

ORNL/TM- 11031

Engineering Physics and Mathematics Divisian

Mathematical Sciences Section

T H E EFFECT OF TIME CONSTRAINTS O N SCALED SPEED-UP

Patrick EI. Worley

Oak Ridge National Laboratory
Mathematical Sciences Section

Oak Ridge, T N 37831-8083
P.O. BOX 2009, Bldg. 9207-A

Date Published: January 1989

__

Research was supported by the
Applied Mathematical Sciences Research Program

of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
Oak Edge National. Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

US. DEPARTMENT OF ENERGY
under Contract No. DEAC-05-840R21400

,
Contents

1 Introduction 1

2 Multiprocessor Model 4

3 Model Hyperbolic Problem - One Space Dimension 6

3.1 Fixed-size speed-up curves . 8

3.2 Memory-constrained scaled speed-up curves . 9
3.3 Time-constrained scaled speed-up curve . 11

4 Model Hyperbolic Problem - Two Space Dimensions 12

4.1 Fixed-size speed-up curves . 13
4.2 Memory-constrained scaled speed-up curves . 14

4.3 Time-constrained scaled speed-up curve . 16

5 Model Elliptic Problem - One Space Dimension 17

5.1 Fixed-size speed-up curves . 20
5.2 Memory-constrained scaled speed-up curves . 20

5.3 Time-constrained scaled speed-up curve . 22
5.4 Other architectures . 23

6 Conclusions 25

Acknowledgements 26

References 26

...
111

,
THE EFFECT OF TIME CONSTRAINTS ON SCALED SPEED-UP

Patrick H. Worley

Abstract

Gustafson, Montry, and Benner introduced the concept of scaled speed-up to

characterize the capabilities of distributed-memory MJMD multiprocessors. They

argued that, for a fixed-size problem, the behavior of the speed-up of an algcirithm

as a function of the number of processors, the speed-up curve, can be too pessimistic

a measure of a multiprocessor architecture. Instead, they measured the speed-up

of algorithms when the size of the corresponding problem grew with the number of

processors. They referred to the resulting function as the scaled speed-up curve.
The scaled speed-up curve is a function of how the size of the problem is allowed

to grow. We demonstrate that allowing the size of a problem to grow to fill the
available memory can produce dramatically different results from allowing the size
of a problem to grow subject to satisfying an upper bound on the execution time.
In particular, if a constraint on the execution time is enforced, then the scaled
speed-up curve is often very similar to the speed-up curve for a fixed-size problem.
We show that no more than 50 processors can be used efficiently for some common
problems in scientific computation when using the current generation of distributed-
memory multiprocessors. For other problems, we show that the scaled speed-up
curve indicates that massively parallel computers will be useful even if the execution
time is constrained. In all of the cases examined, a meaningful interpretation of the
scaled speed-up curve depends on a constraint on the execution time.

V

1. Introduction

Distributed-memory MIMD multiprocessors’ with a moderate number of processors (< 100)
have proven to be cost-effective computer architectures for solving many of the compute-

intensive problems in scientific computing [12,13,6]. Multiprocessors with orders of magnitude

larger numbers of processors can also be cost-effective [10,17], but it is unclear whether this

sort of massive parallelism is as useful as the more moderate amount of parallelism currently

being exploited.

The tool most commonly used to argue for or against multiprocessors with very large num-

bers of processors is the speed-up cwrve [2,19]. The speed-up of an algorithm on a multiprocessor

with P identical processors is defined in the following way. Let TI be the execution time of

a serial implementation of the algorithm on one of the processors. Let Tp be the execution

time of a parallel implementation of the algorithm that uses all P of the processors. Then the

speed-up S is the ratio

S r - . ?i
TP

It measures the relative increase in the execution time of the algorithm when only one processor

is used instead of P. The speed-up curve is the graph of the speed-up as a function of the number

of processors. This curve is a measure of the performance of a family of multiprocessors, one

for each number of processors. When the processors are identical across the family and the

interconnection topology varies in a natural way as a function of the number of processors, then

this family represents the scaling of a multiprocessor architecture. The maximum value reached

by the curve indicates the maximum speed-up achievable by the associated architecture for the

given algorithm. The smallest P that achieves this value is the largest number of processors

that should be used when executing the algorithm. Nothing is gained by using more.

