




ORNL/TM-  11031 

Engineering Physics and Mathematics Divisian 

Mathematical Sciences Section 

T H E  EFFECT OF TIME CONSTRAINTS O N  SCALED SPEED-UP 

Patrick EI. Worley 

Oak Ridge National Laboratory 
Mathematical Sciences Section 

Oak Ridge, T N  37831-8083 
P.O. BOX 2009, Bldg. 9207-A 

Date Published: January 1989 

__ 

Research was supported by the 
Applied Mathematical Sciences Research Program 

of the Office of Energy Research, 
U.S. Department of Energy. 

Prepared by the 
Oak Edge  National. Laboratory 

Oak Ridge, Tennessee 37831 
operated by 

Martin Marietta Energy Systems, Inc. 
for the 

US. DEPARTMENT OF ENERGY 
under Contract No. DEAC-05-840R21400 





, 
Contents 

1 Introduction 1 

2 Multiprocessor Model 4 

3 Model Hyperbolic Problem - One Space Dimension 6 

3.1 Fixed-size speed-up curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

3.2 Memory-constrained scaled speed-up curves . . . . . . . . . . . . . . . . . . . .  9 
3.3 Time-constrained scaled speed-up curve . . . . . . . . . . . . . . . . . . . . . .  11 

4 Model Hyperbolic Problem - Two Space Dimensions 12 

4.1 Fixed-size speed-up curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
4.2 Memory-constrained scaled speed-up curves . . . . . . . . . . . . . . . . . . . .  14 

4.3 Time-constrained scaled speed-up curve . . . . . . . . . . . . . . . . . . . . . .  16 

5 Model Elliptic Problem - One Space Dimension 17 

5.1 Fixed-size speed-up curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
5.2 Memory-constrained scaled speed-up curves . . . . . . . . . . . . . . . . . . . .  20 

5.3 Time-constrained scaled speed-up curve . . . . . . . . . . . . . . . . . . . . . .  22 
5.4 Other architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

6 Conclusions 25 

Acknowledgements 26 

References 26 

... 
111 





, 
THE EFFECT OF TIME CONSTRAINTS ON SCALED SPEED-UP 

Patrick H. Worley 

Abstract 

Gustafson, Montry, and Benner introduced the concept of scaled speed-up to 

characterize the capabilities of distributed-memory MJMD multiprocessors. They 

argued that, for a fixed-size problem, the behavior of the speed-up of an algcirithm 

as a function of the number of processors, the speed-up curve,  can be too pessimistic 

a measure of a multiprocessor architecture. Instead, they measured the speed-up 

of algorithms when the size of the corresponding problem grew with the number of 

processors. They referred to the resulting function as the scaled speed-up curve.  
The scaled speed-up curve is a function of how the size of the problem is allowed 

to grow. We demonstrate that allowing the size of a problem to grow to fill the 
available memory can produce dramatically different results from allowing the size 
of a problem to grow subject to satisfying an upper bound on the execution time. 
In particular, if a constraint on the execution time is enforced, then the scaled 
speed-up curve is often very similar to the speed-up curve for a fixed-size problem. 
We show that no more than 50 processors can be used efficiently for some common 
problems in scientific computation when using the current generation of distributed- 
memory multiprocessors. For other problems, we show that the scaled speed-up 
curve indicates that massively parallel computers will be useful even if the execution 
time is constrained. In all of the cases examined, a meaningful interpretation of the 
scaled speed-up curve depends on a constraint on the execution time. 

V 





1. Introduction 

Distributed-memory MIMD multiprocessors’ with a moderate number of processors (< 100) 
have proven to be cost-effective computer architectures for solving many of the compute- 

intensive problems in scientific computing [12,13,6]. Multiprocessors with orders of magnitude 

larger numbers of processors can also be cost-effective [10,17], but it is unclear whether this 

sort of massive parallelism is as useful as the more moderate amount of parallelism currently 

being exploited. 

The tool most commonly used to argue for or against multiprocessors with very large num- 

bers of processors is the speed-up cwrve [2,19]. The speed-up of an algorithm on a multiprocessor 

with P identical processors is defined in the following way. Let TI be the execution time of 

a serial implementation of the algorithm on one of the processors. Let Tp be the execution 

time of a parallel implementation of the algorithm that uses all P of the processors. Then the 

speed-up S is the ratio 

S r - .  ?i 
TP 

It measures the relative increase in the execution time of the algorithm when only one processor 

is used instead of P. The speed-up curve is the graph of the speed-up as a function of the number 

of processors. This curve is a measure of the performance of a family of multiprocessors, one 

for each number of processors. When the processors are identical across the family and the 

interconnection topology varies in a natural way as a function of the number of processors, then 

this family represents the scaling of a multiprocessor architecture. The maximum value reached 

by the curve indicates the maximum speed-up achievable by the associated architecture for the 

given algorithm. The smallest P that achieves this value is the largest number of processors 

that should be used when executing the algorithm. Nothing is gained by using more. 

For a fured-size problem, there is a law of diminishing returns when using an increasing 

number of processors t o  calculate the solution. There is only so much work to be done, and 

rarely can all of it be done in parallel. Details of this type of behavior can be derived from the 

following upper bound on the speed-up described by Amdahl in El]: 

1 
1 - s  . 

s+- 

S L  

P 

P is the number of processors and s is the fraction of the work that cannot be parallelized. That 

is, s is the fraction of the execution time of the serial implementation of the algorithm spent 

on instructions whose execution cannot be overlapped with the execution of other instructions. 

Thus, s is independent of P ,  and S - X ~  represents a lower bound on the execution time for all P .  

Figure 1 contains graphs of this upper bound for various values of s. Expression (1) is referred 

to as Amdahl’s Law. 

Two implications can be drawn from Amdahl’s Law. First, if s is nonzero, then the speed-up 

is bounded from above by l/s, independent of the number of processors in the multiprocessor. 

‘Multiple Instruction Multiple Data i s  one category of Flynn’s dtiprocessor taxonomy [SI. If a computer 
is an MIMD multiprocessor, then both the instruction a procgsor is executing and the data it is using can be 
different from thaw of other processors at any given moment. 
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Figure 1: Graph of upper bound on speed-up described by Amdahl’s Law. 

