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ABSTRACT

This report summarizes the linear quadratic Guassian (LQG) design
technique with loop transfer recovery (LQG/LTR) for design of control
systems. The concepts of return ratio, return difference, inverse
return difference, and singular values are summarized.

The LQG/LTIR design technique allows the synthesis of a robust centrol
system. To illustrate the LQG/LTR technique, a linearized model of a
simple process has been chosen. The process has three state variables,
one input, and one output. Three control system design methods are
compared: LQG, IQG/LTR, and a proportional plus integral controller
(PI).

ix






1. ROBUSTNESS OF FEEDBACK CONTROL SYSTEMS

1.1 INTRODUCTION

The advanced control strategies development group at Oak Ridge National
Laboratory, has been actively engaged in exploring the applications of
optimum control theory. Since October 1987, this effort has focused on
robust control theory. One of the primary attractions of this theory is
that it generalizes the single input-single output (SISO) concept of
gain and phase margin and its effect on system sensitivity to a
multivariable control system.

The purpose of this report is to summarize the derivation of a design
technique based on robust control theory and to illustrate this
technique by a model chosen for its simple structure.

1.2 DEFINITION OF ROBUSTNESS

A system is considered to be robust and have good robustness properties
if it has a large stability margin, good disturbance attenuation, and/or
low sensitivity to parameter variations.! The term "stability margin"
refers to the gain margin and the phase margin, which are quantitative
measures of stability. A proven method of obtaining good robustness
properties is the use of a feedback control system, which can be
designed to allow for variations in the system dynamics. Some causes of
variation in system dynamics are as follows:

modeling and data errors in the nominal plant and system;
changes in environmental conditions, manufacturing tolerances, wear
due to aging, and noncritical material failures; and

e errors due to calibration, installation, and adjustments.

Feedback control systems with good feedback properties have been
synthesized for SISO systems. Classical frequency domain techniques
such as Nyquist, root-locus, Bode, and Nichols plots have been used to
obtain the feedback control system for the SISO system, These design
techniques have allowed the synthesis of feedback control systems
yielding insensitivity to bounded parameter variations and a large
stability margin. The success of the feedback control system for the
SISO system has led to the direct extension of the classical frequency
domain technique to the design of a multivariable feedback control
system. This extension to the multivariable design problem examines an
individual feedback loop as the phase and gain margins are varied, while
the nominal phase and gain values in the remaining feedback paths are
held constant. This technique, however, fails to consider the results
of simultaneous variation of gain and phase in all paths, which is a
real-world possibility and needs to be considered. A method of
obtaining a feedback control system with good robustness properties that



takes into consideration simultaneous gain and phase variation is the
linear quadratic Guassian (LQG)? technique with loop transfer recovery

(LQG/LTR) .?

The I1QG/LTR technique can be applied to multivariable input-
multivariable output (MIMO) systems or SISO systems. The LQG/LTR
technique not only has the good robustness properties of the classical
frequency domain techniques but also is capable of minimizing the
effects of unmodeled high-frequency dynamics, neglected nonlinearities,
and a reduced-order model. A tool used in synthesizing the LQG/LTR
technique is the computer-aided systems and control analysis and design
environment (CASCADE)," an expert computer design tool that eliminates
the numerical programming burden of programming the complex LQG/LTR
algorithm. The CASCADE expert system was developed for the U.S.
Department of Energy by the University of Tennessee at Knoxville.

In this report, some concepts will be defined and the LQG/LTR procedure
for development of a model-based compensator (MBC) will be described. A
unity-feedback MBC is selected for the controller, because of its
similarity to the SISO unity-feedback control system well known to
classical control designers. The MBC closed-loop control system has
proven to offer great practical considerations in the design of
automatic control systems.



2. ROBUSTNESS CONCEPTS OF THE LQG AND LQG/LTR CONTROL SYSTEMS

The LQG/LTR’ design procedure is based on the system configuration of
the 1QG controller shown in Fig. 2.1. The 1QG controller consists of a
Kalman filter state estimator and a linear quadratic regulator. The
Kalman filter state estimator has been shown to have good robustness
properties for plant perturbations at the plant output. The linear
quadratic regulator (LQR) has been shown to have good robustness
properties for perturbations at the plant input. Even though its
components separately have good robustness properties, however, the 1QG
controller is found to have no guaranteed robustness properties at
either the input (point 2) or the output (point 3) of the plant.

The 1QG/LTR design procedure allows us to recover robustness properties
at either the input or the output of the plant. If robustness is
desired at the input to the plant, first a nominal robust LQR design is
made to satisfy the design constraints. Next, an LTR step is made to
design a Kalman filter gain that recovers the robustness at the input to
the plant of the LQG controller that is approximately that of the
nominal ILQR design. This implies from Fig. 2.1 that the robustness
properties at points 1 and 2 are approximately the same.

If robustness is desired at the output of the plant, first a nominal
robust Kalman filter design is made to satisfy the performance
constraints. Next, an LTR step is made to design a LQR gain that
recovers the robustness at the output of the plant that is approximately
that of the nominal Kalman filter design. This implies from Fig. 2.1
that the robustness properties at points 3 and 4 are approximately the
same,

The block diagram of the unity-feedback MBC is shown in Fig. 2.2. This
control system structure will allow tracking and regulation of a
reference input at the output of the plant. The filter and regulator
gains used in the controller K(s) are obtained appropriately, depending
on whether robustness is desired at the input or the output of the
plant. Note that the robustness properties of the unity-feedback MBC
(UFMBC) are the same as those of the LQG system, since the UFMBC is just
an alternate structure of the 1LQG system.
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LQG guaranteed no robustness properties at the input or output of the
plant.

Point 1 has the good robustness properties of the full-state feedback
system.

Point &4 has the good robustness properties of the Kalman filter.
Point 2 has no guaranteed robustness properties.

Point 3 has no guaranteed robustness properties.

the 1QG/LTR design method permits recovery of the robustness
properties of point 1 at point 2 or the robustness properties of
point 4 at point 3.

Fig. 2.1. Summary of the robustness properties of the LQG block
diagram.

y(s)

-——-—-—-—-—-PO—-——-»—-» K(s) P L (s)

Fig. 2.2. Unity feedback model based compensator (UFMBC).



3. RETURN RATIO, RETURN DIFFERENCE, AND INVERSE RETURN DIFFERENCE

Throughout the literature on the LQG/LIR design procedure, the terms
return ratio, return difference, and inverse return difference are
frequently used. A simple explanation by example of these terms will be
presented. Given the block diagram in Fig. 3.1, let us break the path
at the input to the plant. Now take a path through the plant transfer
function and follow the feedback path to the other side of the break.
The multiplication of the transfer functions encountered in this path is
defined as the return ratio. In this case the return ratio is L, (s).

From the block diagram the following transfer function can be obtained:

e(s) 1
u(s) I + L,(s)

= (I + L,(s)7? (3.1

where I is the identity matrix and I + L,(s) is defined as the return
difference. In this example the return difference can be used to
characterize the error behavior in the system. From Fig. 3.1 also, the
following closed-loop transfer function can be defined:

y(s)  L,(s)
u(s) I + L,(s)

= (I + L, (s))? (3.2)

where I + L, '(s) is defined as the inverse return difference. Thus,
using the properties of the inverse return difference, the closed-loop
system can be examined.

The concepts defined above can be also applied to the block diagram of
the LQG design. The details of obtaining the return ratio, return
difference, and inverse return difference for consideration in the
LQG/LTIR procedure have been well documented in papers on the LQG/LTR
design concept.® In this report, these terms will be referred to in
relation to the requirements for the LQG/LTR design.

uls) t els) y(s)

r(::> »{1(s)]

Fig. 3.1. General block diagram of plant with unity feedback.