For a fured-size problem, there is a law of diminishing returns when using an increasing

number of processors t o calculate the solution. There is only so much work to be done, and

rarely can all of it be done in parallel. Details of this type of behavior can be derived from the

following upper bound on the speed-up described by Amdahl in El]:

1
1 - s .

s+-

S L

P

P is the number of processors and s is the fraction of the work that cannot be parallelized. That

is, s is the fraction of the execution time of the serial implementation of the algorithm spent

on instructions whose execution cannot be overlapped with the execution of other instructions.

Thus, s is independent of P , and S - X ~ represents a lower bound on the execution time for all P .

Figure 1 contains graphs of this upper bound for various values of s. Expression (1) is referred

to as Amdahl’s Law.

Two implications can be drawn from Amdahl’s Law. First, if s is nonzero, then the speed-up

is bounded from above by l/s, independent of the number of processors in the multiprocessor.

‘Multiple Instruction Multiple Data i s one category of Flynn’s dtiprocessor taxonomy [SI. If a computer
is an MIMD multiprocessor, then both the instruction a procgsor is executing and the data it is using can be
different from thaw of other processors at any given moment.

2

loo c
80

60
S

40

20

1

P
9 = .1 (-), 9 = .01 (- - -), 3 = .001 (- . .), 3 = 0 (. .)

Figure 1: Graph of upper bound on speed-up described by Amdahl’s Law.

Second, if the right-hand side of Amdahl’s Law is a good model of the speed-up curve, then only

a relatively few processors are needed to achieve most of the maximum speed-up. ’The curves in

Figure 1 all have slopes that decrease monotonically and are near zero when the upper bound is

approached. For example, if s = .l, then the speed-up cannot exceed 10, and 15-20 processors

are sufficient to approximate this value closely. Using more than 20 processors does little to

decrease the execution time even though it does continue to decrease. Thus, if Amdahl’s Law

is a good predictor of the speed-up curve and s # 0, then not only is there is a limit to the

number of processors that can be used to speed-up a fixed-size calculation, but most of the

speed-up can be gained by using a small fraction of this maximum number of processors.

The upper bound given by Amdahl’s Law is based on the assumption that all computation is

either strictly serial or fully parallel. The performance of a parallel algorithm is also degraded

whenever fewer than P processors are busy during the execution of the algorithm, not just

when only 1 processor is busy. Moreover, there i s often an overhead involved when exploiting

parallelism, and processors must execute instructions that do not exist in the serial imple-

mentation. The dominant portion of this overhead is usually interprocessor communication.

Generalizations of Amdahl’s Law have been developed by numerous researchers to take these

effects into acconnt. For examples, see [19, pages R2$B34]. These models can be expressed in

the following form:
1

CT is a measure of the lack of P-fold parallelism in various stages of the algorithm and of the over-

head incurred when exploiting the parallelism that is there, like the time spent in interprocessor

communication. For a perfectly parallel algorithm requiring no interprocessor communication,

u (N , P) = 0. For a perfectly serial algorithm, u (N , P) : 1. For a given algorithm, u is a func-

tion of (at least) two parameters, some measure of the size of the problem, N , and the number

of processors, P. When P > 1 and N is fixed, a (N , P) is almost always bounded from below by

3

a positive constant, and is often a function that increases monotonically as a function of P. For
example, as P increases, the amount of time spent in interprocessor communication generally

increases relative to the amount of time spent computing [2,7]. Therefore, if communication

is not overlapped with computation, then communication represents an increasing percentage

of the total execution time and u (N , P) is an increasing function of P. As long as u (N , P) is
positive and does not decrease as a funtion of P , there is a Y-independent upper bound on

the speed-up, and mast of this speed-up will be gained when using a relatively small number

of processors. This type of result has been used to argue that multiprocessors with very large

nuxnben of processors will have limited utility.