Second, if the right-hand side of Amdahl’s Law is a good model of the speed-up curve, then only 

a relatively few processors are needed to achieve most of the maximum speed-up. ’The curves in 

Figure 1 all have slopes that decrease monotonically and are near zero when the upper bound is 

approached. For example, if s = .l, then the speed-up cannot exceed 10, and 15-20 processors 

are sufficient to approximate this value closely. Using more than 20 processors does little to 

decrease the execution time even though it does continue to decrease. Thus, if Amdahl’s Law 

is a good predictor of the speed-up curve and s # 0, then not only is there is a limit to the 

number of processors that can be used to speed-up a fixed-size calculation, but most of the 

speed-up can be gained by using a small fraction of this maximum number of processors. 

The upper bound given by Amdahl’s Law is based on the assumption that all computation is 

either strictly serial or fully parallel. The performance of a parallel algorithm is also degraded 

whenever fewer than P processors are busy during the execution of the algorithm, not just 

when only 1 processor is busy. Moreover, there i s  often an overhead involved when exploiting 

parallelism, and processors must execute instructions that do not exist in the serial imple- 

mentation. The dominant portion of this overhead is usually interprocessor communication. 

Generalizations of Amdahl’s Law have been developed by numerous researchers to take these 

effects into acconnt. For examples, see [19, pages R2$B34]. These models can be expressed in 

the following form: 
1 

CT is a measure of the lack of P-fold parallelism in various stages of the algorithm and of the over- 

head incurred when exploiting the parallelism that is there, like the time spent in interprocessor 

communication. For a perfectly parallel algorithm requiring no interprocessor communication, 

u ( N ,  P )  = 0. For a perfectly serial algorithm, u ( N ,  P )  : 1. For a given algorithm, u is a func- 

tion of (at least) two parameters, some measure of the size of the problem, N ,  and the  number 

of processors, P.  When P > 1 and N is fixed, a ( N ,  P )  is almost always bounded from below by 
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a positive constant, and is often a function that increases monotonically as a function of P.  For 
example, as P increases, the amount of time spent in interprocessor communication generally 

increases relative to the amount of time spent computing [2,7]. Therefore, if communication 

is not overlapped with computation, then communication represents an increasing percentage 

of the total execution time and u ( N ,  P )  is an increasing function of P. As long as u ( N ,  P )  is 
positive and does not decrease as a funtion of P ,  there is a Y-independent upper bound on 

the speed-up, and mast of this speed-up will be gained when using a relatively small number 

of processors. This type of result has been used to argue that multiprocessors with very large 

nuxnben of processors will have limited utility. 

Recently, Gustafson, Montry, and Benner argued that the analysis of fixed-size problems 

can be misleading when evaluating a multiprocessor architecture [lo]. Given a bigger (faster) 

computer, or a multiprocessor with more processors, it is likely that some of the workload 

will consist of problems that were too large to calculate on the previous smaller computer. For 

many problems in scientific computing, researchers are forced to  reduce the sizes of the problems 

they solve in order to satisfy time or budgetary constraints. Given a bigger computer, these 

researchers are more likely to  increase the size of a problem being solved, subject to the original 

constraints, than solve the smaller version faster. For example, an increase in memory allows 

the solution of problems that were too large to fit into memory before, and took too long to solve 

when external storage devices were used to page the data and intermediate results into and out 

of memory. Similarly, an increase in processing speed allows the solution of problems that took 

too long to calculate before. The time constraint may be due to the need to meet a deadline, 

as when forecasting the weather, or due to a fixed budget and costs that  are proportional to  

the time it takes to solve the problem. If every processor has an attached local memory, then 

increasing the number of processors in a multiprocessor increases both memory and processing 

power, and, potentially, dlows the size of a problem to increase no matter whether it was 

memory or time bound. 

Instead of the fixed-size analysis described above, Gustafson et al. proposed examining 

the speed-up curve when the size of the problem iricreases with the number of processors. 

They referred to this as the scaled speed-up curve. We will use N ( P )  to represent how the 

problem size varies as a function of the number of processors. The implications of the fixed-size 

analysis do not change unless a ( N ( P ) ,  P )  decreases as a function of P ,  but this is exactly what 

is observed in practice for many algorithms [lo]. The theoretical analyses of both Amdahl 

and Fox, described by Messina in [19], support these results for many algorithms in scientific 

computation z f  N ( P )  rncreases sufficaently fas t  as a functron P.  
In this paper we examine the effect of two different assumptions on how N ( P )  grows. The 

first assumption, the one used in [IO], allows the size of the problem to grow to fill the available 

memory. We will refer to  this as the memory-constrained case. The second assumption allows 

the size of the problem to grow subject to an upper bound on the execution time. We will refer 

to this as the lime-consirarned case. In previous work [25,26] we proved that the execution 

time will grow without bound as a function of the problem size, independent of the number of 

processors and of the algorithm used, for certain common problems in scientific computation. 

We also argued that similar conclusions apply to most problems in scientific computation. 
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Therefore, there will generally be a largest problem that can be solved and still satisfy a given 

time constraint, and the scaled speed-up curve for the time-constrained case will not exceed 

some constant determined by this largest problem. The memory-constrained analysis is not 

limited in this fashion. 

The theoretical analysis in [25] is relatively tight, but the lower bounds on the execution 

time can be quite small because they hold when given an optimal algorithm and an unlimited 

number of processors. To determine whether this distinction between the memory-constrained 

analysis and the time-constrained analysis has practical import, we examine scaled speed-up 

curves for some simple algorithms used to approximate the solution of model linear partial 

differential equations. These algorithms have similar behavior to those used to approximate 

the solution of more realistic problems in scientific computation [10,22,20,16]. We confirm 

that the two analyses differ greatly, and that the time-constrained analysis is as pessimistic as 
the traditional fixed-size analysis for some problenw. We also argue that the time-constrained 

analysis is more reasonable than the memory-constrained analysis. 

Another tool used to evaluate the performance of an algorithm on a multiprocessor is the 

eficiency, 
S 

- P .  
E = -  

It measures the fraction of the maximum possible speed-up that is achieved. The efficiency is 

useful when deciding how best to allocate processors among independent program in order to 

maximize throughput. The efficiency and scaled efficiency curves are defined in an analogous 

manner to the speed-up and scaled speed-up curves. We will also mention the effect of time 

and memory constraints on the scaled efficiency. 

