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ACBNCBTRRENTAPPRQACHTQ 
MODEL BASED MOTION DETECTION 

ABSTRACT 

In robot-vision it is important to be able to acquire and describe dynamicaly chang- 
ing scenes. A token based method for real-time motion detection is described here. 
This method uses a prediction-verfication scheme to cope with ambiguous motion 
patterns. To improve performance it is investigated how the application may be im- 
plemented on a concurrent achitecture like a hypercube. An implementation based 
on the SPND approach is presented together with some experiiriental results. The 
results demonstrate the systems ability to handle ambiguous situations. Timing 
results indicate the system has a potential for tracking of less than 10 objects or 
more than 40 objects, while the advantage of using a concurrent architecture for 
10-40 objects is very small. 

1. INTRODUCTION 

Prerequisites for building and operating autonomous systems, such as robots, in a 
dynamically changing cnvironment are sensor systerns that allow the control systeni 
to monitor and interact with the world. Sensor for such autonomous systems must 
be capable of acquiring and analyzing data in real-time. Real-time denotes the 
analysis of data in a fixed and predefined time frame. This time frame is assumed 
to be small enough to allow adequate description of phenomena significant to the 
system. Computer vision has proved to be a very powerful tool in this context. 
For the description of dynamic phenomena, motion description and analysis tasks 
are particularly important to a control system. A number of investigators have 
foeuscd recently on the area of motion detection and description for robotics appli- 
cations, see for example Andcrsson 1985 , Gonzalez and Wintz [1986], Horn 
Aggarwal [1987], Christensen [I987 1 1  , Set i i  and Jain [1987], Waxman et sl. 
Wiklund and Granlund [1987], Christenscn and Granum [1988a; 1938b], Crowley 
[1988], and Granum and Christensen [1988a; 19881~1. 

A recent comparison of motion detection techniques [Granum and Christensen, 
1988a] , concliides that analysis based on correspondence met hods seems to offer 
the best potential for real-time analysis of dynamically changing scenes. The ma- 
jor problem associated with correspoIidence-based motion description has been the 
handling of ambiguous situahions. As the nmnber of descriptors is often small, the 
context for matching primitives between images is very lirnited. However, develop- 
ment of model-ha.sed techniques has significantly reduced this ambiguity to a level 
that allows practical use of this class of methods. 

We will outline a model-based motion description approach that was proven to 
be fast [Christensen and Granum, 1988aI and capable of handling a number of 
ambiguous situations. The description will also outline a number of techniques for 
mapping such an application onto a parallel architecturc. An implementation on 
n hypercube computer (NCUBE Corp., Beaverton, OR) will be presented together 
with cncouraging preliminary results. We conclude by summarizing the approach 
and pointing out issues for future research. 

1 
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2. MODEL-BASED MOTION DETECTION AND DESCRIPTION 

2.1. Approach 

For motion detection based on correspondence or matching methods a number of 
image descriptors, often referred to as tokens, such as edges, lines or regions are 
extracted from a sequence of images. Tokens from time-sequential frames are then 
matched, and based on the difference in location, motion parameters are calculated. 
The conventional approach to correspondence analysis is shown in Fig. 1. 

Fig. 1. A straight forward approach to correspondence analysis. 

In this approach situations can easily arise where the correspondence of tokens is 
ambiguous, i.e., there might be severad matching candidates for tokens. Consider 
for example the situation in Fig, 2, where a token is approaching the boundary of 
the field of view, while another enters the field of view. 

1. frame 2. frame 3. frame 

e Current frame 8 Previous frame Q Next io previous frame 

Fig. 2. A short image sequence with an ambiguous situation. 