4., REVIEW OF OPTIMAL CONTROL THEORY

4.1 INTRODUCTION
In the following sections the linear quadratic regulator based and the
Kalman filter based optimal control problems will be reviewed briefly.>
This review will be approached in a manner to set the framework for the
study of the LQG and LQG/LTR control system designs.
4.2 TLINEAR QUADRATIC REGULATOR (LQR)
Consider the linear time-invariant state-space system

x(t) = Ax(t) + Bu(c) . (4.1)
where

y(t) = Cx(t) . (4.2)

The goal of this problem is to minimize the performance index

J = r[xT(t)Qx(t) + uT(t)Ru(t)]dt + xT(w)Zx(w) (4.3)
0

where
Jm xT(t)Qx(t)dt = integral square regulating error (4.4)

0
Jm uT(t)Ru(t)dt = integral square input (4.5)

0

and

xT (@) Zx(w) = weighted square terminal error. (4.6)

The performance index J, referred to as the quadratic performance index,
implies that a control u(t) is sought to facilitate the minimization of
J. The weighting matrices @ and R are selected to reflect the
importance of particular states and control inputs. In general the
weighting of the diagonal elements of @ can be determined by the
importance of the state, as observed by the € matrix of the output
equation. The effect of @ is the capability to control the transient
response of the LQR. The effect of R is to control the energy resulting
from u.

A necessary requirement to minimize J is that J is certainly finite.

The condition that allows J to become infinite is that uncontrollable,
unstable state trajectories appear in the performance index J. Thus the
state-space system [A,B] must be completely controllable, and [A,B] must
be stabilizable to ensure that the performance index is finite.



The control u for the optimization criteria for the steady state linear
control law takes the form

u(t) = —Kx(t) .7

and differentiating Eq. (4.3), it can be shown that S is the solution of
the steady state algebraic Riccati equation

S =0 =Q — SBRIBTS + ATS + SA (4.8)

which yields a minimum for the performance index, where S, @, and R are
constant positive-definite symmetric matrices,

K = RIB'g (4.9)

At this point our problem of stabilizing the state trajectories appears
to be complete, but this is not so. What happens when we do mot account
for unobserved and unstable state trajectories in the performance index
of the optimal control law? The result is that the linear controller
will not act on the unstable states, thus yielding a finite performance
index but an unstable closed-loop system. To eliminate this potential
problem, we must required Q to be positive definite, or Q > 0. Then the
linear control law will yield an asymptotically stable system. Q@ can be
allowed to be only positive semidefinite only if [A,C] is observable,
where ¢ is a matrix such that Q@ = ¢’C or ¢ = /Q. Using

Q = C'c (4.10)
then

(o
J = | [x'Qx + u'Ru)dt (4.11)
‘10

fr0
= [x"¢Tcx + u'Ru]dt
Jo

[
= | [y + ulRuldt
0

o
which implies that the output system responses are being regulated.

As stated previously, the observability requirement of the pair [A,C]
results in a sufficient condition for asymptotic stability of the
closed-loop system. This can be made a necessary and sufficient
condition by requiring the detectability of the pair [A,C}, since only
the unstable modes must be moved. Considering the restriction of
detectability, the requirement that & be positive definite can be
loosened to positive semidefinite.

Using the relaxed conditions, the following summary can be made
regarding the linear quadratic regulator (LQR) problem. Given the

linear time-invariant plant

x(t) = Ax(t) + Bu(t) (4.12)



which is stabilizable and controllable, then a finite performance index
J = Jm[XT(t)QX(t) + uT(£)Ru(t)]dt (4.13)
0

exists, where Q is a symmetric positive semidefinite matrix and R is
positive definite. Therefore a linear control law that minimizes J is
defined as

u(t) = —Kx(t) (4.14)
where
K = R!B's (4.15)

where, in turn, S is a constant symmetric positive semidefinite matrix
that satisfies the algebraic Ricatti equation

Q — SBR*BIS + ATS + sA =0 . (4.16)
The closed loop regulator is given by
x(t) = [A — BK]x(t) = [A — BRBTS]x(¢t) (4.17)
and is asymptotically stable provided the state equation (4.1) and the
output equation (4.2) are detectable.
4.3 KAIMAN FILTER
Now we will examine a method of reconstructing an estimate of the states
using only the output measurements of the system. The method of
reconstruction must be applicable when process noise and measurement
noise, respectively, corrupt the plant state equations and the output
measurement equations.
Let us consider the stochastic linear system
x(t) = Ax(t) + Bu(t) + T'd(t) (4.18)
y(t) = Cx(t) + n(t) (4.19)
where d(t) is a process noise random vector and n(t) is a measurement
noise random vector., Assuming that d(t) and n(t) are zero-mean,
uncotrrelated, Guassian white noises, therefore
Eld(t)]E[n(t)] = O for all ¢ (4.20)
E[d(t)d™(r)] = D,6(t — 1) (4.21)

E(n(t)n"(r)] = N§(t — r) for all £t < r (4.22)



E[d(&)n¥(r)] = 0 (4.23)
where N and D, are constant symmetric, positive definite and positive
semi-definite matrices, respectively. Note that N and D, are constant

because it is assumed that d(t) and n(t) are wide-sense stationary.

The state estimate % of the state x is obtained from the noisy
measurement y. Therefore we can define a state error vector

e(t) = x(t) — x(t) (4.24)
where we desire to minimize the mean square error
e = E[el(t)e(t)] . (4.25)

The estimator can thus be shown to take the form

& = Ax(t) + Bu(t) + F[y(t) — Cx(t)] (4.26)
where F is the filter gain which minimizes Eq. (4.25); F is defined as
F = 5¢TN1 (4.27)
where X is constant variance matrix of the error e(t). It is assumed
here that e(t) is wide-sense stationary. The ¥ is obtained by solving
the algebraic variance Riccati equation
D - SC'Ws + AT + 24T = 0 (4.28)
where
D = DT . (4.29)
A sufficient condition to obtain a unique and positive definite % from
Eq. (4.28) requires that [A,C] be completely observable. However if the
pair [A,C] is required to be detectable then ¥ can be positive
semidefinite.
The reconstruction error e(t) satisfies the differential equation
d(t)
e(t) = [A — FCle(t) + [ ~ F] (4.30)
n(t)

such that

e(t)~0 astwwo V>t
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if and only if the observer is asymptotically stable. The poles of the
observer (filter) are found using the closed-loop dynamics matrix
[A-FC]. To obtain asymptotic stability of the filter, it is required
that the pair [A,T'] be completely controllable. The necessary and
sufficient condition of stabilizability of the pair [A,I'] will ensure
stability also.



5. RETURN RATIOS FOR THE FULL-STATE AND OBSERVER-BASED FEEDBACK SYSTEMS

5.1 FULL-STATE FEEDBACK RETURN RATIO

For the full-state feedback system of Fig. 5.1 with no loops broken, it
can be stated? that

x = ®Bu =~ ®Bu’ (5.1)
and

u=R~-—Kx . (5.2)

Substituting Eq. (5.1) into Eq. (5.2) and solving for u yields

u=(I+Kke)'R , (5.3)
thus

x = ®B(I + K¥B)'R . (5.4)
Now let us examine the loop transfer function from control signal u’ to
control signal broken at point 1, assuming that R = 0. For this full-
state feedback case it follows that

x = $Bu’ (5.5)

and

u=-Kx . (5.6)

Substituting Eq. (5.5) into Eq. (5.6) yields
u = ~K¢Bu' . (5.7)
Finally, for the full-state feedback system, find the loop transfer

function from control signal u” when the loop is broken at point 2. In
this case it follows that, with R = 0,

x = ®Bu” (5.8)
and

u=u'"=-Kx . (5.9)

11
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Fig. 5.1. Full state feedback.