2. Multiprocessor Model 

'I'o facilitate comparison with the empirical results of Gustafson et al. [lo], the following multi- 

processor model is based on the Ncube family of hypercube multiprocessors [4]. The model is 

not too different from distributed-memory MIMD multiprocessors available from other manu- 

facturers [4], and similar conclusions can be drawn for these architectures. 

The following general assumptions are basic to  the analysis in this paper. 

1) We assume that we are analyzing a family of distributed-memory MIMD multiprocessors. 

2) We assume that all processors in this family are identical, and that all processors have 

the same amount of local memory. 

3) For each example algorithm, we will assume an interconnection topology that is natural 

for the algorithm. The underlying assumption is that these interconnection topologies can 

be embedded in the interconnection topologies of the multiprocessors in the family. In all 

examples, it will be sufficient if the interconnection topologies of the multiprocessors are 

binary hypercubes [23]. 

4) We assume that the time required to send a B-byte message between neighboring proces- 
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sors can be described by the expression 

. 

cy is the start-up time required to send any message and p is the incremental transmission 

time per byte [4,7]. 

The following specific assumptions permit us to  calculate the scaled speed-up curves. 

a) We assume that .45 Megabytes of local memory are available for program data storage 

per processor. 

b) We assume that all data and results are 8 byte floating point numbers. 

c) We assume that binary floating point addition, subtraction, multiplication, and division 

instructions all take approximately 8psec to execute in the (compute-intensive) type of 
program that we will be analyzing. This is equivalent to a rate of .125 Megaflops for 

each processor. We will refer to  the execution times of these operations by f(+,, f ( - ) ,  

f(.), and f ( , l  respectively. 

d) We asume  that the communication start-up time, a, is 376 psec, and that the incremental 

transmission time, p, is 3psec. Thus, the ratio of the time to send one floating point 

number between neighboring processors to the time to calculate a floating point addition 

is approximately 50. 

e) We assume that computation and communication on the same processor are not over- 

lapped. For example, if, during the execution of an algorithm, an addition operation is 
executed and a floating point number is sent to  a neighboring processor, then the time 

required to execute these two operations is 

These specific assumptions are not important to the analysis, but some assumpticns are nec- 

essary to complete the analysis. And, as mentioned above, the resulting model is similar to  

many of the commercially available distributed-memory MIMD multiprocessors. For example, 

the first and second generation of hypercube-based multiprocessors generally have ratios of 
communication to computation in the range of 20 to 60, and floating point computation rates 

between .03 Megaflops and .26 Megaflops per processor [4]. Most distributed-memory multi- 

processors have the facility to overlap some of the communication with the computation. But 

exploiting this facility requires careful programming, and not all algorithms can take advantage 

of it. Even if communication and computation can be completely overlapped, the execution 

times reported in the rest of this paper would a t  most be halved, and the speed-ups doubled. 

For example, the time required to add two numbers together and send a floating point number 

to a neighboring processor is always bounded from below by 
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which is never leas than half of the value of expression (3). Permitting overlap changes our 

conclusions very little. 

The model described above (assumptions (1)-(4) and (a)-(e)) allows us to  identify when 

the bounds on performance established in [25,26] begin to affect actual algorithm. Different 

assumptions will change the analysis, and changes in multiprocessor technology will alter some 

of the conclusions drawn here. But the qualitative behavior indicated by the theory is inde- 

pendent of the architectural parameters, and the only issue is when the intrinsic limitations on 

the parallelism begin to affect performance. 

3. Model Hyperbolic Problem - One Space Dimension 

Consider the following hyperbolic equation in one space dimension with periodic boundary 

conditions and a constant forcing function, 

8 d2 
at az2 

. - u ( z , t )  - ---u(z,t) = C for ( z , t )  E [ O J ]  x [O,1] 
d2 
--u(z,t) + 6 
8t2 

a 
at 

u(x,O) =I uo(z ) ,  -u(z,Q) = 0 for z E [0,1] 

u(O,t) = u ( 1 , t )  for t E [O,1] , 

where IE > 0. Assume that we want the solution at time T = 1 on a uniform mesh, 

where Ax is the distance between consecutive locations and N ,  is the number of locations, 

N ,  = l / A x .  Assume that values of the data function ug(z) are avnilable on the mesh 

We approximate u ( z 9 t )  on the mesh at time T = 1 by time-stepping using the following 

finite difference formula, 

V j  E {I , .  . . ,NX}  V k  E ( 1 , .  .. , N t }  , 
where At is the length of the time step and Nt = 1 / A t .  iir is an approximation to u at the 

location ( jAz,  k a t ) .  By periodicity, iik= = fig for all I%. Thus, the solution is approximated at 

all locations on the mesh 

{ ( j a x ,  k h t )  I j E (1,. . . , N x } ,  k E ( 1 , .  . _ ,  N , } }  

This equation is derived from the differential equation by replacing the derivative terms by 

centered fiaite difference approximations. The scheme requires approximations to the solution 
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o : value not needed by processor p i  to calculate solution at time k . At 

Figure 2: Parallel implementation of algorithm for 1-D hyperbolic problem. 

at  times (k - 1)At and kAt in order to calculate an approximation to the solution a t  time 
(IC+ 1)At. To start the process, we set 6: and Gjyl equal to  uo(J’Ax) for all j .  If we precompute 

the constant factors, then the serial complexity of the calculation is approximately 

(4 .  f(+) + 3 . f(*)) . Nx . Nt . (4) 

To ensure the stability of this calculation, we need to stipulate that At 5 Ax [22]. To min- 

imize the amount of work, and to balance the contributions to the truncation error of the 

discretixations in space and time, we will henceforth assurne that At = Ax. 
The computation of the approximation at  time (k+ 1) .At from the approximation at times 

(k - 1) . At and k 1 At is easily parallelized. Assume that the multiprocessor has P processors 

and can be configured as a ring with two conununication channels between neighboring proces- 

sors (allowing duplex communications). For simplicity, also awurne that N,/P is an integer. 