If we only consider the last two frames, no information is available that will allow 
unambiguous matching. If tempora9 context, i .e,  the motion history of tokens, is 
included, it might be possible to determine a11 unarnbiguous correspondence. If it 
can bc assiimed that the system. is operating continuously, the history of all tokens 
in thc field of view is available for matching. This information might be used in an 
estimation of token positions in future frames. To do this, thc scene history must 
be accumulated and maintained, i.e.,. a model of the environment Inlist be estab- 
lished. Consider a situation where the scene model contains a statistical description 
of each token in addition to current position and a number of motion parameters, 
i.e., velocity and acceleration. Having such information available will enable esti- 
mation of the next frame, with subsequent matching between the estimated and 
the measured fra,rne. This should allow almost unarxhiguous matching, if it can be 
assumed that the world is well behaved, Le., the complexity of scene dynamics is 



limited. Motion might be considered well behaved if it is in accordance with thc 
path coherence and smoothness of motion defined by Sethi and Jain [1987] and 
Jenkins [1983], respectively. 

Correspondence type motion detection can bc divided into two groups, according 
to the level of abstraction in token description. 

Low-level token description 
b "i High-level token description 

2.2. E Q W - E ~ V ~ ~  Tokens 

In this category, the primitives describe local image properties. Typical descriptors 
include edges and line-segments. As the descriptors are local, it is usually possible to 
extract at large amowit of tokens, which facilitates a dense and accurate estimation 
of image motion. 

Low-level tokens are sensitive to noise, as noise can easily introduce edges or break 
line segments into several smaller ones. This sensitivity introduces additional ambi- 
guity in the matching, i.e. has a token disappeared due to motion or noise? In this 
category the global image context is imknown, hence it is impossible to handle sit- 
uations where scene components occlude each other temporarily. Such phenomena 
must be handled in a postprocessing procedure following motion dctection. 

These primitives are associated with more global irnage properties. In this cate- 
gory tokens are typically associated with image regions. The high-level tokens are 
described by feature vectors that contain statistical and/or structural properties 
related to the image regions. 

l o  simplify the analysis, primitives may be associated with rigid scene objects. If a 
nonrigid region is encountered it can bc assumcd to represent two or more objects 
currently occluding each other. 

The high-level tokcris are less sensitive to mise, as noise will have little or no in- 
fluence on high-level features such as coordinates for the bounding rectangle, area 
etc. It might have a large influence on features such as the Euler number. 'Thus, 
these kinds of features, i.e., topological, should be avoided for the motion detec- 
tion. The major problem related to motion detection itsing high-level descriptors 
is the limited amount of data, i.e. only little contextual information is available 
for the correspondence analysis, hence it may be more difficult to solve ambiguous 
situations. 

r- 

,4 comparison of low- versus high-level descriptors must take accuracy and ability to 
handle occlusions into account. In a, number of situations the scenario only contains 
rigid man-made objects, e.g., a factory scene. In such situations it is natural to select 
the high-level descriptors as they provide a more direct approach to description of 
scene dynamics. If non-rigid objects may occur, the low-level descriptors seem more 
appropriate. 
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2.4. A System Structure 

Figure 3 shows a block diagram for a model based motion detection system. This 
structure is applicable to both low- and high-level tokens. 

Estimation IJ-i2j 
U 1 

Fig. 3. Block diagram for a model based motion detection system. 

The token extraction module includes image acquisition, segmentation and feature 
extraction. The results (a nunibcr of feature vectors) are passed on to the matching 
module. In the motion detection module, the model forms the basis for an esti- 
mation of the next frame. The correspondence between estimated aIid measured 
frame is subsequently established in the, matching module. Matching will not only 
establish links between corresponding tokens, but will also provide a description of 
tokens with no correspondence. This information is used to updatc the estimated 
model, i.e., objects that have moved into the field of view are introduced and model 
tokcns with no correspondence are discarded. T1ic updated model and the ‘‘old” 
rnodel are finally used for calculation of new motion parameters. 

The model-based technique has been used with siicccss by a number of investigators; 
see for example Aggarwal and Duda [1975], Roach and Aggarwal [1980 
and Miink (19861, Christensen , Christensen and Granum [1988a 
[1988], Wiklund and Granlund 

In the following the system described by Muiik [1986] and Christensen [1987] will be 
considered. In this system the scenario is characterized by thc following properties: 

A measured token may correspond to two or more scene items currcntly oc.  
eluded. 

