C0E-01 0.00000E-01
3 1.000C0E+0C  1.63958E+01 3.25000E+01 1.98221E+00 0.0000CE-07 0.00000£-04
4 1.08000E400  1.63964E+01 3.43000E+07 2.09992E+00 G.00000E-01 0.00000E-01
5 1.95000E+00  1.63969E+01 3.58750E+01 2.18792E+00 0.00009E-01 0.00000E-01
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PERF vs. ALPH1

PCOST vs. ALPH1
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CUNIT vs. ALPH1
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PERF vs. ALPH2 CUNIT vs. ALPH2
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PERF vs. BETA4 CUNIT vs. BETA4

€71
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PERF vs. ZETAS
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PERF vs. EXPG CUNIT vs. EXP6
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PERF

vs. GAMMAY
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PCOST vs. GAMMAS
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30

25+

20 -

15

N
/" Baseline Case

!

0 5 10 18 20

GAMMAS

25

CUNIT vs. GAMMAS8

CUNIT

T ////////ﬂgéasennecase
i : !
0 5 10 15 20

GAMMASD

25

L1



PERF vs. PHI9

PERF

43

30+~

15

[¢)]
[

Baseline Case

CUNIT vs. PHIS

CUNIT

Baseline Case

35

8¢l



40

35

PERF vs. EPS10

PERF

20+

10

>k
AT

Baselinie Case

0.7 0.8 0.9 1 1.1 1.2 1.3

EPRS10

1.4

4.8

4

3.5

3

25

2

1.8

1

0.5

CUNIT vs. EPS10

CUNIT

Baseline Caseé

0.7 0.8 0.9 1 1.4 1.2

EPS10

1.3

1.4

671



PERF vs. NUM11

PERF

40

«
(]
T

20 : ‘ |
ALPH1 = 800; ALPH2 = 100 —

15 a4t PHY = 200, ALPH2 = 100 —/

faseline Case
=

16+ 7S
ALPH] = 200; ALPHZ = 60

0 H L 1
0.85 C.g 0.85 1

o
o .
L4}

11 135
NUM11

PCOST vs. NUMT1

PCOSY

40 -

T

20

ALPH1= 300

ALPH2 » 50 0or

ALPHZ =« §0 or 100

o

ALPH1 = 200

Baseline Case

i6
0.85

0.9

0.98

0gl



CUNIT vs. NUM11

CUNIT
4.5 — :

3.5

PY I
ALPH1 » 200

5 5LALPH2 = 50T\

ALPH1 = 300

Baseiiné Case

2 LALPHZ » 100

ALPH1 = 200
ALFH2 » 100~

0.5+

0.86 0.8 0.85 1 1.08 1.1 115

NUM1H

1.2

el






133

Data for and Output of ORMONTE
for
Elasticity Analysis Option
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Input Data for Elasticity Option

TEST CASE: DSN=OPTIO.DAT 14 VAR. TESY CASE
INPUT UNITS :INMAST [ 8] INHOD [°5]

1svss  [11] iMvss [ 9] [ELAS (12}
QUTPUT UNITS:IPRNT [ 6] 1PLOT [15) 18UG6  [14]
OPTION: [ELAS] ( DETO,SVSS,MVSS,OR ELAS)
TOTAL NO. OF INPUT + OUTPUT VARIABLES: [ 14]

TITLE: 14 VARIABLE TEST CASE: DSN=MASINI.DAT

ALPHT 200.
ALPHZ 50.
BETA3 10.
BETA4 i.
ZETAS 1.
EXPS 1.
GAMMAY a.
GAMMAS 10.
PHI9 18.
EPST10 1.
NUM11 1.
PERF -1.
PLOST -1.
CUNIT -1,

TITLE: COMSTANTS C1,C2 & €3 FOR 14 VAR. EXAMPLE DSN=MODL.DAT
c1 1.5
c2 2.0
C3 50.




Ail ELAST Output Is om Unit IPRNT

TEST CASE: DSN=CPTID.DAT 14 VAR. YEST CASE

INPUT UNITS :INMAST [ B1  INNOD [ 5)  [NOPT [ 4]
svss  {11) 1MVSS [ 91 IZLAS [12
OUTPUT UNITS:IPRHT £ 6] IPLOT [151  [8U6 163 | Ouipyur of RDOPT

OPTIOM: [(ELASJ] ( DETO,SVSS,MVSS,0R ELAS)
TOTAL NO. OF INPUT + OQUTPUT VARIABLES: [ 143

READIN OF SENS. OPTIOE DATA OM UNIT 4 COMPLETED

TITLE: 14 VARIABLE TEST CASE: DSM=MASINI.DAT
1 ALPHY 209.000
2  ALPH2 50.9060
3  BETA3 10.060
4 BETA4 1.000
5  2ETAS 1.0800
6 EXPH 1.000
7 GAMMAY 8.000
&  GAMMAS 1G6.000 —-—Ouzput of ROMAST
¢  PHI9 18.00C
10 ePSIC 1.030
T KUMITY 1.00C
12 PERF -1.080
13 PLOST -1.000
14 CUNIT -1.0069

READIN OF /MASTER/ {MIVIALIZATION DATA
OM UNIT & COMPLETED

9¢1



TITLE: CONSTANTS C1,02 & €3 FOR 14 VAR, EMAMPLE DSH=MODL.DAT

o 1.500
c2 2.000
£3 50.000

MODEL NOMN-SENS. DATA READINM COMPLETED ON UNIT 5

b Qutput of RDMODL

VALUES 1IN /MASTER/ FOR ITERATIOM NG ¢

TITLE: 14 VARIABLE TEST CASE: DSN=MASINI.DAT

1 ALPH 200,900
2 ALPHZ 56.000
3 BETA3 10.000
& BETA4 1.000
5 ZETAS 1.000
& EXP6 1.000
7 GAMMAT 8.000
8 GAMMAR 16,060
9  PHI? 18.000
16 EPSID 1.000
11 UMt 1.000
12 PERF -1.000
13 PLOSY -1.900

16 CUNIY -1.069 3

prior to call to MODEL

—Cutput of WEMAST

FAN



PRINTCUT OF USERS MODEL FOR [TERAT(ON #

CONSTANTS (NOM-SEXSITIVITY):

Ci= 1.5G0
c2= 2.000
C3= 5¢.000

INPUT VARTASLES (UNCERTAIN SENS. VARS.):

ALPHI=  200.000 ALPH2=
BETAL= 1.000 2ETES=
GAMMAT7= 8.060 GAMMAB=
EP8i0= 1.000 MUY=

OUYPUT VARIABLES (UNCERTAIK FiGURES-OF-MERIT):

PERF= 13.007 PLOST=

50.000 BETA3=
1.0600 EXPS =
10.000 PRI9 =
1.000

25.000 CUNIT=

10.000
1.000
18.000

2.498

Ou

£

jole)

T

of MODEL {Base Case)

8€1



VALUES IN /MASTER/ FOR ITERATIONK NO

TITLE: 14 VARIABLE TEST CASE: DSN=MASINI.DAT

ALPHY
ALPHZ
BETA3
BETAL
ZETAS
EXPS
GAMMAT
GAMMASB
- PHIY
EPS1O
NUM11
PERF
PCOST
CUNIT

—
- 0N 0NNV P WP e

— s
W

OPTION = ELAS

200.000
50.000
10.000

1.000
1.000
1.000
8.000
13.000
18.000
1.600
1.000
10.007
25.000
2.498

0

f— Output of WRMAST
after call to MODEL
(baseline values now stored in Y-array)

6€1



TITLE: SAMPLE ELASTICITY ANALYSIS DATA DSN=ELAST.DAT
# OF INPUTS: [ 111 # OF FIGS OF MERIT: { 33

RESTLTS:
JMASTER/ Y( ) IWOICES FOR FIGS OF MERIT:12 413 44 O © Cutput of ELAST for three of the
ELASTICITY ANALYSIS DATA READIN COMPLETED O UNIT 12 eleven input variables

ovI



PERF vs. ALPHL

BARNTRAB RGN ARE ALQH"‘ EX L) * KERARRKAAY
SENSITIVITY VARIABLE NAME: ALPH! INDEX #: 1 BASE YALUE: 200, 000080
FIGURE OF MERIY #1 F.O.R, NAME: PERF £.O.M. IRDEX # 12 BASE VALUK: 10006945

>4 ALTERED INPUT AMD ALYERED F-O-M VALUES; o=
HIGH ERD SENS YARIABLE: 201, 000000 CORRESPOHUING F.OM.: 10.015278

LOW END SENS YARIABLE: 19%.00000C CORRESPOMDING F.O.M,: $. 998411

7% DEVIATIONS OF INPUT VARIASLE AND F-D-N FROM BASELINE VALUEY ¥*®
HiGH EXD BELTA SENS.VAR: 1.000008 CORRESP, DELTA F.O.H.: £.008333

L0 END DELTA BEMS.YAX.: 1.000008 CORRESP. DELTA F.O.H. : $. 508333

>ee PRACYIONAL DEVIATIONS OF INPUT VAR, AND F-U-R FRDM BASELINE YALUEG **#

RIGR EMU FRACY QELTA SEMS VAR: G.005000 CORRESPOMD IBG FRACT DELTA F.O.M.: 5.0008327%
LOW ERD FRALT DELTA SEMS VAR.: %. 605000 CORRESPISIB IMG FRACT DELYA F.O.M.:  §,00083274
AVERAGE FRACY DELTA SEMS,VAR.: ©.025000 CORRESPONDING FRACT DELTA F.O.¥.:  £.00083274