Partition the interval [0,1] into P equal subintervals and assign the calculation of the solution 

locations in each subinterval to a common processor. If neighboring subintervals and the cor- 
responding data are mapped onto neighboring processors, then each processor needs to receive 

only one floating point number from each of its neighbors in order to finish its calculation of 

the next timestep. This parallel implementation is represented graphically in Figure 2. Here 
we are assuming that N,/P = 3. The solid dots indicate the values needed by processor pi in 

order to complete the computation at time k . At. 
The execution time of computing a single timestep using this parallel implementation is 

1- 2.7 , Nx ( 4 .  f(+, + 3 . f( *) ) . -  P 

where 7 is the time required to send one floating point number to a neighboring processor and 
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receive another back. By the assumptions of section 2, r can be represented by 

The total execution time for this parallel implementation is 

((4 . f(+, + 3 . f(*,) . 5 P -4- 2 . a + 1 6 . P ) .  Nt . 

Since we have assumed that the computation and communication cannot be overlapped, this 

synchronous parallel. implementation of the serial algorithm is optimal when N , / P  is an integer. 

’The computation is perfectly parallel per timestep, the load is distributed evenly over the 

processors, and the time spent in interprocessor communication during a timestep is minimized. 

A similar implementation can be described when N,/P is not an integer, aad expression (5) is 
then a lower bound on the execution time. This holds even if we allow multiple processors t o  

collaborate in the calculation of a single ii!. Up to 3 . N,  processors can be used to parallelize 

this algorithm, but the execution time does not continue to decrease when more than N,  

processors are used. The decrease in the cornputation time is more than oEset by the increase 

in the time spent in interprocessor communication. For this reason we will not allow more than 

N ,  processors to be used. 

3.1. Fixed-size speed-lip curves 

By assumption, the largest problem that will fit on one of the processors will use no more 

than .45 Megabytes of memory. To begin the calculation for a given timestep, enough memory 

must be available to hold the approximate soltition at the two previous timesteps. Thus, the 

computation can proceed as long a a little more than 2 . N ,  floating point numbers can be 

stored. Therefore, the maximum value of N ,  for a serial implementation of the algorithm is 

approximately 28,125, or Ax M .000036. This assumes that the solution is required only at 

time T = 1 and that the size of the memory is the active constraint in determining the size of 
the problem. If, instead, the solution of the problem must proceed at least as fast as real time, 

then the execution time musk be no greater than 1 second when approximating the solution at 

time T = 1.  In this case the maximum value of N,  for a serial implementation of the algorithm 

is 133 and Az FZ .0075. This type of time constraint is necessary for problems in real time 

control. 

These alternatives represent the “small” versions of the problem that a researcher must 

resign himself to if he has only one processor, and if he is limited by the corresponding memory 

or time constraints. Figure 3 contains the graphs of the speed-up curves for these two examples. 
Both curves behave in R. fashion similar to that predicted in the introduction. As meiitioned 

above, P cannot exceed N,.  But both curves level off Iong before the maximum number of 

procemors is reached. The time-constrained example has a maximum speed-up of approximately 

8.7, and a speed-up of 7 is achieved when using only 29 processors, less than one fourth of 

the maximum number. Therefore, a large 

multiprocessor is not useful for this problem. The memory-constrained example has a speed- 

The efficiency is less than 50% when P > 9. 
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Figure 3: Speed-up curves for fixed-size examples of 1-D hyperbolic problem. 

up curve that is approximately linear until P > 1000, reaching a speed-up of approximately 

675 when P = 1024, and behaves much like the speed-up curves for the fixed-size problems 

described by Gustafson et  al. in [lo]. The efficiency is 50% or higher until P > 1968, and 

thousands of processors can be used effectively. But the curve flattens quickly for larger P.  
The maximum speed-up is approximately 1840, but three-fourths of the maximum speed-up is 
achieved when P = 4615, approximately 15% of the maximum number. 

3.2. Memory-constrained scaled speed-up curves 

We next let the size of the problem grow to fill the available memory as the number of processors 

increases. Since each additional processor adds an additional .45 Megabytes of memory to the 

multiprocessor, 

N ,  = 28,125. Y . 

We will refer to this as the memory-constrained model. This function is graphed in Figure 4 .  
Figure 5 contains the graph of the memory-constrained scaled speed-up curve. The speed-up 

grows linearly as a function of P with a slope near 1, 

s R3 .9995 f P . 

Thus, very good speed-up and efficiency are maintained for any number of processors. 

By this measure, there is no limit to  the number of processors that can be used. But there 

is a cost associated with the high speed-up. Figure 6 contains the graph of the execution time 

of the memory-constrained model as a function of P. The execution time is approximately 

12 hours when one processor is used, and increases linearly as a function of P with a slope 

of approximately 12. Thus, the high. speed-up is a result of the execution time of the serial 

implementation of the algorithm growing faster than the number of processors. Every practical 

problem has some time constraint when calculating its solution, and any such time constraint 
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Figure 4: Bounds on scaled problem sizes for 1-I) hyperbolic problem. 
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Figure 5: Scaled speed-up curves for 1-I) hyperbolic problem. 
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P 
Memory-constrained ( a .  .) Time-constrained (- -) N ,  = 1168 (-) 

Figure 6: Execution time for scaled speed-up models vs. number of processors for 1-D hyper- 
bolic problem. 

will be exceeded quickly for this model. For this reason, we claim that the memory-constrained 

scaled speed-up curve is misleading for this problem. 

3.3. Time-constrained scaled speed-up curve 

Finally, we let the size of the problem grow to  satisfy the real-time bound OR the execution 

time. To satisfy the time constraint for the serial implementation of the algorithm, we need 

To satisfy the time constraint for the P processor parallel implementation, we need 

Thus, the largest that N,  can be is 

133, i f P = l ;  

We will refer to this as the time-constrained model. Figure 4 contains the graph of this bound. 

As mentioned before, P cannot be greater than N, .  Since Y grows faster than Nc when the 

execution time is bounded, there is a largest problem that can be solved, regardless of the 

number of available processors. For this problem, N,  cannot be larger than 1168. 
Figure 5 contains the time-constrained scaled speed-up curve for this problem and the speed- 
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up curve €or the fixed-size problem N,  = 1168. The rrimimum speed-up is approximately 76, 

using 1168 processors, and three-fourths of this speed-up i s  achieved when using only 250 
processors. The efficiency falls below 50% when P > 43. The time-constrained scaled speed-up 

curve has many of the same characteristices as the fixed-size speed-up curves. There is an 

upper bound on the maximum nurider of processors that can be used, and most of the speed- 

up is achieved when using significantly fewer processors. Moreover, the speed-up curve for the 

maximum size problem, N,  = 1168, is a reasonable approximation to  the time-constrained 

scaled speed-up curve. 

