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ABSTRACT 

This report summarizes the linear quadratic Guassian (LQG) design 
technique with loop transfer recovery (LQG/LTR) for design of control 
systems. The concepts of return ratio, return difference, inverse 
return difference, and singular values are summarized. 

The LQG/LTR design technique allows the synthesis of a robust c o n t r o l  
system. T o  illustrate the LQG/LTR technique, a linearized model of a 
simple process has been chosen. The process has three state variables, 
one input, and one output. Three control system design methods are 
compared: LQG, LQG/LTR, and a proportional plus integral controller 
(PI) * 

ix 





1. ROBUSTNESS OF FEEDBACK CONTROL SYSTEMS 

1.1 INTRODUCTION 

The advanced control strategies development group at Oak Ridge National 
Laboratory, ha5 been actively engaged in exploring the applications of  
optimum control theory. Since October 1987,  this effort has focused on 
robust control theory. 
that it generalizes the single input-single output (SISO) concept of 
gain and phase margin and its effect on system sensitivity to a 
multivariable control system. 

The purpose of this report is to summarize the derivation o f  a design 
technique based on robust control theory and to illustrate this 
technique by a model chosen for its simple structure. 

One of the primary attractions of this theory is 

1.2 DEFINITION OF ROBUSTNESS 

A system is considered to be robust and have good robustness properties 
if it has a large stability margin, good disturbance attenuation, and/or 
low sensitivity to parameter variations .' The term "stability margin" 
refers to the gain margin and the phase margin, which are quantitative 
measures of  stability. 
properties is the use of a feedback control system, which can be 
designed to allow for variations in the system dynamics. Some causes of 
variation in system dynamics are as follows: 

A proven method of obtaining good robustness 

0 

* changes in environmental conditions, manufacturing tolerances, w e a r  

errors due to calibration, installation, and adjustments. 

modeling and data errors in the nominal plant and system; 

due to aging, and noncritical material failures; and 

Feedback control systems with good feedback properties have been 
synthesized for SISO systems. Classical frequency domain techniques 
such as Nyquist, root-locus, Bode, and Nichols plots have been used to 
obtain the feedback control system for the SISO system. 
techniques have allowed the synthesis of feedback control systems 
yielding insensitivity to bounded parameter variations and a large 
stability margin. 
SISO system has led to the direct extension of the classical frequency 
domain technique to the design of a multivariable feedback control 
system. This extension to the multivariable design problem examines an 
individual feedback loop  as the phase and gain margins are varied, while 
the nominal phase and gain values in the remaining feedback paths are 
held constant. This technique, however, fails to consider the results 
of simultaneous variation of gain and phase in a l l  paths, which is a 
real-world possibility and needs to be considered. A method o f  
obtaining a feedback control system with good robustness properties that 

These desi.gn 

The success o f  the feedback control system for the 

1 
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takes into consideration simultaneous gain and phase variation is the 
linear quadratic Guassian (LQG)’ technique with loop transfer recovery 
(LQG/LTR) . 

The IL)C/LTR technique can be appl.i.ed to multivariable input- 
multivariable output (MIMO) systems o r  SXSO systems. The LQG/LTR 
technique not only has the good robustness properties of the classical 
frequency domain techniques but also is capable of minimizing the 
effects of  unmodeled high-frequency dynamics, neglected nonlinearities, 
and a reduced-order model. 
technique is the computer-aided systems and control analysis and design 
environment (CASCADE) , an expert computer design tool that eliminates 
the numerical programming burden of programming the complex LQG/LTR 
algorithm. 
Department of Energy by the University of  Tennessee at Knoxville. 

A tool used in synthesizing the LQG/LTR 

The CASCADE expert system was developed for the U.S. 

In this report, some concepts will be defined and the LQG/LTR procedure 
for development of a model-based compensator (MBC) will be described. A 
unity-feedback MBC is selected for the controller, because of its 
si-milarity to the SISO unity-feedback control system well known to 
classical control designers. The MBC closed-loop control system has 
proven to offer great practical considerations in the design of 
automatic control systems. 



2. ROBUSTNESS CONCEPTS OF THE LQG AND LQG/LTR CONTROL SYSTEMS 

The LQG/LTR5 design procedure is based on the system configuration of  
the LQG controller shown in Fig. 2.1. The L.QG controllex consists of a 
Kalrnan filter state estimator and a linear quadratic regulator. The 
Kafman filter state estimator has been shown to have good robustness 
properties for plant perturbations at the plant output. 
quadratic regulator (WR) has been shown to have good robustness 
properties for perturbations at the plant input. Even though its 
components separately have good robustness properties, however, the LQG 
controller is found to have no guaranteed robustness properties at 
either the input (point 2) or the output (point 3 )  of the plant. 

The linear 

The LQG/LTR design procedure allows us to recover robustness properties 
at either the input or the output of the plant. If robustness is 
desired at the input to the plant, first a nominal robust LQR design is 
made to satisfy the design constraints. Next, an LTR step is made to 
design a Kalman filter gain that recovers the robustness at the input to 
the plant of the LQG controller that is approximately chat of the 
nominal LQR design. This implies from Fig. 2.1 that the robustness 
properties at points 1 and 2 are approximately the same. 

If robustness is desired at the output of the plant, first a nominal 
robust Kalman filter design is made to satisfy the performance 
constraints. Next, an LTR step is made to design a LQR gain that 
recovers che robustness at the output of the plant that is approximately 
that of the nominal Kalman filter design. This implies from Fig. 2.1 
that the robustness properties at points 3 and 4 are approximately the 
same. 

The block diagram of the unity-feedback MBC is shown in Fig. 2.2. 
control system structure will allow tracking and regulation of a 
reference input at the output of the plant. 
gains used in the controller K(s )  are obtained appropriately, depending 
on whether robustness is desired at the input or the output of the 
plant. 
(UFMBC) are the same as those of the LQG system, since the UFMBC is just 
an alternate structure of the LQG system. 

This 

The filter and regulator 

Note that the robustness properties of  the unity-feedback MBC 

3 
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B IQC; guaranteed no robustness p rope r t i e s  a t  the  input  o r  output  o f  the  
p l a n t .  

D Point  1 has the  good robustness p rope r t i e s  of the  f u l l - s t a t e  feedback 
sys tern. 

.a Poin t  4 has the  good robustness p rope r t i e s  of  the  Kalrnan f i l t e r .  
e Poin t  2 has  no guaranteed robustness p r o p e r t i e s .  
e Point  3 has no guaranteed robustness p rope r t i e s .  
e t he  LQG/LTR design method permits recovery of  t he  robustness  

p rope r t i e s  of po in t  1 a t  po in t  2 o r  the  robustness  p rope r t i e s  of 
po in t  4 a t  poin t  3 .  

Y 
=+ 

B IQC; guaranteed no robustness p rope r t i e s  a t  the  input  o r  output  o f  the  
p l a n t .  

D Point  1 has the  good robustness p rope r t i e s  of the  f u l l - s t a t e  feedback 
sys tern. 

.a Poin t  4 has the  good robustness p rope r t i e s  of  the  Kalrnan f i l t e r .  
e Poin t  2 has  no guaranteed robustness p r o p e r t i e s .  
e Point  3 has no guaranteed robustness p rope r t i e s .  
e t he  LQG/LTR design method permits recovery of  t he  robustness  

p rope r t i e s  of po in t  1 a t  po in t  2 o r  the  robustness  p rope r t i e s  of 
po in t  4 a t  poin t  3 .  

Fig. 2 . 1 .  Summary of  the  robustness p rope r t i e s  of t he  LQG block 
diagram. 

Fig.  2 . 2 .  Unity feedback model based compensator (UFMBC). 



3 .  RETURN RATIO, RETURN DIFFERENCE, AND INVERSE RETURN DIFFERENCE 

Throughout the literature on the LQG/LTR design procedure, the terms 
return ratio, return difference, and inverse return difference are 
frequently used. A simple explanation by example of these terms will be 
presented. Given the block diagram in Fig. 3.1, let us break the path 
at the input to the plant. Now take a path through the plant transfer 
function and follow the feedback path to the other side of the break. 
The multiplication of the transfer functions encountered in this path is 
defined as the return ratio. In this case the return ratio is L,(s). 

From the block diagram the following transfer function can be obtained: 

where I is the identity matrix and 1 + L,(s) is defined as the return 
difference. In this example the return difference can be used to 
characterize the error behavior in the system. From Fig. 3.1 a l s o ,  the 
following closed-loop transfer function can be defined: 

( 3 . 2 )  

where I + L,-'(s) is defined as the inverse return difference. 
using the properties of  the inverse return difference, the closed-loop 
system can be examined. 

Thus, 

The concepts defined above can be also applied to the block diagram of 
the LQG design. The details of obtaining the return ratio, return 
difference, and inverse return difference for consideration in the 
LQG/LTR procedure have been well documented in papers on the LQG/LTR 
design concept.3 In this report, these terms will be referred to in 
relation to the requirements for the LQG/LTR design. 

Fig. 3.1. General block diagram of plant with unity feedback. 

5 



4 .  REVIEW OF OPTIMAL CONTROL THEORY 

4.1 INTRODUCTION 

In the following sections the linear quadratic regulator based and the 
Kalman filter based optimal control problems will he reviewed briefly . 
This review will be approached in a manner to set the framework for the 
study of the U?G and LQG/LTR control system designs. 