“xe PLASTICIYY & SLOPE %7

AVERAGE ELASTICITY: G 164548
BIGH END SLUPE: ©.Q08333 LU END SLOPE: 0.008353
AVERASE SLOPE: 2,008333

AN R ER S RN AE AR AN NI AR AR N A F AR NI Y AR RAN TN SR FARNANTSIRGAT AR LA

IRal



PCOST vs. ALPHI1

L Y T T nwww *
SENSITIVITY VARIABLE NAME: ALPHI TMDEX #: 3 BASE VALUZ:
FIGURE OF MERIT W2 F.O.M. NAME: PCOST F.O.M, INDEX # 13 YASE VALUE:

*** ALTERED INPUT AND ALTERED £-0-m VALUES: *v»

HIGH EMD SENS VARIABLE: 201.300300 CORRSSPONDING F.0.M.: 25.07500%

LOW €MD 3EXS VARIABLE: 199.000000 CORRESPOMD IKG F.0.M,: 24.924999

TT™ DEVIAT{ONS OF INPUT VARIABLE AND F-0-M FROM BASELINE VALUES www

HIGH END DELTA SEMS.VAR: 1.003003 CORRESP. DELTA F.O.M.: 0.075001

LOW EMD DILTA SINS.VAR.: 1.000009 CORRESP. DELYA F.QO.M, : 0.075009

*** FRACTIOMAL DEVIATIONS OF INPUT VAR. AMD F-O~M FROM BASELINE VALUES we+

HIGH END FRACT DELTA SENS VAR: 0.005000 CORRESPOMD ING FRACT DELTA F.O.M.:
LOW ENO FRACT DELTA SEMS VAR, : 0.005000 CORRESPOND14G FRACT DELTA F.O.M.:
AVERAGE FRACT DELTA SENS.VAR,: 0.005000 CORRESPONDING FRACT DELTA F,0.K.:

**r ELASTICIYYT & SLOPE *#+

AVERAGE ELASTICITY: 0.600006
KIGK £E¥D SLOPE: 0.075001 LOW END SLOPE: 0.075001
AVERAGE SLOPE: 0.075001

-'--..-n---'.'--'-a-----w--.--m-.-.nanmn'.---tn'a-t't"n'-.t-.t

200.000200

25.000000

0.00300003

0.00300003

9.00300003

(44!



CUNIT vs. ALPH1

HEARNRAARRARA SR A{_Pﬂ? LA Lk g
SENSITIVITY WARIABLE NARE: ALPHY InpEX #: 1 BASE WALUE: 200.000000
FIGURE OF MERIT #3 F.O.M, WAME: CUMIT FoO:M. THDEX # 14 BASE VALUE: 2.498285

w4 ALVERED INPUT AND ALTERED £-0-M VALUES: "*¥

HIGH END SENS VARIABLE: 201.000002 CORRESPOND (NG F.O.M.: 2.503673

LOW END SENS VARIABLE: 199.000000 CORRESPOND MG F.O.M.: 2492844

*ue DEVIATIONS OF [NPUT VARIABLE AND F-O-M FROM BASELINE VALUES ***

HIGH END DELTA SEMS.VAR: 1.000000 CORRESP. DELTA F.O.M.: §.005410

LOW END DELTA SENS.VAR.: 1.000000 CORRESP. DELTA F.O.K¥. : 0.005519

*v FRACTIONAL DEVIATIONS OF INPUT VAR, ANC F-U-M FROM BASELINE VALUES ***

HiGH END FRACT DELTA SENS VAR: 0.005000 CORRESPOMD ING FRACT DELTA F.0.M.: 0.00216549
LOW END FRACT DELTA SERS VAR.: G.005000 CORRESPOND ING FRACT DELTA F.O.M.: 0.00216902
AVERAGE FRACT DELTA SEMS.VAR.: ©.005000 CORRESPONDING FRACT DELTA F.O0.M.:  0.00216725

% ELASTICITY & SLOPE **=

AVERAGE ELASTICITY: 0.43345C

NIGN END SLOPE: §.005410 LOW EXD SLOPE: 0.005519
AYERAGE SLOPE: £.00%414

HARFRANARARVANLANL AR EFAHNARNARNARN AN ENAERAATAFHARWA TN NGRS
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PERF vs. ALPH?

reeswvasesenrer Do teay LTS .
SEMSITIVITY VARIAGLE NAME: ALPH2 IMDEX o 2 BASE VALUE: 59.000000
FIGURE OF MERIT #1 F.O.K. ¥AME: PERF F.OM. IRDEX # 12 BASE VALUE: 10.006945

*T* ALTERED INPUT AND ALTERED F-O-M VALUES: #»w

HiGN END SEMS VARIADLE: 59.250000 CORRESPONDING F.O.M,: 13.034722

LOW EMD SENS VARIABLE:  49.750000 CORRESPOKDING F.O.M,: 9.979167

*¥Y DEVIAT(ONS OF [NPUT VARIABLE AND F-0-M FROM HASEL[NE VALUES #*+

HIGH END DELTA SENS.VAR: 9.250000 CORRESP. DELTA F.Q.M.: 0.027778

LOW €MD DELTA SENS.VAR.: 3.250000 CORRESP, DELTA F.0.X. : 3.027778

TTYOFRACTIONAL DEVIAYIONS OF INPUT VAR. AND F-O-M FROM BASELINE VALUES #*w

BIGH END FRACT DELTA SENS VAR: $.035000 CORRESPONDING FRACT DELTA §.0.M.: 0.00277584
LOW END FRACT DELTA SENS VAR, : $.005000 CORRESPONDING FRACT DELTA F.0.M.: 0.00277584
AVERAGE FRACT DSLTA SENS.VAR. 3.095000 CORRESPONDI NG FRACT DELTA 7.0.M.: 0.00277584

*E* OELASTICITY & SLOPE #e+

AVERAGE ELASTICITY: 0.555°68
HIGH END SLOPE: 011111 LOW EMD SLOPE: 0.111111
AVERAGE SLOPE: J.1171

LELLE L T LA LI L T . -

kaa!




AR EC USSR ET BT ALPHE EEL RS % FULPENIELRR

SEUSIVIVITY YARIABLE HAME: ALPHZ PNDEX #: 4

FIGURE OF HERYT #2 F.O.M. MAME: PIOSY £.0.M, IMOEX ¥ 13

*5% ALTERED [MPUT AND ALTERED F-O-H VALUES: **¥
HiGH EWD SENS YARIASLE: 50.250000 CORHESPOMUING F.O.K.:

LOW END SENS VARIABLE: L9, 7S000C CORRESPOMOING F 0. K. 3

% DEVIATIONS OF INPFUT VARIABLE AND F-O-K FROM BASELINE VALUES

B{GH EXD DELTA SENS VAR: 5.250006 CORRESP, DELIR F.C.M.:

LOW END CELTA SEWS,VAR.: . 250000 CORRESP. DELTA F.O.M,

% FRACTIONAL DEVIATIONS OF INPUT VAR, AKD F-O-M FROM BASELINE

HIGH END FRACY DELTA SENS YAR: 0.005000 CORRESPONDING FRACT DELTA £.Q0.8.:

LO# END FRACT DELTA SENS VAR,: 0.005000 CORRESPONDING FRACT DELTA F.O.R.:

AVERAGE FRACT DELTA BENS.VAR,: 8.0050660 CORRESPOMDENG FRALY DELTA F.O.M.:

#*% ELASTICITY & SLope #**

AVERAGE ELASTICITY: $.000000
#iGR EWD SLOPE: $. 000058 Lin EMD GLOPE: £.000000
AVERAGE SLOPE: $. 060000

BARKAR

RASE WALUE:

BASE VALUE:

25.000050

25.000000

£.000000

0. 000000

VALUES ®2%

KYBTHAE LB AW = KRRNANK

58.000000

25.000000

¢.0806006003

$.00C00000

~
.

25080080

1A



C

HIT ve. ALPH

ANREN AN TSNS ALPHZ -

SENSITIVITY VARIABLE MAME: ALPE2 IMDEX #: 2 BASE VALUE: $6.900900
FIGURE OF MERIT #3  F.0.K. NAME: CUKIT  7.0.k. INDEX # 16 BASE VALUE: 2.493265

vo% ALTERED IXPUYT AND ALTERED F-0-M VALUES: ***

HIGH EMD SENS VARIABLE: 50.250000 CORRESPOND [MG F.O.M.: 2.491349

LOM EMD SEZXS VARIABLE:  49.750009 COARZSPOXDING F.D.K.: 2.505219

*e* DEVIATIONS OF (KPUT VARIABLE AND F-O-M FROM 3ASELINE VALUZS **v

HIGH E¥D DELTA SENS.VAR: 0.250009 CORALSP. DELYA F.O.M.: -0.006916

LOd END DELTA SENS.VAR.: 0.250000 CORRESP. DELTA F.O.M. : -0.006954

*w% FRACTIONAL DEVIATIONS OF IMPUT VAZL. AND F-0-M FROM BASELIME VALUES ¢

HIGH END FRACT DELTA SENS VAR: 0.005000 CORRESPOMD IMG FRACTT DELYA F.0.HM.: -0.00276835

LOM END FRACY DELTA SENS VAR.: 0.005000 CORRESPONOING FRACT DELTA F.O.M.: -0.00278361

AVERAGE FRACT DEZLTA SENS.VAR.: 0.005090 CORQESPONDIRG FRACT DELTA F.0.M.: -0.00277583

*®% ELASTICITY & SLOPE ***

AVERAGE ELAST:ICITY: -0.55517%

HiGH END SLOPE: -0.027662 LOW EXD SLOPE: -0.027317

AVERAGE SLOPE: -0.027740

g



PERF vs. BETA3

ERAROE AT EACREEN BETRI PEEARAARANYRATATHATYARIA NI RIATHNBU N RGOS

SENSITIVITY VARTABLE MAME: BETAX INDEX #: 3 BASE VALUE: 10.000000
FIGURE OF MERIY #3 F.O.HM. NAME: PERF £.0.%, IHDEX # 12 BASE VALUE: 10.006943
us ALTERED INPUT AND ALTEREG F-O-M VALUES: ™%