Substituting Eq. (5.8) into Eq. (5.9) yields

u =u' = —K&Bu”

5.2 OBSERVER-BASED FEEDBACK RETURN RATIO

For the observer-based feedback system of Fig.
6

(5.10)

5.2 with no loops broken,

it follows® that
x = ®Bu = ®Bu’' = PBu” (5.11)
and
y = Cx (5.12)
Now substituting Eq. (5.12) and Eq. (5.11) into
x = ®[Bu’ + Fy — FCx]
results in
}:{ = &[Bu' + FCx — FCx] )
X = ®{Bu' + FC®Bu' - FCX].
x = ®[Bu' + FC®Bu'] — ¥FCx (5.13)
thus
x = (I + ®FC)*®(B + FC®B)u'’ (5.14)

which simplifies to

= ®Bu'

N

(5.15)
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Fig. 5.2. Observer-based feedback.
Now examining the control u, it follows that
u =R~ Kx (5.16)
and substituting Eq. (5.15) into Eq. (5.16) results in
u = R — K®Bu . (5.17)
The control u can thus be defined as
u = (I + k$B) 1R (5.18)
Substituting Eq. (5.18) into Eq. (5.11) results in
x = ®B(I + K®B)™R (5.19)

which is the same as the result for the full state feedback system.
Now let us find the loop transfer function from control signal u' to

control signal u when the loop is broken at point 1 of the observer-
based feedback system. It follows that

u = —Kx (5.20)
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and substituting Eq. (5.15) into Eg. (5.20) yields

u = —K®Bu' . (5.21)

In this case it is clear that u' = u”. Also note that the result of
Eq. (5.21) is the same as the result found in the full state feedback
case.

Finally, for this observer-based feedback system, the loop transfer

function from control signal u” to control signal u' when the loop is
broken at point 2 will be found. For this case

X = ®(Bu' + FC®Bu”) — ®FCx (5.22)

and solving for x results in

X = (I + ®FC) '®(Bu’ + FC®Bu”) . (5.23)

Further simplification of Eq. (5.23) results in

X = ®[B(CTB)™* — F(I + COF)1]CPBu’ + ®[F(I + COF) ]CO®Bu” (5.24)

where the plant in this case is square and invertible.

Now the control for this case is defined as

u=u" = ~Kx (5.25)

where x is defined in Eq. (5.24). This result implies that there is a
difference between the control u obtained in Eq. (5.25) for the
observer-based feedback system and the control u obtained for the full
state feedback system.

From the examination of the loop transfer properties of the full state
feedback system and the observer-based system, it is clear that the
input of the observer-based system does not have the good robustness
properties of the LQR system. What now is desirable is a means of
approximating the loop properties of point 1 at point 2 of the observer-
based system.



6. OBTAINING ROBUSTNESS PROPERTIES AT THE INPUT TO AN
OBSERVER-BASED FEEDBACK CONTROL SYSTEM

From our previous examination of the observer-based feedback control
system commonly referred to as the Linear Quadratic Guassian (1QG)
control system there are no guaranteed robustness properties at the
input to the plant (point 2 of Fig. 5.2). Now a method will be
summarized that recovers the good robustness properties of the input
(point 2) of the LQR at the input (point 2) of the LQG control system.
Provided that the regulator gain for the LQR has been selected, now a
filter gain must be solved for in order to equate the control for the
LQG control system for loop break at point 2, which is
u = —Kx (6.1)
where
x = ®[B(C®BY ! — F(I + CPF) *}C®Bu’
+ ®[F(I + COF) *]CPBu” (6.2)
to the control
u = ~K®Bu” (6.3)
of the LQR for a loop break at point 2.% To equate the control
Eq. (6.1) to the control Eq. (6.3) requires that the following equation

be satisfied:

B(C®B)™! = F(I + CIF)™ 1 . (6.4)

Therefore an appropriate value of F must be found to satisfy Eq. (6.4).

Now to select a value of F, we will assume that F is a function of a
scalar parameter g such that

Eégl + BW as gow (6.5)

where W is any nonsingular matrix. Therefore, using the right-hand
sides of Eqs. (6.4) and (6.5), then

F(I + CoF)™! = f_é_‘?_) qlI + CBF(q)]™

_F) I F(g™
a [q+c<1> 7 ) (6.6)

15
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which implies that as g»< Eq. (6.6) becomes
BW(C®BW)™! = B(C®B)™! (6.7)
which satisfies the equality requirements of Eq. (6.4) for W = I, an
identity matrix.
As previously discussed, the error dynamics of the Kalman filter must be
asymptotically stable. This requires that an appropriate error noise
statistics E(q) satisfies
0 - A3(q) + =(q)4! + D(g) — (q)C'NC(q) (6.8)
such that
F(q) = Z(q)C'N™? (6.9)

where D(q) is a positive semidefinite and N is a positive definite, and
[A,D¥] and [C,A] are respectively stabilizable and detectable.

Now D(q) the process noise intensities and N the measurement noise
intensities are to be respectively defined as

D(q) = Ip T + ¢*BVUBT (6.10)
and

N =N, (6.11)
where I' = I, D, = C'C, and V is any positive definite symmetric matrix.
Substituting Eqs. (6.10) and (6.11) into Eq. (6.8) results in

0 = AS(q) + S(q)AT + D, + ¢*BVBT — (q)CN,IC3(q) (6.12)

which implies that

S(q)  B(@A' D, =(q) 2(q)

0 =4 + + — + BVBY — —— %N —— . (6.13)
2 2 2 2 2
q q q q q

Now let ¢-»= in Eq. (6.13); thus

2(q) 2(q)
q® —— C™W,'¢ —— - BVBT (6.14)

qZ q2

and using Eq. (6.9), the left-hand side of Eq. (6.14) is then
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F(@QNF ()T , Z(q) - ={q)
— =g cIN,ic
q* q° T

which implies that as ¢+

F(@NF()*

qZ

-+ BYBT |

thus

F(CI) > BVkN %
q ]

W o= VEN,¥

(6.15)

(6.186)

(6.17)

(6.18)

Thus it can be concluded that as g+» the loop properties at the input to
the plant of the LQG control system approach the input properties of the

LQR control system. WNote, however, that as g»» the process noise
intensity is seen to differ significantly from the assumed process
noise. However, as q-+0 the Kalman filter is approached.

Thus when

q = 0 the LQG system has no guaranteed loop properties at the input. It
appears that a trade-off must be made between obtaining an accurate

filter and obtaining good loop transfer properties.



7. LQG/LTR DESIGN AT THE PLANT INPUT USING SINGULAR VALUES

7.1 THE LQR DESIGN STEP
Now the LQR design step of the 1QG/LTR design procedure will be
summarized using the singular-value concept (see Appendix C). First,
the Kalman equality for the LQR is defined as

[I + K(sI — A)™B]™[I + K(sI — A)'B] (7.1)

= I + = [BY(sI — AT)WPTP(sI ~ A)71B]

o=

- %[P(SI ~ A)B]"[P(sI ~ A)7'B]

where * indicates the complex conjugate transpose, Q = P'P, and R = pI.

It then follows from Eq. (7.1) that
(I + L,]"[I + L,] =T+ %[P@B]*[PCDB] (7.2)

where L,(s) = K®B is the return ratio of the LQR at point 2 (see
Fig. 5.1) and @ = (sI — A)"!. Finding the eigenvalue of Eq. (7.2)
results in

AMII + Ly(s)]*[T + Ly(s)]) = 1 + .’1; A[ [P®B]*[P®B] ] (7.3)

thus it can be stated that system singular values are

o [I + 1p(8)] = /4 +]; 0, 2[P2B] . (7.4)

7.1.1 Command Tracking and Disturbance Rejection®

Assuming that command following and disturbance rejection will occur at
low frequencies requires that at low frequencies

(Ly(s)) > 1 . (7.5)

Omin
This condition results in Eq. (7.4) becoming

1
Opin(ly(8)) = — oy, (PEB) . (7.6)
p

By using this approximation, the solution of the Riccati equation is
avoided in computing (L,(s). This approximation therefore allows the
plotting of the singular values of L,(s) for various values of p and P
with minimum effort.

18
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The value of P must be selected to balance the minimum and maximum
singular values of L,(s) at either a low, a high, or an arbitrary
frequency. The value of p has the effect of lowering or raising the
singular-value plots, depending on the magnitude of p selected. An
explanation of the relationship between the singular-value plots and the
performance and robustness properties is given in Appendix A.