An item (token) in the model represents a single object (edge, line or region) in 
tli2e measured frame, if and only if i t  has previously been observed as such. 

The images have becn preprocessed, 5 0  that unique primitivcs (tokens) are avail- 
able for matcliixig. 

It is assumed that simple techniques such as global tliresholding are sufficient 
for segmentation, as inore sophisticated methods may challenge the real-time re- 
quirement. The restriction call be avoided by using special image preprocessing 
hardware, but special hardwaxe is usually undesirable as it will limit flexibility. 
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5 )  For practical reasons, i.e., limited memory, the number of tokens per image is 
limited to 30. However, the algorithms can easily cope with a large number of 
tokens. 

6) Standard hardware and software should suffice for implementation, and the 
aiialysis time shoiild be less than one sampling period. A sampling period i s  
dependent on scene dynamics, i.e., the sampling period might be longer than 
30 ms. 

The estimation and motion calculation are performed by using second order Taylor 
expansions of the path. Such an approximation is crude but fast. If the smooth- 
ness of motion and path coherence mentioned previously can be applied for a scene 
this approximation should be sufficient. It has been suggested [Christensen, 1988; 
Farkas, 19871 that motion description using Iblman filtering might produce more re- 
liable motion descriptors, but the complexity of this method will lower the through- 
put. Matching is performed by model-based techniques [Munk, 19861 or proba- 
bilistic relaxation [Christensen, 19871. The probabilistic approach has proven to be 
faster and more general, but in principle both can be applied. 

This approach has been implemented in experimental software on standard UNIX 
computers. Image sequences are preprocessed by the Edinburgh Fast Interval Pro- 
cessor [Shippey et al., 19811, that is capable of producing region descriptions at 
frame rate (25 Hz).  The implementatiolis have been timed and the systems are 
capable of analyzing 2-5 frames per second, depending on scene complexity. 



7 

3. A CONCURRENT APPROACH TO MOTION DETECTION 

3.1. Fundamentals 

Christensen and Granum [1988a] reported that such model-based motion detection 
can cope with ambiguous situations, e.g. ,  occ1usions, while a speed of 2-5 Games per 
second cain be obtained on a sequential computer. We describe some approaches 
to mapping the application onto a parallel architecture. The analysis will focus on 
the hypercube architecture, but the conclusions should be applicable for a variety 
of architectures. Figure 4 shows a $-dimensional hypercube. 

Fig. 4. A 4-dimensional hypercube configuration. 

The hypercube is a distributed-memory, message-passing *architecture, where each 
processor has local, private memory. Actions arc coordinated by messages that are 
sent on a interconnecting network. The processors (also referred to as nodes arc 
located at vertices of an n-dimensional cube. An 11-dirne1isiona.I cubc can easi a' y be 
build from 2 (n-l)-dimensional cubes by connecting appropriate nodes, as indicated 
in Fig. 4. Thus, while the xiurnher of processors grows exponentially the nuInber 
of connections per node only grows linearly. The network is dense enough to allow 
efficient communication between any two processors, whilc it is still sparse ellough 
to be simple and inexpensive to implement. In this type of interconnecting network 
the rnaxirnurn distance between any two nodes is equal to the dimension of the 
hypercube. One of the virtues of thc architectures is its flexibility. It is possible to 
map a number of other topologies (rings, grids trees, etc.) onto the architecture. 
The architecture is thus suited for experirncnts with concurrent algorithms €or a 
variety of topologics [Heath, 19861. 

