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ABSTRACT 

The Advanced Toroidal Facility (ATF) is a stellarator designed to have stable 

access to the second stability (or beta self-stabilization) regime, which should be 

reached when the deepening magnetic well, caused by an increase in the Shafra- 

nov shift with increasing beta, stabilizes pressure-driven (interchange) instabilities. 

During its initial operating phase, ATF was operated with magnetic islands that 

resulted from field errors (which have since been corrected). The resulting peaked 

pressure profiles actually facilitated access to the second stability regime. The 

highest central beta ( ~ 3 % )  achieved in the experiment is well above theoretical 

values (51.3%) for the transition to the second stability regime. Measured mag- 

netic fluctuations decrease with increasing beta, and the pressure profiles broaden. 

This behavior is consistent with theoretical predictions for beta self-stabilization of 

resistive interchange modes. 
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INTRODUCTION 

The Advanced Toroidal Facility (ATF) i s  a stellarator designed to have direct 

access to the second stability (beta self-stabilization) regime [l]. This regime should 

be reached when deepening of the magnetic well, caused by increased Shafranov shift 

with increasing beta, stabilizes pressure-driven (interchange) instabilities. In the 

initial operating phase, ATF was operated with magnetic islands due to field errors 

[2,3] (which have since been corrected). The resulting reduction in effective plasma 

radius and edge transform caused larger Shafranov shift and improved stability 

properties for a given value of beta. Thus, the field errors actually facilitated access 

to the second stability regime. We discuss (1) experimental conditions for these 

studies, (2) the theoretical threshold for the second stability regime, (3)  magnetic 

fluctuation measurements and predicted beta self-stabilization, and ( 4 )  corifinenient 

behavior. 

EXPERIMENTAL CONDITIONS 

ATF is a continuous-coil, E 7 2, 12-field-period torsatron with major radius 

R, = 2.10 m,  average minor radius u 7: 0.27 nr, magnetic field on axis Bo < 2 T, 

and rotational transform 0.3 < L.(T)  < 1.0. It has a 0.2-MW, 53-GIh electron 

cyclotron heating (ECH) system for currentless target plasma production and a 2- 
MW, 40-keV7 0.3-s co-plus-counter tangential neutral beam injection (NBI) system 

for high-power bulk heating. Experiments began in January 1988. Field rnapping 

[3] in May 1988 with an electron-beam/fluotescent screen technique revealed 6-cnr 

wide magnetic islands at the t - 1/2 surface and smaller ones at other rational 

surfaces. These islands were later found to result from the design of the current 

feeds to the helical and outer vertical field coils. Corrective measures were taken, 

and electron-bearn experiments to confirm the correction are now in progress. 

Wall conditioning [4] (with electron cyclotron resonance and glow discharge 

cleaning combined with baking tht. vessel up to 150°C) was effective in producing 

ECH plasmas lasting for up to 1 s with no radiative collapsr. However, neutral 

beam-heated discharges were more sensitive to l o w - 2  inipiirity radiation (psrticu- 

larly oxygen and carbon) [5] and thermally collapsed before the beam pulses ended 

[6]. Partial-coverage (<30%) chromium gettering proved beneficial in extending 

the duration of the neutral beam pulse and  substantially increased the achievable 

plasma density and stored energy. 
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Figure 1 shows the time evolution of several parameters €or a typical IIf dis- 

charge with balanced beam injection of 1.4 MW total Ho power into  t h e  gpttered . 
torus. The stored energy, measured with a diamagnetic loop, reached ?'vdja 7 kJ 
with 6 ,  = 2.5 X , n e 0  = 5 x 10'' m-3, l',~ E 0.26 s. 'rbis value of l/vd;a 

at Bo = 0.95 T corresponds to volume-average beta (p )  = 0.5%. For this case, the 

central beta is = 2.8-3.2%, depending on diamagnetic or equilibrium weighting 

of small anisotropic beam contributions. Figure 2( a> shows the electron tempera- 

ture profile measured with Thomson scattering at Ro = 2.10 In and then mapped 

into the radial flux coordinate p in the finite-beta equilibrium geometry. The equi- 

librium was calculated by the VMEC code with the self-consistent pressure profile 

shown in Fig. 2(b). Such narrow T, profiles were observed in both ECH and NBI 

phases and are probably due to the islands at the 6 = 1 /2  surface, which effectively 

reduce the plasma radius to rP 2 0 . G .  The narrow pressure profile resulted in a 

large outward Shafranov shift (6  0.11 in 0.4ii). 

3 m 

The field errors may also affect the sensitivity of global confinement parameters 

(Wdia and f i e )  to the vacuum axis shift [2]. The optimal position (at least at low 
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Fig. 1. Characteristics of a typical discharge. 
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Fig. 2. Radial profiles of electron ternperature (top) and rotational traiisforrn 

and total pressure (bottom). 

beta) was found to be wi th  the vacuum magnetic axis shifted in  -5 c m  from the 

standard configuration, and all of the experiments disciissed here were conducted 

with this inward shift, s o  that R" = 2.05 1x1. The inward shift minimized the t = 1/2 

island width in the vacuum field; significantly larger inward shifts spoiled vacuuIrl 

stability properties by increasing the destabilizing magnetic hill. As discussed below, 
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the vacuum configuration with a slight magnetic hill at Ro = 2.05 m, combined with 

large Shafranov shift, made i t  possible to  pass through a narrow, weakly unstable 

regime as beta increased. 