KIGK END SENS VARIABLE: 10.050006 CORRESPONDIHG F.0.M.: 9.998652

LOM END SENS VARIABLE: 2.950000 CORRESPONDIHG F.O.M. ¢ 10.015320

e DEVIATIONS OF INPUY VARIABLE ARD £-U-M FROM BASELINE VALUES ¥of

HIGH END DELTA SENS.YAK: $.050000 CORRESP. DELTA F.O.H.: -0.008292

LOW END DELTA SENS.VAR,: 0.350008 CORRESP. DELYA F.O.M. @ -0.00837%

sx* FRACTIONAL DEVIATIONS OF IRPUT VAR. AND F-O-M FROM BASELINE YALUES ***

HiGH EMD FRACY DELTA SEXS VAR: 0.00500C CORRESPOMDING FRACT DELYA F.0.M.: -0,00082864
LOW END FRACT DELTA SEMS VAR.: 0.00500C CORRESPONDING FRALT DELYA F.0.M.: -0.000835%4
AVERAGE FRACY DELTA SENS.VAR.: ¢.00500¢ CORRESPORDIRG FRACY DELTA F.0.M.: -0.00083279

Bk ELASTICITY & SLOPE *=*

AVERAGE ELASTICIYY: -0, 1866557
RIGH END SLOPE: -0.165843 LO& EHD SLOPE: -0, 167503
AVERAGE SLOPE: -0.166673

B R T P P S # e oy

iyl



PCOST vs. BETA3J

REAPBRRTRTRORRN HETA}/
SENGITIVITY VARIABLE NAMS: dECAT INDEX #: 3 BASE VALUZ:
FIGURE OF MERIT #2 F.O.M. NANE: PCOST F.O.H. INDEX ¥ 13 SA3E VALUE:

**® ALTERED TMPUT AKD ALTERED F-0-¥ VALUES: ***

KIGH EX0 SENS VARIABLE: 10.053000 CORRESPOND ING F.O.M. 3 25,0000

LOW END SENS VARIABLE: 2.950000 CORRESPOMDING FL Q.M. 25.090090

**® DEVIATIONS OF [NPUT VARIABLE AND F-O-M FROW BASELINE VALUES *+*

HIGH EIND DELTA SENS.VAR: 0.952009 TORRESP. DELTA F.OM.: 0,009009

LOW END DELTA SENS.VAR.: 0.055G030 CORRESP. DELTA F.0.%, : 9.020090

**% FRACTIONAL DEVIA[[ONS OF iMPUT VAR. AMD F-0-¥ FROM SASTZLIME VALUES *®*

HIGH £ND FRACT ODELTA SEKS VAR: 0.005030 CORRESPONDING FRACT DELYA F.O.M.:
LOW NO FRACT DELTA SEMS VAR.: 0.095000 CORRESPONDING FRACT DSLTA F.OM.:
AVERAGE FRACT DELTA SEMS.VAR.: 0.905300 CORRZSPOXDIMG FRACT DELTA F.O.%.:

W ELASTICITY & SL0PE ¥+

AVERAGE ELASYICITY: 0.000000

HIGH ExD SLOPS: 9.000009 L0W END SLOPE: 0.03003C

AVERAGE SLOPZ: 0.000000

2y RAARRARNARRE

10.900000

2%.000009

0.90020030

0.00300300

0.30030000

8v1



CUNIT vs. BETAZ

swenrtxsaxorawr  FETAZ exans * % o
SENSITIVITY VARIABLE HARE: BETAS IWDEX ¥: 3 BASE YALUE:
FIGURE OF HMERIT #3 £.0.8, WAME: CUMiY F.O.¥. IKOEX # 15 BASE VALUE:

axa pLTERED INPUT AND AUYERED F-0-M YALUES: el

WIGH END SEMS WARIABLE: 10,050000 CORRESPOHO IKG £.0.H.: 2.500337

LOW END SERS VARIABLE: 2.550000 CORKESPONCING ¥.0.M.: 2.49617%

aan DEVIATIONS OF INPUT YARIABLE ANC F-0-R FROM BASELINE VALUES %%

#iGH EMO OELTA SEKS.VAR: 3.050000 CORRESP. DELTA F.O.H.: 2.002072

LOW END DELTA SEHMS.YAR.: $.050000 CORRESP. DELYA F.O.M. : 9.002082

wax FRACTIOMAL DEVIATIONS OF INPUT VAR, AND F-G-M FROM BASELINE VALUES ¥**

KIGK END FRACT OELTA SENS VAR: 2. 005000 CORRESPOMDING FRAZT DELYA F.O.M.:
LOW END FRACT DELTA SENS WAR.: 4.503000 CORRESPONDING FRACT DELTA F.O.H.;
AVERAGE FRACY DELTA SEMS.VAR.: £.005000 CORRESPOMD 1RG FRALT DELTA F.O.M.:

awx GUASTIZITY & SLOPE ™*°

AVERAGE ELASTICITY: 4, 166550

HIGH EWD SLOPE: 3.041637 LCW EHD SLOPE: 0.0541780
AVERAGE SLOPE: 0.06 1609

EAABURDANRTALRDIRE ® 22 % *E %

o
<

$G. 000000

2.698263

£.06082932

0.0008361%

3.0008327%

641



High Leverage Variables
for Performance

% Change in PERF

05-

ZETAS, PHIS
BETAS
¢}
ALPH1
BETA4
ALPH2
-0.5
| ) 1
-0.5 9 0.5

% Change in Input Variabte Yi)

Low Leverage Variables

for Performance

% Change in PERF

0.00% L

EXPY
GAMMAT,
EPB10
\\\\\ ////’
™~ \\\\ 7
¢} \/
NUMT1
™~
-0.001
1 1 1 |
-0.5 Qa 0.5

% Change in Input Variable Y(I}

Plotted Results of Elasticity Analysis

Q.5

-0.5

Variables Affecting
Production Cost

% Change in PCOST

ALPH1, GAMMAS,
e
HUMT -
e

L L i

-0.5 0 0.5
% Change in Input Variable Y{i)

061



High Levgrage Variables Low Leverage Variables
Affecting Unit Cost Affecting Unit Cost

% Change in CUNIY

% Change in CUNIT
!
| 3.001

o5k S : '
ALPHZ : //
4 ' : e
~ : rd

: S
ETAL - 7
s -
B ,/
7 =

C

P
L -
Q
7 p—

anuMAr,

¢
s
e ‘EPBT0 ‘
e -
AP
T o
s // (EXPS,.
QAMMAB, : 7
NUMI1 i
e /
S zemas, ‘ :
oL PR . -
. ‘ j QOO T _
i i1 i 1 i
~-0.85 8] 0.8 -0.5 ¢} 0.5
% Change in input Variable Y{1}

% Change in laput Variabis ¥{i}
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Data for and Output of ORMONTE
for
Multivariable Sensitivity Analysis

(MVSS or Probabilistic Monte Carlo Option)
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Input Data for MV3S Option

Unit 4: Options

TEST CASE: DSN=OPTIO.DAT 14 VAR. TEST CASE
INPUT UNITS :INMAST [ B] IHMOD [ 5]

Isvss [11} IMVSS (9] 1ELAS {12]
OUTPUT UNITS:IPRNT [ 6] 1PLOT {15] 18UG  [14]
OPTION: [MvsS] ( DETO,SVSS, NVSS,0R ELAS)
JOTAL NO. OF INPUT + OQUTPUT VARIABLES: [ 14]

Unit 8: Base Case Inputs (Sensitivity Variables)

TITLE: 14 VARIABLE TEST CASE: DSH=MASINI.DAT
ALPHT 200.

ALPHZ 50.
BETA3 10.
BETAG 1.
ZETAS 1.
EXP6 t.
GAMMA7 8.
GAMMAS 10.
PRI® 18.
EPS10 1.
NUM11 1.
PERF -1.
PCOST -1.
CUNIT -1.

Unit 5: Tnputs to User's Model (Non-sensitivity)

TITLE: CONSTANTS C1,C2 & C3 FOR 14 VAR. EXAMPLE DSN=MODL.DAT
ci 1.5

ce 2.0

c3 50.