The hypercube is in principle a Multiple Instruction Multiple Data (MIMD) COM- 

puter, but due to loosely connected nodes the most common approach to program- 
ming is program synchronization rather than instruction synchronization, i.e., the 
computer is synchronized at a number of milestones, rather than after each instruc- 
tions. Hence, it is more appropriate to refer to the computer as a Multiple Program 
Multiple Data (MFMD) architecture. 
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With this architecture one of the following three processing approaches can be used: 

execute different programs on each processing element (PE), and comxriuni- 
cate data between the PES; this represents a multiple programs single data 
(MPSD) approach, 

distribute data over all PES and execute the same program on all PES; this 
represents a single program multiple data (SPMD) approach, or 

c) execute a different program on each PE which processes different types of 
data, a multiple program multiple data (MPMD) method. 

a) 

b) 

3.2. The MPSD Approach 

Consider initially the MPSD approach (a). The block diagram in Fig. 3 defines a 
breakdown of the system into a number of modules with well-defined interfaces. If 
a delay of three image intervals can be allowed, a structure with one time frame 
spent on preprocessing, one on matching and one on model correction and motion 
description, can be developed. In this breakdown different parts of the system are 
analyzing data from different samples. Thus, it should be simple to map the system 
on a hypercube architecture, i.e., a PE or a subcube can be assigned to each of the 
tasks. One possible distribution is shown in Fig. 5 .  

a 

Token extraction Matching Carreclion Motion cab. 
1 

Prediction Model 

Fig, 5. Block diagram with a possible mapping oxits a 3-dimensional 
hypercube using a MPSD approach. Two coniiections for the hypercube 
configuration have intentionally been left out, as they are not used. The 
parameter n indicates present time (see text). 

If we determine algorithm complexity for each task, it is apparent that preprocessing 
will have a complexity that is data-independent, i.e., thresholding, edge detection 
and/or component labeling will have a constant usage of resources. For the matching 
it can be shown [Christensen, 19871 that complexity is of the order O ( N 2 ) ,  where 
N indicates the niunber of primitives. The other modules will have a coinplexity of 
O ( N ) .  These numbers indicate that resource usage is data dependent. Hence, it is 
difficult to assign an appropriate and fixed amount of resources to each of the tasks. 
If the allocation of resources is ped~rmed according to worst-case conditions, a large 
arnount of resources will be idle most of the time. This is particularly true for the 
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matching part, as: it has a second order complexity. A distribution according to 
mean load will 0x1 the other hand imply overload, at least in the matching module, 
during worst cast) conditions. This indicates that a balanced distribution of the tasks 
onto a parallel architecture is very difficult if a MPSD approach is used. Anether 
complication is software design, i.e., the system must be distributed during design, 
which may be difficult if not impossible. Consider the block diagram in Fig. 5. 
Here, the matching should be allocated a larger number of processors than the 
other modules to cope with worst-case conditions. This mapping will be static and 
applicable only for a narrow range of applications. Thus, this approach will often 
lead to a nonoptiina.1 use of available reseurces. 

3.3. The SPMD Approach 

In the SPMD appreach all PES allocated to the system will execute the same pro- 
gram, and thc data have been distributed evenly onto the ]PES. All modules will 
thus perform preprocessing, matching, etc., but on different data. The problem is in 
the distribution of data rather than instructions. For preprocessing this is simple. 
Consider a situation where each PE is assigned the same amount of data from the 
input image. In such a situation all PES should complete the task at approximately 
the same time. The criterion for data distribution is often minimization of com- 
munication between PES, since communication takes up valuable time that can not 
he used for computations. For a discussion of image distribution using grid or ring 
mapping 011 a hypercube see Jones et al. [1988]. The distribution of data is more 
complicated for the motion detection, since the use of resources depends upon the 
input data. The distribution of primitives for motion detection can be performed 
according to three different approaches. 

1) Distribute measured primitives and Imintain a complete modd of the scene on 
each PE. 

2) Distribute the model and maintain a complete measured frame on each PE. 