In conclusion, a large number of processors is not useful for solving this problem when 

subject t o  this time constraint. The utility of additional processors is very low for more than 

250 processors. If the efficiency must be greater than 50%, then only 43 processors can be used. 

A looser time constraint will permit more processors to be utilized, but the general conclusions 

will not change. 

4. Model Hyperbolic Problem - Two Space Dimensions 

Consider the following hyperbolic equation in two space dimensions with periodic boundary 

conditions and a constant forcing function, 

where rt > 0. Assume that we want the solution on a uniform mesh at time T = 1, 

{ ( iAs, jAs 1) l i , j  E (1 , .  . . , N , }  } , 

where As i s  the distance between consecutive locatioiis in each spatial coordinate direction and 

N," is the total number of locations, N," = (1/As)2. Assume that values of the data function 

UO(Z, y) are available on the mesh { (iAs , jAs) I i , j  E {I , .  . . , N , }  }. 
We approximate ~ ( 2 ,  y, t )  on the mesh at time T = 1 by time-stepping using the following 

finite difference formula, 
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Vi , jE{ l ,  ..., N b , }  V k ~ ( 1 ,  ..., N t }  , 
where At is the length of the time step and Nt = l/At. ii:,j is an approximation to u at the 

location (iAs,jAs, &At). By periodicity, iih,,j = iit,j for all j and k, and ii;",N* = iiz0 for all i 
and k. This equation is derived from the differential equation by replacing the derivative terms 

by centered finite difference approximations. As in section 3, this scheme requires approxima,- 

tions to the solution at  times (k - 1)At and kat in order to calculate an approximation to the 

solution at time (k + 1)Aht. To start the process, we set il:,j and ii;; equal to uo(iA.s, jAs) for 

all i and j .  The serial complexity of the calculation is approximately 

To ensure the stability of this calculation and to balance the contributions to the truncation 

error of the discretizations in the different coordinate directions, we assume that At = As. 
As in section 3 the cornputation of the approximation at  time (k -f 1) 1 At from the approx- 

imation at times (IC - 1) At and 6 . At is easily parallelized. Assume that the multiprocessor 

has P processors and can be configured as a toroidal mesh with four nearest neighbors per 

processor and two communication channels between neighboring processors (allowing duplex 

communications). If N , / O  is an integer, then partition the square [O, I] x [O, 11 into P equal 

subsquares, map the subsquares and data onto the processors in such a way as to preserve the 

topology of the problem domain, and assign the calculation of the solution locations in each 

subsquare to the corresponding processor. Then each processor needs to receive only N , / @  
floating point numbers from each of its neighbors in order to finish its calculation of the next 

time step.' Since computation and communication are not overlapped, the total execution time 

for this parallel implementation is 

A similar implementation can be described if N , / G  is not an integer, and expression (7) 
is then a lower bound on the execution time. The maximum number of processors that can 
be used to parallelize this algorithm is 5 . N:, but using more than N," processors increases: 

the execution time because of the increase in the time spent in interprocessor communication. 

Therefore, we will not allow more than N," processors to be used. 

4.1. Fixed-size speed-up curves 

If the solution is needed only at  time T = 1, then we again need only enough memory to hold 

the approximate solution at the two previous timesteps. The coniputation can proceed on one 

processor as long as a little more than 2 + N," floating point numbers can be stored. Therefore, 

if the size of the memory is the only limit on the size of the problem, then the maximum value 

of N ,  in a serial implementation of the algorithm is approximately 167, or As w .006. If the 

2Mappings based on partitioning the problem domain into hexagons or rectangular strips can also be used t o  
generate parallel implementations [21]. The mapping described here is better than tine either of these alternatives 
when P 2 16 and N.  2 a. 
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Figure 7: Speed-up curves for fixed-size examples of 2-D hyperbolic problem. 

execution time must be less than 1 second when approximating the solution at time ?' = 1, 

then the maximurn value of N ,  in a serial implementation is 23, or As 
Figure 7 contains the graphs of the speed-up curves for these two fixed-size examples. As 

before, both curves level off long before the maximum number of processors, N:, is reached. The 

time-constrained example has a maxirnum speed-up of approxiniately 23, using 529 processors, 

and a speed-up of 17 is achieved when using only 80 processors. The efficiency is less than 50% 

when P > 18. The memory-constrained example has a speed-up curve that is approximately 

linear until Y > 1000, reaching a speed-up of approximately 506 when P = 1024. The efficiency 

is at least 50% as long as P < 999. This example behaves much like the wave mechanics problem 

described in [lo], which it closely resembles. The maximum speed-up is approximately 1201, 
using 27,889 processors, but three-fourths of the maximum speed-up is achieved when P = 4188, 

approximately 15% of the maximum number. 

These examples do not differ intrinsically from the fixed-size examples in section 3. The 

time-constrained example can use more processors than before, up to approximately 80 by one 

measure and 18 by another. The memory-constrained example can use effectively somewhere 

between 1000 and 4000 processors, but the actual gain in speed-up i s  somewhat less than for 

the problem in section 3. 

.04. 

4.2. Memory-cormtrained scaled speed-up curves 

If the size of the problem grows to fill the available memory, then 

N , =  1J-J . 

A s  before, we will refer to this as the memory-constrained model. This function is graphed in 

Figure 8. Figure 9 contains the graph of the memory-constrained scaled speed-up curve. The 
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Figure 9: Scaled speed-up curves for 2-D hyperbolic problem. 



10". 

lo6 

107 

105 
104 
103 

' 

lo2  

10' 
1 oo 

16 

seconds -I 

10' 1 o2 103 104 105 1 o6 10-11- ' ' n'uJ. ' ' " m l c m l  ' "lll"i ' ' """i ' ' ' - I  ' ' tlILJ 

P 
Memory-constrained (. . .) Time-constrained (- -) N ,  = 625 (-) 

Figure 10: Execution time for scaled speed-up models vs. number of processors for 2-D hyper- 
bolic problem. 

speed-up grows linearly as a function of P with a slope near 1, 

s M .9914. P . 