4.2  LINEAR QUADRATIC REGULATOR (WR) 

Consider the linear time-invariant state-space system 

X ( t )  = h ( t )  + Bu(t) . 
where 

y(t) = Cx(t) . 
The goal of this problem is to minimize the performance index 

J = 1 [xT(t)Qx(t) + u'(t)Ru(t)]dt + xT(-)Zx(-) ( 4 . 3 )  

where 

1 xT(t)Qx(t>dt = integral square regulating error ( 4 . 4 )  

1 u'(t)Ru(t)dt = integral square input ( 4 . 5 )  

and 

x'(m)Zx(m) = weighted square terminal error. ( 4 . 6 )  

The performance index J ,  referred to as the quadratic performance index, 
implies that a control u(t) is sought to facilitate the minimization of 
J .  The weighting matrices Q and R are selected to reflect the 
importance of particular states and control inputs. In general the 
weighting of the diagonal elements of Q can be determined by the 
importance of the state, as observed by the C matrix of the output 
equation. The e f f e c t  of 4 is the capability to control the transient 
response of the LQR. The effect of R is to control the energy resulting 
from u . 

A necessary requirement to minimize J is that J is certainly finite. 
T h e  condition that allows J to become infinite is that uncontrollable, 
unstable state trajectories appear in the performance index J. Thus the 
state-space system [ A , B ]  must be completely controllable, and [ A , B ]  must 
he stabilizable to ensure that the performance index is finite. 

6 
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The control u for the optimization criteria €or the steady state linear 
control law takes the form 

and differentiating Eq. ( 4 . 3 ) ,  it can be shown that S is the solution of 
the steady state algebraic Riccati equation 

S = 0 - Q - SBR-'BTS + ATS + SA ( 4 . 8 )  

which yields a minimum for the performance index, where S, 0, and R are 
constant positive-definite symmetric matrices, 

K - R-'BTS ( 4 . 9 )  

At this point our problem of stabilizing the state trajectories appears 
to be complete, but this is not s o .  What happens when we do not account 
for unobserved and unstable state trajectories in the performance index 
of the optimal control law? The result is that the linear controller 
will not act on the unstable states, thus yielding a finite performance 
index but an unstable closed-loop system. To eliminate this potential 
problem, we must required Q to be positive definite, or Q > 0. Then the 
linear control law will yield an asymptotically stable system. Q can be 
allowed to be only positive semidefinite only if [ A , C ]  is observable, 
where C is a matrix such that Q = CTC or C = &. Using 

Q - C'C 
then 

m 

(4.10) 

(4.11) 

= E [  xTCTCx + u*Ru ] dt 

= J [y'y + u T R u ] d t  
0 

which implies that the output system responses are being regulated 

As stated previously, the observability requirement of the pair [A,C] 
results in a sufficient condition for asymptotic stability of the 
closed-loop system. 
condition by requiring the detectability of the pair [A,C], since on ly  
the unstable modes must be moved. Considering the restriction of 
detectability, the requirement that S be positive definite can be 
loosened to positive semidefinite. 

This can be made a necessary and sufficient 

Using the relaxed conditions, the following summary can be made 
regarding the linear quadratic regulator (LQR) problem. Given the 
linear time-invariant plant 

i ( t )  - Ax(t) + Bu(t) (4.12) 
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which is stabili.zable and controllable, then a finite performance index 

J = I[xT(t)QX(t) -t- uT(t)Ru(t)]dt ( 4 . 1 3 )  

exists, where Q is a symmetric positive semidefinite matrix and R is 
positive definite. Therefore a linear control law that minimizes J is 
defined as 

~ ( t )  = -Kx(t) (4.1.4) 

where 

K = R - ~ B ~ S  ( 4 . 1 5 )  

where, in turn, S is a constant symmetric positive semidefinite matrix 
that satisfies the algebraic Ricatti equation 

Q - S B K I B T S  + ATS + S A  = 0 . (4 .16 )  

The closed l o o p  regulator is given by 

X(t) -= [ A  - BK]x(t) = [ A  - BR-lBTS]~(t) (4 .17 )  

and i s  asymptotically stable provided the state equation (4.1) and the 
output equation ( 4 . 2 )  are detectable. 

4 . 3  KALMAN FILTER 

Now we will exarni-ne a method o f  reconstructing an estimate of  the states 
using only the output measurements af the system. 
reconstruction must be applicable when process noise and measurement 
noise, respectively, corrupt. the plant state equations and the output 
measurement equations I 

The method of  

Let us consider the stochastic linear system 

X(t) = k ( t )  + B U ( ~ )  + r d ( t )  (4.1.8) 

y(t) = CX(t) + n(t) ( 4 . 1 9 )  

where d(t) is a process noise random vector and n(t) is a measurement 
noise random vector, Assuming that d(t) and n ( t )  are zero-mean, 
uncorrelated, Guassian white noises, therefore 

E[d(t)]E[n(t)] = 0 f o r  all t 

E [ d ( t ) d T ( 7 ) ]  = D , 6 ( t  - 7 )  

( 4 . 2 0 )  

(4 .21 )  

(4 .22 )  
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E [ d ( t ) n T ( 7 ) ]  = 0 ( 4 . 2 3 )  

where N and Do are constant symmetric, positive definite and positive 
semi-definite matrices, respectively. Note that N and Do are constant 
because it is assumed that d ( t )  and n(t) are wide-sense stationary. 

The state estimate 2 of the state x is obtained from the noisy 
measurement y .  Therefore we can define a state error vector 

e(t> - x(t) - i ( t )  (4.24) 

where we desire to minimize the mean square error 

z - ~ [ e ~ ( t ) e ( t ) ]  . ( 4 . 2 5 )  

The estimator can thus be shown to take the form 

2 - &(t) f Bu(t) + F[y(t) - Cx(t)] ( 4 . 2 6 )  

where F is the filter gain which minimizes E q .  ( 4 . 2 5 )  ; F is defined as 

F - CC’N’ ( 4 . 2 7 )  

where C is constant variance matrix of the error e(t). It is assumed 
here that e ( t )  is wide-sense stationary. The C is obtained by solving 
the algebraic variance Riccati equation 

D - ZCTN-lCE + AX C XAT = 0 ( 4 . 2 8 )  

where 

D = morT . ( 4 . 2 9 )  

A sufficient condition to obtain a unique and positive definite X from 
E q .  ( 4 . 2 8 )  requires that [A,C] be completely observable. However if the 
pair [A,C] is required to be detectable then C can be positive 
semidefinite. 

The reconstruction error e(t) satisfies the differential equation 

( 4 . 3 0 )  

such that 
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if and only if the observer is asymptotically stable. 
observer (filter) are found using the closed-loop dynamics matrix 
[A-FC]. To obtain asymptotic stability of the filter, it is required 
that the pair [A,I?]  be completely controllable. The necessary and 
sufficient condition of stabilizability of the pair [A,1 ' ]  will ensure 
stability also. 

The poles of the 



5. RETURN RATIOS FOR THE FULL-STATE AND OBSERVER-BASED FEEDBACK SYSTEMS 

5.1 FULL-STATE FEEDBACK RETURN RATIO 

For the  f u l l - s t a t e  feedback system of F ig .  5 . 1  with no loops broken, i t  
can be s t a t e d 5  t h a t  

x = (PBu = @Bu’ (5 .1)  

and 

U - R - K X  . (5.2)  

S u b s t i t u t i n g  E q .  ( 5 .1 )  i n t o  Eq. ( 5 . 2 )  and solving f o r  u y i e l d s  

u - (I + K @f?)-% , ( 5 . 3 )  

thus  

x = @B(I + K@B)-lR , ( 5 . 4 )  

Now l e t  us examine the loop t r a n s f e r  func t ion  from c o n t r o l  s i g n a l  u’  t o  
c o n t r o l  signal broken a t  po in t  1, assuming t h a t  R = 0 .  For  t h i s  f u l l -  
s t a t e  feedback case it follows t h a t  

x - @Bu‘ (5 .5)  

and 

u - -Kx , ( 5 . 6 )  

S u b s t i t u t i n g  E q .  ( 5 . 5 )  i n t o  Eq .  (5 .6)  y i e l d s  

u -K@Bu’ . ( 5 . 7 )  

F i n a l l y ,  f o r  t he  f u l l - s t a t e  feedback system, f i n d  the 2oop t r a n s f e r  
func t ion  from con t ro l  s i g n a l  u” when the  loop  is broken a t  po in t  2 .  
t h i s  case  it follows t h a t ,  with R = 0 .  

In 

and 

u = u ’  - -Kx . ( 5 . 9 )  

11 
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- 
Fig. 5.1. Full seate feedback. 

Substituting E q .  (5.8) i n t o  Eq. (5.9) yields 

u = 11' = -K@Bu" . ( 5 . 1 0 )  

5.2 OBSERVER-BASED FEEDBACK RETURN RATIO 

For the  observer-based feedback system of Fig. 5.2 with no loops broken, 
it follows6 t h a t  

x = QBu = QBu' = @Bu" . 
and 

y = c x  . 