3) Distribute both scene model and rnea,sured primitives on the available PES, 

In approach (1) rrieasured primitives are distrihuted evenly on the available PES, 
and a major portion of the motion detection and description is performed locally 

situation whrre two measured tokens match with the samr model token, i.e., an 
arnhiguous situation arises. If the two measiired tokens are on different PES, each 
of the PES will interpret this as a single match. To avoid this interpretation the 
global consistency must be established after the local matching on each PE has 
been pcrforrned. This global analysis requires communication and analysis of the 
complexity O ( N  log#), where P is the number of processors in the hypercube and 
N is thc number of primitlives (see also discussion of butterfly algorithm by Jones 
et al. [1988]). In this approach (1 all the model-tokens are subjected to the same 

redundant calculations that iiiiglit lower total throughput. 

st cach PE. H owever, the processing can not be entircly local, eg. ,  consider a 

computation on a11 PES. If a detai i) ed motion description is required, this will imply 

The second approach is similar to that in (l), except that the model is distributed 
m o n g  the processors. This allows for distrihution of model updating, estimation, 
etc., hut the problem of global consistency in the correspondence analysis must still 



he solved globally. The advantage of this approach with respect to (1) will thus 
depend on the complexity of model maintenance and estimation tasks. 

In the third approach both model and measured primitives are distributed evenly 
on the available PES. If the distribution is performed at random, local matching 
on each PE will probably not be efficient, but if the distribution of tokens is per- 
formed according to similarity in geometry, the local matching should be able to 
establish a major portion of the correspondences. The local correspondences can 
then he coordinated globally durin a postprocessing step. This method should be 
significantly faster than those in (17 and (2), as both the model and the meamred 
frame have been distributed. Matching, in particular, will be faster as the number 
of primitives on each PE has been redked. 

The SPMD approach is simple to implement, since only one prograni, to be ex- 
ecuted by all PES must be developed. Once the data have been distributed the 
concurrency is hidden to the programmer. We may thus consider the architecture 
as one computer with a very complex CPU structure. 

3.4. The MPMD Armroach 

This type of distribution has the same balancing problems as the MPSD approach. 
A method is required for balanced distribution of data and algorithm. Considering 
the problems encountered in MPSD, this method seems to have little to offer for 
the application at hand. 

In summary, it appears, that the SPMD approach is simpler to program and balance, 
if the algorithms have a nonhomogeneous complexity. In what follows we will only 
consider the SPMD approach. 
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4. AN IMPLEMENTATION 

A model-based motion analysis similar to that in Fig. 3 has been implemented on 
an NCUBE hypercube. Various aspects of the implementation will be presented 
here. 

The SPMD approach was chosen since i t  is easier to program and to balance, as 
explained in Section 3. To optimize with respect to speed, both the measured 
and model tokens axe distributed on the hypercube. The distribution is performed 
according to image geometry. For preprocessing the image is distributed onto the 
cube according to a gray code ring mapping, (see Fig. 6). This allows easy balancing 
of preprocessing. 

0 

5 2 
5 3 

Ring-map on Image distribution 
Gray code 1 Physical no, a hypercube 

a )  b) 

Fig. 6. Graycode mapping onto a 3-dimensional hypercube. 

A ring map with corresponding node numbers, 
ring mapping on hypercube, and 
image partitioning with corresponding node numbers. 

WC will assufnc that extracted primitives have a uniform spatial distribution in 
the image. If this requirement is satisfied, the distribution of rziodel and meastired 
tokens can be performed in a maimer similar to the ring mapping. The global 
structurc of the program is shown in Fig. 7. 

cquire image, extract regions and build lacal frames 
Perform local mafchi 

Fig. 7. Global structure for token matching system. 

The present ation of the individual system tasks has been broken down according to 
Fig. 3. 
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4,l. Token Extraction 

Segmentation and feature extraction from natural scenes is very important for all 
subsequent analysis. The main objective in the present study has been the devel- 
opment of a concurrent motion detection system. Therefore, a simple and crude 
preprocessing method has been chosen. Images are acquired and segmented using 
global thresholding. The threshold is calculated separately for each image based 
on accumulation of image statistics. Currently the threshold is calculated by the 
formula 

T = mean intensity + 1/10 (max intensity - min intensity). 