Recently, Gustafson, Montry, and Benner argued that the analysis of fixed-size problems

can be misleading when evaluating a multiprocessor architecture [lo]. Given a bigger (faster)

computer, or a multiprocessor with more processors, it is likely that some of the workload

will consist of problems that were too large to calculate on the previous smaller computer. For

many problems in scientific computing, researchers are forced to reduce the sizes of the problems

they solve in order to satisfy time or budgetary constraints. Given a bigger computer, these

researchers are more likely to increase the size of a problem being solved, subject to the original

constraints, than solve the smaller version faster. For example, an increase in memory allows

the solution of problems that were too large to fit into memory before, and took too long to solve

when external storage devices were used to page the data and intermediate results into and out

of memory. Similarly, an increase in processing speed allows the solution of problems that took

too long to calculate before. The time constraint may be due to the need to meet a deadline,

as when forecasting the weather, or due to a fixed budget and costs that are proportional to

the time it takes to solve the problem. If every processor has an attached local memory, then

increasing the number of processors in a multiprocessor increases both memory and processing

power, and, potentially, dlows the size of a problem to increase no matter whether it was

memory or time bound.

Instead of the fixed-size analysis described above, Gustafson et al. proposed examining

the speed-up curve when the size of the problem iricreases with the number of processors.

They referred to this as the scaled speed-up curve. We will use N (P) to represent how the

problem size varies as a function of the number of processors. The implications of the fixed-size

analysis do not change unless a (N (P) , P) decreases as a function of P , but this is exactly what

is observed in practice for many algorithms [lo]. The theoretical analyses of both Amdahl

and Fox, described by Messina in [19], support these results for many algorithms in scientific

computation z f N (P) rncreases sufficaently fas t as a functron P.
In this paper we examine the effect of two different assumptions on how N (P) grows. The

first assumption, the one used in [IO], allows the size of the problem to grow to fill the available

memory. We will refer to this as the memory-constrained case. The second assumption allows

the size of the problem to grow subject to an upper bound on the execution time. We will refer

to this as the lime-consirarned case. In previous work [25,26] we proved that the execution

time will grow without bound as a function of the problem size, independent of the number of

processors and of the algorithm used, for certain common problems in scientific computation.

We also argued that similar conclusions apply to most problems in scientific computation.

4

Therefore, there will generally be a largest problem that can be solved and still satisfy a given

time constraint, and the scaled speed-up curve for the time-constrained case will not exceed

some constant determined by this largest problem. The memory-constrained analysis is not

limited in this fashion.

The theoretical analysis in [25] is relatively tight, but the lower bounds on the execution

time can be quite small because they hold when given an optimal algorithm and an unlimited

number of processors. To determine whether this distinction between the memory-constrained

analysis and the time-constrained analysis has practical import, we examine scaled speed-up

curves for some simple algorithms used to approximate the solution of model linear partial

differential equations. These algorithms have similar behavior to those used to approximate

the solution of more realistic problems in scientific computation [10,22,20,16]. We confirm

that the two analyses differ greatly, and that the time-constrained analysis is as pessimistic as
the traditional fixed-size analysis for some problenw. We also argue that the time-constrained

analysis is more reasonable than the memory-constrained analysis.

Another tool used to evaluate the performance of an algorithm on a multiprocessor is the

eficiency,
S

- P .
E = -

It measures the fraction of the maximum possible speed-up that is achieved. The efficiency is

useful when deciding how best to allocate processors among independent program in order to

maximize throughput. The efficiency and scaled efficiency curves are defined in an analogous

manner to the speed-up and scaled speed-up curves. We will also mention the effect of time

and memory constraints on the scaled efficiency.

2. Multiprocessor Model

'I'o facilitate comparison with the empirical results of Gustafson et al. [lo], the following multi-

processor model is based on the Ncube family of hypercube multiprocessors [4]. The model is

not too different from distributed-memory MIMD multiprocessors available from other manu-

facturers [4], and similar conclusions can be drawn for these architectures.

The following general assumptions are basic to the analysis in this paper.

1) We assume that we are analyzing a family of distributed-memory MIMD multiprocessors.

2) We assume that all processors in this family are identical, and that all processors have

the same amount of local memory.