Now substituting E q .  

results in 

thus 

which simplifies t o  

(5.12) and Eq. (5.11) into 

x = Q [ B u '  + Fy - F C k ]  

X = @ [ B u t  

X = @ [ B u '  + F C @ B u ' ]  - @FCk 

+ FCX -- FC;] 
x = O [ B U '  4- FCaBu' - F C x ]  

2 = QPBu' . 

(5.11) 

(5.1.2) 

(5.13) 

( 5 . 1 4 )  

(5.15) 



1 3  

€1 + U  U' U" X 
A - 

T 

A 
A 
X 

c 

Fig. 5 .2 .  Observer-based feedback. 

Now examining the control u ,  it follows that 

u - R - K ~  

and substituting E q .  (5.15) into Eq. (5 .16)  results i n  

u - R - KQBu . 

The control u can thus be defined a5 

Substituting Eq. (5.18) into E q .  (5 .11)  results in 

c , Y  

(5.16) 

(5.17) 

(5.18) 

( 5 . 1 9 )  

which is the same as the rssult for the full s t a t e  feedback system. 

Now let us find the loop transfer function from control signal u' to 
control signal u when the loop is broken at point 1 of the observer- 
based feedback system. It: follows that 

u - -Kg (5 .20)  
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and s u b s t i t u t i n g  E q .  (5.15) i n t o  E q .  (5 .20)  y i e l d s  

u = -K@B:u’ . ( 5 .  2 1 )  

I n  t h i s  case it  is clear t h a t  u ‘  = u”. Also no te  t h a t  t he  r e s u l t  o f  
E q .  ( 5 . 2 1 )  i s  the  same as the  r e s u l t  found i n  t h e  f u l l  s ta te  feedback 
case. 

F i n a l l y ,  f o r  t h i s  observer-based feedback system, t h e  loop t r a n s f e r  
func t ion  from c o n t r o l  s i g n a l  u” to c o n t r o l  s i g n a l  u‘ when the  loop i s  
broken a t  p o i n t  2 w i l l  be found, For  t h i s  case 

i = @ ( B u t  + FC@Bu”) - @FC& ( 5 . 2 2 )  

and so lv ing  f o r  x r e s u l t s  i n  

( 5 . 2 3 )  

Further  s i m p l i f i c a t i o n  of E q .  (5 .23)  r e s u l t s  i n  

X = @[B(C@B)-’  - F ( I  + C @ F ) - l ] C Q j B ~ ’  -t @ [ F ( I  + C@F)-’]C@Bu” ( 5 . 2 4 )  

where t h e  p l a n t  i n  t h i s  case is  square and i n v e r t i b l e .  

Now t h e  c o n t r o l  f o r  t h i s  case is  def ined as 

where $ i s  def ined i n  Eq. This r e s u l t  implies  t h a t  t h e r e  i s  a 
d i f f e r e n c e  between the con t ro l  u obtained 1.n E q .  ( 5 . 2 5 )  f o r  ‘ihe 
observer-based feedback system and the  c o n t r o l  u obtained f o r  the f u l l  
s L a t e  feedback sys tem. 

( 5 . 2 4 ) .  

From t h e  examination of the loop t r a n s f e r  p r o p e r t i e s  o f  t h e  f u l l  state 
feedback system and the  observer-based system, it i s  clear t h a t  t h e  
inpu t  of t he  observer-based system does not have the  good robustness  
p r o p e r t i e s  of t he  LQR system. What now i s  d e s i r a b l e  i s  a means of  
approximating the  loop properti-es o f  p o i n t  1 a t  p o i n t  2 of t h e  observer-  
based sys  tern. 



6 .  OBTAINING ROBUSTNESS PROPERTIES AT THE INPUT TO AN 
OBSERVER-BASED FEEDBACK CONTROL SYSTEM 

From our previous examination of t h e  observer-based feedback c o n t r o l  
system commonly r e f e r r e d  t o  a s  the  Linear Quadrat ic  Guassian (LQG) 
c o n t r o l  system the re  a r e  no guaranteed robustness  p r o p e r t i e s  a t  the  
input  t o  the  p l a n t  (po in t  2 of F i g .  5 . 2 ) .  Now a method w i l l  be 
summarized t h a t  recovers  t he  good robustness  p r o p e r t i e s  of t he  input  
(po in t  2 )  of  the  LQR a t  t he  input  (po in t  2 )  of  t he  LQG c o n t r o l  system. 

Provided t h a t  t h e  r egu la to r  ga in  f o r  t he  LQR has been s e l e c t e d ,  now a 
f i l t e r  ga in  must be solved f o r  i n  order  t o  equate  the  c o n t r o l  f o r  t he  
LQG c o n t r o l  system f o r  loop break a t  po in t  2 ,  which i s  

u - -K;t ( 6 . 1 )  

where 

k - @e[B(C@B)-'  - F ( I  + C@F)-']C@Bu' 

+ @[F(I 4- C@F)-l]C@Eu" 

t o  the  c o n t r o l  

u - -K@Bu" 

of the  LQR f o r  a loop break a t  po in t  2.6 
E q .  (6 .1)  t o  t he  con t ro l  E q .  ( 6 . 3 )  r equ i r e s  t h a t  t he  fol lowing equat ion 
be s a t i s f i e d :  

To equate  t h e  c o n t r o l  

B(C@B)-l = F ( I  + C@F)-' . ( 6 . 4 )  

Therefore an appropr ia te  value of F must be found t o  s a t i s f y  E q .  ( 6 . 4 ) .  

Now t o  s e l e c t  a value of  F,  w e  w i l l  assume t h a t  F is a func t ion  o f  a 
s c a l a r  parameter q such t h a t  

F ( q )  - -+ BW as 

where W i s  any nonsingular matr ix .  Therefore ,  using the  r igh t -hand 
s i d e s  of E q s .  ( 6 . 4 )  and ( 6 . 5 ) ,  then 

F ( I  + C@F)-' - = ) q [ I  + CIpF(q)]- '  
4 

15 
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which implies that as q- E q .  (6.6) becomes 

which satisfies the equality requirements of  E q .  ( 6 . 4 )  for W = I, an 
identity matrix. 

A s  previously discussed, the error dynamics of the Kalman filter must be 
asymptotically stable. This requires that an appropriate error noise 
s t a t  i s  t ios C( q )  satisfies 

such that 

where D ( q )  is a positive semidefinite and N is a positive defini-te, and 
[ A ,  DP] and [ C  , A ]  are respectively stabilizable and detectable. 

Now D ( q )  the process noise intensities and N the measurement noise 
intensities are to be respectively defined as 

and 

N = No (6.11) 

where 1’ = I, Do = CTC, and U is any positive definite symmetric matrix. 

Substituting E q s .  (6.10) and (6.11) into Eq. ( 6 . 8 )  results in 

0 = A c ( q )  + C ( q ) A T  + Do + q2BVBT - C ( q ) C T N 0 - I C C ( q )  (6.12) 

which implies that 

NQW let q-= i.n E q .  ( 6 . 1 3 ) ;  thus 

(6.14) 

and using E q ,  ( 6 . 9 ) ,  the left-hand side of E q .  (6.1.4) is then 
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which implies  t h a t  a s  q-+- 

thus  

( 6 . 1 6 )  

(6.17) 

w - v""N,-k . ( 6 . 1 8 )  

Thus it can be concluded t h a t  as 9- t h e  loop p r o p e r t i e s  a t  t he  input  to 
t he  p l a n t  of the  LQG con t ro l  system approach t h e  input  p r o p e r t i e s  of the  
TQR c o n t r o l  system. Note, however, that a s  q- t he  process  no i se  
i n t e n s i t y  € s  seen t o  d i f f e r  s i g n i f i c a n t l y  from the  assumed process  
no i se .  However, as q-+O t he  Kalman f i l t e r  is approached. Thus when 
q = 0 the  LQG system has no guaranteed loop p r o p e r t i e s  a t  t he  inpu t .  I t  
appears t h a t  a t r ade -o f f  must be made between obta in ing  an accura te  
f i l t e r  and obta in ing  good loop t r a n s f e r  p r o p e r t i e s .  



7. LQG/LTR DESIGN AT THE PLANT INPUT USING SINGULAR VALUES 

7.1 THE LQR DESIGN STEP 

Now the I.QR design step of the TqG/LTR design procedure will be 
sununarizcxl using the singular-value concept (see Appendix C). First, 
the Kalman equality for the LQR is defined as 

[I -I- K ( s I  - A ) - - ' B ] * [ I  + K(sI - A ) - l B ]  ( 7 . 1 )  

1 
P 

= I + - [BT(s1 - A T ) - l P T P ( s I  - A>-'B] 

where * indicates the complex conjugate transpose, Q = P T P ,  and R = p l .  

