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ABSTRACT 

An approximation method based on the use of theta functions is shown to be 

efficient and useful in numerical evaluation of complete elliptic integrals of the first 

and second kinds, K (  k) and E( k), respectively. The integrals are expresscd in terms 

of power series of the form CanqnZ, 0 5 Q < 1, where q is the nome determined 

uniquely from a given value of the argument k. The series converge very rapidly, 

except for small domains near llcl = 1, where they either converge slowly or fail to 

converge. When applied on Cray 2 computers for 0 5 I C 2  5 0.9955, the procedure is 

found to be more efficient than both the Chebyshev approximations of the Hastings 

form and the standard Gauss arithmetic-geometric mean process. Numerical results 

that demonstrate the accuracy and efficiency of the approximation method are 

presented. 
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i 

The complete elliptic integrals of the first and second kinds axe defined, respec- 

tively, by [l-31 

d4 
n / z  

h’(k) = 1 (1 - k2 sin’ $)‘I2 

1 - k 2 x 2  

where 2F1 ( a ,  b; c; z )  is the Gauss hypergeometric series. 

The functions I<( k )  and E( I C )  are useful in the calculation and analysis of various 

types of problems in many branches of physics. An example involving both I c ( k )  

and E ( k )  is the problem of calculating the magnetic field B and vector potential A 

due to a circular current loop. Their expressions in the cylindrical coordinates are 

given by [4,5] 

where 
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2 4 v  I C =  
( a  + p)2 $- z 2  ' 

aid I and a are the current and radius of the loop, respectively. 

A useful numerical method for evaluating the complete elliptic integrals K ( k )  

and E ( k )  is the method of the arithmetic-geometric mean described in Ref. [l]. This 

method has the following advantages: (1) the numerical accuracy of the calculation 

can easily be specified by a single parameter, and (2) the algorithm is SO simple that 

it is quite portable. This procedure involves evaluation of a square root (geometric 

mean) in each loop of an iteration process which continues until the specified accu- 

racy is attained. On the other hand, the method of Chebyshev approximations of 

the IIastings form is based on the truncated modified Legendre form [1,2,6]: 

is the complementary parameter. A useful discussion and extensive compilation of 

numerical values of a,, b,, c, ,  and d ,  for 2 5 N' 5 10 can be found in Ref. [2]. 

It is often necessary to evaluate, with high precision, the difference between 

K ( k )  and E ( k ) :  

D ( k )  = K ( k )  - E ( k )  . ('1) 

For example, near the axis of the circular current loop ( p  = 0), both B, a i d  A4 

become proportional to D ( k ) .  Since IC(0) = E(0)  = 7r/2, accurate calculation 

of D ( k )  for small 1k.l cannot rely on Eqs. (9) and (10). One can either use the 

method of the arithmetic-geometric niean or the power series expansion obtained 

from Eqs. (1) and (2)) 

Uiifortvnately, neither of these procedures is very efficient. 

,411 alternative approach for computing A - ( k ) ,  D ( k ) ,  and E ( k )  near k = 0 is to 

express them in terms of the nome q given by [1,7,8] 
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q = exp[ -7rK(k ' ) / I< (k ) ]  

+ * * e  . (13) 

The derivation of such expressions is based on the relationships between the corn- 

plete elliptic integrals and two of the theta functions, defined by [7] 

n= 1 

n= 1 

The results given in Refs. [7,8] are 

where 

The q-series of &(o, q ) ,  04(0, q ) ,  and 8:(0, q )  converge extremely fast except near 

q = 1, since they contain powers only of the form q n 2 .  Therefore, the main problem 

is to find q for a given k. The series given by Eq. (13) can be used, but it converges 

slowly unless Ikl < 1. A more convenient method is to express q in terms of 

1 1 - (1 - ql'* 
2 1 + (1 - k y 4  (18) X r -  

by using the relation [7] 

x ( 1 + 2 q4n2 ) q("+02 . 
/ n=l  / n = O  
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It can be shown that the solution of Eq. (19) for q in terms of X has the form 

Note that the domain of 0 5 k 5 1 corresponds to 0 X 5 1/2 and 0 5 q < 1. By 

substituting Eq. (20) into Eq. (19) and equating coefficients of the same powers of 

A ,  one can obtain values of cy,, but this process becomes extremely complicated as 

rn becomes large. More useful procedures are not known at the present time. The 

numerical values of a ,  are given in Ref. [8] for 1 5 rn 5 4, and an extension to 

rn - 12 appears in Table I. 