7.1.2 Robustness at the Plant Input®

It is assumed that the unstructured uncertainty takes the form of AL(s).
This uncertainty is assumed to become significantly large at high
frequencies. Considering that multiplicative perturbations are
occurring at the input to the plant, to obtain good robustness
properties requires that

omnlI + Ly(s)™2] > |aL(s)]| . (7.7)
Provided that C®B is minimum phase, the IQR gain becomes
JpK-WP (7.8)
as p~»0. At high frequencies jw can be defined as

Jje
§ = (7.9)
Jr

as p~0, where ¢ is constant. Therefore

-1

Je Je
L, — =K —I—-A B
s /e
= JpK(jeI ~ [pA)7'B (7.11)

Using Eq. (7.8) in Eq. (7.11) results in

jc  WPB
Ly — = ——, as p»0 . (7.12)

e e

The constant ¢ can be defined as

c =2 (7.13)
Jr

using s = jw in Bq. (7.9). The maximum crossover frequency w, occurs
max
where

WPB

Jws_ Jp

max

amax[Lz(chmax)] = Tmax =1 (7.14)
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and ¥ is an orthonormal matrix.

PB
wcmax = Ogpax —— (7.15)
/7
where w, is less than the frequency at which
max
lacw) || = 1 . (7.16)

The system crossover frequency w, in Eq. (7.15) is only an approximate
value. max

7.2 LOOP TRANSFER RECOVERY USING THE KAIMAN FILTER

Having designed the LQR to obtain good low-frequency performance
specifications and robustness properties, the design of a Kalman filter
to recover the robustness properties at the plant input of the LQG is
considered.®

The open-loop plant C®B must be minimum phase, having an equal number of
inputs and outputs or having more outputs than inputs.

If the system is nonsquare, then C®B and F®B must be augmented to become
square. Next the Kalman filter is designed, using the following process
and noise intensity matrices

D = o I'" + ¢?BVA! (7.17)
N = ul (7.18)
where q is a scalar and V is an arbitrary symmetric positive definite
matrix, as discussed in Sect. 6. Now as q24w the return ratio at

point 2 of the observer-based system approaches K®B, the return ratio at
point 2 of the LQR system.



8. SENSITIVITY OF MULTIVARIABLE FEEDBACK SYSTEMS

8.1 DERIVATION OF THE MATRIX SENSITIVITY FUNCTION

In Sect. 7, the LQG/LTR concept was introduced. A design procedure was
developed that produced command tracking, disturbance rejection, and
robustness at the plant input. In this section, the linear sensitivity
relationship between the closed-loop output error and the equivalent
open-loop output error is derived. This sensitivity function takes the
form of the inverse of the return difference matrix, discussed in

Sect. 3. The importance of this sensitivity function is that it allows
the synthesis of a multivariable closed-loop control system more
insensitive to parameter variations in the plant than an equivalent
open-loop system.’

As the first step in the design process, the Laplace transforms of some

signals of the open-loop control system as shown in Fig. 8.1 are
defined. The Laplace transforms are as follows:

Yo(s) = L(s)Uy(s) (8.1)

Up(s) = K (s)R(s) (8.2)

where Y,(s) is the output signal of the nominal plant Uy(s) is the
output signal of the open-loop compensator K,(s), R(s) is the input
signal of the open-loop control system, and L(s) is the Laplace
transform of the nominal plant.

U, (s)
R(S) et K (8) feeeep! L() |

Y, {(s)

Fig. 8.1. Block diagram of open-loop compensated system.

In actual practice a plant will deviate from the nominal plant because
of parameter variations. Let us define the perturbed plant transfer
function as L’(s); thus

Y4(s) = L' (s)Uy(s) (8.3)
where Y',(s) is the output that results when parameter variations of the

plant occur. Therefore it can be stated that

Eg(s) = Yo(s) — Yi(s) (8.4)

21
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where E,(s) is the Laplace transform of the error in the plant output

signal when parameter variations in the nominal plant occur.

A closed-loop control system of the form shown in Fig. 8.2 is now

examined. The Laplace transforms of the signals are defined as follows:
Y.(s) = L(s)U_(s) (8.5)

Uc(s) = K(s)[R(s) - Y(s)] (8.6)

where Y (s), U,(s), and K(s) are respectively the plant output, control
input to the plant, and compensator of the closed-loop control system.

Ris) + E.ls) Uecls) Y.(s)

——{ K5 }—>{L®

Fig. 8.2. Unity feedback MIMO control system.

Now define the signals resulting from parameter variations in the
nominal plant of the closed-loop control system as follows:

Y!(s) = L' (s)UL(s) (8.7)
Ui(s) = K(s)[R(s) — Y¢(s)] (8.8)

The deviation of the output of the nominal system due to plant parameter
variations is defined as

E.(s) = Y. (s) - Y.(s) . (8.9)

Substituting Eq. (8.6) into Eq. (8.5) and solving for Y_(s) yields
Y. (s) = [I + L(s)X(s)] L(s)K(s)R(s) (8.10)
and, also, substituting Eq. (8.8) into Eq. (8.7) and solving for Y (s)

yields

Y.'(s) = [I + L'(s)K(s)]™ L' (s)K(s)R(s) . (8.11)
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Therefore it follows that
E.(s) = Y (s) — Y.(5) (8.12)
can be rewritten as
E.(s) = [(I + L(s)K(s))'L(s)K(s)
~ (I + L' ($)K(s)) L' (s)K(s)R(s) . (8.13)
Now define the term
AL(s) = L'(s) — L(s) (8.14)
which represents the error of the plant transfer function due to
parameter variations. From this point on for simplicity we will

suppress the use of the s in representing the Laplace transforms. Using
Eq. (8.14), it follows that

L' = L + AL (8.15)

which is the perturbed plant transfer. Using Eq. (8.15) in Eq. (8.13)
yields

Eg = [(I + LK)MK — (I + (L + AL)K)™ (L + AL)X]R
(I + (L + ALK)™Y [(I + (L + AL)K)(I + LK)™'LK ~ (L + AL)KJR
(I + (L + ALX)™ [(I + (L + AL)K)(I + LK)™'LK ~ 1K - ALK]R
(I + (L + ALYX)™® [(ALK(I + LK)7LK-ALK]R
(I + (L + AL)K)™ [(ALK(T — I)] ; (8.16)

i

i

i

where
T = (I + LK)k . | (8.17)
From Eq. (8.10), it follows that |
Y, = TR (8.18)

and recalling that the open-loop and closed-loop control systems have
equivalent results implies that

Y. =Y, . (8.19)
Considering that Eq. (8.19) holds, this further implies that

Uy = U, (8.20)
then using Eqs. (8.6) and (8.18), Eq. (8.20) becomes

Uy = U, = K[I ~ T]R . (8.21)
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Recall that

Eq = (L — L')U, = —ALU, = —ALK[I — T]R

Ey = ALK[T — I}R . (8.22)
thus using Eq. (8.22) in Eq. (8.16), then Eq. (8.16) becomes
E, = (I + (L + AL)K)7E, (8.23)

Now assuming that L'K = LK for small parameter variations, then it
follows that

E, = (I + LK) 1K, (8.24)

where I + LK is the return difference. Thus from the derivation of
Eq. (8.24), the sensitivity function

S(s) = (I + LK™ (8.25)

is obtained, which relates the closed-loop and open-loop errors.

8.2 SENSITIVITY COMPARISON CRITERIA

Now a performance index will be defined, to ensure that the closed-loop
feedback system is less sensitive to parameter variations than an
equivalent open-loop system. This performance index uses the integrated
square of the error and takes the form

t
Performance Index = I ! el(t)e(t)dt (8.26)
0

where e(t) can be the open-loop or closed-loop error and t; > 0. The
value of t; is practically selected to be 4 or 5 times the largest "time
constant" of the system. Thus, for the closed-loop system to be less
sensitive than the open-loop system, the following inequality must be
satisfied '

t t
J el (t)e (t)dt <J el (t)e,(t)dt . (8.27)
0 0

The inequality of Eq. (8.27) results in a sufficient condition requiring
the sensitivity matrix to satisfy

ST(—jw)S(jw) — I <0 VweF (8.28)
where F is the frequency band of interest.