Unit 9: Distribution Data

TITLE: 14 VARIABLE MVSS TEST CASE
HITER { 50003 IPR £ 5% INTER § 13
DISTRIBUTICK DATA:

THDEX  XNAME JTYPE K3 X2 X3
v A v v v
1 ALPHA -1 290. 100. 500.
2 ALPHZ 0 59.
3 83ETA3 -9 6. 12.
4 BETA4 -& 1. 08
5 ZETAS -3 1. .08 1.2
6 EXPS -4 1. 0.5 2.
7 GAMMAT -6 5. f. 10.
8 GAMMASB -5 16. 0.20
9 PHIS 5
5. 5. .1 .2 b .2
10 EPSIG -7 1. .08 .8
11 N1 -8 1. .08 .9
12 PERF -9
13 PCOST -99

16 CUNIT -99

9¢1




Unit 6 {IPRNT) Cutput

TEST CASE: DSN=OPTIO.DAT 14 VAR. TEST CASE

INPUT UNITS :INMASY [ 8] ENMOD © 5] IROPT
ISVSS  [113 iMysSs [ 91 1ELAS

OUTPUT UNITS:IPRNT ([ 6] IPLOT 151 18UG

OPTIOM: {MVSS] ¢ DETG,SVSS,MVSS,OR ELAS)

TOTAL NO. OF IMPUT + OUTPUT YARIABLES: [ 14}

READIN OF SENS. OPTIUN DATA ON UNIT 4 COMPLETED

[ 43
{123
{141

Jutput of RDGPT

TITLE: 14 VARIABLE TEST UASE: DSN=MASINI.DAT

1 ALPHY 200.000
2 . ALPHZ . 58.000
3 BETAS 10,000
4 BETA4 1.000
5 IETAS 1.000
& EXPS 1,000
7 GAMMAT 8,000
8 GAMMAZ 13.500
¢ PHI® 18.000
10 EPSIO 1.000
T UMt 1,008
12 PERF -1.000
13 pLOSY -4,000
Y4 DUNIT -1.048

READIN OF /MASTER/ INITIALIZATION CATA
O UNIT & COMPLETED

e Gutput of EDMAST

£81



TITLE: CONSTANTS £1,82 & €3 FOR 14 VAR. EXAMPLE

Ct 1.500
c2 2.000
C3 50.000

MODEL MON-SENS. DATA READIN COMPLETED ON UNIT

5

DSN=MODL .DAT

——  Qutput of RDMODL

VALUES IN /MASTZR/ FOR ITERATION NO 0

TITLE: 14 VARIABLE TESY CASE: DSN=MASINI.DAT

1 ALpyl 200.000
2 ALPH2 30.000
3  BETA3 16.000
L EETAL 1.009
5 ZETAS 1.009
5 EXP6 1.000
7 GAMMA7 8.000
3 GAMMAS 10.096
9  PHI? 186.00C
1 EPSiO 1.00¢
11 NUM1S 1.00C
12 PERF -1.000
13 PCOST -1.006

14 CUNIT -1.000 0

—Output of WRMAST
(before call to MODEL)
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PRINTOUT OF USERS MODEL FOR ITERATION # 0

CONSTANTS (NON-SENSITIVITY):

Cl= 1.500
ge= 2.000
£3= 50.000

INPUT VARIABLES (UNCERTAIN SENS. VARS.):

ALPHI=  200.000 ALPHZ= 50.000
BETA4= 1.000 2ETAS= 1.000
GAMMAT= 8.000 GAMMAS= 18.000
EPS10= 1.000 NUM1i= 1.000

OUTPUT VARIABLES (UNCERTAIN FIGURES-OF-MERIT):

PERF= 18.007 pPCOST= 25.000

BETA3=
EXPS =
PHI9 =

CUN1T=

16.000
1.000
18.000

2.498

Output of MODEL
{Base Case)
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VALUES IM /MASTER/ FOR (TERATION MO

TITLE: 14 VARIASLE TEST CASE: DSN=MASINI.DAT
200.
50.
10.

13
4

ALPHS
ALPHZ
BETA3
BETAL
2ETAS
EXP6
GAMMAT
GAMMAS
PHIY
EPSIC
NUMTY
PERF
PCOST
CUNIT

OPTION = MVSS

1
1

0co
utly
0¢o

1,960
1.000
1.000
&.
0
8

0¢o

.000
060

1.0C9

4

1.0C0
19.
25.

2.

oc7
000
495

9

—— Output of WRMAST
(Base Case inputs and outputs stored in Y-array)

091



TITLE: 14 VARIABLE KVYSS TEST CASE

NITER { 5000]
DISTRIBUTION DATA:

JTYPE
¥

INDEX XNAME
v

ALPHY
ALPH2
BETAZ
BETAL
ZETAS
EXPS
GAMMAY
GAMMAB
PHI®

-

D8 N O W W

LEFT VAL**BUX WIDTR**REST OF ENTRIES ARE REL FREG

PR L

¥

-1

-6
-5

51 INTER [

X1

.0000E+02
. 0000E+01
.BOBOE+QC
.GOGOE+O0
.GOB0E+00
.0000E+00
.00C0E+00
.BO00E+O

o W R

S R

5 BOX KISTOGRAM

13
X2

1.0000E+G2
0.0000E-01
1. 2000E+831
8.0G00E-02
8.0000E-02
5.0000E-01
7.0000E+00
2.0000€-01

FOR EACH BOX (FRACTIONAL) AND MUST SUM 10 1.0

5.000E+C0 5.G0CE+00 1.000E-01 2.000E-01 4.000E-0Y

10 EPS1U
11 NUMTT
12 PERF
13 PCOSY
14 CUNIT

-7
-8

-99
-59
-99

1.0000E+00
1.0000E+00
0.0000E-01
0.0300€-01
9.0000E-01

8.0000e-02
£.0000e-02
0.0000E-01
0.0000E-01
0.0000E-01

PARAMETERS FOR /MASTER/ VARIABLE PROBABILITY
DISTRIBUTIONS SUCCESSFULLY READ IN ON UNIT 9

X3

5.0000£+02
.BO00E-01
.LO00E-0%
LGOB0E- Y
.2000E+00
.GO00E+00
.DOOCE+DY
.0000E-31

S - Y - DO

8.00060E-01
.0000E - 01
.0000€E-01
.0000E -1
.(G00E - C1

Lo+ v e SR o]

f)

.0000E-01
.0000g -0t
LBO00E-01
.0G0CE-0%
.0O00E-B%
.0000E-01
. 1000E+01
.0000E-01

R = B == e B e i

o

2.GO0E-01 1.00DE-O1

G.0000E- 01
1.1500E+00
0.C000E-01
0.0000E-01
0.00008-01

b Qutput of RDMYSS
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MOMTE CARLO UMCERTAIMTY ANALYSIS:

TITLE:

11 INPUT VARIABLES

IMDEX

14 VARIABLE MVSS TEST CASE

3 CUTPUT VARIABLES

34 STORAGE LOCATIONS USED FOR INPUT DATA

SUMMARY OF IMPUT DATA:

NAME

ALPR1

ALPHZ

BETA3

BETA4

ZETAS

EXP6

GAMMAY7

GAMMAS

PHIG

EPS10

NUK11

D18y

TRIANGLE

CONSTANT

UNIFORM

HORMAL

NORM-MAX

LOG-TRI

TRAPZOID

LOG-NORM

5 ISTOGRM

NORM-MIN

NORM-L1M

DATA

200.9

50.00

6.000

1.000

1.000

1.000

5.000

10.00

5.900

1.000

1.000

106,90 50G.90

12.00

0.8000g-01

0.8000E-01  1.200

0.5000 2.000
7.000 106.00
0.2000

5.000 3.1000

0.8C000E-G1  0.800C

0.8000e-91 0.9000

5000 ITERATIONS

3 CUTPUT HISTS. TC BE PRINYED

11.00

0.3000 0.7000 £.903C

1.159

1.000

—Output of PRINTX
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PRINTOUT OF USERS

CONSTANTS (NON-SE

Ci=

£2=
3

IRPUT YARIABLES (

ALPH1=

BETA4=

GAMMAT=

EPS10=

OUTPUT VARIABLES

PERf=

MODEL FOR ITERATION # 1

NSITIVITY):

1.500

2.600
56.000

UNCERTAIN SENS. VARS.):

191.940 ALPH2= 50.000 BETA3= 6.339
0.947 ZETAS= 1.026 EXPS = 1.328
6.156 GAMMAS= 12.054 PHI9 = 18.747
3.962 NUM11= 1.018
(UNCERTAIN FIGURES-OF-MERIT):
10.025 PLOST= 27.668 CUNIT= 2.760

e Jutput of MODEL

{(first non-baseline case or
first iteration)

first of five to be printed
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PRINTCUT OF USERS MIDEL FOR [TERATION # 2

CONSTANTS {MOM-SENSITIVITY):

Cl= $.500

T2= 2.000
C3= 50.0600

IMPUT VARIABLES (UMCERTAIM SENS. VARS.):

ALPH1=  348.095 ALPH2= 50.000 BETAZ=
3ETa6= 0.988 rETA5= 0.8%¢ EXP6 =
GAMMAY = B.46%5 GAMMAS= &.483 PHID =
P81 0= 1.096 MUMT = 0.936

GUTPUY VARIABLES {UMCERTAIM F{GURES-OF-MER:IT):

PERF= 13.829 pPLOST= 30.71¢9 CURIT=

&.476
U178
18.845

2.221

—Oucput of MODEL
second of five to be printed

701



PRINTOUT OF USERS MODEL FOR ITERATION ® 3

CONSTANTS (NOKN-SEMSITIVITY):

Ci= 1.500
2= 2.000
C3= 5¢.000

—=Cutput of MOBEL

INPUT VARIABLES (UNCERTALIM SENS. VARS.): third of five to he printed

ALPH1=  232.978 ALPH2=  50.008 BETAZ=  8.923
BETAG=  1.125 ZETAS=  1.032 EXPS = 1.090
GAMMATE  7.35C CANMABS 10176 RIS = 19.902
£PSIG=  1.085 NUMIT= 0,961 5\_;

QUYPUT VARIABLES (UNCERTAIN FIGURES-OF-MERIT):

PERF= 9.51% PLOST= 27.078 CUNIT= 2.844




PRINTOUT OF USERS MODEL FOR ITERATION # 4

CONSTAKTS (NON-SENSITIVITY):

C1= 1.500
£2=  2.000
3= 58.000
INPUT VARIABLES (UNCERTAIN SENS. VARS.): —Output of MODEL
fourtn of five to be printed
ALPHI=  175.079 ALPK2=  50.000 BETA3= §.039
BETA4= 1,053 ZETAS= 1.065 EXPS = 6.712
GAMMAT= 9.560 GAMMAB= 7.563 PHIP = 17.038
EPS10= 0.950 NUM1 1= 0.990