3) For each example algorithm, we will assume an interconnection topology that is natural

for the algorithm. The underlying assumption is that these interconnection topologies can

be embedded in the interconnection topologies of the multiprocessors in the family. In all

examples, it will be sufficient if the interconnection topologies of the multiprocessors are

binary hypercubes [23].

4) We assume that the time required to send a B-byte message between neighboring proces-

5

sors can be described by the expression

.

cy is the start-up time required to send any message and p is the incremental transmission

time per byte [4,7].

The following specific assumptions permit us to calculate the scaled speed-up curves.

a) We assume that .45 Megabytes of local memory are available for program data storage

per processor.

b) We assume that all data and results are 8 byte floating point numbers.

c) We assume that binary floating point addition, subtraction, multiplication, and division

instructions all take approximately 8psec to execute in the (compute-intensive) type of
program that we will be analyzing. This is equivalent to a rate of .125 Megaflops for

each processor. We will refer to the execution times of these operations by f(+,, f (-) ,

f(.), and f (, l respectively.

d) We asume that the communication start-up time, a, is 376 psec, and that the incremental

transmission time, p, is 3psec. Thus, the ratio of the time to send one floating point

number between neighboring processors to the time to calculate a floating point addition

is approximately 50.

e) We assume that computation and communication on the same processor are not over-

lapped. For example, if, during the execution of an algorithm, an addition operation is
executed and a floating point number is sent to a neighboring processor, then the time

required to execute these two operations is

These specific assumptions are not important to the analysis, but some assumpticns are nec-

essary to complete the analysis. And, as mentioned above, the resulting model is similar to

many of the commercially available distributed-memory MIMD multiprocessors. For example,

the first and second generation of hypercube-based multiprocessors generally have ratios of
communication to computation in the range of 20 to 60, and floating point computation rates

between .03 Megaflops and .26 Megaflops per processor [4]. Most distributed-memory multi-

processors have the facility to overlap some of the communication with the computation. But

exploiting this facility requires careful programming, and not all algorithms can take advantage

of it. Even if communication and computation can be completely overlapped, the execution

times reported in the rest of this paper would a t most be halved, and the speed-ups doubled.

For example, the time required to add two numbers together and send a floating point number

to a neighboring processor is always bounded from below by

6

which is never leas than half of the value of expression (3). Permitting overlap changes our

conclusions very little.

The model described above (assumptions (1)-(4) and (a)-(e)) allows us to identify when

the bounds on performance established in [25,26] begin to affect actual algorithm. Different

assumptions will change the analysis, and changes in multiprocessor technology will alter some

of the conclusions drawn here. But the qualitative behavior indicated by the theory is inde-

pendent of the architectural parameters, and the only issue is when the intrinsic limitations on

the parallelism begin to affect performance.

3. Model Hyperbolic Problem - One Space Dimension

Consider the following hyperbolic equation in one space dimension with periodic boundary

conditions and a constant forcing function,

8 d2
at az2

. - u (z , t) - ---u(z,t) = C for (z , t) E [O J] x [O,1]
d2
--u(z,t) + 6
8t2

a
at

u(x,O) =I uo(z) , -u(z,Q) = 0 for z E [0,1]

u(O,t) = u (1 , t) for t E [O,1] ,

where IE > 0. Assume that we want the solution at time T = 1 on a uniform mesh,

where Ax is the distance between consecutive locations and N , is the number of locations,

N , = l / A x . Assume that values of the data function ug(z) are avnilable on the mesh

We approximate u (z 9 t) on the mesh at time T = 1 by time-stepping using the following

finite difference formula,

V j E {I , . . . ,NX} V k E (1 , . .. , N t } ,
where At is the length of the time step and Nt = 1 / A t . iir is an approximation to u at the

location (jAz, k a t) . By periodicity, iik= = fig for all I%. Thus, the solution is approximated at

all locations on the mesh

{ (j a x , k h t) I j E (1,. . . , N x } , k E (1 , . . _ , N , } }

This equation is derived from the differential equation by replacing the derivative terms by

centered fiaite difference approximations. The scheme requires approximations to the solution

