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REDUCTION OF A GENERAL MATRIX 

T O  TRIDIAQONAL FORM 

G. A. Geist 

Abstract 

This report reviews recent research in finding eigenvalues of general matrices 

by first reducing the matrix to tridiagonal form and then applying LR iteration 

to this reduced form. The report also dwcribw a new algorithm for solving this 

problem and shows why it is superior to the other approaches. While our results 

show the algorithm to be over three times faster than the EISPACK routines for 

finding eigenvalues, there are some matrices for which the algorithm fails. The 

report describes how to detect these matrices during the reduction proce~s and 

how to attempt to proceed. 

- v -  





1. Introduction 

The standard method for computing all of the eigenvalues of a dense matrix is based 

on the QR iteration scheme [3]. In this scheme, orthogonal (QR) similarity transfor- 

mations are successively applied to the matrix to reduce it to triangdar form, so that 

the eigenvalues appear on the diagonal. Repeated application of these transformations 

to a general matrix is prohibitively expensive, however, so that in practice the original 

matrix is first reduced to a simpler form that can be preserved during the subsequent it- 

erative phase. For a general matrix, the initial reduction is usually to  upper Hessenberg 

form (triangular except for one additional sub-diagonal) by elementary or orthogonal 

similarity transformations. The initial reduction to Hessenberg form requires O(n3)  

operations, where n is the order of the matrix. Computation of the eigenvalues of 

the reduced matrix usually requires only a few &It iterations per eigenvalue, totaling 

another 0(n3) operations. Both the initial and iterative phases are costly, but less 

than the cost of iterating directly with the original matrix. This two-phase approach 

is implemented in the standard EISPACK software for the general eigenvaliie problem 

191. 

If the original matrix is symmetric, then that symmetry can easily be preserved in 

the initial reduction, so that the result is in fact tridiagonal. Although the reduction to 

tridiagonal form costs Q( n3) operations, the subsequent iterations preserve the tridi- 

agonal form and are much less expensive, so that the total cost of the iterative phase 

is reduced to O(n2)  operations. Again, standard software is available in EISPACK 

implementing this two-phase approach for the symmetric case [9]. 

The attractively low operation count of iterating with a tridiagonal matrix suggests 

that the tridiagonal form would be extremely beneficial in the noiisymmetric case its 

well. There are two difficulties with such an approach: First, QR iteration does not 

preserve the structure of a nonsyrnmetric tridiagonal matrix. This problem can be 

overcome by using LR iteration [8] instead, which preserves the tridiagonal form. Sec- 

ond, it is difficult to reduce a nonsymmetric matrix to tridiagonal form by similarity 

transformations in a numerically stable manner. This second problem is the primary 

focus of this paper. 

In the early 1960’s there was a great amount of interest and research devoted 

to finding a stable way to reduce a general matrix via similarity transformations to 
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tridiagonal form. Very little of this research appeared in the literature because no 

satisfactory solution was found to  the problem [2]. The problem is addressed in some 

detail by Wilkinson [13], and several algorithms are given. Rut the overall conclusion in 

[13] was that no general purpose practical algorithm existed. Because of his conclusions 

little research was directed at the problem of reduction to tridiagonal form for nearly 

15 years. 

In 1981 Dax and Kaniel published a paper [l] that has inspired renewed interest in 

the problem of reducing a general nonsymmetric matrix to tridiagonal form in order to 

compute the eigenvalues of the original matrix. In the next section we review the work 

of Dax and Kaniel, as well as subsequent work, focusing on the various attempts to 

maintain numerical stability during the tridiagonal reduction of a general matrix. We 

describe our new approach in section 3 and give some experimental results in section 

4. In section 5 we make some observations on the inherent numerical difficulty of the 

problem and identify a class of matrices that tax the ability of any algorithm. The 

final section contains our conclusions. 

2. Recent Approaches 

Dax and Kaniel presented an algorithm for computing all the eigenvalues of a full 

nonsymmetric matrix in [l]. Their approach was to  reduce A to upper Hessenberg form 

H using stabilized elementary similarity transformations [13]. They then proceeded to 

zero out each row i of H from Hj,i+2 to  Hi , ,  using H;,j+l as the pivot element in an 

elementary similarity transformation. Unlike the initial reduction to H ,  where pivoting 

is performed to stabilize the transformations, this stage of the reduction cannot use 

pivoting without destroying Hessenberg form. Moreover, if one attempts to recover the 

Hessenberg form by eliminating the nonzeros that were introduced, the inverse of the 

previous similarity transformation is required, which returns the matrix entries to their 

pre- pivo t values. 