OUTPUY VARIABLES (UMCERTAIN FIGURES-OF-MERIT):

PERF= 10,229 PLOST= 19.831 CUNIT= 1.940
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PRINTOUT OF USERS MODEL FOR ITERATION # 5

CONSTANTS (NON-SENSITIVITY):

ci= 1.500
(2= 2.000
£3= 50.000

INPUT VARIABLES (UNCERTAIN SERS. VARS.):

Output of MODEL
fifth of five to be printed

ALPHY=  271.256 ALPH2= 50.000 BETA3= 9.886
BETA4= 0.905 ZETAS= 0.993 EXPS = 0.704
GAMMA7= 6,190 GAMMAS= 10,331 PHI® = 25.575
EPS10= 0.995 NUM11= 0.921

QUTPUT VARIABLES (UNCERTAIN FIGURES-OF-MERIT):

PERF= 7.351 pPLOsT= 29.350 CUNIT= 3.992

100 206 306 400 500 600 700 80C 90C 1000 1100 1200 1300 1400 1500 1600 1700 1800} Values of ITER as Monte Caric proceeds
1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 * {Output of MODEL)

Iterations 6 - 5000:
this will appear on screen

*Continues through iteration 3000 (3600 -~ 5000 not shown here),

£91
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Final OQutput of MVSSOP
(Histograms)

{prints one histogram per page)
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STATISTICS FOR  INPUT VARIABLE: ALPH1 « D JTTPE= -1 SAMPL.DIST TYPE: TRIARGLE
MINIMUM 104,09 HAX [ MM 493.95
MEAN 2646.98 VARTANCE 7256.7 STO.DEVIATION 85,186
PERCENTILES: 2.5% 132. 5.0% 145, S0.0% 255. ¢5.0% 423. Q7.5% 446,
5000 POINT HISTOGRAM * o= APQINTS
PROB CUME VALUE
D.0016 0.0000 160.0 - T
0.0068 0.0016 110.0 34 wewemnany
7.0124 0.0084 120.0 &2 RO ERTLR N ok he
0.01638 0.0208 120.0 Df  ABRERERERRNRIEATARRIARKE
0.0210 0.0396 140.0 10% ® w
0.0274 0.84606 150.0 137 wwewnn
0.0314 0.0880 160.0 I57  NARRAEIRR AR RRATRAKF AR XN DRI F AT RRRA R
0.0388 0. 1194 170.0 194 ikl
0.0426 0.1582 180.0 213 R * ®
0.0460 0.2008 190.0 230 *
0,069 0.2468 200.0 248 * L "4
0.0562 0.2964 210.0 281 - « "
0.0434 0.3526 220.0 218 e wie RERRER
0.0430 0.3962 230.0 215 ww * « s
0.0416 0.4392 240.0 208 wan rH#
0.0422 0.6808 250.0 21 *H e *
0.0336 0.5230 260.0 193 T AHTARY Yook
0.0398 0.5616 270.0 199 bl KRS SAR
0.0552 0.6014 280.0 176 ot okt hid
0.0290 0.6366 290.0 145 i * rawwe
0.0%22 0.6656 300.0 161 FRRKEAEARRERERLRT AT AN RA AR R AR R R AT RARAR
00534  0.6978 310.0 167 * axn
0,029 0.7312 320.0 147 4 * # weke
0.0216 0.7606 330.0 108 AnkRHhk
0,0220 0.7822 34D0.0 110 EHERIRAR A ARARIAAR KT T NI AR
0.0262 0.8042 350.0 121 FARFARFARE T AT KAR I AR AR T AR mR sy
0.0255 © 0.8284 360.0 128 * ’
0.0280 0.8540 370.0 130 bbbl
0.0184 0.8800 IR0.0 92 FAHTENTAARAAN N AR AT HRR,
0.0163 0.89864 390.0 a4 HEEARKERRT AT KRR KA H
0.013%6 0.9152 4U0.0 68 AR A RE ARk AR AR
n.0170 0.9288 410.0 BS WRAAARTh T e RFATRRAKRR
0.011¢6 0.9458 420.0 S8 awAkdrARkakwas
0.0112 0.9574 430.0 S kEARKARIAN R MRS
0.0108 0.9685 440.0 54 ARAARIA R AN
0.0066 D.9794 450.0 35 wwrwmans
0.0050 0.9860 460.0 30 LI TP
0.0048  0.9920 470.0 24 Aneaea
0.0028  0.9968 480.0 14 wwww
0.0004  0.9%996 490.0 2
1.0000 500.0



STATISTICS FOR

MIND MU

MEAN 9.0309

PERCENTILES:

5000 POINT
PRCB CuME

0.0310 0.0000
0.0330 0.0310
0.0340 0.04%20
0.0320 0.1030
0.0290 0.1350
0.0300 0.1640
0.0298 0.1940
0.0366 0.2238
0.0338 0.2604
0.0328 0.29462
0.0326 0.3270
0.0336 0.3606
0.0328 0.3942
0.0372 0.4270
0.0356 0.4642
0.0310 0.4998
0.0330 0.5308
0.0302 0.5638
0.0320 0.5%40
0.0324 0.6240
0.0324 0.6584
0.0306 0.6908
0.0340 0.72i4
0.0304 0.7554
0.0380 0.7858
0.0336 0.8238
0.03%8 0.3574
0.0332 0.8972
0.0324 0.9304
0.0372 0.9628

6.0002

1.0000

STOGRAM

I¥PUT VARIABLE BETA3

MAX [ PR
VARTANCE
2.5% 6.16

VALUE
6.000 155
6.200 190
6,400 170
6,600 160
6.800 145
7.000 150
7.200 149
7.400 183
7.600 169
7.800 164
8.000 168
8.200 168
8.400 164
8.600 184
8.800 178
9.000 155
9.200 165
9.400 151
9.600 160
9.800 162
10.00 162
10.20 153
10.40 170
10.60 152
10.80 190
11.00 168
11.20 199
11.40 166
11.60 162
11.80 184
12.00
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« 3 JTYPE= -Q  SAMPL.DIST TYPE: UNIFORM
11.996
3.0376 STD.DEVIATION 1.7429
5.0% 6.30 50.0X 9.00 95.0% 1.7 97.5% 1.9
3PCINTS

L L T I T T T e PP LT T )

EHRRATET NG WA RS R E R e T TS

*h AT ETCETE 23 wausawuTNE

L TP DT T T PP

dhLEnALEATETS wrn axmawE SHEN KT AN

B aUTATE 8 LEGEERANGR LRI LT ST TR

LRIy ETy ey

COERAR RN AR EETkEHNRDS HERERRANRE ARERSTENG A

o J T EENRARANAGEEE A SR cany

L T e P e T T T

L e R L R L S L 2

LTy AT ERA AR R R AR AR chvkEREY

B L R R R T T P T T2 e TP

L L T e L T Y % *
B At E L R e Ty e e
LETEEE trt t o . * STk

B R g e R T T T PR P oy

EARSAREED 2 R L TR PR EREANEEE

PRAEABERESREA AT AR R ahdy BB REEHGEEY

D L P ey P LY na - aw
PR

ERE T GG AT AR AR R AR AR RS GG GG AN AN R LR XA R TR A AR A D

* " L R L R Y ITY P TP E R

B L L L L R e P e T T T P T T

R L B S L s LA LR a R Ry

B A L R P T TR PP S PR P S

AEANRE NN RAEERE TR ranEe AEREAFEITEAXNRINNNRN
B L N P L TP Y T T ST T T e oY
B e L Ly G L 2T S E LT T I

B L T I e P T Y



STATISTICS FOR

[HPUT VAR{ABLE BETAA

*

LI EE 8] 0.75197 MAKTMLB

Mz AM 1.0003 YAR TAMCE

PERCENTILES: 2.5%0.845

5000 POIHT HISTOGRAM
PROB CUME YALUE
0.6006 0.0000 6.7400 2
9.0012 0. 60046 00,7400 [
0.0038 0.0016 0. 7¢00 19
10,0050 Q.0054 0.8000 25
0.010& 0.0104 G.3200 53
§.0186 0.8210 U.8400 a3
0.0302 0.037% 0.8600 1514
. 0384& 0.0678 0. 8300 183
0,060 0.1066 0.9000 501
0.08%6 0. 1646 0.9200 38
Q.07%8 0.2342 0.9400 378
0.0916 0.3098 0.%600 58
9.1060 04014 0,800 00
9.0904 0.%014 1.000 452
5.0872 0.5918 1.040 436
0.0914 .60 1.040 457
0.0722 0.7704 1.060 361
0.0548 C.8426 1.080 274
0.0358 0.8974 1.100 179
0.0264 0.9332 1.123 132
0.0196 0.95%6 1.140 58
1.0086 0.9792 1.150 43
0. 0060 0.9878 1.180 20
.0032 0.9938 1.200 i&
§.0020 0.%970 1,220 10
G.06004 0. 99%Q 1.250 2
0.0004 0.6994 1.280 2
0.0000 0.9998 1.280 0
0.0002 0.99%8 1.300 1
1.00C0 1.320