7

Pi- 1 Pi Pi+l
I I I I
I I I I
I I I I

I I I 1
I I I I
I I I I

I I I I
I I I I

I o 0 0 1 0 0 0 1 0 0 0 I - k

At I O 0 . I @ e 0 1 . 0 0 I - (k-- 1)

0 I I o 0 0 1 . I 0 1 0 I 0 0 I I - (k - 2)

I I I I

I I I I I I I I I
j - 4 j-3 j-2 j-1 j j + l j + 2 j + 3 j + 4

AX

e : value needed by processor pi to calculate solution at time k . At
o : value not needed by processor p i to calculate solution at time k . At

Figure 2: Parallel implementation of algorithm for 1-D hyperbolic problem.

at times (k - 1)At and kAt in order to calculate an approximation to the solution a t time
(IC+ 1)At. To start the process, we set 6: and Gjyl equal to uo(J’Ax) for all j . If we precompute

the constant factors, then the serial complexity of the calculation is approximately

(4 . f(+) + 3 . f(*)) . Nx . Nt . (4)

To ensure the stability of this calculation, we need to stipulate that At 5 Ax [22]. To min-

imize the amount of work, and to balance the contributions to the truncation error of the

discretixations in space and time, we will henceforth assurne that At = Ax.
The computation of the approximation at time (k+ 1) .At from the approximation at times

(k - 1) . At and k 1 At is easily parallelized. Assume that the multiprocessor has P processors

and can be configured as a ring with two conununication channels between neighboring proces-

sors (allowing duplex communications). For simplicity, also awurne that N,/P is an integer.

Partition the interval [0,1] into P equal subintervals and assign the calculation of the solution

locations in each subinterval to a common processor. If neighboring subintervals and the cor-
responding data are mapped onto neighboring processors, then each processor needs to receive

only one floating point number from each of its neighbors in order to finish its calculation of

the next timestep. This parallel implementation is represented graphically in Figure 2. Here
we are assuming that N,/P = 3. The solid dots indicate the values needed by processor pi in

order to complete the computation at time k . At.
The execution time of computing a single timestep using this parallel implementation is

1- 2.7 , Nx (4 . f(+, + 3 . f(*)) . - P

where 7 is the time required to send one floating point number to a neighboring processor and

8

receive another back. By the assumptions of section 2, r can be represented by

The total execution time for this parallel implementation is

((4 . f(+, + 3 . f(*,) . 5 P -4- 2 . a + 1 6 . P) . Nt .

Since we have assumed that the computation and communication cannot be overlapped, this

synchronous parallel. implementation of the serial algorithm is optimal when N , / P is an integer.

’The computation is perfectly parallel per timestep, the load is distributed evenly over the

processors, and the time spent in interprocessor communication during a timestep is minimized.

A similar implementation can be described when N,/P is not an integer, aad expression (5) is
then a lower bound on the execution time. This holds even if we allow multiple processors t o

collaborate in the calculation of a single ii!. Up to 3 . N, processors can be used to parallelize

this algorithm, but the execution time does not continue to decrease when more than N,

processors are used. The decrease in the cornputation time is more than oEset by the increase

in the time spent in interprocessor communication. For this reason we will not allow more than

N , processors to be used.

3.1. Fixed-size speed-lip curves

By assumption, the largest problem that will fit on one of the processors will use no more

than .45 Megabytes of memory. To begin the calculation for a given timestep, enough memory

must be available to hold the approximate soltition at the two previous timesteps. Thus, the

computation can proceed as long a a little more than 2 . N , floating point numbers can be

stored. Therefore, the maximum value of N , for a serial implementation of the algorithm is

approximately 28,125, or Ax M .000036. This assumes that the solution is required only at

time T = 1 and that the size of the memory is the active constraint in determining the size of
the problem. If, instead, the solution of the problem must proceed at least as fast as real time,

then the execution time musk be no greater than 1 second when approximating the solution at

time T = 1. In this case the maximum value of N, for a serial implementation of the algorithm

is 133 and Az FZ .0075. This type of time constraint is necessary for problems in real time

control.