It may be remarked that X ( k )  and q ( k )  are highly nonlinear functions of k, 
and the power series iri terms of q or X in Eqs. (16), (17), and (20) are useful not 

only for 1k1 < 1, but also for a much wider domain that excludes only very srnall 

portions near lkl 7 1. Table I1 lists nunierical values of A ,  X4, q ,  q9,  q I 6 ,  q 2 5 ,  4 3 6 ,  

l < ( E ) ,  and E ( k )  for many values of E .  In thc table, it is seen that,  if k = 0.9995, 

for example, then X = 0.3490 and q = 0.3607, while E = 1 gives X = $ and q : 1. 

'I'ables III and IV show absolute values of relative errors, I K ( k )  - K * ( k ) / / I < ( k )  and 

IE( IC) - E*( k) l /E(  IC), respectively, where 

2 N 
I<*(k)  = 27r - + C ( q * ) n 2  , (i n=l ) 

T 2  E:.-,( - l ) n n 2 ( q * ) n 2  

I<*(k)  ++E"  ( - l ) " ( q * ) " 2  ' E*@) = I<*(I;) + l_l_ II__ 

n= 1 

) *  ( m=l 

M 

q* = x 1 + a,$i4, 

These tables give results of double-precision computations performed on a Cray 2 

with N = 6 for M = 1, 2, . . - ,  12. Entries of ** indicate errors of less than 

2 x which is approxiniately the limit of accuracy of the calculation. Errors 

obtaiiied with N = 7 are identical (at least to three significant figures) to those 

in "Fables I11 and IV; results based on N = 5 differ so little from those based on 

N - 6 that for actual applications for 0 5 k2 5 0.9999, N =11 5 is sufficient. Since 

the values of N aJnd Ad required for a specified accuracy of computation depend on 

the value of k ,  an efficient program must treat N and Ad as functions of I;. Such 

relationships are listed in Tables V and VI for machine precisions of 7.11 x lo"-'* 
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Table I 

Numerical Values of am 

m am 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

2 

150 

1,707 

20,910 

268,616 

3,567,400 

48,555,069 

673,458,574 

9,48 1,557,398 

135,119,5Xl,972 

1,944,997,539,623 
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Table I1 

Numerical Values sf  A, x4, q, q 9 ,  q I 6 ,  4257 q36, K (k ) ,  and E ( k )  

k 2  lkl x x 4  Q P g3% K E 

0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 
0.9500 
0.9800 
0.9900 
0.9950 
0.9980 
0.9990 
0.9995 
0.9998 
0.9999 

0.31 623 
0.44 72 1 

0.54772 
0.63246 
0.70711 
0.77460 
0.83666 
0.89443 
0.94868 
0.97468 
0.98995 
0.99499 
0.99750 
0.99900 
0.99950 
0.99975 
0.99990 
0.99995 

0.0066 
0.0139 
0.0223 
0.0319 
0.0432 
0.0570 
0.0747 
0.0993 
0.1401 
0.1789 
0.2267 
0.2597 
0.2899 
0.3254 
0.3490 
0.3699 
0.3937 
0.4091 

1.88E-09 
3.783-08 
2.463-07 
1.03E06 
3.49606 
1.06E-05 
3.11E-05 
9.71E05 
3.85604 
1.03E03 
2.64E-03 
4.55E03 
7 .076  03 
1.123-02 
1.483-02 
1.87E-02 
2.40E02 
2.80E 02 

0.0066 
0.0139 
0.0223 
0.0319 
0.0432 
0.0570 
0.0747 
0.0993 
0.1402 
0.1793 
0.2279 
0.2622 
0.2943 
0.3334 
0.3607 
0.3862 
0.4172 
0.4388 

2.3 3E- 2 0 
1.99E- 17 
1.35E- 15 
3.403-14 
5.26E- 13 
6.373-12 
'7.233- 11 
9.363- 10 
2.09E- 0 8 
1.92E- 07 
1.6 6E- 06 
5.8 6E- 06 
1.65E-05 
5.09E-05 
1.03E-04 
1.9 13- 04 
3.83E 04 
6.033-04 

1.25 E- 35 
2.04E-30 
3.68E- 2 7 
1. 1 4E- 24 
1.483-22 
1.25 E- 20 
9.38 E- 19 
8.903- 17 
2.22E- 1 4 
1.1 4E- 1 2 
5.31E- 14 
4.993-10 
3.16E-09 
2.33E- 08 
8.22E- 08 
2.45 E- 0 7 
8.42 E- 0 7 
1.89 E- 06 