The inequality given in Eq. (8.28) can be rewritten using singular
values as follows:
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0ninlS(8)) >> 1  VweF (8.29)
or
Opin(I + L(8)K(s)) >> 1 YweF (8.30)

The inequality of Eq. (8.30) can conflict with system design
requirements of command/disturbance for the ILQG/LTR control system
design obtaining robustness at the plant output. It should be also
noted that the resulting output sensitivity is fixed when robustness is
obtained at the plant input. The only way to change the output
sensitivity is by trail-and-error compromise and modification of the
plant input design requirements.



9. CONTROLLER DESIGN FOR THE DEAERATOR

In this section, three linear control methods are used to obtain a
level-control system design for a deaerator. The three linear control
system design methods that will be used are proportional plus integral
(PI), linear quadratic Gaussian (1QG), and linear quadratic Gaussian
with loop transfer recovery (1QG/LTR). In this investigation, the dual
of the procedure developed for the ILQG/LIR design at the plant input
will be used to obtain a robust control system design at the plant
output.

The Bode gain and phase plots of the resulting control system design
will be presented for each controller. Also, the singular-value plots
of the return ratio, return difference, and inverse return difference
for a break at the plant output will be presented.
The deaerator was chosen because of its simple mathematical structure;
one input, one output, and three state variables. Thus the model easy
to follow but complex enough to illustrate the design technique.
9.1 THE LINEARIZED MODEL
The mathematical model of the deaerator is nonlinear, with a process
flow diagram as shown in Fig. 9.1. This nonlinear plant is linearized
about a nominal operating condition. The resulting linearized plant
model will be used to obtain the controller design. The linear
deaerator model is described by

x(t) = Ax(t) + Bu(r) (9.1)

y(t) = Cx(t) (9.2)

where A, B, and C are given respectively as
[ -53.802 1.7093 9.92677
A= 1.761E-4  ~9.,245E-04  —0.0053004
-0.001124 ~0.0243636  —0.139365
—9526.25
B =] 0.265148

~1.72463

and
C=1[0.03.2833 0.06373 ]
The states are defined as

26



27

Extraction Line
control valve

' ’// condensate pump
MN g;i (}) { ;
i
) C;) i
l
J

|
e e e = e = controller f= = = — — 4

4}

5P — operating pressure between the pump and the extraction
line
x = | §p — fluid density
§H — internal energy of the tank level

with an output

y = change in deaerator tank level
and plant input

u = change in control valve.

The poles and zeros of the deaerator model are shown in Table 1.

Table 1. Deaerator poles and zeros®

Poles Zeros
D) 1.99E-06 (1) -0.199
(2) -0.141 (2) -47.5
(3) -—-53.8

*Note: System gain = 0.76.
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9.2 L1QG CONTROLLER DESIGN

The design considerations for the tracking 1QG control system will first
be discussed. The block diagram of the 1LQG control system is shown in
Fig. 9.2. It is apparent that output tracking of a reference input will
not occur with the present LQG controller configuration. An alternate
compensator structure, shown in Fig. 9.3, is therefore used to obtain a
tracking 1QG controller., The controller C(s) uses the same filter gain
(F) and regulator gain (K) as computed by the 1QG design procedure.

R +

Fig. 9.2. 1QG block diagram.

The regulator performance index is defined as

J = Jj [xTQx + u'Ru]dt (9.3)
where
0.005 0.0 0.0
Q=10.0 100.0 0.0
0.0 0.0 1.0
and
R = 107°

The estimator is defined such that
X = Ax + Bu + I'd (9.4)

y =Cx + n (2.5)
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r{s) + y(s)
"""""‘""O*-———b C(s) p—] Lis)
Fig. 9.3. Alternate compensator structure.
E[Td(t£)d"(£)T) = D, 6(t — 1) (9.6)
E[n(e)n' ()] = N 6(t — 1) (9.7)
where
0.0 0.0 0.0
D,, = 0.0 100.0 0.0
0.0 0.0 1.0
and
N, = 1.0.

uu

Using a control system design package MATRIX,, the regulator and filter
gain are respectively computed as

K =1.0E + 05 x [-0.0223 3.145 -0.1024]

0.1962
F = 9.9998

—0.0083

and

The frequency response of the open-loop transfer function of the closed-
loop compensated system

y(s) TANK LEVEL
r(s) =~ REFERENCE INPUT

(9.8)

where y(s) is the tank level and r(s) is the reference input, is shown
in Fig. 9.4.
9.3 LQG/LTR CONTROLLER DESIGN

Now a tracking LQG/LTR controller design will be presented. This
LQG/LTR control system has the structure shown in Fig. 9.3. This
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Fig. 9.4. Open-loop frequency response of the LQG control system.

LQG/LTR control system design is a two-step process. First, a Kalman
filter (KBF) is designed to obtain good command following and
disturbance rejection over a specified low-frequency range. Also, the
KBF design is made to meet the required robustness criteria with system
uncertainty of AL(s) at the system’'s output. It will be required to
obtain good command following and disturbance rejection that

Omin(Ly(s)) > 20 dB VYw < 0.1 rad/s (9.9)

where L,(s) is the loop transfer function at the output of the KBF
(point 4 of Fig. 9.2). Assuming the high-frequency uncertainty AL(s)
for this system becomes significant at 5 rad/s, then for robustness it
will be required that

OmintI + [L,(s)]™HY > |AaL(jw)|| = 5 dB Yw > 5 rad/s . (9.10)
In this application the frequency at which system uncertainty becomes
significant, 5 rad/s, and the magnitude of the uncertainty, 5dB at
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5 rad/s, are assumed values. This assumption is required because of the
lack of information on the model of the high-frequency modelling errors
of the process being studied.

The second step is to recover the good robustness properties of the loop
transfer function L,(s) of point 4 at the output node y (point 3). This
will be accomplished by applying the loop transfer recovery (LIR) step
at the output node (point 3). The LTR step requires the computation of
a regulator gain (X) to obtain the robustness properties of the loop
transfer function L,(s) at the output node y.

A tool exists that is used to obtain the LQG/LTR design for this system,
considering the low- and high-frequency bound requirements. The tool
used is CASCADE, a computer-aided system and control analysis and design
environment that synthesizes the LQG/LTR design procedure.

The weighting matrices used in the design of the KBF avre

3.775E-23 3.414E-18 -1.272E-19
D, = 3.414E-18 3.088E-13 ~1.150E-14
~1.272E-19  ~1.150E-14 4.284E-16
and
Ny = pI = 0.25 x 10720

The weighting matrices used in the LQR design of the loop transfer
recovery (LTR) step are

0.0 0.0 0.0
Q=Q, + q%¢"c = 105 x | 0.0 5.3866 0.1049
0.0 0.1049. 0.002
where
1.0 0.0 0.0
Q, =1 0.0 100.0 0.0
0.0 0.0 1.0
and
R=1.0
The resulting filter and regulator gains for this system are
respectively
1.07E-02
F = 0.472
~2.299E-02
and

K = [0.660 27703.397 589.452]}
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The resulting open-loop frequency response of the compensated system is
shown in Fig. 9.5.
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Fig. 9.5. Open-loop frequency response of the LQG/LTR control
system.

9.4 PI CONTROLLER DESIGN

Now the design requirements for the PI control will be discussed. The
PI controller for this system design will take on a structure similar to
the three-element controller prevalent in process control. Therefore
the PI control system structure will take the form shown in Fig. 9.6.
(The classical design of the deaerator is discussed in Appendix B.)

The transfer functions used in this control structure are defined as

w(s) CONDENSATE FLOW

u(sy ~ CONTROLLER OUTPUT (9.11)




tank level
SETPOINt ris

e’

PI Controller - C(s) L{s)
+ u(s? E : f yis)
» K K + Ks p| K. (wishuls)) VK, g yis)wis) _h‘._.,:
- i
1 )

Fig. 9.6. Block diagram of PI control system.
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and

y(s) B TANK LEVEL (9.12)
w(s)  CONDENSATE FLOW )

The constants K; and K, are used for unit conversion and defined
respectively as 1.0 and 10™®., The terms K, and K; are defined
respectively as the proportional gain and the integral gain.