These alternatives represent the “small” versions of the problem that a researcher must

resign himself to if he has only one processor, and if he is limited by the corresponding memory

or time constraints. Figure 3 contains the graphs of the speed-up curves for these two examples.
Both curves behave in R. fashion similar to that predicted in the introduction. As meiitioned

above, P cannot exceed N,. But both curves level off Iong before the maximum number of

procemors is reached. The time-constrained example has a maximum speed-up of approximately

8.7, and a speed-up of 7 is achieved when using only 29 processors, less than one fourth of

the maximum number. Therefore, a large

multiprocessor is not useful for this problem. The memory-constrained example has a speed-

The efficiency is less than 50% when P > 9.

9

105

104

_ - - -
.+

/
/

10' 102 103 105

103
S

102

10'

10D

P
N , = 133 (-) N s = 28,125 (- -)

Figure 3: Speed-up curves for fixed-size examples of 1-D hyperbolic problem.

up curve that is approximately linear until P > 1000, reaching a speed-up of approximately

675 when P = 1024, and behaves much like the speed-up curves for the fixed-size problems

described by Gustafson et al. in [lo]. The efficiency is 50% or higher until P > 1968, and

thousands of processors can be used effectively. But the curve flattens quickly for larger P.
The maximum speed-up is approximately 1840, but three-fourths of the maximum speed-up is
achieved when P = 4615, approximately 15% of the maximum number.

3.2. Memory-constrained scaled speed-up curves

We next let the size of the problem grow to fill the available memory as the number of processors

increases. Since each additional processor adds an additional .45 Megabytes of memory to the

multiprocessor,

N , = 28,125. Y .

We will refer to this as the memory-constrained model. This function is graphed in Figure 4 .
Figure 5 contains the graph of the memory-constrained scaled speed-up curve. The speed-up

grows linearly as a function of P with a slope near 1,

s R3 .9995 f P .

Thus, very good speed-up and efficiency are maintained for any number of processors.

By this measure, there is no limit to the number of processors that can be used. But there

is a cost associated with the high speed-up. Figure 6 contains the graph of the execution time

of the memory-constrained model as a function of P. The execution time is approximately

12 hours when one processor is used, and increases linearly as a function of P with a slope

of approximately 12. Thus, the high. speed-up is a result of the execution time of the serial

implementation of the algorithm growing faster than the number of processors. Every practical

problem has some time constraint when calculating its solution, and any such time constraint

10

_ _ _ _ - - - - - - _ - - -

Y
Memory-constrained (a a) Time-constrained (- -)

Figure 4: Bounds on scaled problem sizes for 1-I) hyperbolic problem.

S

P
Memory-constrained (. . -) Time-constrained (- -) N , = 1168 (-)

Figure 5: Scaled speed-up curves for 1-I) hyperbolic problem.

11

P
Memory-constrained (a . .) Time-constrained (- -) N , = 1168 (-)

Figure 6: Execution time for scaled speed-up models vs. number of processors for 1-D hyper-
bolic problem.

will be exceeded quickly for this model. For this reason, we claim that the memory-constrained

scaled speed-up curve is misleading for this problem.

3.3. Time-constrained scaled speed-up curve

Finally, we let the size of the problem grow to satisfy the real-time bound OR the execution

time. To satisfy the time constraint for the serial implementation of the algorithm, we need

To satisfy the time constraint for the P processor parallel implementation, we need

Thus, the largest that N, can be is

133, i f P = l ;

We will refer to this as the time-constrained model. Figure 4 contains the graph of this bound.

As mentioned before, P cannot be greater than N, . Since Y grows faster than Nc when the

execution time is bounded, there is a largest problem that can be solved, regardless of the

number of available processors. For this problem, N, cannot be larger than 1168.
Figure 5 contains the time-constrained scaled speed-up curve for this problem and the speed-

12

up curve €or the fixed-size problem N, = 1168. The rrimimum speed-up is approximately 76,

using 1168 processors, and three-fourths of this speed-up i s achieved when using only 250
processors. The efficiency falls below 50% when P > 43. The time-constrained scaled speed-up

curve has many of the same characteristices as the fixed-size speed-up curves. There is an

upper bound on the maximum nurider of processors that can be used, and most of the speed-

up is achieved when using significantly fewer processors. Moreover, the speed-up curve for the

maximum size problem, N, = 1168, is a reasonable approximation to the time-constrained

scaled speed-up curve.