The difficulty that may be encountered using this scheme is illustrated by the matrix 

11, shown in Figure 1. A straightforward attempt to proceed by reducing row 3 would 

entail a division by zero. The inability to pivot can cause numerical difficulties even if 

Hi,i+l is not zero. The ratios of Hi,j+a/EIi, i+l,  . . . , l T i , n / H j , i + l  are called the clirninatjon 

factors or multipliers. Because they have the potential to magnify errors, it is desirable 
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Figure 1: Breakdown during reduction to tridiagonal form. 

for these multipliers to be small (less than one). If any of these multipliers is much 

larger than one, then the potential for amplifying numerical errors increases. During 

the reduction to Ressenberg form, the multipliers are guaranteed to be less than one 

because pivoting is performed. But in the second step, where rows are eliminated, the 

multipliers can be arbitrarily large. 

Dax and Kaniel addressed the problem of large multipliers by monitoring their size 

during the reduction. If the multipliers ever exceeded a user-defined value, then the 

algorithm aborted, and the user was forced to  retreat to Hessenberg form and apply 

QR iteration. The bound on the multipliers chosen for the majority of their test runs 

was 216. Given this tolerance, they bounded the error term and concluded that in most 

modern computers, enough digits are represented in the mantissa that the possibility 

of exceeding the tolerance is quite rare in practice. 

If H is successfully reduced to tridiagonal form T, then the next step of their 

algorithm is to apply a version of LR iteration designed specifically for nonsymmetric 

tridiagonal matrices. The algorithm applies either single-shift or double-shift iterations 

depending on the vdue of the shifts. In addition to incorporating most of the ideas 

given in [13], Dax and Kaniel also incorporated some new variations in arbitrary shifts 

when LR breaks down. For instance, if an eigenvalue is not found after 50 iterations, 

then the algorithm returns to the original T and applies the present shift to it. 

Dax and Kaniel observed that for their test problems their algorithm required only 

17% of the time required by their implementation of the EISPACK routines. They 

also observed that the frequency of breakdowns increased with the size of the matrix, 

requiring more arbitrary shifts. 

Tang considered the problem of reducing A to tridiagonal form and presented an 
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dgorithnz in [lo]. This algorithm is similar to a method described in [13] for avoiding 

breakdown during the reduction phase. Wilkinson did not give an algorithm because 

this method for avoiding breakdown did not work after the first half of the matrix 

had been reduced. Tang’s algorithm first reduces A to H using orthogonal similarity 

transformations. Unless H can be reduced directly to ‘1” without the multipliers growing 

much larger than one, Tang’s algorithm will reduce A to  a “comrade” matrix, which is 

tridiagonal except that the last column may be dense (see Figure 2). 
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X 
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X :I X 

Figure 2: Form of a comrade matrix. 

No empirical results xe given in his technical report, but the author claims the 

method is stable. It is unclear, however, whether an efficient algorithm exists for 

finding the eigenvalues of a general comrade matrix. More recently, Hare and Tang 

have begun investigating the effects of interleaving orthogonal and elementary similarity 

transformations during the reduction [7]. 

Two other researchers have described different approaches to this problem. They 

were all influenced by [l], and they all focused on the fact that Dax and Kaniel had 

ignored possible ways to  recover from breakdown during the reduction to T .  Wilkinson 

states on page 404 of [13] that 

If breakdown occurs in the rth step of the reduction of a Hessertberg matrix 

to tri-diagonal form we must return to the beginning and compute NIAN;’ 

for some N1 in the hope that failure will be avoided in this matrix. 

This recovery method is actually too restrictive. In the approaches that follow, the key 

feature will be efficient methods for finding matrices similar to  A without returning to 

the beginning aiid wasting work already performed on the matrix. 

Wachspress became interested in this problem while trying to  solve the Lyapunov 

matrix equation: AX + X A T  = C [ll]. His desire was to reduce A to T and then solve 
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Figure 3: Reduction of Hessenberg matrix from the bottom. 