Using the practical experience of a prior three-element controller
design, the proportional and integral gains are selected to be

K, = 0.1

and
.K1 == 0.05

The resulting open-loop frequency response plot of the compensated
system y(s)/r(s) is shown in Fig. 9.7. The poles and transmission zeros
of the original plant and the return ratios for the 1QG, LQG/LTR, and PI
control systems are shown in Tables 2, 3, and 4 respectively.

9.5 PRECOMPENSATOR DESIGN

The transient responses of the PI, I1QG, and LQG/LTR control systems are
shown respectively in Figs. 9.8, 9.9, and 9.10. The transient response
of the IQG/LTR controller is seen to have a faster time to peak than the
1QG and PI transient responses. Considering the practical physical
limitations of the plant, it appears unlikely that the required rise
time dictated by the transient response of the LQG/LTR is possible. It
appears that the obvious solution would be to redesign the LQG/LTR
control system to obtain a slower, more practical response. 1In the case
of the LQG/LTR control system, the possibility of a redesign 1is
eliminated, because the control system was designed to meet certain
command tracking, disturbance rejection, and stability robustness
requirements.

Therefore, to eliminate this difficulty, a second-order precompensator
will be placed in the forward path of the reference input signal. This
precompensator will shape the output transient response of the system,
since the control system design requires the output to follow the
reference input. The precompensator in this investigation will be
required to have a time to peak of 30 s with a maximum overshoot of
about 3%. The requirements are selected to somewhat emulate the
transient response of the PIL controller.

The transfer function of the second-order precompensator used is as
follows:
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Fig. 9.7. Open-loop frequency response of PI control system.

Table 2. LQG controller and deaerator
poles and zeros?
Poles Zeros
(1) 1.99E-06 (1) -~0.140
(2) ~0.141 (2) ~0.199
(3) —0.204 (3) —47.5
(4) ~-32.9 (4) -53.8
(5) -53.8
*Note: System gain = 2.3899E + 06.
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Table 3. 1QG/LTR controller and deaerator
poles and zeros®

Poles Zeros
(1) 1.99E-06 (1) -~0.140
(2) ~0.141 (2> -0.199
(3) —-0.181 (3) —47.5

(4) —47.7+j537.3
(5) —47.7-j537.3
(6) -53.8

®Note: System gain = 9.9190E + 03.

Table 4. PI controller and deaerator
poles and zeros®

Poles Zeros

(1) 0 (1) -0.5
(2) —0.143 (2) —0.199
(3) —0.227 (3) —47.5
(4) -98.8

8Note: System gain = 0.076.

r(s) w?

- (9.13)

rin(s) s? + 2¢w,s + wﬁ

where ¢ is the damping ratio, w, is the natural frequency, r(s) is the
output of the precompensator, and r; (s) is the actual reference input.
The precompensator Eg. (9.13) can be represented in state equation form

as follows:
X 0 1 Xy 0
' = + r;,(t) (9.14)
Xy - —2Cw, X, 1

X1
r(e) = [ w¥@ 0] (9.15)

and
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Fig. 9.8. PI control system closed-loop transient response.

where r;,(t) is the time domain representation of the reference input
signal and r(t) is the time domain signal at the output of the
precompensator.

Considering the 3% overshoot requirement, then ¢ must be 0.7. Using the
following expression,

s

S (9.16)
w1 ~ ¢2

where t,,,

must be 30 s, then

w, _ (9.17)
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Fig. 9.9. 1LQG control system closed-loop transient response.

Now the complete state equation of the precompensator is given as

X 0 1 b’ 0
- + r;, () (9.18)
%, —0.0215  ~0.2052 | | x, 1

x,
. (9.19)

. X2

and

r(t) = [0.0215 0]

The resulting transient response of the LQG/LTR control system using the
precompensator is shown in Fig. 9.11.
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Fig. 9.10. IQG/LTR control system closed-loop transient response.

9.6 ANALYSIS OF SINGULAR-VALUE PLOTS

Using the singular-value plots of the return ratio, inverse return
difference, and return difference, the performance and stability
robustness characteristics of the various deaerator control system
designs can be examined. Recall that systems with large stability
margins, good disturbance rejection/command following, low sensitivity
to plant parameter variations, and stability in the presence of model
uncertainties are described as being robust and having good robustness
properties. The singular-value plots for the PI, 1QG, and LQG/LTR
control systems will therefore be examined to evaluate the robustness
properties of each system. An explanation of the relationship between
the singular-value plots and the performance robustness properties is
given in Appendix A.

9.6.1 PI Control System Singular-Value Plots

First let us define for the singular-value pleots the return ratio L(s),
which contains the transfer function of both the compensator and the
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Fig. 9.11. IQG/LTIR control system design closed-loop transient
response with precompensator.

plant for a given control system. The PI control system return ratio
singular-value plot (RSV) shown in Fig. 9.12 indicates that at low
frequencies the system has good disturbance-rejection properties for
Opin(L(jw)) > 20 dB at w < 0.01 rad/s. The command-following property
of the PI controller yields a steady state error of zero. The good
command-following property for a step reference input exists for the PI
controller because the plant is a type 1. The PI controller does very
well at minimizing the effect of sensor noise as a result of the very
small gain at high frequencies. The approximate crossover frequency for
this system is 0.1 rad/s, as observed from the RSV,

To minimize sensitivity of the closed-loop system to parameter
varjations, the return difference singular-value plot (RDSV), as
discussed previously, requires that

Opinld + L{jw)] >> 1 V¥V we F (9.20)

where F is a low-frequency range where parameter variations occur. For
a more specific analysis let us require
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Fig. 9.12. Singular-value plots of return ratio.
Onin(I + L(jw)) > 20 >> 1 (9.21)
or

Opin(I + L(jw)) > 26 dB >> 0dB (9.22)

over some range of w.

Now considering the criteria of Eq. (9.22) and examining Fig. 9.13, the
RDSV for the PI control system indicates that the PI control system
output is insensitive to low-frequency parameter variations for v <
0.0055 rad/s.

Next let us examine the inverse return difference singular-value plot
(IRDSV) shown in Fig. 9.14 for the PI control system. The IRDSV
indicates that the PI control system is stable in the presence of a
high-frequency modelling error greater than the magnitude specified in
Sect. 9.3.

9.6.2 1OG Control System Singular-Value Plots

The return ratio singular-value plot (RSV) for the IQG control system
indicates that at low frequencies the system has good disturbance
rejection properties for
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Fig. 9.13. Singular-value plots of return difference.
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Fig. 9.14. Singular-value plots of inverse return difference.
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Onin[L{jw)] > 20 dB
where, in this case, w < .017 rad/s.

The RSV also reveals that the control system has good immunity to sensor
noise, because of the significant attenuation of L(jw) occurring at
frequencies much greater than 1 rad/s. This attenuation also implies
that good robustness properties can be expected when the inverse return
difference is examined for stability to multiplicative plant
perturbations. ~

The command-following property for this system is good for a step input,
since the plant is a type 1 system. This good command-following
property is also applicable to the LQG/LTR control system.

The sensitivity of the LQG control system is now examined using the
criteria given in Eq. (9.21) The LQG control system satisfies the
required conditions for w < 0.008 rad/s. Thus only for slowly varying
parameters is the LQG control system output insensitive.

The TIRSV of this control system implies that the system is certainly
stable for a multiplicative plant perturbation such that

lAL(jw)|| = 5 dB  V w > 5 rad/s

since

Oginll + [L(j®)]7') >5dB V¥V w > 5 rad/s

9.6.3 LOG/LTR Control System Singular-Value Plots

The IQG/LTR RSV indicates that the control system meets the requirements
given in Eq. (9.9), thus ensuring a good disturbance-rejection property.
The system output completely tracks the reference input, since the plant
is a type 1 system. The approximate system crossover frequency is

1 rad/s according to the RSV. The RSV also indicates that the effects
of sensor noise are significantly minimized at w > 5 rad/s.

The RDSV satisifies inequality (9.22) for w < 0.055 rad/s, thus ensuring
a system insensitive to parameter variatiomns only at low frequencies.