It is assumed the background intensities are almost constant and all pixels above the 
mean intensity belong to scene objects. The approach will obviously fail if the scene 
is not uniformly illuminated or corrupted by noise, but for experimental purposes 
it i s  appropriate. 

The segmented image is labeled, and features associated with all foreground regions 
are calculated. Currently the feature vector contains area of image region, position 
of centroid, and coordinates for the axis of a bounding rectangle. The preprocessing 
is performed by function call to the image processing library described by Jones et 
al. A global description covering all image regions is calculated by the 
fiinctions bin image (t hresholding), connect (connected component labeling), and 
make blob list (feature extraction for labeled image) in the library. Based on the 
geometry of the distributed image a local frame description is built on each PE for 
the local matching. 

[1988]. 

4.2. Token Matching and Model Chcrection 

As indicated in Fig. 7, the matching is divided into a local and a global part. Both 
use a probabilistic relaxation approach similar to that reported by Christensen and 
Granum [1988a]. The probabilities are updated in each iteration as described by 
Rosenfeld et al. [1976], 

The variable pin)(E,) is the strength associated with the matching of measiired token 
t ,  with model token I,, n indicates the iteration number. S(.) is a support function 
that indicates the consistency of this labeling with respect to other labelings. The 
denominator ensures that the sum is normalized. The support function is a simple 
column-wise weighting. The support function is 
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This support function has proven to be able to handle ambiguous situations such as 
occlusions, and it does not incorporate any domain knowledge. Hence it is generally 
applicable. For a more detailed discussion of the matching function see Christensen 
and Granum [1988a]. 

After all local matching tasks have converged, a global matching table is built and 
all the measured or estimated tokens that have not been matched are included in a 
global matching, similar to the local one. The combined matching result is finally 
interpreted, is . ,  labels such as SINGLE, STARTER, OCCLUSION, ALONE, etc. 
are assigned to the model tokens a.nd new tokens we introduced. If a model token 
has no corresponding token in the rneasixed frame, a flag is set and a variable 
(age)  is incremented. If such a token has been without a Initching partner in three 
consecutive frames, it i s  discarded from the model. The delayed rejection of model 
tokens without partners has mainly been incorporated to handle situations with 
noise. A token may disappear for one or two frames without any loss of tracking, 

on Calleulation and Estimation 

Chmpared to the implementations by Miink [1986] and Christensen 119871, this im- 
plementation has more computational resources available, hence it was decided to 
c l r m ~ e  the motion calculation from a sccond order Taylor expansion to a Kalman 
filtering. The Kalmari filtering is more robust to noise, as it incorporates a larger 
amount of the temporal context aid the implied estimate of covariance of the pre- 
diction error might be incorporated into the matching. This motion description 
will also allow a mirrinwm squared error estimation, while the Taylor expansion 
in principle may result in an irnbouiided estimation error. A second order model 
was chosen for the motion calculation, alluwing for calculation of both velocity and 
acceleration. Thc prediction is a siniplc sccond order Taylor expansion based on 
the motion parameters in the ~riodel. 

The current model does not incorporatc a xnechanism for handling suddcn changes 
in motion, i.e., it assumps n i ~ t i o ~ i  can be modeled by a tirnc-invariant system. The 
Kalman filter shnirld thus be changed at a later stage to handle motion models 
correspndizig to tirne-varying systems. This can be ackicved in these three ways, 

variable covariance methods, 
recursive system identificat>ioii, and 
multiple moclel I<alman filtering. 

In variable covariance methods the detected estimation error is compared to an 
estimate of the error. ff the error becomes too large, the estimate of the covari- 
ance of the prediction error is increased to cope with a possible maneuver. This 
method has the admntage of being simple, but it can only handle small changes. 
If major changes occur, the method will fail, i.e., the Kalnian filter is only suited 
identification of systems with well-behaved dynamics. 