T Z  + ZTT = C’ by an alternating direction implicit (ADI) method. His approach 

to  reducing A to T involves first reducing A to H by Householder transformations. 

Then, unlike previous approaches, he begins the reduction of H from the bottom, first 

eliminating column n then n - 1, etc. (See Figure 3). 

In Wachspress’ approach [5] ,  the sizes of the multipliers are monitored just as they 

are in Dax and Kaniel’s method, but the maximum value allowed is much lower, on 

the order of 2”. When this value is exceeded, Wachspress applies what we will term 

a 2 x 2 @up. Let N* be the partially reduced Hessenberg matrix. The 2 x 2 fixup 

involves applying the similarity transformation BH*B-l,  where B has the structure 

shown in Figure 4. 

Figure 4: Form of Matrix B used to start 2 x 2 fixup. 

The transformation introduces a single nonzero at Hn-z,n. This “bulge” is then 

“chased” up the second super-diagonal to the point where the original breakdown 

occurred. While conceptually one can think of the bulge as simply replacing the small 

number that caused the breakdown, in reality a very different process occurs. 

Assume that H* has encountered a very small number, E ,  on the super-diagonal in 

column I C ,  and the bulge from the 2 x 2 fixup has been chased up to H,*,k+2, as shown 

in Figure 5a. At the next step of the recovery, column k + 1 fills in (Figure 5b). It 

is actually the process of eliminating column k + 1 with a similarity transformation 
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that produces a larger value in the k,k + 1 position. At this point we have a matrix 

with the same structure as the original M’ but with a larger valae at k , k  -+ 1. Thus 

the reduction to tridiagond form can proceed as long as the new value in H i - l , k  is 

sufficiently large. If not, the 2 x 2 fizup is repeated using a different value for a. If 

an unfortunate choice for (Y causes the non-pivoting bulge-chase to  fail, the fixup is 

restarted with another a. 
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Figure 5 :  Matrix during 2 x 2 fixup. 

‘The advantage of Wachspress’ recovery method is the small operation count required 

to  find a similar matrix with the same structure as the one for which breakdown 

occurred. To generate and chase the bulge up to position f I k , k + 2  requires only 5(n _.- 

k> flops. The rest of the recovery involves eliminating column k + 1 a second time, 

which has a cost of O ( k 2 ) .  Conceptually, the reduction from M to T proceeds until a 

breakdown occurs, then the recovery backs up one column, and the reduction continues. 

The name 2 x 2 fizup for the recovery step comes from the size of the block in the 

lower right corner of R and can be extended to blocks of size 3 x 3 and larger in the 

obvious way. Since the reduction is unique once the first column is fixed, this family of 

fixups can be viewed as modifying the first column in such a way that the breakdown 

condition disappears. While arbitrary changes to a few entries in the first column 

appear to  work very well in practice, more research needs to be done to determine 

which entries should be changed and by what amount to ensure that the reduction can 

continue. 

Watkins has also worked on finding the eigenvalues of nonsymmetric matrices by 

reduction to  tridiagonal form [la]. Like Wachspress, his approach first reduces A to H 

with Hoiiseholder transformations. But unlike Wachspress, the reduction from If to T 

proceeds from the top by rows. The reduction proceeds as in Dax and Kaniel’s method 



as long as the multipliers are less than 216. If the multipliers exceed this value, Watkins 

proposes the following recovery method. Apply one implicit shift LR iteration to H *  

and try to proceed with the reduction to tridiagonal form. The LR iteration produces 

a matrix similar to the original, so it meets the main criterion of a recovery method. 

Since the form of Ii’ is preserved by the LR iteration, only the nonzero entries in H* 

are modified in his implementation of the LR algorithm. The iterations are repeated 

until the reduction can proceed or until all the eigenvalues of A axe found. 

This recovery method is more expensive than Wachspress’ method, but it has the 

advantage that if the iteration fails to find a similar matrix that can be reduced to 

tridiagonal form, it still has been useful for finding the eigenvalues. I t  is possible with 

Watkins’ method to find some eigenvalues during the recovery process, deflate the 

matrix, and then continue with the reduction. This allows the reduction to tridiagond 

form to be much more robust than in Dax and Kaniel’s approach. 