R0 BT 50.0%1.000

{4 ATYPEx -2 SAMPL.DIST TYPE: NORHMAL

1.3048

6.32429%-0%  STO.OEVIATION T 952548 02

25.0% 1.13 BYER 1,16

TEQINTS

&
wiedr

ddariy

WRAE A EAD

AdeSra kR R

TAWR R LN E R R OB R G A W
BAUSRN TR RECER I ARG R

HAT S AR OGN AT AATIAS AN AATER A AN AT T &k

# LY. 2 r ot 3t A S S VR e ST A e
B S L A

WA AR GRS ET G RIS ARI S AT AT AN GRS RAE T AN AT L b LR IANTAGG R H S

i de e e ok a4 ity A & BRI AN AR AR KB KT OGS A GA N
wabw Hrnk o awe REAVS ARG AU AW RN A
a n TN rewEARRA e S Y TP TP
e s xow “n Bt AR SR S a e RN RN AR TE NS A B
WA RS AR R B SRR o aR AR A Ak
r ann

WUAX G TRACRREERRNERTERF AR

EE s A S L T

PLEE E P 2 T

s R

ARR

4

=



0O 00O OO0 0000000000000 0o o o

STATISTICS FOR

IMPUT YARIABLE ZETAS

MINTMLM 0.75758 MAX TXRUM
MEAN 0.99851 VARIAMCE
PERCENTILES: 2.9%0.842
5000 POINT HISTOGRAM
PROB CUHE VALUE
.0002 0.0000 0.7400 1
L0016 0.0002 0.7600 8
0026 0.0018 0.7800 13
0070 0.0044 0.3000 35
0118 0.0114 0.8200 59
0168 0.0232 0.8400 8k
0314 0.0400 0.8600 157
039¢ 0.0714 0.8300 195
0546 0.1104 0.9000 273
L0694 0.1650 0.9200 347
L0814 0.2344 0.9¢00 407
o2 0.3158 0.9600 456
L0944 0.4070 0.9800 472
1010 0.5014 1.000 505
.0938 0.6024 1.020 69
.0812 0.6962 1.040 406
.0626 0.7774 1.060 313
0550 0.8400 1.080 275
0612 0.5%9%0 1.100 266
.0282 0.9362 1.120 161
0182 0.9644 1.140 91
0110 0.9826 1.160 55
0084 0.9936 1.180 32
1.0000 1.200
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« % JTYPE= -3 SAMPL.DIST TYPE: HORM-HAX
1.1996

6.199456-03  STO.DEVIATION 7.87366E-02

5.0%0.866 50.0%1.000 95.0% 1.13 97.5% 1.15

TPOINTS

-

an

EEGE
PR LT e
GEPANRE LAY G

PREARTARRNIACATIORRRETD

& CEERCRVEE LS

N Y P I T PR e P T 2 *

ERERNEN NG TGN AT AR TATTERRGY anan & raNRE

B L L b T 22 P PR T e e ey &

sesRRtYe & * AR RN AR AT AT T AT R AT ONE LN DG NT G

vady L2 RORLBCATEETE L
FETTEETE AT RS ORAR srne EHRAEIRE ARG AR AL
RATRTRE LT ENC LT A EATY % arw 4 rERHE RN

R L T LT L P R P P T e P T T Y
AR N R ARG ARSI AU R ARG A CATRAAE IR G
ey e e e 2 Ty
ERTAELREBLLELTEINTHOS DD

REBVELRTAT SRR

AEAXRNNN

2222



STA

MIN

MEA

PER

PRoE

0.0106
0.0288
0.0320
0.0468
0.0486
0.0606
0.0582
0.0630
0.06%4
0.0736
0.0688
0.0570
0.0554
0.0502
0.0438
0.0372
(.0298
0.0306
0.0214
0.0266
0.0160
0.0178
0.0148
0.0120
0.0080
0.0072
0.0030
0.0018
0.0016
0.00046

TISTICS FOR  INPUT VARIABLE EXP& « &)
eV 0.50536 MAX MM 1.9857
N 1.04%0 VAR TANCE 8_604B4E-D2  STD.DEVIATION
CENTILES: 2.5%0.57% 5.0%0.617 50.0% 1.00
S000 POIRT HISTOGRAM * = SPOINTS
CUME VALUE
0.0060 0.5000 53 Aawdwwawawd
0.0106 0.5500 144
0.0394 0.6600 160
0.0714 0.6500 234 LA Dt s L]
0.1182 0.7000 243
0.16468 0.7500 302
0.2272 0.8000 21
0.2854 0.8500 340
0.3534 0.9000 34T wwe -
0.4228 0.9500 3568 LTI I
0.4964 1.000 344 ok
0.5652 1.050 285 KRR dn
0.6222 1.100 277
0.6776 1.150 . 251
0.7278 1.200 219 e Ll
0.7716 1.250 186 R NI A AR "
0.8088 1.300 149
0.8386 1.350 153 ** *
0.8692 1.400 107 LRI Tt I I e e ey
0.8906 1.450 123
0.9152 1.500 B8O  MRARRAREREAkRANY
0.9312 1.550 89 EHEREART AR N AR NS
D.3450 1.4600 8 ORI ERRAARERRR T
0.9658 1.650 &0 ARERE ARk A
a.9778 1.700 40 wawmtaes
0.9858 1.750 36 akwawre
0.9930 1.800 15 kew
0.9960 1.850 9
0.9978 1.900 8
0.9994 1.950 3 o+
1.0600 2,000

175

0.29334

JYYPEx -4  SAMPL.DIST TYPE: LDG-TR!

95.0% 1.50

97.5% 1.69

Wk

Ak



STATISTICS FOR [MPUT VARIABLE GAMMAT ( 7) JIYPE= -6 SAMPL.DIST TYPE: TRAPIOID

MINIHUM 5.0423 MAX ] ML 10.962

MEAY 8.1984 VAR [AMCE 1.8270 STD.DEVIATION 1.3516

PERCENTILES: 2.5% 5.69 5.0% 6.00 50.0% 8.21 95.0% 10.3 97.5% 10.5

S000 POINT HISTOGRAM 4POIUTS
PROEB CLAE VALUE
0.0018 0.0000 $.000 g e
0.0060  0.0018 5.200 30 wneesres
0.0102  0.0078 5.400 51 wsoameswessey
0.014&4 0.01a0 5,800 B2 M AREANUAAREATRBREDENN
0.0154 0.0%44 5.80GC A L T )
0.0244 0.0408 6.000 122 wew FExHEE
0.0282 0.0742 6.200 141 B T
0.0340 0.1024 6.400 P R LS DRy P e
0.0372 0.1364 6.4600 B R e S
0.0448  0.1736 6.300 224 e T aainn
0.0476¢  0.2184 7.000 237 wrnsaenEnant - * aven
0.0518 0.2658 7.200 257 A R S S A A T A R N A AR AR X O A CR A AR AR AR RAT RS RNAR
0.0444% 0.3176 7.400 222  MWRRRRRULOANARACESIEATARACAS L et HHRE AN
0.0482 0.3620 7.600 241 BRAERE SR RA R AN TR A NI RAERARECTRAE S LELEEES EEEET ey
0.0424 0.4102 7.200 213 Tt # WERANA AR ARG ERDEREBRALS
0.0444 0.4528 8.000 222 wemaEA ki BHEDEAB L bbb LEELEY
0.0484 0.4972 8.200 267 EEE R AR AR R R AN AT A RS ARG AR ST R AR NTES * o
0.0456 0.5455 8.400 228 S G e e e L L
0.0456 0.5912 8.600 225 eervens R L L P
0.0640  0.6368 8.300 220 sawmswsanas : g s wuran
0.0422  0.6808 9.000 21 wvannn wannn roawe
0.0422 0.7230 9.260 211 R T LI T L LT reraen
0.0460 0.7652 9.400 230 = s EE R A A S AT R E T AR AR R R ATAE B R AAW
0.0414 0.8112 9.600 207 mrtwaa wH ey EAE rans
0.0454 0.8526 9.800 227 Anmarw g L sre 3 AR AR R AT RS
0.0410 0.8%80 10.00 205 RS hSE okl EABEAGARERAERESARRI RN,
0.0222 0.93%0 10.20 m wEaTEy
0.0210 0.9612 10.40 105
0.0122 0.9822 10.60 61  wERGETEEITRLENS
0.0056 0.994L 10.80 28 mewEwka
1.0000 11.00
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STATISTICS FOR  TwPUT WARIABLE GAMMAR (82 JIVPEx -5 SAMPL.DIST TYPE: LOG-HOEM
MR 4.8305 MAX T WM 22.354
MEAN 10,199 YARIANCE 4. 14646 ET0 DEVIATION 2.0358
PERCENTILES: 2.5% 6.7% S5.0% 7.2% 50.0% 10.0 ©5.0% 13.8 P7.5% 16.8
SO00 POINT HISTOGRAN * = 7POINTS

PROG CUME YALLE

3.0004 0.0800 4.500 2

0¢.0018 0. 0004 $.000 g *

0.0028 0.6022 5.500 1% e

0.00%0 0,0050 4.000 45 wewkes

0.0212 0.0140 6.500 d  exmemsansanicans

0.0348 0.0352 7.0c0 74

0.0578 G.0700 T.560 288 =

0.0788 $.1278 8.000 394 f

D056 0.2066 8.500 478 A

0.0950 6.3p22 §.000 475 bbbl : d

0.0952 0.3972 2.500 47&

0.1032 G524 10.50 516

0.0886 0.5956 10.50 443

0.0778 0.56862 11.00 389 * e *

0.0634 0.7620 11.50 37 d

0.04686 0.82%4 12.00 2463

0.0535 0_874[) 12.5 169 HAEARHTERNANEARKARCAFRTATS

ﬁnﬂﬁqa o‘raji's 13.06 145 EREAERXTRERRTEER SRR ToL

0.0188 0.93638 13.50 Qb mExREEAAARCH

a4.0120 0.9555 14.60 /O wusAkARex

0,016 0.9678 14,50 b2- B b

0.0078 0.9792 15.00 L

0.0052 0.9870 15.50 2 weAE

0.0018 n.9922 16,00 g =

0.0012 0.$940 16.50 & *

0.001% 0.9952 17.00 a8

0.0014 0.9968 17.50 7o

Q.0010 0.9982 18.00 5 0=

0.0004 .9992 18,50 2

0.0000 0.99%6 19.00 0

04.0002 0.95%6 19.50 1

00000 0.9998 20.00 Q

0.ucal 0.9978 20.5¢ g

0.00an 0.%598 21.00 o

0.0000 05998 21.50 0

0.0602 0.9998 2Z.00 1

1.0000 22.%0



o 000000 0o o

STATISTICS FOR

INPUT VARLABLE PHI?