2.9 1E-55 
4.063- 4 7 
4.97E-42 
3.883-38 
7.7 7E- 35 
7.9 6%- 32 
6.793-29 
8.3 3E- 26 
4.643-22 
2.19%19 
8.823- I 7 
2.92E- 15 
5.23E- I 4 
1.19E- 12 
8.5 1 E- 12 
4.6 7E- 1 1 
3.22E- 10 
1.14E-09 

2.933-79 
1.5'73-67 
3.34E 60 
1.34E54 
7.63E-50 
1.653-45 
2.343-41 
7.69E37 
1.913-31 
1.35E-27 
7.613-24 
1.18E21 
7.50E20 
6.74E-18 
1.15616 
1.33E 15 
2.153- 14 
1.33S13 

1.6124 
1.6596 
1.7139 
1 .a775 
1.8541 
1.9496 
2.0754 
2.2572 
2.5789 
2.9083 
3.3541 
3.6956 
4.0393 
4.4953 
4.841 1 
5.1873 
5.6451 
5.9916 

1.5308 
1.4890 
1.4454 
1.3994 
1.35O6 
1.2984 
1.2417 
1.1785 
1.1048 
1.0605 
I .0286 
1.0160 
1.0089 
I .0040 
1.0022 
1.0012 
1.0005 
1 .OOO3 



Table I11 

Absolute Values of the Relative Error of the Approximation Form K*(k)  Given by Eqs. (21) and (23) 

k2\M 1 2 3 4 5 6 7 8 9 10 11 12 

0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 
0.9500 
0.9800 
0.9900 
0.9950 
0.9980 
0.9990 
0.9995 
0.9998 
0.9999 

-4 

1.383-18 
1.16E-15 
7.76E- 14 
1.92E-12 
2.903- 11 
3.433-10 
3.78E-09 
4.70E-OS 
9.86E-07 
8.583-06 
6.993-05 
2.3fE- 04 
6.43E-04 
1 .88E-03 
3.653-03 
6.53E-03 
1.243-02 
1 .SiE02 

2.59E- 26 
4.393-22 
1.913-19 

1.01E15 
1.98E- 1 7 

3.63E- 1 4 
1.18E- 12 
4.566 11 
3.80E- 09 
8.8 1 E- 08 
1.85E-06 
1.0 8 E- 05 
4.59E-05 
2.153-04 
5.60E-04 
1 .%6E-03 
3.12E- 03 
5.54E-03 

***a 

2.433-28 
5.363-25 
2.33E-22 
4.023-20 
4.37E- 18 
4.17E-16 
5.04E- 14 
1.66E- 11 
1.03E-09 
5.59E08 
5.64E-07 
3.72E- 06 
2.783-05 
9.60E-05 
2.75E-04 
5.77E-04 
1.83E-03 

*** 
*** 
*** 

3.05E- 27 
3.72624 
5.65622 

5.99617 
5.853-14 

1.59E-19 

1.29E- 11 
1 .81E- 09 
3.153-08 
3.23E-OT 
3.84E-06 
1.763-05 
6.39E- 05 
2.63E- 04 
6.433- 04 

*** 
*** 
*** 
*** 
*** 

7.69E-26 
6.353-23 
7.473-20 
3.88E- 16 
1 .TOE- 13 
6.15E- 1 1 
I 3 5 E 0 9  
2.95E-08 
5.57E-07 
3.39E-OF 
l.55E-05 
8.243-05 
2.353-04 

*** 
*** 
*** 
*** 
*** 
*** 

2.64E-26 
9.633-23 
1.983-18 
2.32E- 15 
2.16E- 12 
1.42E-10 
2.77E-00 
8.33E-08 
6.7 1 E-07 
3.89E-06 
2.66E-05 
8.88E-05 

*** 
*** 
*** 
*** 
*** 
*** 
*** 

1.27E- 25 
1.04620 

7.77E-14 
6.94E-12 

1.28EO8 

9.98JZ-07 
8.77E-06 
3.42E05 

3.24E- 17 

2.67E- 10 

1.36E 07 

*** 
*** 
*** 
*** 
*** 
*** 
*** 

2.243-28 
5.55E-23 
4.6 1E- 19 
2.85E-15 
4.39E-13 
2.623-11 
1.99E-09 
2.8 1 E- 08 
2.61E-0'7 

1 .34605 
2.943-06 

*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 

3.01E-25 
6.65E-21 
1.06E- 16 
2.8 1E- 14 
2.61E- 12 
3.15E- 10 
5,90E-09 
6.9OE-08 
1.OOE-06 
5.33E-06 

*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 

1.743-27 
9.733-23 
3.99E- 18 
1.83E- 15 
2 . 6 3 6 1 3  
5.053- 11 
1.25E-09 
1.85E-08 
3.453-07 
2.14E-06 

*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 

1.44E-24 
1.52E- 19 

2.GSE-14 
8.16E12 
2.68E10 

1.203-07 

1.20E-16 

4.99E-09 

8.67E-07 

*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 

2.143-26 
5.83E-21 
7.92E- 18 
2.75E-15 
1.33E- 12 
5 .78El l  

4.19EO8 
3.54E-07 

1.36E- 09 

Indicates error < 2 x lovz8. 