If the reduction to T succeeds, then singIe-shift and double-shift LR iterations are 

applied to T in a manner similar to Dax and Kaniel’s algorithm but without some of 

their arbitrary shift conditions. Watkins’ approach during this stage is closer to the 

ideas in Wilkinson [13]. As might be expected, Watkins’ results for finding the eigenval- 

ues of T were similar to Dax and Kaniel’s, both in terms of speed and accuracy. (Both 

noted that the computation of the eigenvdues was less accurate with their approaches 

than with the EISPACK approach.) 

3. A Threshold Pivoting Approach 

Our approach differs from all the other approaches described so far in that we do not 

reduce A to H first. Instead, we attempt to reduce rows and columns of A simultane- 

ously with elementary similarity transformations. The algorithm begins with row and 

column 1 of A and proceeds down the matrix. At any point in the reduction the matrix 

has the form shown in Figure 6 with a dense lower block E and a tridiagonal upper 

block. 

At each step of the reduction, a variant of threshold pivoting is performed in E ,  in 

an attempt to minimize the multipliers in both the row and column being eliminated. 

In [I], the multipliers used in the column reduction to W were all less than one, but 

the multipliers used in the row reduction to T could be arbitrarily large. Our approach 
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Figure 6: Structure of the matrix during our reduction. 

tries to balance this process. Instead of choosing the pivot that guarantees all the 

column multipliers will be less than one, we choose a pivot that will allow some column 

multipliers to be greater than one if it causes the row rnultipliers to be reasonably 

small. The magnitude of both the row and column multipliers is required to be less 

than a user-defined tolerance. For our tests this tolerance was set to  10. In general, we 

would like to  minimize the maximum multiplier, but we have been iinablc to discover 

an efficient scheme to find those pivot elements. Our pivot selection is heuristic, but 

seems to work quite well in practice. We choose the pivot index that maximizes the 

product of the corresponding row and column elements. 

Regardless of the pivot selection, there are still simple examples where the maximum 

product is zero. In this case some form of recovery must be applied. We chose to 

implement a variation of the 2 x 2 J m p .  In our implementation, B has one of the 

forms shown in Figure 7. 

Figure 7: Two Forms of Matrix B used to  start our 2 x 2 fixup. 

The choice of B is determined by whether the large multipliers are above or below 

the diagonal. There are two reasons for not using a n  LR iteration as in Watkins [12]. 

First, the 2 x 2 fixup is computationally equivalent to some implicit single shift LK. 

iteration that is truncated at  the point of breakdown. Thus the 2 x 2 fizup is similar 

to one iteration of LR, hut always less costly. Second, since E is dense, we have no 
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means of determining a “good” shift for an LR iteration. 

Assume the maximum product is zero and the matrix does not deflate, i.e., the 

maximum of the row or column is not zero, (If the matrix deflates, then the reduction 

can skip immediately to the next row and column.) Our approach chooses the pivot 

index of the maximum element of the row and column, performs this pivot, and then 

applies a 2 x 2 @up. If three applications of 2 x 2 fixups fail to find a similar matrix 

that allows the reduction to proceed, then the tolerance is automatically increased (with 

suitable warning to the user) and the 2 x 2 fixups continue until the tolerance reaches 

lo5. At this point the algorithm aborts. This has been observed only in specially 

contrived matrices, which we describe in more detail in section 5 .  

Given that A has been successfully reduced to  T7 we then apply implicit double 

shift LR to T, with simple arbitrary shifts if needed. Unlike other approaches described 

in this report, we do not mix single and double shift approaches. This decision was 

based on two facts. First, using only the implicit double shift algorithm allowed a 

cleaner implementation of the algorithm to find the eigenvalues of T .  Second, since 

this algorithm’s complexity is only O(n2) ,  it is a low order effect in the overall process 

and thus a cleaner implementation was felt to  be more important than reducing the 

constant in front of a low order term. 

’SVilkinson suggested performing a diagonal similarity transformation to T before 

applying LR to it. All the researchers who applied LR to T did apply this transforma- 

tion. Given a nonsymmetric tridiagonal matrix, Wilkinson noted that this matrix could 

be transformed such that its superdiagonal is all unity. Moreover, this superdiagonal 

is invariant under LR iterations. Thus all algorithms for finding the eigenvalues of T 

described here operate only on the diagonal, which is converging to the eigenvalues, and 

the subdiagond, which is converging to zero. It is interesting to note that finding the 

eigenvalues of a nonsymmetric tridiagonal matrix requires the same amount of storage 

as the symmetric case when using LR. Similarly, the nonsymmetric case has the same 

number of operations per iteration as the symmetric case using LR. 