MHD STABILITY ANALYSIS 

Ideal MHD stability was examined [7] using the Mercier stability criterion 

(D, > 0) for the equilibrium sequence with the "experimental" pressure profiles. 

Although the criterion is an asymptotic limit for high-n modes, the stability bound- 

aries for low-n modes generally agree well with those for the Mercier modes. At 

a given radius (e.g., p - 0.52, where a large Op exists), D, shows weak instaLil 

ity in the unstable regime. The transition to second stability occurs at relatively 

low P o  (1 1.3%), above which D, increases sharply, reflecting a strong beta self- 

stabilization effect. Complete stability at all radii is attained at Po > 1.3% for 

zero-current equilibria (as shown in Fig. 3) and at ,f?o > 1.6% for flux-conserving 
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Fig. 3.  Calculated ideal stability boundaries and rotational transform contour. 

The shaded area is the unstable region. 
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equilibria. The values achieved in the experiment ( P o  up to 3%) are well above 

these theoretically predicted thresholds. 

Finite-resistivity plasmas exhibit fluctuations even in the second stability 

regime, which is an ideal MHD concept. The relevant instabilities are resistive 

interchange (Vp-driven) modes. Theoretically, beta self-stabilization, which stabi- 

lizes the ideal modes, also reduces the saturation amplitude of the resistive modes 

as beta increases [8]. In this sense, the resistive modes serve a probe to detect access 

to the second stability regime. These modes are primarily electrostatic (6 and &), 
and thus magnetic components (n) are expected to be small. The dependence of 

magnetic fluctuation on P o ,  calculated from the saturation level of 4, is shown in 

Fig. 4. Fluctuations caused by resistive interchange modes do not disappear in the 

second stability regime (particularly near the plasma edge), but show the effect of 

beta self-stabilization in the region where V p  is large ( p  = 0.6), as shown in Fig. 4. 

FLUCTUATION MEASUREMENTS 

Initial fluctuation measurements [9] on ATF were made with a soft X-ray diode 

array (on loan from the Heliotron-E group) viewing the central portion of the plasma 

ORNL-DWG 89M-2383 FED 
2 

h 

9 
0 

X 
T- 

- 1  
Q? 

t m" 

0 

0 

I I I 
IDEAL 

UNSTABLE STAB! L I N  u lSECOND * 

0 1 2 3 

P, ("/.I 
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( p  5 0.5) and with Mirnov coils (Be) located -30 cm outside the plasma. The soft 

X-ray signals show no evidence of gross instabilities such as sawteeth or disruptions. 

Spectral analysis of Be data from Mirnov coils separated in toroidal angle by 

Aq5 = 30", 150", and 180" reveals coherent fluctuations (frequency-resolved coher- 

ence function y > 0.7) in the frequency range 8-40 kIIz with amplitudes - (4" 
The relative phase shifts of the signals are predominantly consistent with n = 1 

toroidal mode symmetry, but some evidence of n = 3 components is seen for 

Aq5 7 30". No corresponding coherent activity is seen in the soft X-ray signals. 

It is difficult to determine the poloidal mode number ( m )  spectrum at present, be- 

cause only two poloidally spaced Mirnov coils (A0 : 150") were available for these 

experiments; the non-circular flux surface geometry of RTF further complicates the 

determination of mode numbers. The available spectral data indicate that the fluc- 

tuations contain at least two poloidal harmonics, one of which can most simply he 

interpreted as rn = 2. 

The dependence of the B e  amplitudes of the n 7 1 mode (integrated over 8- 

40 kIIz) on plasma pressure, shown in Fig. 5 ,  suggests (1) a pressure threshold for 

the fluctuations at ,f?, < 1% and (2) saturation and possible reduction of B,(n - 1) 
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as P o  exceeds 1.5%. Additional trend analysis shows no obvious correlation with 

beam configuration or plasma current. The amplitude and overall behavior of the 

fluctnations are strongly reminiscent of the theoretical predictions for pressure- 

driven instabilities in ATF. 

EFFECTS ON CONFINEMENT 

Figure 6 shows a profile “broadness” parameter (and corresponding approximate 

( /?) /Po based on a few profile-analyzed cases) as a function of (p)  for the fluctuation 

shot database. The pressure profiles broaden rapidly as beta increases; this effect 

saturates for /?, -1 1.5%. Although many mechaiiisms could be responsible for such 

broadening (e.g., change of heating deposition profile), this behavior is consistent 

with growth of the plasma volume and reduccd fluctuations (or anomalous transport 

losses) as the region of magnetic well expands with increasing beta. Figure 7 shows 

global energy confinement time (T;) versus {p )  for data taken at  maximum W& 

(i.e., not including data at beam turn-on) in the fluctuation database, overlaid with 

data from a wider “sequence” (averaged over a large number of shots) database. The 

improvement at high beta is due to increasing f i e .  Figure 8 shows tlie dependence 

of (p )  on density for the sequence database. For a given injection power and state 

of cleanliness, (@) increases roughly linearly with fie, then saturates and decreases. 
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The saturation threshold increases with increasing heating power and improving 

cleanliness. This translates into an empirical scaling law, 

implying that confinement deterioration is offset by the favorable f ie (or beta) de- 

pendence. 

More comprehensive studies in the future will be aimed a i  correlations of trans- 

port, beta, and fluctuations. These studies will use configuration control (with 

vertical fields), profile variations (with limiter, intentional field errors, and pellet 

injection), and internal fluctuation diagnostics (reciprocating Larigmuir probe, mi- 

crowave reflectometer, and heavy ion beam probe). 
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