Table IV 

Absolute Values of the Relative Error of the Approximation Form E*(k)  Given by Eqs. (21)-(23) 

Ra\M 1 2 3 4 5 6 7 8 9 10 11 12 

0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 
0.9500 
0.9800 
0.9900 
0.9950 
0.9980 
0.9990 
0.9995 
0.9998 
0.9999 

1.343- 18 
1.10E- 15 
7.043- 14 
1.66E- 12 
2.373- 1 1 
2.593- 10 
2.55E-09 
2.67E- OS 
4.003- 07 
2.373-06 
1.1GE-05 
2.363-05 
3.953-05 
5.963-05 
6.95E-05 
7.3 1 E- 05 
6.923-05 
6.18E-05 

2.523-26 
4.143-22 
1.73E- 19 
I. 7 2 E  17 
5.263-16 
2.743- 1 4 
7.943- 13 
2.593-11 
1.54E-09 
2.443-08 
2.923-07 
1.083-06 
2.823-06 
6.763-06 
1.04E-05 
1.383-05 
1.66E- 05 
1.71 E- 05 

***a 

*** 
4.863-25 
2.023-22 
3.283-20 
3.293-18 
2.8 1 E 16 
2.87E14 
6.753-12 
2.853-10 
8.81 3-09 
5.61E08 
2.283- 07 
8.723-07 
1.793-06 
2.993-06 

5.533-06 
4.623-06 

*** 
*** 
*** 

2.56E27 
1.403-24 

1.07E-19 
3.41E17 

4.263-22 

3.19E- 14 
3. BE- 12 
2.863-10 
3.143- 09 
1.98EOS 
1.2 1 E- 0 7 
3.283-07 
6.CJ4E-07 
1.38E-06 
1.93E G6 

*** 
*** 
*** 
*** 
*** 

5.793-26 
4.293-23 
4.253-20 
1.583-16 
4.723-14 

1.843-10 
9.70E- 12 

1.81E-09 
1.753-08 
6.303-08 
1.693-07 
4.32E- 07 
7.053-07 

*** 
*** 
*** 
*** 
*** 
*** 

1.77E-26 
5.473- 23 
8.053- 19 
6.433-16 
3.41 E- 13 
1 . I lEl I  
1.70E- IO 
2.62E- 09 
1.253-08 
4.233-08 
1.393-07 
2.66%- 0 7 

*** 
*** 
*** 
*** 
*** 
*** 
*** 

7.223-26 
4.223-21 
8.97E18 
1.233- 14 
6.913-13 
1 .64El1  
4.01E-10 
2.53E-09 
1.08E08 
4.603- 08 
1.023-07 

***: 
*** 
*** 
*** 
*+* 
*** 
*** 
*** 

2.253-23 
1.28Eic3 
4.5OE-16 

1.613-12 
6.253-11 

4.373-14 

5.233-10 
2.83 E 09 
1.543-08 
4.013-05 

*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 

1.22E-25 
1.84621 
i . 6 7 6  17 
2.3oE-15 
1. GOE- I3  
9.90 E- I2 
1. 1 OE- I 0 
7.49E-10 
5.25E09 
1.593-08 

*** 
*** 
*** 
*** 
*** 
*+* 
*** 
*** 

5.483-28 
2.693-23 
5 . 3 0 s  19 
1.823-15 

1.593-12 
1.62E- 14 

2.32E- 1 1 
2.0 1 E- 10 
1.81E-09 
6.40E-09 

*** 
*** 
*** 
*** 
**i 

*** 
*** 
*** 

2.283-28 
3.973-25 
2.403-20 

1.65E4-15 
2.56E13 
4.98E12 
5.42% 11 
6.283-10 
2.593-09 

1.19E- 17 

*** 
*** 
*** 
*** 
T**  

*** 
*** 
*** 
*** 

5.903-27 
9.193-22 
7.883-19 
1.69G16 
4.18E- 14 
1.07E- 12 
1.48E- 1 1 
2.20E-10 
1.063-09 

"Indicates error < 2 x 



Table V 

Maximum Values of k2 for Which the 
Relative Errors of K'(k) and E*(k) Do Not Exceed the 