In conclusion, a large number of processors is not useful for solving this problem when

subject t o this time constraint. The utility of additional processors is very low for more than

250 processors. If the efficiency must be greater than 50%, then only 43 processors can be used.

A looser time constraint will permit more processors to be utilized, but the general conclusions

will not change.

4. Model Hyperbolic Problem - Two Space Dimensions

Consider the following hyperbolic equation in two space dimensions with periodic boundary

conditions and a constant forcing function,

where rt > 0. Assume that we want the solution on a uniform mesh at time T = 1,

{ (iAs, jAs 1) l i , j E (1 , . . . , N , } } ,

where As i s the distance between consecutive locatioiis in each spatial coordinate direction and

N," is the total number of locations, N," = (1/As)2. Assume that values of the data function

UO(Z, y) are available on the mesh { (iAs , jAs) I i , j E {I , . . . , N , } }.
We approximate ~ (2 , y, t) on the mesh at time T = 1 by time-stepping using the following

finite difference formula,

13

Vi , jE{ l , ..., N b , } V k ~ (1 , ..., N t } ,
where At is the length of the time step and Nt = l/At. ii:,j is an approximation to u at the

location (iAs,jAs, &At). By periodicity, iih,,j = iit,j for all j and k, and ii;",N* = iiz0 for all i
and k. This equation is derived from the differential equation by replacing the derivative terms

by centered finite difference approximations. As in section 3, this scheme requires approxima,-

tions to the solution at times (k - 1)At and kat in order to calculate an approximation to the

solution at time (k + 1)Aht. To start the process, we set il:,j and ii;; equal to uo(iA.s, jAs) for

all i and j . The serial complexity of the calculation is approximately

To ensure the stability of this calculation and to balance the contributions to the truncation

error of the discretizations in the different coordinate directions, we assume that At = As.
As in section 3 the cornputation of the approximation at time (k -f 1) 1 At from the approx-

imation at times (IC - 1) At and 6 . At is easily parallelized. Assume that the multiprocessor

has P processors and can be configured as a toroidal mesh with four nearest neighbors per

processor and two communication channels between neighboring processors (allowing duplex

communications). If N , / O is an integer, then partition the square [O, I] x [O, 11 into P equal

subsquares, map the subsquares and data onto the processors in such a way as to preserve the

topology of the problem domain, and assign the calculation of the solution locations in each

subsquare to the corresponding processor. Then each processor needs to receive only N , / @
floating point numbers from each of its neighbors in order to finish its calculation of the next

time step.' Since computation and communication are not overlapped, the total execution time

for this parallel implementation is

A similar implementation can be described if N , / G is not an integer, and expression (7)
is then a lower bound on the execution time. The maximum number of processors that can
be used to parallelize this algorithm is 5 . N:, but using more than N," processors increases:

the execution time because of the increase in the time spent in interprocessor communication.

Therefore, we will not allow more than N," processors to be used.

4.1. Fixed-size speed-up curves

If the solution is needed only at time T = 1, then we again need only enough memory to hold

the approximate solution at the two previous timesteps. The coniputation can proceed on one

processor as long as a little more than 2 + N," floating point numbers can be stored. Therefore,

if the size of the memory is the only limit on the size of the problem, then the maximum value

of N , in a serial implementation of the algorithm is approximately 167, or As w .006. If the

2Mappings based on partitioning the problem domain into hexagons or rectangular strips can also be used t o
generate parallel implementations [21]. The mapping described here is better than tine either of these alternatives
when P 2 16 and N. 2 a.