MINIMAUM 5.0130 MAX 1L
MEAN 17.589 VARIANCE
PERCENTILES: 2.5% 6.31

PROS8

.0478
0474
L1052
0946
1978
2010
0970
1044
0540
0438

5000 POINT HISTOGRAM

- 000 00000 oo

CUME

0000
0478
0952
2004
2950
4923
6938
7208
8952
9512
00an

VALUE

5.000 239
7.500 237
10.00 526
12.50 473
15.00 989
17.50 1005
20.00 485
22.530 522
25.00 280
27.50 264
30.00

wn
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14POINTS

FHATRARSACAOEERD Y

AR GHT AR TG HAARTE

« 9 JTYPE= 5 SAWPL.DIST TYPE:
29.995
32.142 STO.DEVIATICH 5.6694
0% 7.62 50.0% 17.6 95.0% 27.4

L T T T T Y T T T PR ey

HISTOGRY

97.5% 28.7

£ *

EEST ]

supEECARE

RTEEEY 5

e Ty P F Py

EERRRRGA RSB ENE AT ALY

LEEELLETS BT

yw
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STATISYICS FOR 1HPUT VARIABLE EPSIO {10 JTYPE= ~7  SAMPL.DISY TYPE: HORM-MIN

MIN UM 0.80128 MAX ] Lk 1.2817

MEAN 1.6022 VARTARCE 6.26762E-03  STD.DEVIATION 7.91683E-02

PERCENTILES: 2.5%0.849 5.0%0.871 50.0% 1.00 95.0% 1.14 97.5% 1.16

3000 POINT HISTOGRAM & = 7POINTS

PROS CLME VALUE
L0056 0.0000 0.8000 28w

G114 0.0056 0.82C0 57 wmkwawiw
0170 ¥.0170 0.8400 85 AmeevwaRmacs
.0286 0.9340 0.8500 163 AR ASRRAR AR RTASN
0434 0.0626 0.8800 217 d FxREARRR AN X
L0518 0.1040 0.9000 258 * e

0684 0,157 0.9200 32 0+ hdahadeld i i
L0724 0.2260 0.9400 362 A
L1994 0.2984 0.9800 497 Hh AR " * AABSERRNTCRERIERE R KA EH T RN G AR Rt
0908 0.3978 0.9800 A T L T e
0990 . 4838 1.0000 495 * fad ” * e *# WRAE
.0%4R0 0.5376 1.020 A70 * * HlH xRN
L0814 0.6316 1.040 07 ik ihbb il b
.0702 0.7430 1.060 351 hEIAN K ARKRIK IR
L0550 0.8332 1.030 27% * hd *
L0384 0.8882 1.100 192 * bbbl bl
L0304 0.9266 1.120 152 ERRASERKEANARREREARNNL
L0204 0.9570 1.140 102 wamawkesakedden

0102 0.977¢4 1.160 S1 hiohdaldod
L0056 0.9376 i.180 28 wawn
L0044 Q0.9932 1.200 22

on1s 0.9976 1.220 g =
L0004 0.9992 1.240 2
.0co2 0.9996 1.260 1
.0002 0.5998 1.280 1

1.0000 1.300
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STATISTICS FOR INPUT VARTABLE HUMtY 1) JTYPE= -8 SAMPL.DIST TYPE: NOR-2LIHW

LR b J.90001 MAX [MUA 1.1500

FEAN 1.011 VARIANCE 3.65252€-03 STO.DEVIATIONR 6.043561E-02

PERCFWTILES: 2.5%0.708 5.020.917 50.0% 1.01 95.0% 1.12 97.5% 1.13

5000 POINT HISTOGRAM * = 5POINTS

PROB i VALUE
0.0293 0.0000 0.9000 149
0.0310 0.02%8 0.9100 155
0.0384 0.0403 0.9200 192
0.0402 0.0992 0.9300 201
0.0426 0.1394 0.24C0 213 pARESRESTERY T FEXREES
0.0474 0.1820 0.9500 238 sekwskaw ELae =
0.0520 0.2296 0.9600 R R L T e g T T I T
0.0558 0.2816 0.9700 279 AR AR AR R R R R R RN L AR AR AR AT A SR S AR AR A S Rk
0.0402 0.3374 0.5800 301 R N L S ET L s SR ey
0.0612 0.3976 0.9900 306 = * FEAATEEREAR AR AL S
0.0548 0.4558 1.000 274 B R £ Te TR L P R
0.0554 0.5136 1.010 27T MR AR AR RANN G AR AN AT ARG AL DA RS SRS rae rhE
0.0526 0.56%0 1.020 263 M AN R AR A AN A RN R AR AL S S CT AR R RS A SRR S SR
0.0484 0.6216 1.030 243  wrmsoswmax = e SEREEGEICRIS
0.0512 0.6702 04D 256 @ MR RN E AR AR E R R AR S SRR AR R ARk A R A AT
0.C468 0.7274 050 22h MR R R R AR AR RN AN R AR L TG ILE ST A S AN R A AN
0.0442 0.7652 040 231 Teen R AR CAREEEACANEE AL
0.03%% 0.8124 .070 167  mwen EEAARATEARRRRRT AR AN AT
0.0340 0.8458 080 180 RN R MGG AT LR AR AT A A S e Ay

0.3236 0.9098 .100 143
0.0208 0.9384 .10 104
2.0174 0.9592 .120 87
0.012¢6 0.9764 .130 63 wakmwasisane
2.0108 0.9892

1.0000

. 140 G4  AeAReamamew

3
t
1
1
1
0.0280 0.8818 1.0%G 140 RN RN AR RN AR RN R R L L TN E AT £
1
1
1
1
1
1

.150
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JYYPE=-99  SAMPL.DIST 1YRE: NOT-APPL

97.5% 3.4

* 02

NEH MM 5.1038 HAX TN 50,673
HEAH 12.911 YARTANCE 35,956 STD.CEVIATION
PERCENYILES: 2.5% 5.38 5.0% 6.93 50.0% 11.2
5000 POINT HISTOGRAM * = gPOINTS

PROB cime VALUE

0.0078  0.0009 5.000 39 wwaae

0.0452  0.0078 6.000 226 «

0.0858  0.0530 7.000 449 R

0.1052 D 1428 8.000 526

0.115  0.2480 9.500 577 o

9.9176  0.3634 10.00 583 roawson

01036 0.4818 11.00 517 won

0.0726  0.584% 12.00 363 Arawne

C.0810  0.85790 13.00 365 y g

0.0426  B.7180 14.06 213 * *

0.0372  0.76064 1500 186

0.037%  0.7978 16.60 187 -

6.02103 g_a}gz ]7“00 12‘ RREREENE AR AN LA

0.0218  0.8600 18.00 {09 EeReREmeanran

0.0160  0.8818 19.00 BG  erwareaave

D.0136  0.8978 20.00 I

0.0002  0.9114 21.00 46 wenmer

0.0084  0.9206 22.00 42 wawen

0.0044  0.92¢0 73.00 3z wwew

0.0076  0.935 26,00 3B wewwe

0.0066  0.9630 25.00 LESEE

0.0640  0.9495 26,10 20 wws

D.0064  0.9536 27.00 52 e

0.0046  0.9600 28.00 23 wex

0.0054  0.9644 2.00 a7 waw

0.0032  0.9698 30.00 16w

6.00648  0.9730 31.00 2 wen

0.0038  0.9778 32.00 19

a.6028  0.9814 33,60 94 e

0.0036  6.9864 .00 18 e

0.0022  0.988C 35.00 1"