It then follows from Eq. (7.1) that 

(7.2) 
1 
P 

[I + L,]*[I + L,] = I + - [ P @ B ] * [ P m ]  

where L2(s) = K@B is the return ratio of the LQR at point 2 (see 
Fig. 5.1) and @ = (SI - A ) - ' .  Finding the eigenvalue of Eq. (7.2) 
results in 

X ( [ I  + L , ( S ) ] * [ I  + L , ( S ) ] )  = 1 + X [ [ P @ B ] * [ P @ B ] ]  ( 7 . 3 )  
P 

thus it can be stated that system singular values are 

U i [ l  + L 2 ( S ) ]  = J 1 1 + - D i 2 [ P @ B ]  . 
P 

( 7 . 4 )  

7.1.1 Coinmand Traking andJisturhance Rejection' 

Assumiiig that command following and disturbance rejection wi.1.1 occur at 
low frequencies requires that at low frequencies 

This condition results in Eq. (7.4) becoming 

(7.6) 

By using this approximation, the solution of the Riccati equat:ion is 
avoided in computing ( L 2 ( s ) .  This approximation therefore allows the 
plotting of  the singular values o f  L,(s) for various values of  p and P 
with minimum effort. 

18 
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The value of P must be selected to balance the minimum and maximum 
singular values of L , ( s )  at either a low, a high, or an arbitrary 
frequency. 
singular-value plots, depending on the magnitude of p selected. An 
explanation of the relationship between the singular-value plots and the 
performance and robustness properties is given in Appendix A .  

7.1.2 Robustness at: the Plant XnDut6 

The value of p has the effect of lowering or raising the 

It is assumed that the unstructured uncertainty takes the form of AL(s). 
This uncertainty is assumed to become significantly large at high 
frequencies. Considering that multiplicative perturbations are 
occurring at the input to the plant, to obtain good robustness 
properties requires that 

Provided that C@B is minimum phase, the LQR gain becomes 

as p-+O. At high frequencies jw can be defined as 

j c  

J;; 
s = -  

as p + O ,  where c is constant. Therefore 

= h K ( j c I  - h A ) - l B  

Using E q .  ( 7 . 8 )  in E q .  (7.11) results in 

jc WPB 
L z - = -  , as p-rO . 

J;; jc 

(7.9) 

(7 .11)  

( 7 . 1 2 )  

The constant e can be defined as 

( 7 . 1 3 )  w 
c = -  
h 

using s - j w  in E q .  ( 7 . 9 ) .  The maximum crossover frequency w, occurs 
where max 

(7.14) 
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and W is an orthonormal matrix. 

PB 
(7.15) 

where w is less than the frequency at which 
Cmax 

IIAL(jw) 11 = 1 . (7.16) 

The system crossover frequency w, in Eq. (7.15) is only an approximate 
value. max 

7.2 LOOP TRANSFER RECOVERY USING THE KALMAN FILTER 

Wavi.ng designed the LQR to obtain good low-frequency performance 
speeifi.cations and robustness properties, the design of a Kalman filter 
to recover the robustness properties at the plant input  of the LQG is 
considered. ' 
The open-loop plant C@B must be minimum phase, having an equal number of 
inputs and outputs or having more outputs than inputs. 

If the systeni is nonsqiiare, then C@B and F@B must be augmented to become 
square. Next the Kalman filter is designed, using the following process 
and noise intensity matrices 

D = morT + &mT (7.17) 

N = P I  (7.18) 

where q i.s a scalar and V is an arbitrary symmetiric positive definite 
matrix, as discussed in Sect. 6 .  Now as q2+a the return ratio at 
point 2 of the observer-based system approaches KiPB, the return ratio at 
point 2 of the LQR system. 



8 .  SENSITIVITY OF MULTIVARIABLE FEEDBACK SYSTEMS 

8.1 DERIVATION OF THE MATRIX SENSITIVITY FUNCTION 

In Sect. 7, the LQG/LTR concept was introduced. A design procedure was 
developed that produced command tracking, disturbance rejection, and 
robustness at the plant input. In this section, the linear sensitivity 
relationship between the closed-loop output error and the equivalent 
open-loop output error is derived. This sensitivity function takes the 
form of the inverse of the return difference matrix, discussed in 
Sect. 3 .  The importance of this sensitivity function is that it allows 
the synthesis of a multivariable closed-loop control system more 
insensitive to parameter variations in the plant than an equivalent 
open-loop system. 7 

As the first step in the design process, the Laplace transforms of some 
signals of the open-loop control system as shown in Fig. 8.1 are 
defined. The Laplace transforms are as follows: 

where Yo(s) is the output signal of the nominal plant Uo(s) is the 
output signal of the open-loop compensator K , ( s ) ,  R ( s )  is the input 
signal of the open-loop control system, and L ( s )  is the Laplace 
transform of the nominal plant. 

Fig. 8.1. Block diagram of open-loop compensated system. 

In actual practice 
of  parameter varia 
function as L’(s); 

a plant will deviate from the nominal plant because 

thus 
tions. Let us define the perturbed plant transfer 

where Y ’ , ( s )  is the output that results when parameter variations of the 
plant occur. Therefore it can be stated that 

21 
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where E , ( s )  is the Laplace transform of the error in the plant output 
signal when parameter variations in the nominal plant OCCUK. 

A closed-loop control system of the form shown in Fig. 8.2 is now 
examined, The Laplace transforms of the signals are defined as follows: 

Y,(s) = L ( s ) U , ( s )  ( 8 . 5 )  

where Y , ( s ) ,  U,(s), and K(s) are respectively the plant output, control 
input to the plant, and compensator of the closed-loop control system. 

Fig. 8.2. Unity feedback MIMO control system. 

Now define the signals resulting from parameter variations in the 
nominal plant of the closed-loop c o n t r o l  syst-em as follows: 

Ui(s) = K(s)[R(s) - Y ; ( s ) ]  (8.8) 

The deviation of the output of the nominal system due to plant parameter 
variations is defined a s  

E , ( s )  = Y , ( s >  - Y i ( s )  . ( 8 . 9 )  

Substituting E q .  ( 8 . 6 )  into E q .  (8.5) and solving for Y , ( s )  yields 

Y , ( s )  = [I + L(s).~(s)]-~~(s)rc(s)K(s) (8.10) 

and, also, substituting E q .  (8.8) into E q .  (8.7) and solving for Y , ( s )  
yields 

Y , ' ( s )  = [I + L'(s)K(s)]-l L'(s)K(s)R(s) . (8.11) 
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Therefore it follows that 

can be rewritten as 

(8.12) 

Now define the term 

AL(s) - L'(s) - L(s) (8.14) 

which represents the error of the plant transfer function due to 
parameter variations. From this point on for simplicity we will 
suppress the use of the s in representing the Laplace transforms. 
E q .  (8.14), it follows that 

Using 

L' = L + AL (8.15) 

which is the perturbed plant transfer. Using Eq. (8.15) in E q .  (8.13) 
yields 

E, = [(I + LK)-'LK - (I f (L + AL)K)-l ( L  + AL)K]R - (I + ( L  + AL)K)-'  [(I + (L + AL)K) (I + LK)-lLK - (L  f A L ) K ] R  
= (I + ( L  + AL)K)-I [(I + (L + AL)K)(I + LK)-'LK - LK - AZKJR - (I + ( L  + AL)K)-' [ ( A L K ( I  + WY)-lWC-ALK]R 
= (I + (L + AL)K)-l [ (ALK(T - I)] (8.16) 

where 

T - (I + LK)-lLK . (8.17) 

From E q .  (8.10), it follows that 

Y ,  - TR (8.18) 

and recalling that the open-loop and closed-loop control systems have 
equivalent results implies that 

Y ,  - Y, . (8.19) 

Considering that E q .  (8.19) holds, this further implies that 

uo = u, 

then using E q s .  ( 8 . 6 )  and (8.18), Eq. (8.20) becomes 

Uo = U, - KII - T]R . 

(8 .20)  

(8.21) 
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Recall that 

Eo = ALK[T - I ] R  (8.22) 

thus using Eq. (8.22) in Eq. (8.16), then E q .  (8.16) becomes 

E,  = (I + ( L  4- AL)K)-'E0 (8.23) 

Now assuming that L ' K  = I,K f o r  small parameter variations, then i.t 
follows that 

E ,  = (I + LK)-%o (8.24) 

where 1: + LK is the return difference. Thus from the derivation of 
E q .  (8.24), the sensitivity function 

S ( s )  = (I + L q - 1  (8.25) 

is obtained, which relates the closed-loop and open-loop errors. 

8.2 SENSITIVITY COMPARISON CRITERIA 

Now a performance index will be defined, to ensure that the closed-loop 
feedback system is less sensitive to parameter variations than an 
equivalent open-loop system. This performance index uses the integrated 
square of the error and takes the form 

Performance Index = J'll e'( t) e ( t) dt (8.26) 

where e(t) can be the open-loop or closed-loop error and t, > 0. The 
value of  t, is practically selected to be 4 o r  5 times the largest "time 
constant'q of the system. Thus, €or the closed-loop system to be less 
sensitive than the open-loop system, the following inequality must be 
satisfied 

(8.27) 

The inequality of Eq. (8.27) results in a sufficient condition requiring 
the sensitivity matrix to satisfy 

S T ( - j w > S ( j w )  - I < - 0 V w € F  (8.28) 

where F is the frequency band of interest. 

The inequality given in E q .  (8.28) can be rewritten using singular 
values as follows: 
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amin(S(s)) >> 1 VU€F (8.29) 

or 

aMi,(I + L ( s ) R ( s ) )  >> 1 VUEF (8.30) 

The inequality of E q .  ( 8 . 3 0 )  can conflict with system design 
requirements of command/disturbance for  the lQG/LTR control system 
design obtaining robustness at the plant output. 
noted that the resulting output sensitivity is fixed when robustness is 
obtained at the plant input. 
sensitivity is by trail-and-error compromise and modification of the 
plant input design requirements. 