A s  in section 3, very good speed-up and efficiency are maintained for any number of processors. 

This measure does not indicate any limit to the number of processors that can be used effec- 

tively, but the execution time again grows when the number of processors increases. Figure 10 

contains the graph of the execution time of the memory-constrained model as a function of P .  
The execution time is approximately 5.7 minutes when one processor is used, and it increases 

to over 3 hours by the time 1000 processors are used. If 1,000,000 processors are used, then 

the execution time is approximately 95 hours. The execution time increases as the square root 

of P ,  which is not as bad as for the problem in section 3, but any time constraint will still be 

exceeded a5 P increases. Some bound on the execution time must be assumed, and, until that 

is established, it is unclear what part of this scaled speed-up curve contains useful information. 

4.3. Time-constrained sealed speed-up curve 

Assume that the solution of the problem must proceed at least as fast as real time. 'l'o satisfy 

the time constraint for the serial implementation of the algorithm, we need 
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which is satisfied when N ,  5 23. To satisfy the time constraint for the P processor parallel 

implementation, we need 

This bound is graphed in Figure 8. We will refer to this as the time-constrained model. Since P 
must be less than or equal to N:,  there is again a largest problem that can be solved, regardless 

of the number of available processors. For this problem, N ,  cannot be larger than 625. Note 

that this is larger than either of the two fixed-size examples, so we expect more promising 

results for the time-constrained analysis. 

Figure 9 contains the time-constrained scaled speed-up curve for this problem and the 

speed-up curve for the ked-size problem N ,  = 625. The maximum speed-up is approximately 

15,654, using 390,625 processors. While the time-constrained scaled speed-up curve again has an 

upper bound on the maximum number of processors that can be used, and a decreasing utility 

for additional processors as this limit is approached, the scaled speed-up curve is essentially 

linear over a large range of numbers of processors. The speed-up is approximately 75 for 100 
processors, and is nearly 3350 for 10,000 processors. The efficiency does not fall below 50% 
until P > 2211. The speed-up curve for the maximum size problem, N ,  = 625, is again a 

reasonable approximation to the time-constrained scaled speed-up curve, but this problem is 

so large that it does not represent a major constraint until the number of processors becomes 

quite large. 

In conclusion, unlike in the memory-constrained anaiysis, an unlimited number of processors 

cannot be used. But tens of thousands of processors can still be utilized effectively. If 50% 
utility is required, then a maximum of 2211 processors can be used, but half of the maximum 

possible speed-up is not achieved until approximately 40,000 processors are used. The ratio of 

communication to computation for this parallel algorithm is similar to that of the algorithm 

in section 3. They are both the ratio of the surface to the volume of cubes, one dimensional 

in section 3 and two dimensional here. But the algorithms differ in the absolute amount of 

computation required per timestep, and this changes the analysis. The increased amount of 

computation per timestep increases the speed-up for the time-constrained model. For the 

analogous hyperbolic equation in three space dimensions, the analysis changes in a similar 

fashion, and the exploitation of massive parallelism is even more strongly indicated. 

5. Model Elliptic Problem - One Space Dimension 

Consider the following elliptic equation in one space dimension with Dirichlet boundary condi- 

tions, 
a2 v 

--ti(.) = g(z) for z E [0,1] 
d X 2  
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Assume that we want the solution on a uniform mesh, 

where Ax is the distance between consecutive locations and N ,  is the total number of locations, 

N, = ( l /Ax - 1). A4ssurne that values of the data function g(x) are also available on this mesh. 

We approximate u ( z )  by solving the coupled system of linear equations 

Cj  is an approximation to u at the location j A x  and g, = g(jAx). There is one equation 

for each location in the mesh. These eqiiatiorrs are derived from the differential equation by 

replacing the second-order derivative term by a centered finite difference approximation. The 

resulting system can be represented as a matrix equation Aii = j where A is a symmetric 

tridiagonal Nz x N ,  matrix, .ii is the vector of approximate solution values, and J is the vector 

of data. 

There are numerous techniques for solving this matrix equation. If a point iterative method 

is used [27,11], then the analysis is very similar t o  that described it1 section 3. Each step of the 

iteration involves a weighted average of values associated with neighboring mesh locations, and 

the number of iterations i s  approximately a linear function of (l/Az)O for some positive a. But 

the best serial and parallel algorithms for this problem have the form outlined in Figure 11. 

0) Let N = Nz + 1. 

1) Given a tridiagonal system of N -  1 equations representing N - 1 mesh locations, generate 
a new tridiagonal system of N / 2 -  1 equations whose solution is the even numbered values 
of the solution vector of the larger system. Set N = N / 2 .  
Thus, there is now one equation for every location on a coarser mesh. We will refer 
to this as the d i v e  mesh during this stage of the algorithm. Each new equation is 
a weighted sum of the original equation corresponding to that mesh location and the 
equations corresponding to  the mesh locations on either side of it in the original fine 
mesh. 

2) Repeat step 1 until the system is reduced to a single equation, saving all of the interme- 
diate systems. 

3) Solve the one equation and set N = 2. 
4) Use the solution of the system of size N / 2  - 1 to solve for the remaining unknowns in the 

tridiagonal system of size N - 1. Set N = 2 N .  We will refer to the corresponding mesh 
locations as being active during this part of the algorithm, 

5 )  Repeat step 4 until. the original. problem is solved. 

Figure 11: Outline of cyclic reduction algorithm for 1-D elliptic problem. 
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When Nx + 1 is an integer power of two this description applies to multigrid3 131, Gaussian 

Elimination using the nested dissection ordering of the rows [8], and cyclic reduction [14]. The 

approach can be modified to work even if N ,  is not a power of two. We will use the cyclic 

reduction algorithm for our analysis. 

The details of cyclic reduction and further references to the method can be found in Hockney 

and Jesshope [14, pages 286-2981. For now, assume that N 5 Nx -f 1 is an integer power of 

two. Step 1 requires 4 additions, 5 multiplications, and 2 divisions per new equation, and step 

1 i s  executed log, N - 1 times. Step 3 requires 1 division, and is executed once. Step 4 requires 

2 additions, 2 multiplications, and 1 division per new solution value, and step 4 is executed 

log, N - 1 times. The total execution tinie of a serial implementation is4 

For simplicity, we will assume that the same execution time holds when N is not an integer 

power of two. This algorithm requires storage for approximately 7 . N x  floating paint values. 