Machine Precision (7.11 x of Cray 1 
and Cray 2 for Given Values of M and N 

M N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

2 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
5 

0.2217 
0.5533 
0.7600 
0.8698 
0.9262 
0.95606 
0.97255 
0.98214 
0.98794 
0.99 160 
0.993984 
0.995586 

Table VI 

Maximum Values of k2 for Which the 
Relative Errors of K*(k) and E*(k)  Do Not Exceed 

and VAX 8700 for Given Values of M and N 
the Machine Precision (1.19 x of VAX 8600 

N 2 
kmax 

2 0.8071 
3 0.9538 
3 0.98378 
4 0.993 15 
4 0.99667 
4 0.998207 

9 



( G a y  1 and Cray 2) and 1.19 x lov7  (VAX 8600 and VL4X 8700), respectively. The 

approximations (21)-(23) for k 2  5 kkax with values of N and M given in the tables 

will yield the relative errors of both K * ( k )  and E*(k)  within the machine precision. 

Tables VI1 and VI11 show CPU times (in seconds) required to compute lo6  

values of both I<( k) and E(E) ,  using FORTRAN programs of three approximation 

procedures: Chebyshev approximations of the Hastings form given by Eqs. (9) and 

(10) (method A), the standard Gauss arithmetic-geometric mean process (method 

B), and the 8 function expansions given by Eqs. (21)-(23) (method C). The timing 

results given in Table VI1 were obtained by running the programs (in non-vectorizecl 

modes) on five Cray computers: Cray 112 (serial 6), Cray 1s (serial 33) ,  Cray X- 
MP/22 (serial 119), Cray 2/64 (serial 2001), and Cray 2/128 (serial 2018). The 

table shows that the two compilers CFT77 and CIVIC give quite different CPU 

times. The results from the Cray 1A and the Cray 1s are practically the same and 

hcnce are listed under the single heading of Cray 1. The times given in Table VI11 

are results obtained from running the programs on a VL4X 8600 and a VAX 8700. 

The evaluation of the fourth root for the complementary parameter in Eq. (18) 

was carried out by taking square roots twice and consumed a considerable portion of 

the total computing time. The efficiency of method C, tliercfore, can be improved 

greatly if a better method of determining the fourth root becomes available. A 

slight further improvement is possible if the method of Chebyshev approximation 

is applied, as in the case of Eqs. (9) and ( T O ) ,  to the series of q / X  in powers of X4 in 

E q ~  (20). ,4 rather interesting conclusion that can be macle from Tables VI1 and VI11 

concerning the relative speeds of the three approximation schemes is that on Cray 2’s 

met,hod C is most efficient and method A is least efficient, whereas on VAX 8600 

and VAX 8700 method A is most efficient and method B is least efficient. The 

advantages of the new method based on the 8 functions are (1) accurate and efficient 

evaluation of D ( k )  for small lkl, (2) efficiency on Cray 2 computers, (3) portability, 

(4) potential room for improvement, and (5) relatively low additional cost for higher 

accuracies. The obvious major defect is that the sniall regions near JkJ  = 1 must be 

excluded. 

10 



Table VI1 

Cray CPU Times ( sec)  Required to Compute 10' Values of K ( k )  and E(k)  Each for 0 5 k2 5 0.9955 

CFT77 CIVIC 
C-I 

+ Approximation Method Precision Cray Cray Cray Cray Cray Cray 
2/128 2/64 X-MP/22 Cray 1 2/128 2/64 X-MP/22 Cray 1 

Chebyshev; Eqs. (9) and ( lo ) ,  N' = 8 5.56 x 5.25 5.49 3.24 5.18 6.96 9.42 6.55 8.71 

Gauss arithmetic-geometric mean 7.11 x 10-15 3.42 3.52 7.98 10.42 5.66 6.36 9.68 12.09 

q-series; Eqs. (21)-(23), Table V 7.11 x lo-'' 2.86 2.90 5.23 7.33 3.89 4.28 5.92 8.10 



Table VI11 

VAX CPU Times ( s e c )  Required to Compute lo6 
Values of K ( k )  and E(k)  Each for 0 5 k2 5 0.9982 

Approximation Method Precision .VAX 8600 VAX 8700 

Chebyshev; Eqs. (9) and ( lo) ,  N' = 4 1.57 x 23.6 24.9 

Gauss arit hme tic-geomet ric mean 1.19 x 10-7 56.7 43.8 

q-series; Eqs. (21)-( 23), Table VI 1.19 x 10-7 40.8 32.3 
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