0.0026  0.9902 36.00 12

0.0008  0.9926 37,00 4

0.0026  n.99%4 38.00 13 e

0.0008  9.9950 39,00 4 =

8.0002  0.9968 45.00 1

0.0010  D.$%70 41,00 5 =

0.0006  0.5980 £2.00 3

0.0064  0.9986 43.00 2

0.99%0 64.00
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STATISTICS FOR QUTPUT VARIABLE PCOST  ( 13) JTYPE=-99 SAMPL.DIST TYPE: MOT-APRL
MINIRU 15.301 MAX | M5 81.777
HEAN 30.676 VARIANCE 65.110 STD.DEVIATICH 8.0691
PERCENTILES: 2.5X 18.8 5.0% 20.0 50.0% 29.3 95.0% 45.9 97.5% 49.6
S000 POIHT HISTOGRAM ¢ = BPOINTS
PROB CLME VALUE
0.00c8 0.0000 14.00 4 *
0.6080 0.0003 16.00 40  wewxe
0.0410 0.0088 18.00 205  AREHATKATATSASEEBLERRATANE
0.0722 0.0498 20.0G 361 * ? TERBEHACLENE
0.0%68 0.1220 22.00 48B4 * bk d ? L * ®
0.1072 0.2188 26.00 536 L AEARE AT NN A RATA GRS AR AR ARG T AT HEEAARNE
0.1088 0.3260 26.00 S$44  Awew il % # bR e
0.1012 0.6348 28.00 S0+ BERE UG AR - HEEEAE * RETCRE
0.0874 0.5340 30.00 437 b Ll wtr ERREREANCARGEEXALHERNE
0.0754 0.623¢ 32.00 377 ' nsau i
0.0672 0.4988 34.00 334 LA EA LR TR e D L T st 2 A T e 2
0.0526 0.7660 34.00 263 i bbbl haee
0.0466 0.8186 38.00 233 = il d waEk
0.0364 0.8652 40.00 182 *
0.0232 0.9015 42.00 141 HAAETANARGREATHARS
0.0214 0.9298 4£6.00 107 #uswsknsswwks
0.0158 0.9512 £6.00 79 ansutamenw
0.00%8 0.9670 48.00 49 wareas
0.0092 0.9768 50.00 Lo wwwhEx
0.0060 0.93560 52.00 30 meww
0.0032 0.9920 54.00 16 =¥
0.0016 0.9952 56.00 8 *
0.0008 0.9968 58.00 4 *
0.0010 0.9976 60.00 5 *
0.0006 0.9985 62.00 3
0.0000 0.9592 64.00 0
0.0004 0.9992 66.00 2
0.0000 0.9996 68.00 0
0.0002 0.99%6 70.00 1
0.0090 0.9998 72.00 [
0.00G0 0.9998 74.00 0
0.0000 0.9998 76.00 0
0.0000 0.9998 78.00 0
0.0002 0.9998 0.00 1

1.0000 82.00
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STATISTICS FOR CUTPUT VARIABLE CURIT  ( 14) JTYPEx-99 SAMPL.OIST TYPE: NOT-APPL
HINIAM D, 49148 HMAXTHLM 7.817
MEAK 2.7276 VARIANCE 1.2089 STD.DEVIATION 1.0995
PERCENTILES: 2.5%0.913 5.0% 1.10 SD.0% 2.62 95.0% 6.73 97.5% 5.20
5000 POINT HISTOGRAM * = GPOINTS

PROB cuMs VALUE

0.CO12  0.0000 0.4000 6 *

0.0102  0.0012 0.6000 51 wersawwe

D.0240  0.0114 0.8000 120 EEmAmEEERE R AR an

0.0292  0,0%54 1.000 146 «

0.0372  0.0846 1.200 186 wwaw *

0.0462  0.1018 1.400 231

0.0530  0.1480 1.600 265 -

0.0682  0.2010 1.800 341 oonwh *

0.0758  0.2692 2.000 379 e

0.076C  D.345%0 2.200 389 il

0.0714  0.4210 2.400 357 * b hhd

0.0734 0.4924 2.600 367 * Ak

0.071%  0.5658 2.800 357 b * wanwn HawxbIYAR

0.0654  0.6372 3.000 327 rrawaewe *e

0.0544  0.7026 3.200 272 wmesaweaw *

0.0482 = 0.7570 3.400 41 0w HRAEkahan *Riehnie

0_0378 0_6052 3600 '(ag HRERARTAEREANCEARAANNAT LR AR RS

0.0350  0.8430 3.800 1ws -

0_0260 0.8780 4'000 130 KA ARIAAT OGNk A dd Rd e At

0.02066  0.9040 4.200 103 mEemeRAkATaaRE ks

0.0166  0.9246 4.400 B3 emARATARRuaxae

0.0132 0.9412 4,600 (LI bl

0.0116  0.9544 4.800 S8  mwwwawwwaw

0.0090  0.9480 5.000 45 HwAwannw

0.0058  0.97%0 5.200 26 wrwww

0.0042  0.9808 $.400 21 e

0.0026  0.9850 5.600 13w«

0,003  0.9876 5.800 17 wew

0.0032  0.9910 6.000 16 wwe

6.0018  0.9942 65.200 g e

0.0018  0.$960 6.400 9w

0.0002  0.9978 4.600 1

0.0002  0.9980 6.800 1

0.0004  0.9982 7.000 2

0.0004  D.9936 7.200 2

0.0006  0.9990 7.450 2

0.0004  0.9994 7.600 z

0.0002  0.9998 7.800 1

1.5000 8.000
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Appendix E

A RANDOM NUMBER GENERATOR FOR COMPUTERS
USING THE INTEL 80X86 MICROPROCESSOR

T. C. Tucker
Martin Marietta Energy Systems, Inc.

The family of computers based upon the Intel 8086, 8088, 80286, and 80386
microprocessors use an [EEE standard for numeric processing that is incompatible
with common pseudo-random number generators. These generators calculate a
pseudo-random integer by a formula of the type

() = modulus Gn-1) % ia ,im ) + ic

where ia, ic, and im are suitably chosen constants. The ratio of i(n)/im is then used
as a uniformly distributed random number in the range [0,1]. One popular im-
plementation is the FORTRAN functiop TTRAND, based upon a presentation in
Knuth, Vol. 2, (Ref. E1.).

Commonly, im is the largest integer which can be expressed in the computer.
The modulus operation is then performed automatically through truncation of a
multiplication overflow. The IEEE standard prescribes that integer overflow (and
other arithmetic errors) return a fixed bit pattern which is an ervor result. This
pattern, if used in a succeeding calculation, again causes the error pattern to be
produced. After an initial set of random numbers, the first overflow oceury, and all
succeeding numbers are identical,

I have rewritten the multiplication and modulus operations by expressing
each integer as a linear polynomial and operating on them term by term so that the
number range of the machine is never exceeded. The revised algorithm was first
written and tested in FORTRAN. To achieve greater speed, a second version
(TCTRAN.ASM) was written in assembly language, currently linkable (to TCTRAN-
JOBdJ) only with codes compiled with Ryan-McFarland or IBM Professional Fortran.

The next three pages present the source code for three random number
geuerators based on a PASCAL generator described in Refll. E.2. The first is for the
Microsoft Fortran compiler, the second for the EM Fortran compiler, and the third
for a PABCAL compiler. One of these can be compiled to form OBJ modules to
replace TCTRAN.OBJ if necessary.
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type ranrm.for
c Random number generator for Ryan-McFarland (RM) Fortran

function random(dummy)

C* kK%

c translated from Ref E.2 by

c T.C.Tucker

c Computing and Telecommunications Division
c Martin Marietta Energy Systems, Inc.
C*'k**

real*4 random

real*8 a,m,seed, temp

common /ranumb/ seed

data as16807.0/7, m/2147483647d0/

c
temp = a * seed
seed = temp - m * dint(temp/m)
random = seed / m
c
return
end

subroutine ranseed(iy)
real*8 seed
integer*4 iy

common /ranumb/ seed
seed=iy

return

end

block data randseed
real*8 seed

common /ranumb/ seed
data seed / 1.0 /
end

Fig. E.1. Random number generator for Ryan McFarland Fortran.
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type ranms. for

c Random rumber generator for Microsoft Fortran

function random{dumiy )

C****

c translated from Reference E.2 by

c T.C.Tucker

c Compuiting aind Telecommunications Division
c Martin Marietta Energy Systems, Inc.
C*‘k‘.’:*

real*4 random

real*8 a,in,seed, temp

common /ranumb/ seed

data a/16807.0/, m/2147483647d0/

c
temp = a * seed
seed = temp - m * dint(temp/m)
random = seed / m

c
return
end

subroutine ranseed{ivy)
real*8 seed

integer®4 iy

common /ranuimb/ seed
seed=iy

return

end

Fig. £.2. Random number generator for Microsoft Fortran.
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type ran.pas
Pascal random number generator from Ref E.2

program testran;
var seaed,u : real ; n : integer;
function random: real

v

const

a = 16807.0;

m = 21467483647.0;
var

temp : real;
begin
temp := a*seed;
seed = temp - m¥{runc{temp/m);
random := seed/m;
end;
begin
seed := 1.0;
for n 1= 1 to 10008 do
u 3= random;
writeln{!The current value of seed is : ’, sewx
end.

Fig. E.3. Random number generator using Pascal.






AGC

AlS

AVLIS
CDF or cdf
COS
C&TD

DOE
DOS
DP
EOF
ETD
FAST-E

FOM

I-O

LMR
MLIS
MVSS
NDRN
NPR
OA&P
ORNL
ORGDP
ORMONTE
PDA
PDF or pdf
PC

PRA
PSP

RM

SDI
SVSS
UCC-ND
UDRN
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APPENDIX F

LIST OF ACRONYMS

Advanced Gas Centrifuge

Advanced Isotope Separation

Atomic Vapor Laser Isotope Separation
Cumulative Density Function

Coefficient of Sensitivity

Computing and Telecommunications Division
of Martin Marietta Energy Systems, Inc.

U.S. Department of Energy

Disk Operating System

Office of Defense Programs; U.S. DOE
End-of-File

Engineering Technology Division (ORNL)
Freiman Analysis of Systems Technique - Equipment
(a parametric cost model)

Figure of Merit

Input-output

Liquid Metal Reactor

Molecular Laser Isotope Separation
Multivariable Sensitivity Study

Normally Distributed Random Number

New Production Reactor

Operations Analysis & Planning Division of ORGDP
QOak Ridge National Laboratory

Qak Ridge Gaseous Diffusion Plant

Oak Ridge Monte Carlo (Code Name)
Probability Data Analysis

Probability Density Function

Personal Computer

Probabilistic Risk Assessment

Plasma Separation Process

Ryan McFarland (FORTRAN software)
Strategic Defense Initiative

Single Value Sensitivity Study

Union Carbide Corporation - Nuclear Division
Uniformly Distributed Random Number






67.

G8.

69.
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