In recursive systcm idcntification, the I<alman filtering is replaced with a model 
that has tirne-varying parameters. The parameters (velocity and acceleration) are 
then estimated recursively. In traditional control theory this is accomplished by 
calculating a covariance matrix for the estimation error, rather than modelling it. 
Such an apprcmch will automatically adapt to tirne-varying models, but it is far 
more rornples in terms of computational rwoimxs. 

. . . . . . . . . 
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In the multiple model filtering, the motion calculation is based on a number Qf 
models of different order. The model with the smallest estimation error is then 
selected for current processing. In stationary mode a low order model will be used, 
while sudden changes in the motion will result in use of higher order models. The 
order of the model will thus change in response to the detected motion, Le., we 
have a model adaptive approach. For a more complete description of methods to 
estimate system parameters refer to conventional control system literature, such as 
Aastrm and Wittenmark [1984] and Bar-Shalom and Fortmann [1988]. 
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5.  RESULTS 

The implemented system has been tested on a number of sequences of synthetic 
images. To demonstrate the potential of the system, results from a few of these 
sequences will bo presented. The system has not been tested on natural images, 
as the segnientation poses serious problems in handling noise and nonuniform il- 
lumination. For application to natural scenes this part of the system should be 
redesigned. 

The first sequence contains three objects. An object is moving in a semicircle in the 
bottom part of the image while the second moves a in semicircle in the upper part. 
A third object moves across the middle of the field of view with constant velocity. 
In the middle of the field of view all. three object meet and occlude each other. 
From the plot in Fig. 8, it can be seen that the system is capable of tracking the 
objects. It can also resolve the ambiguous situation in the middle of the sequence. 
Minor deviations from the true paths can be detected, but that is to be expected. 
Tbe lines represent a trace of the centroid for the estimated objects (;.e., the system 
interpretation), while the rectangles represent an approximate out line of measured 
objects. 

Fig. 8. A test sequence with three objects that occlude each other 
in the middle afthe fie1 

The next test scqiience shows two objects that occlude catch other initially, but 
as the seqiience progresses, they move apart. The plot in Fig. 9 shows how the 
separate trajectories are adapted its soon as the separate ohjccts are detected. This 
indicates that the system is capable of handling a number of ambiguous situations. 

. 9. A sequence where two objects initially occlude each other. 
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e processing 20 tokens 30 tokens 
4.08 0.63 1.10 
2.12 0.59 0.93 
1.27 0.52 0.81 
1.05 0.54 0.73 

The implementation on the hypercube has been tested on a number of test se- 
quences, including those in Figs. 8 and 9. Preprocessing of the images takes ap- 
proximately 2.1 seconds, while token tracking involving less than 10 tokens can be 
achieved in 0.3-0.4 seconds. All measurements were performed on a 4-dimensional 
hypercube. If the dimension of the hypercube is increased, the preprocessing will 
take less time, the speed-up being almost linear. Motion analysis on the other hand 
does not improve significantly, mainly because the number of tokens is smaller than 
the number of processing elements. The results for sequences containing 20, 30, and 
40 tokens are shown in Table 1. 

40 tokens 
1.36 
0.94 
0.77 
0.68 

*All numbers are in seconds. The timing was performed on a 6 MHz NCUBE Corp. 
computer. 

The processing speeds obtained with this implementation are shown in Fig. 10. 

Fig. 10. Normalized speed-up factors obtained with the motion de- 
tection system on an NCUBE computer. 

Figure 10 shows nonlinear speedup. It appears that speedup factors deteriorate as 
soon as we have more PES than tokens; as could be expected. The timing results 
indicate the system is suited for tracking of a few objects (less than 10) on a low 
dimension hypercube or tracking of a large amount of tokens on a high dimension 
cube. The system seems to have little potential for tracking of 10-40 tokens, since 
speed-up factors in this range are poor. It may be possible to obtain better results 
if another distribution method is applied. Jones [ 19881 has suggested an approach 
where the entire measured frame is kept OA all PES, while only the model is dis- 
tributed. This will probably balance better, but due to second order algorithm 
complexity in the matching, the increase in speed will probably be insignifica.nt. 
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6, SUMMARY 