The IRSV shows that the LQG/LTR control system is very stable for the
multiplicative perturbation AL specified in Sect. 9.3,
9.7 DEAERATOR STUDY SUMMARY AND CONCLUSIONS

9.7.1 Summary of Control System Analysis

The design criteria used for analysis in this system is defined as shown
in Table 5. The performance and robustness results summarized from the
analysis using the singular-value plots are shown in Table 6. From this



b4

Table 5. System design specifications

System requirements Range
Good command-following/disturbance Oninl L(jw)] > 20 dB
rejection Yo € 0.1 rad/s
Good system response to high- OpinlI + [L(jw)]1™) > |AL| = 5 4B
frequency modeling error Vw < 5 rad/s
Good insensitivity to parameter Opinld + L(jw)] > 26 dB
variations at low frequencies for low frequencies
Good immunity to noise Opax | L(jw)] << 0 dB
w > 5 rad/s for high frequencies

table it appears that the LQG/LTR control system has the widest low-
frequency range of disturbance rejection and insensitivity to parameter
variations. The PI control system is seem to have the worst disturbance
rejection property and the most sensitivity to parameter variations.

All of the control systems demonstrate the capability of maintaining a
stable robust system in the presence of high-frequency modelling errors,
especially the PI control system. Even though all the control systems
also have good immunity to noise at frequencies significantly greater
than 5 rad/s, the PI control system has the best immunity.

The LQG/LTR control system is seen to meet all the design criteria,
unlike the other control systems. The design of the IQG/LTR control
system was obtainable in a systematic manner, in contrast to the trial-
and-error method used for the 1QG control system. The LQG controller
design was obtained by shaping of the output transient response using
the system state weighting matrix, then examining the system's singular-
value plots. The PI control system used is simply a three-element
control system strategy that has previously been used in the simulation
study of the deaerator flow control systen.

9.7.2 Conclusions

It should be evident that performance characteristics such as a suitable
transient response do not imply that the system will have good
robustness properties. Obtaining suitable performance characteristics
and a stable robust system are two completely separate goals. Presently
and in the past, classical unity-feedback design methods have been used
for transient response shaping, with little consideration for robustness



Table 6. Performance

and robustness results

System
properties

PI
control system

1Q6G

control system

LQG/LIR

control system

Command following/
disturbance

System response to
high frequency modeling
error (w > 5 rad/s)

Insensitivity to parameter
variations at low
frequencies

Immunity to noise
(w > 5 rad/s)

Opin[L{jw)] > 20 dB
V w < 0.01 rad/s

Umin{I + [L(Jw)]_l}
> 43.0 4B

Opintl + L(jw)] > 26 dB
Y w < 0.0055 rad/s

Opaxl L(jw)] € —42.5 dB

Ominl L(jw)] > 20 dB
Y w < .017 rad/s

OminlI + [Ljw)]™)
> 30 dB

OminlI + L{jw)] > 26 dB
V w < 0.008 rad/s

Umax[L(jw)] S "‘30 dB

OunlL(jw)] > 20 dB
Y w<0.1 rad/s

OpintI + [L(jw)]™?)
> 16.7 dB

Ominld + L{jw)l > 26 dB
YV w < 0.055 rad/s

oo [L(jw)] < ~16 dB

Y
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properties. The main advantage of having a closed-loop feedback system
is that good performance and stability robustness properties are
obtainable. As seen in this paper, transient response shaping can be
obtained easily using a precompensator. Therefore it appears that the
goal of the control system designer is first to design a stable robust
system and then use prefiltering to obtain the desired transient
response.

Optimal control methods as demonstrated by the 1QG control system do not
guarantee good robustness properties when applied systematically to meet
minimization requirements of a performance index. Methods such as pole
placement emphasize transient response characteristic without regard to
robustness, which could be detrimental to the system integrity in the
presence of model uncertainties.
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Appendix A
SINGULAR-VALUE REQUIREMENTS FOR SYSTEM DESIGN

First let us derive the representation of y(s). From Fig. Al, it can be
shown that

y(s) = [L(s)K(s)]e(s) + d(s) (Al)
where
e(s) = r(s) —~ y(s) — n(s) (A2)
thus
y(s) = [L(s)K(s)][xr(s) —~ y(s) — n(s)] + d(s) (A3)
y(s) = L(s)K(s)r(s) — L(s)K(s)y(s) — L(s)K(s)n(s) + d(s)
therefore

y(s) = [I + L(s)K(s)] M [L(s)K(s)r(s) — L(s)K(s)n(s) + d(s)]

[I + L(s)X(s)]ML(s)X(s)[r(s) — n(s)]] (A4)
+ [I + L(s)K(s)]7d(s)

I

it

y:(8) + ya(s) — yu(s)

where y,.(s), y4(s) and y,(s) are respectively the contributions to the
plant output due to the reference input, disturbance input, and noise
input to the system. Now the requirements for good command following,
disturbance rejection, and insensitivity to sensor noise will be defined
using singular values to characterize the magnitude of MIMO transfer
functions. These requirements are also applicable to SISO systems.1

Singular-Value Regquirements for Good Command Following

Good command following of the reference input r(t) by the plant output
y(t) implies that

yv(s) = r(s) Vsesy (A5)

where sp is the imaginary frequency range of the input r(s). Letting
d(s) = n(s) = 0 in Eq. (A4) results in

yr(s) = [I + L(s)K(s)]'L(s)K(s)r(s) . (A6)

Therefore, to obtain good command following for this system requires
that

Oin(Lj)K(jw)) >> 1 Vwewy . (A7)

49
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d(s)
r(s) + e(s) u(s) + +
P el K(S) el (5) P y(s)
B +
é‘— n(s)
+
r(s) - input reference signal
e(s) - exror signal transfer function
u(s) - input signal to plant transfer function
d(s) - disturbance signal transfer function
y(s) - output signal transfer function
n(s) - noise signal transfer function
L(s) - nominal plant transfer function
K(s) - compensator transfer function
wg - frequency range of the input command
wy - frequency range of the distance
wy - frequency range of the noise
s - imaginary frequency jw

Fig. Al. Unity feedback MIMO control system.

Singular-Value Requirements for Good Disturbance Rejection

To minimize the effect of disturbance on the output signal y(s),
Eq. (A4) will be examined when n(s) = r(s) = 0, which results in

va(s) = [I + L(s)K(s)]Hd(s) . (A8)
Good disturbance rejection at the plant output requires
Opin(L(Jw)K(jw)) >> 1 Vwewy . (A9)

Singular-Value Requirements for Good Immunity to Sensor Noise

First letting r(s) = d(s) = 0 in Eq. (A4) results in
Ya(s) = ~[I + L(s)K(s)] " HW(L(s)K(s)n(s)) . (A10)
Therefore to minimize y,(s) requires that
Opnax (LJw)K(jw)) << 1 Vwew, . (All)
It is apparent that any overlapping of any of the frequency ranges wy,
wg, or w, will require system design specification trade-offs to be
made. This will definitely occur when overlapping of the lower

frequency ranges of wy and/or wy with the higher frequency range w,
occurs.
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Appendix B
CLASSICAL DESIGN OF THE DEAERATOR CONTROL SYSTEM

This procedure summarizes the design of the deaerator control system in
which classical techniques (root loci and Bode plots) were utilized and
will be used in comparison with the robust control system. A general
model of the deaerator is shown in Fig. Bl. The appropriate linearized
transfer functions obtained from the modular modeling systems (MMS)
developed by Babcock and Wilcox for the Electric Power Research
Institute (EPRI) are

y(s) 0.76 (s® + 47.66s + 9.423)
- (B1)
u(s) s® + 53.94235% + 7.,5587s — 1.5039 x 107°
and
w(s) 4.5227 x 10%s% + 6.424 x 107s — 77.546
- (B2)
u(s) s® + 53.9423s% + 7.5587s — 1.5039 x 1073
where

y(s) - deaerator tank level
w(s) - condensate flow
u(s) - control action of the valve