4. Results 

Figure 8 illustrates the advantage of our method over Da~u and Kaniel’s method. The 

example is from page 89 of Gregory and Karney [ti]. While both methods produced a 
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tridiagonal matrix that is similar to the original matrix, it is clear that an LK. iteration 

applied to Dax and Kaniel's T is much more likely to  encounter problems than LR 

applied tu our T ,  because of the wide variation of scale in their T .  In particular, notice 

that the elimination factor in column 2 would be lo4.  The values in their matrix range 

from to lo8, while ours range from 0.3 to 3.2. 

.4163 .3176 0 0 
A001 .4132 .8175 0 
.6321 .3157 .4823 .6614 0 
.5157 23321 5642 .6541 .4321 
..5563 .4431 .2567 24325 .8475 

.4163 .3176 0 0 0 

.0001 5167. .817,5 0 0 

0 0 -.0001 .5615 .4321 
T = [ 0 -32659398. -5166. 3614 0 

T =  [ -.1721 -1.243 3175 0 

0 0 0 .5463 A006 

.1809 .3176 0 0 

0 -3.287 2.359 .6614 
0 0 .4391 .8685 .4321 
0 0 0 .3338 .6469 

Figure 8: Comparison of matrices produced by Dax and Kaniel's method ( T )  and our 
method (F). 

Table 1 compares our algorithm with the comparable EISPACK routines: ELMHES, 

ORTHES, and HQR for a series of test matrices ranging in size from 50 to  300. The 

matrices were random with the entries distributed unifornily over the interval [OJ]. 

ELMRES reduces A to H using stabilized elementary similarity transforinations while 

OKTH-IES reduces A to  H using Householder transformations. The ORTHES results are 

given because ORTHES is the first step in several of the methods presented in section 

2. HQR finds the eigenvalues of H using an implicit double shift QR iteration. Our 

algorithms are presented in the table as A2TRI and TLR. A2TRI reduces A directly 

to  I' as describcd in section 3. TLR finds the eigenvalues of 2'. The error in the 

eigenvalues from TLR and HQR were comparable in these tests. For these matrices 

the multipliers never exceeded 10 in our algorithm, and we feel this may be the reason 
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we did not see the degradation in accuracy that Dax and Kaniel and Watkins observed. 

All computations were performed in double precision on a SUN 3/280. 

I 1 EIS PACK 1 NEW I 
n 
50 

100 
128 
150 
200 
250 
300 

- 

- 

ELMHES 
2.70 

21.58 
44.92 
72.28 

173.20 
338.54 
582.64 

37.60 
80.06 

136.88 
314.78 
631.42 

HQR 
12.92 
92.08 

208.62 
334.56 
667.78 

1388.36 
2305.14 

A2TRI 
4.00 

32.84 
70.34 

112.58 
266.36 
510.52 
994.58 

TLR 
0.64 
2.56 
4.32 
5.42 
9.86 

14.14 
28.98 

Table 1: Execution times in seconds for our new routines and the standard EISPACK 
routines. 

It is clear from the table that our method can find the eigenvalues of a dense 

nonsymmetric matrix much faster than the EISPACK routines. A complexity analysis, 

where low order terms are ignored, shows that TLR requires 5n flops per iteration 

versus 4n2 flops for HQR. While the number of iterations varies between TLR and HQR, 

they both require only a few, often less than 5 ,  iterations per eigenvalue. Further, the 

arithmetic complexity of ELMHES is 5n3 while the complexity of A2TRI is $n3 flops, 

assuming A2TR.I needs to apply the 2 x 2 fixup only a constant number of times. The 

results in Table 1 reflect speedups greater than 3 for A2TRI/TLR over ELMHES/HQR. 

This is consistent with the relative complexities of the routines. 