Most of the work in steps 1 and 4 of the algorithm can be done in parallel. Assume that 

the multiprocessor has P processors and can be configured as a binary hypercube with two 

communication channels between neighboring processors (allowing duplex communications). 

Partition the interval [0,1] into P equal subintervals, map neighboring subintervals to neigh- 

boring processors, and assign the calculation of the solution locations in each subinterval to the 

corresponding processor. As long as there is at  least one active mesh location associated with 

each processor, each processor needs to receive only four floating point numbers from each of 

two neighbors to finish the current iteration of step 1, and one floating point number from each 

of two neighbors to finish the current iteration of step 4. During these stages of the algorithm 

only a linear array interconnection topology is being used by the parallel implementation. For 

some iterations of steps 1 and 4 the active mesh is too coarse for all processors to have active 

mesh locations, and some processors will be idle. But, if some care is taken when mapping the 
subintervals to the processors, the processors that need to communicate will only be a distance 

of t w o  apart [15]. That is, the information must pass through only one intermediate processor. 

This uses the entire hypercube interconnection network. 

If both N and P are integer powers of two and N >_ 2 . P,  then the execution time of this 

parallel implementation is 

3Since multigrid only approximately reduces the system in step 1, steps 0-5 will need to be repeated a number 

*This differs fmm the expresion given by Hodcney and Jesshope in [14] because we are takmg advantage of 
of times until the process converges. 

the symmetry in the matrix. 
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This is a lower bound on the execution time otherwise. For this implementation there is 

no advantage to having more than N / 2  processors. While more can be used, the execution 

time grows when more than N / 2  are used due to the additional time spent in interprocessor 

communication. Each processor needs to  hold a t  least 7 .  N,/P floating point values, but a t  

least one needs to hold 7 .  N , / P  + 4.10g2(N,/P) floating point values. 

5.1. Fixed-size speed-up curves 

The algorithm can he executed on one processor as long as approximately 7 . N ,  floating point 

numbers can be stored. Therefore, if the size of the memory is the only limitation on the size 

of the problem, then the maximum value of N, in a serial implementation of the algorithm is 

approximately 8035, or Ax w .00012. If the execution time of the problem must be less than 1 
second, then the maximum value of N ,  in a serial implementation is 8341, which is greater than 

the memory capacity will allow. Unlike the examples in sections 3 and 4, the memory constraint 

is more limiting than the time constraint. Therefore, N ,  = 8035 is also the maximum value for 

a time-constrained example on this multiprocessor model. This time constraint is arbitrary for 

this problem since there is no corresponding real-time. But some bound will hold in practice, 

and this one is appropriate given the earlier analyses. 

Figure 13 contains the graph of the speed-up curve for this fixed-size example. While over 

4000 processors can be used, the execution time begins increasing again when more than 359 

processors are used. Therefore, Y < 360 is a practical limit for this example. The maximum 

speed-up is approximately 25.6, using 359 processors, and a speed-up of 19 is achieved when 

using only 45 processors. Thus, the speed-up curve levels off long before even this practical 

maximum is reached. The efficiency is less than 50% when P > 34. This example is much more 

pessimistic than the memory-constrained examples in sections 3 and 4. The difference is due 

to the presence of a term that grows as a function of P.  It is only logarithmic in P ,  hut it still 

strongly lirnits the achievable speed-up. 

5.2. Memory-constrained scaled speed-up curves 

If the size of the problem grows to fill the available memory, then N2 satisfies 

when P > 1.  A very good approximation to the maximum value that satisfies this inequality is 

N,  = 8035. P . 

We will refer t o  this as the memory-constrained model. This function is graphed in Figure 12. 

Figure 13 contains the graph of the memory-constrained scaled speed-up curve. The speed- 

up appears to grow linearly as a function of P with a slope near 1. Thus, like all of the 

previous memory-constrained examples, very good speed-up and efficiency are maintained for 

any number of processors. Figure 14 contains the graph of the execution time of the memory- 

constrained model as a function of P.  Note that, unlike the previous graphs, this i s  a log-linear 
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Figure 13: Scaled speed-up curves for 1-D elliptic problem. 
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Figure 14: Execlition time for scaled speed-up models vs. number of processors for 1-D elliptic 
problem. 

graph with a small linear scale. For this problem the execution time hardly increases at  all. 

The execution time is approximately 0.96 seconds when one processor is used, and increases to  

only 1.06 seconds when 1,000,000 processors are used. The execution time does not exceed one 

second until P > 26. Thus, while the fixed-size analysis is very pessimistic for this example, 

the memory-constrained analysis is both optimistic and believable. 

5.3. Time-constrained scaled speed-up curve 

To satisfy the one second bound on the execution time introduced earlier, N ,  must satisfy 

when P > 1. It  must also satisfy the memory constraint. This was not an issue before, but the 

memory constraint is more restrictive until P > 26. This bound is graphed in Figure 12. We 
will refer to this as the time-constrained model. While this model will also have a maximum 

size problem that can be solved, the size of the time-constrained model grows almost as fast 

as the memory-constrained model for all reasonable numbers of processors. Figure 13 contains 

the time-constrained scaled speed-up curve for this problem. The speed-up appears to grow 

linearly as a function of P with a slope very close to 1. The memory-constrained scaled speed- 

up is a little better, but not significantly so. Thus, the time-constrained scaled speed-up is 

just  as optimistic as the memory-constrained scaled speed-up, indicating no practical limits 

on the number of processors that can be used. This is in distinct contrast with the fixed-size 
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scaled speed-up curve, which was very pessimistic. The decision as to whether a massively 

parallel processor is appropriate for this problem is very sensitive to the degree to which a 

scaled analysis is appropriate. 

5.4. Other architectures 

The previous analysis was based on the family of multiprocessors having a binary hypercube in- 

terconnection network. This topology is difficult and expensive to scale to very large numbers of 

processors. Each processor is connected to logz P communication channels, and the processors 

necessarily become larger and more expensive as P increases. Additionally, the physical packag- 

ing of the interconnection network forces the length of the communication channels to grow as 
P increases, which degrades the maximum possible interprocessor communication speed [18,9]. 