It should be also 

The only way to change the output 



9 .  CONTROLLER DESIGN FOR THE DEAERATOR 

In this section, three linear control methods are used to obtain a 
level-control system design for a deaerator. The three linear control 
system design methods that will be used are proportional plns integral 
(PI), linear quadratic Gaussian ( L Q G ) ,  and linear quadratic Gaussian 
with loop transfer recovery (LQG/LTR). In this investtgation, the dual 
of the procedure developed for the LQG/LTR design at the plant input  
will be used to obtain a robust control system design at the plant 
output 

T h e  Bode gain and phase plots o f  the resulting control system design 
will be presented f o r  each controller. Also, the singular-value p l o t s  
o f  the return ratio, return difference, and inverse return difference 
for a break at the plant output will be presented. 

The deaerator was chosen because of  its simple mathematical structure; 
one input, one output, and three state variables. Thus the model easy 
to f o l l o w  but complex enough to illustrate the design technique. 

9 . 1  THE LINEARIZED MODEL 

The mathematical model of the deaerator is nonlinear, with a process 
flow diagram as shown in Fig. 9.1.. This nonlinear plant is linearized 
about a nominal operating condition. The resulting linearized plant 
model will be used to obtatn the controller design, The linear 
deaerator model 

where A ,  B ,  and 

A =  

is described by 

X ( t )  = k(t) 4- B u ( t )  

y ( t )  = Cx(t) 

C are given respectively as 

I -53.802 1.7093 9.92677 

1.76lE-4 -9.245E-04 -0.0053004 

-0.001124 -0.0243636 -0.139365 

alld 

C = [ 0 . 0  3.2833 0.06373 ] . 

The states are defined as 

(9 .1. )  

( 9 . 2 )  

26 
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Extraction Lint. control va lve  

condensate pump J 
M 

condensate pump J 
f 

M 

1 I 
i I 

I 
I 

I I 

I 
I 
I 
I 
I 

------------------A 

Fig.  9 . 1 .  General process flow diagram of the  deae ra t a r .  

SP - opera t ing  pressure  between the  pump and the  e x t r a c t i o n  

- f l u i d  dens i ty  
1 ine  

x =  I::1 - i n t e r n a l  energy of  t he  tank l e v e l  

with an output  

y = change i n  deaera tor  tank l e v e l  

and p l a n t  input  

u = change i n  c o n t r o l  va lve .  

The poles  and zeros of  the  deaera tor  model are shown i n  Table 1. 

Table 1. Deaerator po les  and zerosa 

P o l e s  Zeros 

(1) 1.99E-06 (1) -0.199 

(2) -0.141 (2)  -47.5 

( 3 )  -53.8 

"Note: System ga in  - 0 . 7 6 .  
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9 . 2  LQG CONTROLLER DESIGN 

The design considerations for the tracking LQG control system will first 
be discussed. 
Fig. 9 . 2 .  It is apparent that output tracking of a reference input will 
not occur with the present LQG controller configuration. 
compensator structure, shown in Fig. 9 . 3 ,  is therefore used to obtain a 
tracking LQG controller. The controller C ( s )  uses the same filter gain 
( F )  and regulator gain (K) as computed by the LQG design procedure. 

The block diagram of  the LQG control system is shown in 

An alternate 

Fig. 9 . 2 .  LQG block diagram. 

The regulator performance index is defined as 

where 

0.005 0.0 0 . 0  

Q = 0 . 0  100.0 0.0 

l 0 . 0  0 . 0  1.0 

and 

R = 10-9 . 

The estimator is defined such that 

x = A- +. Bu -i- rd 

y = ex 4- I2 

( 9 . 3 )  

( 9 . 4 )  

( 9 . 5 )  
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U I . 
b 

- 1  
Fig. 9 . 3 .  Alternate compensator structure. 

( 9 . 6 )  

( 9 . 7 )  

where 
0 .0  0 . 0  0 . 0  

0.0 100.0 0.0 1 
0 . 0  0 . 0  1.0 

and 

NU" = 1.0. 

Using a control system design package MATRIX,, the regulator and f i l t e r  
gain are respectively computed as 

K = 1 . O E  + 05 X [-0.0223 3.145 -0.10241 
and 

0.1962 

-0.0083 
F = [ 9,9998 ] 

The frequency response of the open-loop transfer function of the c losed-  
loop  Compensated system 

Y O  TANK LEVEL 
r(s) REFERENCE INPUT ( 9 . 8 )  

where y ( s )  is the tank level and r ( s )  is the reference input, is shown 
in Fig. 9 . 4 .  

9 . 3  LQG/LTR CONTROLLER DESIGN 

Now a tracking LQG/LTR controller design will be presented. This 
LQG/LTR control system has the structure shown in Fig. 9.3. This 
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.01 

.81 

.1 

. 3  1 10 
FREQUENCY (RAD/S) 

Fi.g. 9 . 4 .  Open-loop frequency response of t he  LQG c o n t r o l  system. 

LQG/I,'lX c o n t r o l  system design i s  a two-step p rocess .  F i r s t ,  a Kalman 
f i l t e r  (KBF) i s  designed t o  o b t a i n  good conunand following and 
dis turbance r e j e c t i o n  over a s p e c i f i e d  low-frequency range. Also,  the 
KBF design i s  made t o  meet the r equ i r ed  robustness  c r i t e r i a  with system 
u n c e r t a i n t y  of AL(.s) a t  the systzern's ou tpu t .  I t  w i l l  be r equ i r ed  t o  
o b t a i n  good command following and dis turbance r e j e c t i o n  t h a t  

o D l i n ( L 4 ( s ) )  > ... 20 dB Vw < 0 . 1  rad/s  ( 9 . 9 )  

where L 4 ( s )  i s  the loop t r a n s f e r  func t ion  a t  the  output  of the KBF 
(poi.nt 4 of  F ig ,  9 . 2 ) .  Assuming the  high-frequency uncertai-nty A L ( s )  
f o r  t h i s  system becomes s i g n i f i c a n t  a t  5 rad/s ,  then f o r  robustness  i t  
w i l l  he r equ i r ed  t h a t  

umin(I + [ L 4 ( s ) ] - ' )  2 IIAL(jw)II = 5 dB Vw - > 5 rad/s  . ( 9 . 1 0 )  

I n  t h i s  a p p l i c a t i o n  the  frequency a t  which system u n c e r t a i n t y  becomes 
signi.Eicant,  5 r a d / s ,  and the  magnitude of  t he  u n c e r t a i n t y ,  5dB a t  
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5 rad/s, are assumed values. 
lack of information on the model of the high-frequency modelling errors 
of the process being studied. 

This assumption is required because of the 

The second step is to recover the good robustness properties of the loop 
transfer function L4(s) of point 4 at the output node y (point 3). This 
will be accomplished by applying the loop transfer recovery (LTR) step 
at: the output node (point 3 ) .  
a regulator gain (K) to obtain the robustness properties of the loop 
transfer function L4(s) at the output node y. 

The LTR step requires the computation of 

A tool exists that is used to obtain the LQG/LTR design for this system, 
considering the low- and high-frequency bound requirements. The tool 
used is CASCADE, a computer-aided system and control analysis and design 
environment that synthesizes the LQG/LTR design procedure. 

The weighting matrices used in the design of the KBF are 

1 3.775E-23 3.414E-18 -1.272E-19 
3.414E-18 3.0883-13 -1.150E-14 

-1.272E-19 -1.150E-14 4.284E- 16 

and 

The weighting matrices used in the LQR design of the loop transfer 
recovery (LTR) step are 

0.0 0.1049 0.002 

0.0 0.0 
Q = Q, + q2CTC = l o6  x 0.0 5.3866 0.1049 

where 

1.0 

0 . 0  0.0 1.0 
Q,- [ 

and 
R = 1.0 . 

The resulting filter and regulator gains for this system are 
respectively 

1.07E-02 
F = [ 0.472 ] 

-2.299E-02 

and 
K - [ 0 . 6 6 0  27703.397 589.4521 . 
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The resulting open-loop frequency response of the compensated system is 
shown in Fig. 9 . 5 .  

.01 .1 1 

. 0 1  .1 1 
FREQUENCY (RAD/S) 

10 

Fig. 9.5. Open-loop frequency response of the LQG/LTR control.  
sys  tem . 

9 . 4  P I  CONTROLLER DESIGN 

Now the design requirements f o r  the PI control will be discussed. The 
PI controller €or this system design w i l l  take on a structure similar to 
the three-elemcnt- controller prevalent in process control. Therefore 
the PI control system structure will take the form showti in Fig. 9.6. 
(The classical design of the deaerator is discussed in Appendix B.) 

'The transfer functions used in t h i s  control structure are defined as 

w( s) CONDENSATE FLOW 
u ( s) CONTROLLER OIJTT-UT 

(9.11) 
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and 

Y ( S )  TANK LEVEL 
w(s)  CONDENSATE^ ( 9 . 1 2 )  

The constants K ,  and K, are used for unit conversion and defined 
respectively as 1.0 and 
respectively as the proportional gain and the integral gain. 