5 .  Observations 

While our algorithm A2TRI extends the class of matrices that can be reduced to tridi- 

agonal form, there are still matrices for which the recovery methods presented cannot 

succeed. A practical code must be able to detect when such a matrix is encountered 

and react accordingly. This section describes a class of such matrices and reveals why 

reducing A to H by Householder transformations, as done by Wachspress and Watkins, 

actually aggravates the problem of reducing H to T .  

Wachspress [5] made the following observation, which i s  the key to defining a class 
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of matrices that are difficult to  reduce to tridiagonal form. Computations of the form: 

preserve the inner product of the kth row and coli~rnn, since wTG-'Gv = wTv. 

This property affects any algorithm that reduces A to  tridiagonal form by similarity 

transformations, not just the ones described in this report. Consider the following 

example. Let the partially reduced matrix have the form 

and let wTv = 0. After all but the first entry of v have been eliminated, the matrix 

has the form 
T 

cy 0 toT 

P B' 

0 

The first entry in w" is zero and it must be used as the pivot. This is true regardless 

of the pivot selection in v or whether orthogonal transformations are used to eliminate 

21. 

The above observation explains why methods that reduce A to 11 using Householder 

transformations have more breakdowns. Since the orthogonal transformation preserves 

11 v [I2, it maximizes the one entry left in v. The product of this entry and the eventual 

pivot on the other side of the diagonal i s  constant; therefore, the pivot element is being 

minimized. This in turn leads to large multipliers and breakdown. 

If W ~ T I  = 0 ,  then a breakdown condition will occur no matter what transformation 

is used, but a 2 x 2 fizup will allow the reduction to  continue provided that ?UTB,,l + 0, 

where B*,l is the first coliimn of B. If this quantity is zero, then a 3 x 3 fixup is required 

to  coatimxe. Larger fixups are required as more consecutive dot products of tuWT and the 
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columns of B equal zero. The probability of two or more consecutive zero dot products 

occurring is extremely small in practice. Moreover, it is a simple matter to check the 

dot products before beginning the recovery step and adjust the recovery if necessary. 

For these reasons, our algorithm appears to be a practical alternative to HQR in most 

cases. 

A =  

20 1 
19 1 

18 1 
. .  

. a  

, 1  
1 1 

Figure 9: A matrix which A2TRI cannot reduce to tridiagonal form. 

We can contrive matrices that are extremely difficult to  reduce with any method. 

Figure 9 shows a simple, well conditioned matrix that cannot be reduced to  tridiagonal 

form with A2TRI. Notice that at the very first step the dot product between row 1 

and column 1 is zero, and the dot product between row 1 and every other sabdiagonal 

column is also zero. However, A2TRJ can find a tridiagonal matrix similar to the one 

shown in Figure 9 by reducing NAN-' for a suitability chosen N .  

6. Summary 

We have presented an algorithm for reducing nonsymmetric matrices to similar tridiag- 

o n d  matrices (A2TRI) and an algorithm for finding the eigenvalues of the tridiagonal 

matrices (TLR). A2TRI incorporates threshold pivoting and a 2 x 2 Jnmp method, 

which makes it one of the most robust algorithms available. A complexity analysis 

reveals that our algorithms are over three times faster than the conventional method of 

finding the eigenvalues of a dense nonsymmetric matrix, i.e. the ELMHES and HQR. 

algorithms of EISPACK. Our empirical results show A2TRI requires about twice as 

much time as ELMHES, which is not unreasonable since it eliminates twice as many 

entries in the original matrix. The algorithm TLR runs in time proportional to n 2 ,  

while HQIt runs in time proportional to 72'. Illustrating this difference, a problem that 
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required 2305 seconds using HQR, finished in only 29 seconds with TLR. 

We have described a class of matrices that are difficult to  reduce to tridiagonal 

form regardless of the method used, and we show how these matrices can be detected 

by computing dot products of particular rows and columns. This can be done when 

a breakdown occurs during the reduction to determine which recovery method to  use. 

We plan to  incorporate this feature into A2TItI in the near future. 

We are developing a parallel version of the A2TRJ algorithm. The parallel al- 

gorithms that have been implemented for finding the eigenvalues of nonsymmetric 

matrices are inefficient for large numbers of processors [4]. Because of our radically 

different approach, our new algorithms should not suffer from the same bottlenecks. 

Preliminary empirical. results appear to confirm this conjecture. Details of the parallel 

implementation and results will be given in a future report. 
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