A model-based approach to motion detection has been outlined and strategies for 
onto a hvwrcube architecture have been discussed. A mapping the application 

practical implementation was briefl;>ketched together with some results, indicating 
that the system performs well in a,mbiguous situations. A processing speed on the 
order of 2-4 frmeslsecond for sequences with a limited number of tokens (10) was 
also reported. The major weakness in the system is the preprocessing, which takes 
10-20 times longer than the actual motion detection. The segmentation in the 
preprocessing is also sensitive to noise and nonuniform illumination. Additional 
work in this area should thus focus on preprocessing. 

For practical applications one might use special hardware for the preprocessing. 
The PIPE [Kent et al., 19851 and the Cytocomputers [Lougheed and McCubbrey, 
19851 are such computers, where the images are preprocessed in a pipeline of 1 to 
10 processors. The use of special prcprocessing hardware will, however, limit the 
flexibility, but for most applications that might be acceptable. 
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Appendix 

The source code for the system described in this memo is available on the 
CESARINCUBE computer at Engineering Physics and Mathematics Division, Oak 
Ridge National Laboratory. The source code and executables are located in 
the directory: //ornlQ/usr/hic/src/matching, the headerfile for the system is in 
//ornfO/usr/hic/src/iiicliide. Each of the source code files is briefly described below. 

token t rack. h 

main.c 

init.c 

regextract .c 

model. c 

ka1man.c 

kal3lib. c 

1r1atch.c 

ma,t .c 

tokentrk 

Headerfile; it contains an external definition 
of all global variables, the basic data-structure 
for the dynamic scene model mid forward 
declamtion of functions. 

The main structure of the token matching 
prograrn arid a definition of all global 
variables. 

Functions for initialization of system and 
decoding of user options. 

Preprocessing routines for image acquisition, 
segment at ion and feature extraction, 

Model correctiox1,estimation and motion 
calculation functons. 

The Kallrian filter. 

F'unctions for initializing the Kalma,n filter. 

Source code for the probabilistic relaxation 
and interpretation of matching results. 

Source code for matrix library. This file 
includes a number of matrix function 
implemented by L. Farkas, ORNL 
(Spring 1988). 

Compiled node program for token tracking. 

genseq. c Generator for synthetic image sequences. 

genseq Compiled node program for syritehtic image 
sequence generation. 

A miall demo version of the system is located in the directory 
/carnlO/usr/hic/demo/track, a single sequence of images is contained in the files seyl. 

, while the file trkgo contains a script file that allows demonstration of the system. 





23 

ORNL/TM-11051 

INTERNAL DISTRIBUTION 

1. B. R. Appleton 
2. N. Beckermari 
3. J. C. Culioli 
4. J. Han 
5. J .  P. Jones 
6. C. W. Glover 

7-11. R. C. Mann 
12. F. C. Maiensclieiri 
13. E. M. Oblow 
14.. F. 6. Pin 

15. C. R. Weisbin 
16. B. A. Worley 
17. J. J. Dornin (consultant) 
18. R,. Haralick ?consultant) 
19. EPMD Reports Office 
20. Central Research Library 
21. QR.NL Technical Library 

22-23. Laboratory Records 
24. ORNL Patent O S c e  
25. Laboratory Records-RC 

EXTERNAL DISTRIBUTION 

26--30. H. I. Christensen, Laboratory of Image ,4nalysis, Institute of Electronic 
Systems, Aalborg University, DK-9000 Aalborg, Denmark 

31. Office of Assistant Manager, Energy Research and Development, Oak 
Ridge: Operations Office, US/DOE, P.O. Box 2001, Oak Ridge, T N  
37831 

32--41. Office of Scientific and Technical Information, US/DOE, Oak Ridge, 
T N  37831 

. . . . . . . . . . . . . . . . . .,. ...,...,........ . . . , . . . . . . , . . . . . . . -- 