The terms Kp and K, are defined 

Using the praceical experience of a prior three-element controller 
design, the proportional and integral gains are selected to be 

K ,  = 0 . 1  

and 

Ki =: 0 .05  

The resul.t:irig open-loop frequency response plot of the compensated 
system y(s)/r(s) is shown in Fig. 9.7. The poles and transmission zeros 
of  the original plant and the return ratios for the TLQG, LQG/LTK, and PI 
control systems are shown in Tables 2, 3 ,  and 4 respectively. 

9.5 PRECOMPENSATOR DESIGN 

The transient responses of the PI, LQG, and IQG/T.TR control systems are 
shown respectively in Figs. 9 . 8 ,  9 . 9 ,  and 9.10. The transient response 
of the IK?G/T,TR controller is seen to have a faster time to peak than the 
LQG and PI transient responses. Considering the practical physical 
limitations of the plant, it appears unlikely that the required rise 
time dictated by the transient response of the LQG/LTR i s  possible. It 
appears that the obvious solution would be to redesign the LQG/LTR 
control system to obtain a slower, more practical response. In the case 
o f  the LQG/LTR control system, the possibility of a redesign 
eliminated, because the control system was designed to meet certain 
command tracking, disturbance rejection, and stability robustness 
requirements. 

is 

Therefore, to eliminate this difficulty, a second-order precompensator 
will be placed in the forward path oE the reference input signal. This 
precompensator will shape the output transient response of the system, 
since the control system design requires the output to follow the 
reference input. The precompensator % t i  this investigation will be 
required to have a time to peak o f  30 s with a maximum overshoot of 
about 3 % .  The requirements are selected to somewhat emulate the 
transient response of the PI controller. 

The transfer function o f  the second-order precornpensator used is as 
follows : 
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.i 1 10 

10 

Fig. 9 . 7 .  Open-loop frequency response of  P I  control system. 

Table 2 .  LQG c o n t r o l l e r  and deae ra to r  
p o l e s  and zerosa 

Poles Zeros  

(1) 1.99E-06 (1) -0.140 
( 2 )  -0.141 ( 2 )  -0.199 

(4) -32.9 ( 4 )  -53.8 
(5)  - 5 3 . 8  

aNote:  

( 3 )  -0.204 ( 3 )  -47 .5  

System gain - 2 . 3 8 9 9 3  + 06. 
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Table 3 .  I.QG/LTR c o n t r o l l e r  and deae ra to r  
po le s  and zerosa 

Poles Zeros 

(1) 1.99E-06 (1) -0.140 
( 2 )  -0.141 ( 2 )  -0.199 
( 3 )  -0.181 (3) -47.5 
( 4 )  -47.7+J 537.3 
(5)  -47.7-j 537.3 
( 6 )  -53 .8  

aNote: System ga in  = 9.9190E 1- 03 

Table 4 .  P I  c o n t r o l l e r  and deae ra to r  
poles  and zerosa 

Poles Zeros 

(1) 0 (1) -0.5 
( 2 )  -0.143 ( 2 )  -0.199 
( 3 )  -0.227 ( 3 )  -47.5 
(4) -98.8 

aNote: System ga in  = 0.076. 

(9 .13)  

where r i s  the  damping r a t i o ,  w,, is  the  n a t u r a l  frequency, r(s) i s  the  
output  of the precompensator, and rin(s) i s  t h e  a c t u a l  r e fe rence  inpu t .  
The precompensator Eq. (9.13) can be represented i.n s t a t e  equat ion form 
as follows: 

and 

(9.15) 
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0 10 20 30 YO 5Q 60 70 80 YB 1 DB 
TIME ( S )  

Fig. 9.8. PI control system closed-loop transient response. 

where rin(t) is the time domain representation of the reference input 
signal and r(t) is the time domain signal at the output of the 
precompensator. 

Considering the 3% overshoot requirement, then r must be 0.7. Using the 
following expression, 

where tmax must be 30 s, then 

?r 
w, = 

3041 - ( . 7 ) 2  

( 9 . 1 6 )  

( 9 . 1 7 )  
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Fig. 9.9. LQG control. system closed-loop transient response. 

Now the complete state equation of the precompensator i s  given as 

( 9 . 1 8 )  
1 [ 2: ] = [ -1.0215 -0.2052 

and 

( 9 . 1 9 )  

The resulting transient response of the LQG/LTR control system using the 
precompensator i s  shown in Fig. 3.11. 
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Fig. 9.10. LQG/LTR control system closed-loop transient response. 

9 . 6  ANALYSIS OF SINGULAR-VALUE PLOTS 

Using the singular-value plots of the return ratio, inverse return 
difference, and return difference, the performance and stability 
robustness characteristics of the various deaerator control system 
designs can be examined. Recall t ha t  systems with large stability 
margins, good disturbance rejection/command following, low sensitivity 
to plant parameter variations, and stability in the presence of model 
uncertainties are described as being robust and having good robustness 
properties. The singular-value plots for the PI, LQG, and LQG/LTR 
control systems will therefore be examined to evaluate the robustness 
properties o f  each system. An explanation of the relationship between 
the singular-value plots and the performance robustness properties is 
given in Appendix A .  

9.6.1 PI Concrol Svstem Singular-Value Plots 

First let us define for the singular-value plots the return ratio L ( s ) ,  
which contains the transfer function of both the compensator and the 
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Fig. 9.11. LQG/LTR control system design closed-loop transient 
response with preconipensator 

plant f o r  a given control system, The PI control system return ratio 
singular-value plot (RSV) shown in Fig. 9.12 indicates that at low 
frequencies the system has good disturbance-rejection properties for 
ami , (L( jw) )  > 20 dB at w < 0.01 rad/s. 
o f  the PI controller yieihs a steady state error of ze ro .  
command-following property for a step reference input exists for the PI 
controller because the plant is a type 1. The PI controller does very 
well at minimizing the effect of sensor noise as a result of the very 
small gain at high frequencies. The approximate crossover frequency for 
this system is 0.1 rad/s, as observed from the RSV. 

The command-following property 
The good 

To minimize sensitivity of the closed-loop system t o  parameter 
variations, the return diEEerence singular-value plot (RDSV), as 
discussed previousl-y, requires that: 

omin[I  + L ( j w ) ]  >> 1 V me F ( 9 . 2 0 )  

where F is a low-frequency range where parameter variations occur. 
a more specific analysis let us require 

For 
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50 

40 

30 

20 

or 

MIN AND MAX SINGULAR VALUES FOR L(JW) 

I I I I I I 1 

umin(.I + L ( j o ) )  > 26 dB >> OdB - 

(9.21)  

(9.22) 

over some range of  w .  

Now considering the criteria of Eq. (9.22) and examining Fig. 9.13, the 
RDSV for the PI control system indicates that the PI control system 
output is insensitive to low-frequency parameter variations for w 5 
0.0055 rad/s. 

Next let us examine the inverse return difference singular-value plot 
(IRDSV) shown in Fig. 9.14 for the PI control system. 
indicates that the PI control system is stable in the presence of a 
high-frequency modelling error greater than the magnitude specified in 
Sect. 9 . 3 .  

The IRDSV 

9.6.2 LQG Control System Singular-Value Plots 

The return ratio singular-value plot (RSV) for the LQG control system 
indicates that at low frequencies the system has good disturbance 
rejection properties for 
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Fig. 9.13. Singular-value plots of r e t u r n  d i f f e r e n c e .  
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Fig. 9.14. Singular-value plots of inverse  r e t u r n  di.EEerence. 
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where, in this case, w 5 .017 rad/s. 

The RSV also reveals that the control system has good immunity to sensor 
noise, because of the significant attenuation of L ( j w )  occurring at 
frequencies much greater than 1 rad/s. This attenuation a lso  implies 
that good robustness properties can be expected when the inverse return 
difference is examined for stability to multiplicative plant 
perturbations. 

The command-following property for this system is good for a step input, 
since the plant is a type 1 system. This good command-following 
property is also applicable to the LQG/LTR control system. 

The sensitivity of the LQG control system is now examined using the 
criteria given in E q .  (9.21) The LQG control system satisfies the 
required conditions for w 5 0.008 rad/s. 
parameters is the LQG control system output insensitive. 

Thus only for slowly varying 

The TRSV oE this control system implies that the system is certainly 
stable for a multiplicative plant perturbation such that 

IlAL(jw)II = 5 dB V w - > 5 rad/s 

since 

umin{I + [ L ( j w ) ] - ' }  > 5 dB tr w > - 5 rad/s . 
9.5.3 LQG/LTR Control System SineuLar-Value Plots 

The LQG/LTR RSV indicates that the control. system meets the requirements 
given in E q .  ( 9 , 9 ) ,  thus ensuring a good disturbance-rejection property. 
The system output completely tracks the reference input, since the plant 
is a type 1 system. The approximate system crossover frequency is 
1 rad/$ according to the RSV. The RSV also indicates that the effects 
of sensor noise are significantly minimized at w 2 5 rad/s. 

The RDSV satisifies inequality (9.22) for w I < 0.055 rad/s, thus ensuring 
a system insensitive to parameter variations only at low frequencies. 

The IRSV shows that the LQG/LTR control system is very stable f o r  the 
multiplicative perturbation AL specified in Sect. 9 . 3 .  