In contrast, the one, two, and three dimensional meshes have fixed numbers of communication 

channels connected to each processor and no packaging constraints on the lengths of commu- 

nication channels. Some manufacturers are moving to these topologies for the next, generation 

of distributed-memory multiprocessors [24]. 
If a different topology is assumed, then the analysis will change. To indicate the degree 

to which the conclusions can change, assume instead that the multiprocessor family can only 

support a one dimensional mesh interconnection topology. In this case processors must send 

messages progressively farther as the active mesh becomes coarser in steps 1 and 4 of the 

algorithm. The execution time of this modified parallel implementation is 

This expression grows linearly as a function of P ,  and the fixed-size analysis is even more 

pessimistic than before. This is indicated by the speed-up curve in Figure 15. The execution 

time begins increasing when P > 24, and this represents a practical limit on the number of 

processors that can be used. Thus, the maximum speed-up is approximately 10, using 24 

processors. The e%ciency is less than 50% when P > 20. 
Figure 15 also contains the graph of the memory-constrained scaled speed-up. While there is 

still no upper bound on the number of processors that can be used, there is now an upper bound 

on the achievable speed-up. For large P ,  the execution time of the parallel implementation is 

essentially a linear function of the number of processors, while the execution time of the serial 

implementation is a linear function of N,.  But the memory-constrained model defines N ,  to be 

a linear function of the number of processors. Therefore, the ratio of these two will approach 

a constant. The maximum speed-up is approximately 552. But a speed-up of 400 is achieved 

when P = 1479, and the efficiency falls below 50% when P > 540. Even lhis limited amount of 

speed-up comes at the cost of an increase in the execution time. Figure 16 contains the graph 

of the execution time of the memory-constrained model as a function of P. The execution time 

for one processor is still approximately .96 seconds, and it increases to only 3.6 seconds when 

P = 1500. But the execution time is approximately 29 minutes when Y = 1,000,000. 
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Figure 16: Execution time for scaled speed-up models vs. number of processors for 1-D elliptic 
problem when a 1-D mesh topology is used. 
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The graph of the time-constrained scaled speed-up is in Figure 15. Since the expression for 

the execution time has a term that is linear in P ,  at some point an increase in P will decrease 

the size of the problem that can be solved and still satisfy the time constraint. This occurs 

when P = 282, and N ,  = 1,1119,570. This is a practical limit t o  the number of processors 

that can be used. The basic assumption behind the time-constrained scaled speed-up analysis 

is that the goal is to solve larger problems, subject to the time-constraint. For P > 282, the 

size of the problem can no longer increase, and there is no advantage to using more processors. 

In any case, the time-constrained scaled speed-up curve decreases monotonically for P > 282. 

The speed-up is 138 when P = 282, and the efficiency is 49%. 

In conclusion, the execution time of the algorithm for the elliptic problem has a component 

that grows as a function of P. When the interconnection network of the multiprocessor is a 

binary hypercube, this does not affect the scaled speed-up curves for any reasonable number 

of processors. Both memory-constrained and time-constrained scaled speed-up curves indicate 

that massively parallel multiprocessors are appropriate for this problem. When the intercon- 

nection network is a one dimensional mesh, the memory-constrained speed-up curve indicates 

that it is not productive to use more than approximately 1500 processors. The time-constrained 

speed-up curve is even more restrictive, indicating that there is no advantage to using more 

than 282 processors. Thus, massively parallel multiprocessors of this type are not appropriate 

for this problem. If the multiprocessor family is instead limited to a two or three dimensional 

grid interconnection network, then the conclusions will fall somewhere between these two ex- 

tremes. Note that the fixed-size analysis indicates that relatively few processors can be used in 

either case. 

6. Conclusions 

The speed-up curves for the current workload are often the most appropriate measures to use 

to decide how many processors to buy when buying a new multiprocessor or upgrading an old 

one. But, if the sizes of some of the problems are expected to grow, then scaled speed-up curves 

can also be appropriate measures. Since the time-constrained scaled speed-up curve and the 

memory-constrained scaled speed-up curve are intrinsically different, it is important to identify 

how a problem will grow. For any practical problem, there will be some bound on the execution 

time that must be satisfied. And, for the algorithms and multiprocessor families analyzed here, 

a time constraint tends to be more limiting than the memory constraint. In all cases examined, 

an indication of how the execution time varies for a memory-constrained model is necessary 

to interpret the memory-constrained scaled speed-up curve. For this reason, we argue that 

including a bound on the execution time is necessary when defining scaled speed-up curves. 

We also claim that these results hold far the majority of the application codes in scientific 

computation and for the current generation of distributed-memory MlMD multiprocessors. 

For certain problems, the time-constrained analysis is very pessimistic, indicating that mas- 

sive parallelism is unlikely to be useful. For other problems, the analysis indicates that tens 

of thousands of processors could conceivably be useful, although for that number of processors 

the analysis is somewhat simplistic. We have ignored costs like loading the program and data 

and unloading the results. Additionally, there will usually be an upper bound on t8he size of a 
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problem that is useful t o  solve, and this will need to be incorporated in a realistic analysis. The 

examples described here seem to indicate that simple problem and architectural parameters 

may be sufficient to categorize whether massive parallelism will be useful. For example, the 

higher the number of space dimensions, the more likely it is that a large number of processors 

can be used for the hyperbolic problem. For the elliptic problem, the interconnection network 

of the multiprocessor determines how many processors to use. But these examples are too 

simple to  he more than indicators that such a categorization might be possible. 

Note that the definition of the scaled speed-up curve can be generalized by allowing the 

algorithm to vary as a function of the number of processors, with only the problem being fixed. 

‘rhus, we assume that there is an underlying family of algorithms, each one “best” for a given 

number of processors. This will not normally be a useful measure for a system administrator. 

The choice of algorithms is not his to make, and he must evaluate the impact of increasing the 

number of processors on the current programs. It is also not an interesting generalization for 

the examples we have analyzed since the standard serial algorithms are easily parallelized. But, 

the theory described in Worley (25,261 is algorithm-independent. Thus, for problems to which 

the theory applies, the qualitative behavior of the generalized time-constrained scaled speed-up 

curve is the same as before. 
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