The first step in the design process is to factor the two transfer
functions to emphasize their pole-zero locations. Thus

Extraction Line
control valve

’// condensate pump

e - e
e e s v

controller pr ~ v — — A

+
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y(s) 0.76(s + 0.1986)(s + 47.458)
- (B3)
u(s) (s — 1.9896 x 107%) (s + 0.1405)(s + 53.8015)
and
w(s) 4.5227 x 10%(s + 1.2071 x 107%) (s + 0.142)
- . (B4)
u(s) (s — 1.9896 x 107%) (s + 0.1405)(s + 53.8015)

At first glance it would seem that these two transfer functions,
Eqs. (B3) and (B4), have right half plane poles and zeroes. However
these poles and zeroes average due to numerical inaccuracies in the
linearization process in the MMS digital simulation program. A more
realistic set of transfer functions is

y(s) 0.76 (s + 0.1986)(s + 47.458) (B5)
u(s) : s(s + 0.1405)(s + 53.8015)
and
wis) _ 8 s + 0.142
a(sy ~ 45227 X 10° o §TT405) (s + 53.8015) (B6)
To facilitate the design process, Egs. (B5) and (B6) are further
manipulated to obtain the two transfer functions
w(s) 8 s + 0.142
a(sy T 49227 X 107 o5 1405y (s 1 53, 8015) (87)
and
y(s) _ 1.6804 x 10°° (s + 0.1986) (s + 47.458) (B8)

w(s) s(s + 0.142)

With the transfer functions in this form, the block diagram of the
system has an inner and an outer loop, as shown in Fig. B2.

The variable WFW represents the feedwater flow. However, for this study
it was maintained constant. A PI controller was utilized in this
application. The system shown in Fig. B2 can now be cast in the form of
a system with unity feedback, as shown in Fig. B3.

In this formulation the poles and zeros of the closed inner loop appear
in the open outer-loop transfer function. The procedure then starts
with the open inner loop, whose transfer function Fy (s) is

k; (s + 0.142)
Fr(s) = Kpls + — )x Ky x 4.5227 x 10% x (B9)

k, s(s + 0.1405) (s + 53.801)

The root locus of the inner loop is sketched in Fig. B4. It is seen
that there is a great deal of freedom in the choice of the zero in the
controller transfer functions.
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Fig. B2. Block diagram of the linearized system.
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Linearized system with unity feedback.
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not to scale
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< Ay ? 7~
-53.801 K K -0.142 -0.1405
: .
Fig. B4. Sketch of inner loop root locus.

Reasonable values are

and

K, = 0.05

Ky =1 x 1078

The closed inner loop Fy ¢ now has the transfer function

Frc(s) = 45.227

(s + 0.142)(s + 0.5)

(s + 98.8)(s + 0.1432)(s + 0.2268)

The open outer loop Fy (s) now becomes

45.227%1.6804 x 107°

FoL(s) =

1 x 10°¢

(B10)
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(s + 0.5)(s + 0.142)(s + 0.1986) (s + 47.458)

S(s ¥ 08 8)(s ¥ 0.1430) (s + 0.2968) (s + 0.1472) (BL1)
oY
(s + 0.5)(s + 0.1986) (s + 47.458)
FoL(s) = 0.076 558y (s + 0. 1432) (s ¥+ 0.2268) (B12)

The closed outer loop Fy . now becomes

(s + 0.5)(s + 0.1986) (s + 47.458)
s(s + 98.84)(s + 0.2159)(s% + 0.1913s + 0.0168)

A sketch of the open loop root locus Fyc(s) is shown in Fig. B5. The
frequency of Fyc(s) and Fge(s) are shown respectively in Figs. B6 and
B7.

IN Axis

not to scale

R axis

; 0.5 -0.2268  -1986.0.1432
-98.8-47.458

Fig. B5. Outer loop root locus,
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Appendix C

CONCEPTS OF EIGENVECTORS, VECTOR NORMS,
MATRIX NORMS AND SINGULAR 'VALUES

Eigenvalues and Eigenvectors

Assume that the linear time invariant (LTI) system is defined as

% = Ax + Bu (cl)
and
y = Cx , (C2)
where xeRY, ueRP, and yeRP.
The eigenvalues of A are defined as X\ (i = 1,2,...,n). The left

eigenvector v;T of A is defined such that is satisfies

v,5 A - 3nI1) =0, (€3)
and the right eigenvector u; of A is defined to satisfy

(A - XIDu; =0 (C4)

Note that for each left or right eigenvector there corresponds an
eigenvalue A; which is already defined prior to the solution of the
eigenvector. A characteristic of the left and right eignevectors is the
orthogonal relationship that exists between them. The orthogonality
relationship is defined as

1 for i = j
v,Tu; = (C5)
0 for i # j

Considering that the A matrix has distinct eigenvalues, A can be
decomposed as follows

A=TAT (C6)
where A is a diagonal matrix containing the eigenvalues,
T = [uy, uy, ug,...,u,}, and T = [viT, va, Var,...,VhT]T. The
representation of A given in Eq. C6 is called the eigenvector
decomposition.t:?

Vector Norms

The size of a vector x is described by the concept of norm which most

engineers tend to associate with length. Before the concept of vector
norm is formally defined, let us review the concept of inner product.

The inner product of the complex wvectors x = [x,, xz,...,xi]T and

v = [¥1, ¥2....,¥al’ is defined as

<o, y> = () = 2y, + Ky, + ...+ Xy, = <y, x> (C7)
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where ( )® indicates the hermitian transpose and ( )* defines the
complex conjugate. The hermitian transpose is defined as the complex
conjugate transpose of the indicated vector or matrix.

The definition of the 1, 2 (Euclidean norm), « vector norms are defined
respectively as

"XHI = |X1| + Ile + ... + ]xn| (C8)
I - (o, o = oy b+ S .
Ixe = ™5 |x,] (C10)

Matrix Norms and Singulayr Values

Now the matrix norms of HA"I, HAHZ, and "Anw will be defined for the

m X n matrix A. The matrix A defines a linear transformation from the
vector space V, called the domain to a vector space W called the range.
Thus the linear transformation

A(x) = Ax (cl1)

transforms a vector x in VeC” into a vector A(x) in WeC". The matrix
norms of |Af,, "A"z, and |A|l, are respectively defined as

max | ax],

laf, - " (lasls @2)
x # 0\ x|,
jal, = ™ (laxda) _ 4 orm (c13)
x # 0\,
o = ™ (———”‘4““‘”“ (c14)
x # 0\ Jx|.

Since the £, norm is a useful tool in control system analysis, further
insight to its definition will now be given. The £, norm of Cl3 can be
written as

lal, = "7F Ouatant?, i = 1,2,....n (C15)
~ "‘jx (O (A8RN)Y2 5 — 1.2, .n . (C16)
The matrices A%A and A4 are hermitian and positive semidefinite. The

eigenvalues of these matrices are real and non-negative.
Not let us define the singular value of a complex matrice AeC™:

o, (A) = (A (A%FA)YY2 = (0 aa')Y2 >0, i =1,2,...,n . (C17)
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If AeC™", which indicates that A is a nonsquare matrix, then
o3(A) = (A, (4%4))V72 = (a (A4))1/2 (¢18)

for 1 < i < k, where k = number of singular values = min(m,n). The
maximum and minimum singular values are defined respectively as

Imax(A) = ||4]2 (€19)
and
Opin(4) = max "AXIIZ" ~3 ? (C20)
x=0 [x|, [a?,

provided A is invertible.

The complex matrix A has the singular value decomposition as follows

A=U3xVH (c21)
where
o; O 0
0 o, ... 0
= On is m x n
0 0 0
O ¢ ...0
- N

= 0;; =0 for i # j (21)

and U and V are respectively m x m and n X n unitary matrices, Also, it
can be stated that

T-Uf AV, (22)
The eigenvalues of
AB4 = p(sisypH (23)

are 0,2, the diagonal elements of the diagonal matrix S¥E. The
eigenvalues of

AAR = p(ssthpH (24)

~H

where 5" is diagonal and its elements o,

are the eigenvalues of 44",
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