9.7 DEAERATOR STUDY SUMMARY AND CONCLUSIONS 

9.7.1 Summary of Control System Analvsis 

The design criteria used for analysis in this system is defined as shown 
in Table 5. The performance and robustness results summarized from the 
analysis using the singular-value plots are shown in Table 6 .  From this 
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Table 5. System design specifications 

System requirements Range 

Good command-following/disturbance omin [ L ( j w )  3 > 20 dB 
rej ec t ion Vw < _I 0.1 rad/s 

Good system response to high- qnin(l: +. [L(jw)I-l) - > IIuII = 5 dB 
frequency model.i.ng error Qw < 5 rad/s 

Good insensitivity to parameter u m i n [ l  + L ( j w ) ]  2 26 dB 
vartations at low frequencies for l o w  frequencies 

Goad immunity to noise 
w > .__ 5 rad/s 

table it appears that the LQG/LTR control system has the widest low- 
frequency range o f  disturbance rejection and insensitivity to parameter 
variations. The PI control system is seem to have the worst disturbance 
rejection property and the most sensitivity to parameter variations. 

All of the control systems demonstrate the capability of maintaining a 
stable robust system in the presence of high-frequency modelling errors, 
especially the PI control system. Even though a11 the control systems 
a1 so have good imrnuni ty to noise at frequencies significantly greater 
than 5 rad/s, the PI control system has the best immunity. 

‘l‘he T.QG/LTR control system is seen to meet all the design criteria, 
unlike the other control systems. 
system was obtainable in a systematic manner, in contrast to the trial- 
and-error method used for the J-QG control system. The LQG controller 
design was obtained by shaping o f  the output transient response using 
the system state weighting matrix, then examining the system’s singular- 
value plots. The PI control system used is simply a three-element 
control system strategy that; has previous1.y been used in the simulation 
s txdy o f  the deaerator f l o w  conerol sys tem. 

The design of the T,QG/LTR control 

9 . 7 . 2  ConclusiotE 

It should be evident that performance characteristics such as a sui table 
transient response do not imply that the system will have good 
robustness properties. 
and a stable robust system are two compl.etely separate goa l s .  Presently 
and in the past, classical uni-ty-feedback design methods have been used 
f o r  transient response shaping, with little consideration for robustness 

Obtaining suitable performance characteristics 



Table 6. Performance and robustness results 

Sys tern PI WG W / L T R  
properties control sys tem control system control system 

Command following/ 
disturbance 

Sys tern response to D m i n ( I  + t~(jo)l-'~ + t~(jw)I-') U m j n I I  + [~(jw>l-') 
> 30 dB 2 1 6 . 7  dB high frequency modeling - > 4 3 . 0  dB - 

c 
UI 

error ( w  2 5 rad/s) 

Insensitivity to parameter omin[I + L ( j w ) ]  2 26 dB ~f , i~[I  f L ( j w ) ]  > 26 dB amin[I + L ( j w ) ]  2 26 dB 
variations at low 
frequencies 

V w < - 0.0055 rad/s V w - < 0.008 rad/s V w 5 0.055 rad/s 

Immunity to noise 
( w  2 5 rad/s) 
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properties. 
is that good performance and stability robustness properties are 
obtainable. A s  seen in this paper, transient response shaping can be 
obtained easily using a precomgensntor. Therefore it appears that the 
goal of the control system designer is first to design a stable robust 
system and then use prefiltering to obtain the desired transient 
response a 

The main advantage of having a closed-loop feedback system 

Optimal control methods as demonstrated by the LQG control system do not 
guarantee good robustness properties when appli-ed systematically to meet 
minimization requirements of a performance index. Methods such as pole 
placement emphasize transient response characteristic without regard to 
robustness, which could be detrimental to the system integrity in the 
presence of model uncertainties. 
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Appendix A 

SINGULAR-VALUE REQUIREMENTS FOR SYSTEM DESIGN 

First let us derive the representation of y ( s ) .  From Fig. A I ,  it can be 
shown that 

where 

e ( s )  = r(s) - y ( s )  - n ( s )  
thus 

y(s )  = L(s)K(s)r(s) - Z , ( s ) K ( s ) y ( s )  - L(s)K(s)n(s) + d ( s )  

therefore 

where yr(s), yd(s) and yn(s) are respectively the contributions to the 
plant output due to the reference input, disturbance input, and noise 
input to the system. Now the requirements for good command following, 
disturbance rejection, and insensitivity to sensor noise will be defined 
using singular values to characterize the magnitude of MIMO transfer 
functions. These requirements are also applicable t o  SISO systems. 

Singular-Value Requirements f o r  Good Command Followinp; 

Good command following of the reference input r ( t )  by the plant output 
y ( t )  implies that 

where sR is che imaginary frequency range of the input r(s). 
d ( s )  = n ( s )  = 0 in Eq. ( A 4 )  results in 

Letting 

Therefore, to obtain good command following for this system requires 
that 

a, , , (L( jLd)K(jw))  >> 1 V W € %  . ( A 7 1  
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- input  re ference  s i g n a l  
- e r r o r  s i g n a l  t r a n s f e r  func t ion  
- input  s i g n a l  t o  p l an t  t r a n s f e r  func t ion  
- disturbance s i g n a l  t r a n s f e r  func t ion  
- output  s i g n a l  t r a n s f e r  func t ion  
- noise  s i g n a l  t r a n s f e r  func t ion  
- nominal p l a n t  t r a n s f e r  func t ion  
- compensator t r a n s f e r  functi-on 
- frequency range of the  input  command 
- frequency range of the  distance 
- frequency range of t he  noise  
- imaginary frequency j w  

Fig.  Al.  Unity feedback MIMO con t ro l  system, 

S inmlar -Value  Requirements €or  Good Disturbance Reiect ion 

To miniini.ze the  e f f e c t  of dis turbance on the output  s i g n a l  y ( s ) ,  
Eq. ( A 4 )  w i l l  be examined when n ( s )  = r ( s )  = 0 ,  which r e s u l t s  i n  

Good dis turbance r e j e c t i o n  a t  the  p l an t  output  r equ i r e s  

a m i , ( L ( j w > K ( j w ) )  >> 1 \Jwc@d . (A9)  

S inmlar -Value  RequiLernents f o r  Good Immunity t o  Sensor Noise 

F i r s t  l e t t i n g  P(S) ..-= d ( s )  = 0 i n  Eq. ( A 4 )  r e s u l t s  i n  

y,(s) = -[I + L ( s > K ( s ) ] - l ( L ( s > K ( . ~ > n ( s ) )  . (A101 

Therefore t o  minimize y , ( s )  requi res  t h a t  

I t  i s  apparent t h a t  any overlapping o f  any of the frequency ranges %, 
wdr  or  w,, w i l l  r equi re  system design s p e c i f i c a t i o n  t r a d e - o f f s  t o  be 
made. This w i l l  d e f i n i t e l y  occur when overlapping of the lower 
frequency ranges o f  q, and/or wd with the higher  frequency range wn 
occurs .  
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Appendix B 

CLASSICAL DESIGN OF THE DEAERATOR CONTROL SYSTEM 

This procedure summarizes the design of the deaerator control system in 
which classical techniques (root loci and Bode plots) were utilized and 
will be used in comparison with the robust control system. A general 
model of the deaerator is shown in Fig. B 1 .  The appropriate linearized 
transfer functions obtained from the modular modeling systems (MMS) 
developed by Babcock and Wilcox for the Electric Power Research 
Institute (EPRI) are 

Y ( S )  0 . 7 6  (s2 + 4 7 . 6 6 s  + 9 . 4 2 3 )  

u(s) 
- e  

s3 -I- 53.9423s‘  + 7 , 5 5 8 7 s  - 1 . 5 0 3 9  x lo-’ 

and 

w ( s )  

u ( s )  

4 . 5 2 2 7  x 108s2 + 6 . 4 2 4  x 107s - 7 7 . 5 4 6  

s3 + 53.9423s ‘  + 7 . 5 5 8 7 s  - 1 .5039  x low5 
_I= 

where 

y ( s )  - deaerator tank level 
w ( s )  - condensate flow 
u ( s )  - control action of the valve 

The first step in the design process is to factor the two transfer 
functions to emphasize .their pole-zero locations. Thus 

E x  t 1’8 c t i on I ~ i n e 
cotit rtrl v a  I \  t 

condensatca pump J 

f 

Fig. B1. General process flow diagram of the deaerator. 
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Y ( S )  

u ( s )  

0 . 7 6 ( ~  + 0 . 1 9 8 6 ) ( ~  .+ 4 7 . 4 5 8 )  
- = 

( S  - 1 . 9 8 9 6  x ~ O - ' ) ( S  + 0 . 1 4 0 5 ) ( ~  + 5 3 . 8 0 1 5 )  

and 

w ( s )  

u ( s )  

4 . 5 2 2 7  x 108(s + 1.2071 x 1 0 - 6 ) ( ~  i- 0 . 1 4 2 )  

(S - 1 . 9 8 9 6  x 1 0 - 6 ) ( ~  + 0 . 1 4 0 5 ) ( s  i- 5 3 . 8 0 1 5 )  
. ( B 4 )  - _  

A t  f i rs t  glance it would seem t h a t  these two t r a n s f e r  f u n c t i o n s ,  
E q s .  ( B 3 )  and ( B 4 ) ,  have r i g h t  h a l f  plane po le s  and ze roes .  However 
these  po le s  and zeroes average due t o  numerical inaccuracies  i n  the  
1 - inea r i za t ion  process  i n  the  MMS d i g i t a l  s imulat ion program. A more 
r e a l i s t i c  set: o f  t r a n s f e r  funct ions is 

y ( s )  - ( s  + 0 . 1 9 8 6 ) ( s  + 4 7 . 4 5 8 )  
u ( s )  Q . 7 6  s ( s  + Q . l ~ O ~ S ' ) ~ ~ S - ~ 3 . 8 0 1 5 )  

and 
s + 0.142 w ( s )  - 

u ( s )  4 e 5 2 2 7  ( s  + 0 . 1 4 0 5 ) ( s  +- 5 3 . 8 0 1 5 )  ' 

To f a c i l i t a t e  rhe design process ,  E q s .  ( B 5 )  and ( B 6 )  are f u r t h e r  
manipulated t o  o b t a i n  the  two t r a n s f e r  functi-ons 

s + 0 . 1 4 2  
( s  + Q.l405)(s + 53.80-j 

uTsl)- w ( s )  = 4 * 5 2 2 7  

and 

( s  + 0 . 1 9 8 6 ) ( s  s ( s  + o .  + 142..j 4 7 . 4 5 8 )  --.---.I...- '(') 1 . 6 8 0 4  x lo-' 
w;Ts- = 

With t h e  t r a n s f e r  funct ions i n  t h i s  form, the  block diagram of the  
system has an inne r  and an ou te r  l oop ,  as shown i n  Fig.  B 2 .  

The v a r i a b l e  W F W  r ep resen t s  t he  feedwater f l o w .  
i t :  w a s  maintained cons t an t .  A P I  c o n t r o l l e r  w a s  u t i l i z e d  i n  t h i s  
a p p l i c a t i o n .  
a system with u n i t y  feedback, as shown i n  Fig.  B 3 .  

However, f o r  t h i s  s tudy 

The system shown i n  F i g .  B2 can now be cast  i n  the  form of 

I n  t h i s  formulatlion the  poles  and zeros  of t he  c losed  inne r  loop appear 
i n  the open ou te r - loop  t r a n s f e r  func t ion .  The procedure then starts 
with the  open inne r  l o o p ,  whose t r a n s f e r  func t ion  F , , ( s )  i s  

( s  + 0.1.42) 
F I L ( ~ )  = Kp( + :). K3 X 4 . 5 2 2 7  x l o8  x ----- ( I39 ) 

s ( s  + 0 . 1 4 0 5 ) ( s  +- 53.801.) 

The roo t  locus of  t he  inner  loop i s  sketched i n  F ig .  B 4 .  
t.hat the re  i s  a g r e a t  dea l  of  freedom i n  t h e  choice of t he  zero i n  the  
c o n t r o l l e r  t r a n s f e r  func t ions .  

I t  is seen 
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Fig. B2. Block diagram of the linearized system. 

-. . - . . . . . . 

- 

_.._ 

.... 

I 
S I ’  

i 

Fig. B3. Linearized system with unity feedback. 
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1 hl 

Fig. B 4 .  Sketch of inner loop root locus .  

Reasonable values are 

Kp = 0 . 1  

Ki >= 0 .05  

and 

K, = 1 x lo-' . 

The closed inner loop F,,, now has the transfer func t lon  

( S  + 0 . 1 4 2 ) ( ~  -I- 0 . 5 )  
( s  + 98:$-)-(2-.+ 0 . 1 4 3 2 ) ( s - s - ' ~ . 2 2 6 8 )  ' ( B 1 0 )  FILC(S) = 4 5 . 2 2 7  

The open outer loop F o L ( s )  now becomes 

4 5 . 2 2 7 * 1 . 6 8 0 4  x lo-' 

1 x 10-j 
FOL(S) = ~ 



5 9  

( s  + 0.5)(s + 0 . 1 4 2 ) ( s  + 0.1986)(s + 47.458) 
s ( s  -+ 98.8)(s + 0.1432)(s  + 0.2268)(s + 0.142) 

or 

(s + 0.5)(s + 0.1986)(s + 47.458) 
FoL(s) - 0*07 '  s(s + 98.8)(s +- 0 . 1 4 3 2 ) ( s  -I- 0 . 2 2 6 8 )  

The c losed o u t e r  loop  FoLc now becomes 

( s  + 0 . 5 ) ( s  -I- 0.1986)(s + 4 7 . 4 5 8 )  
FOLc(s) = 0.076 __- . (B13) 

s ( s  + 98.84) (s  t 0.2159) (s2  + 0.1913s t 0.0168) 

A sketch of the open loop root locus Fotc(s) is shown in Fig. B5. The 
frequency of FILC(s) and FoLc(s) are shown respectively in Figs. B6 and 
B 7 .  

I N  Axis 

Fig. B5. Outer loop root locus. 
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Appendix C 

CONCEPTS OF EIGENVECTORS, VECTOR NORMS, 
MATRIX N O M S  AND SINGULAR VALUES 

Eigenvalues and Eigenvectors 

Assume that the linear time invariant (LTI) system is defined as 

and 

The eigenvalues of A are defined as X i ( i  = 1,2, . . . ,  n). The left 
eigenvector viT of A is defined such that is satisfies 

viT(A - XiI) - 0 , 

and the right eigenvector ui o f  A is defined to satisfy 

(Cl.) 

( C 2 )  

Note that for each l e f t  or right eigenvector there corresponds an 
eigenvalue Xi which is already defined prior to the solution of  the 
eigenvector. A characteristic of the left and right eignevectors is the 
orthogonal relationship that exists between them. 
relationship is defined as 

The orthogonality 

1 for i = j 

0 for i # j 

T vi ui = 

Considering that the A matrix has distinct eigenvalues, A can be 
decomposed as follows 

A -  T A TI1 , 

( C S )  

where A is a diagonal matrix containing the eigenvalues, 
T = [q, u z ,  u 3 , .  ..,unl, and T-l - [vl , vz , v3 , . . . ,  vnTIT. The 
representation of A given in E q .  C 6  is called the eigenvector 
decomposition. 

T T T  

Vector Norms 

The size o f  a vector x is described by the concept of norm which most 
engineers tend to associate with length. Before the concept of vector 
norm is formally defined, let us review the concept of inner product. 
The inner product of the complex vectors x - [x,, x2,. . . ,x,lT and 
y - [yl, y 2 , .  . . ,ynIT is defined as 

e , y >  = (Xpy - x;yl + x j l ,  f ... + x;y, = <y,x> 
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where ( 
complex conjugate. The hermitian transpose is defined as the complex 
conjugate transpose of the indicated vector or matrix. 

)H indicates the hermitian transpose and ( ) *  defines the 

The definition of the 1, 2 (Euclidean norm), 4) vector norms are defined 
respectively as 

llxll1 1x11 + 1x21 + + lxnl (C8)  

llxl12 - (e, ,>)I12 = (XIXl i- x;x2 + . . . + x;xn)1'2 ( C 9 )  

Matrix Norms and Singular Values 

Now the matrix norms of llAlll, 
m X R matrix A .  The matrix A defines a linear transformation from the 
vector space V, called the domain to a vector space W called the range. 
Thus the l inear  transformation 

and llAllm will be defined for the 

transforms a vector x in VeCn into a vector A(x) in WEP. The matrix 
norms of  llAlll, IIAllz, and IIAllm are respectively defined as 

IIAII, = max (e) 
x + O  

Since the 1, norm is a useful tool in control system analysis, further 
insight to its definition will now be given. The 1, norm of C13 can be 
written as 

( C 1 5 )  
max 

IIA112= i (Xi(AHA))1/2, i = 1,2,. . . ,n 

max 
i = (x~(AA~))'/~, i = 1,2,. . . ,n . 

The matrices AHA and AAH are hermitian and positive semi-definite. 
eigenvalues of  these matrices are real and non-negative. 

The 

Not let us define the singular value o f  a complex matrice AeCnm: 

ai(A) = (Xi(AHA))l/z = (Xi(.4AH))1/2 - > 0 ,  i = 1 , 2 , .  . . , R  . ( C 1 7 )  
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If A E F ,  which indicates that A is a nonsquare matrix, then 

o , ( A )  (Ai(A'A))'12 - (X,(AA'))''z (C18) 

f o r  1 s  i 5 k, where k - number of singular values - min(m,n), 
maximum and minimum singular values are defined respectively us 

The 

%ax(A) - IlAllz 

and 

provided A is invertible. 

The complex matrix A has the singular value decomposition as follows 

where 

c =  

0 1  

0 

0 ! 0 

i s m x n  

- uij Q 0 for i f j 

and U and V are respectively m x m and n x n unitary matrices, 
can be stated that  

Z: = UH A V .  

The eigenvalues of 

A ~ A  - V ( C ~ E ) V ~  ( 2 3 )  

are oiz, the diagonal elements of the diagonal matrix Z'G. 
eigenvalues of 

The 

AAB = U(X??)UH ( 2 4 )  

where is diagonal and i t s  elements ui2 are the eigenvalues of AAH. 
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