105

104

s 103

102

101

loo

14

- - - - - c
I

/

101 102 103 104 105 106

P
Ns = 23 (-) N , = 167 (- -)

Figure 7: Speed-up curves for fixed-size examples of 2-D hyperbolic problem.

execution time must be less than 1 second when approximating the solution at time ?' = 1,

then the maximurn value of N , in a serial implementation is 23, or As
Figure 7 contains the graphs of the speed-up curves for these two fixed-size examples. As

before, both curves level off long before the maximum number of processors, N:, is reached. The

time-constrained example has a maxirnum speed-up of approxiniately 23, using 529 processors,

and a speed-up of 17 is achieved when using only 80 processors. The efficiency is less than 50%

when P > 18. The memory-constrained example has a speed-up curve that is approximately

linear until Y > 1000, reaching a speed-up of approximately 506 when P = 1024. The efficiency

is at least 50% as long as P < 999. This example behaves much like the wave mechanics problem

described in [lo], which it closely resembles. The maximum speed-up is approximately 1201,
using 27,889 processors, but three-fourths of the maximum speed-up is achieved when P = 4188,

approximately 15% of the maximum number.

These examples do not differ intrinsically from the fixed-size examples in section 3. The

time-constrained example can use more processors than before, up to approximately 80 by one

measure and 18 by another. The memory-constrained example can use effectively somewhere

between 1000 and 4000 processors, but the actual gain in speed-up i s somewhat less than for

the problem in section 3.

.04.

4.2. Memory-cormtrained scaled speed-up curves

If the size of the problem grows to fill the available memory, then

N , = 1J-J .

A s before, we will refer to this as the memory-constrained model. This function is graphed in

Figure 8. Figure 9 contains the graph of the memory-constrained scaled speed-up curve. The

15

108

107

105

N , 104

103
lo2 _ _ _ - - -
101

loo

106

_ _ _ _ - - - - - _ _ - -

101 102 103 104 105
P

Memory-constrained (. . .) Time-constrain& (- -)

Figure 8: Bounds on scaled problem sizes for 2-D hyperbolic problem.

S

P
Memory-constrained (. . .) Time-constrained (- -) N , = 625 (-)

Figure 9: Scaled speed-up curves for 2-D hyperbolic problem.

10".

lo6

107

105
104
103

'

lo2

10'
1 oo

16

seconds -I

10' 1 o2 103 104 105 1 o6 10-11- ' ' n'uJ. ' ' " m l c m l ' "lll"i ' ' """i ' ' ' - I ' ' tlILJ

P
Memory-constrained (. . .) Time-constrained (- -) N , = 625 (-)

Figure 10: Execution time for scaled speed-up models vs. number of processors for 2-D hyper-
bolic problem.

speed-up grows linearly as a function of P with a slope near 1,

s M .9914. P .

A s in section 3, very good speed-up and efficiency are maintained for any number of processors.

This measure does not indicate any limit to the number of processors that can be used effec-

tively, but the execution time again grows when the number of processors increases. Figure 10

contains the graph of the execution time of the memory-constrained model as a function of P .
The execution time is approximately 5.7 minutes when one processor is used, and it increases

to over 3 hours by the time 1000 processors are used. If 1,000,000 processors are used, then

the execution time is approximately 95 hours. The execution time increases as the square root

of P , which is not as bad as for the problem in section 3, but any time constraint will still be

exceeded a5 P increases. Some bound on the execution time must be assumed, and, until that

is established, it is unclear what part of this scaled speed-up curve contains useful information.

4.3. Time-constrained sealed speed-up curve

Assume that the solution of the problem must proceed at least as fast as real time. 'l'o satisfy

the time constraint for the serial implementation of the algorithm, we need

17

which is satisfied when N , 5 23. To satisfy the time constraint for the P processor parallel

implementation, we need

This bound is graphed in Figure 8. We will refer to this as the time-constrained model. Since P
must be less than or equal to N:, there is again a largest problem that can be solved, regardless

of the number of available processors. For this problem, N , cannot be larger than 625. Note

that this is larger than either of the two fixed-size examples, so we expect more promising

results for the time-constrained analysis.

Figure 9 contains the time-constrained scaled speed-up curve for this problem and the

speed-up curve for the ked-size problem N , = 625. The maximum speed-up is approximately

15,654, using 390,625 processors. While the time-constrained scaled speed-up curve again has an

upper bound on the maximum number of processors that can be used, and a decreasing utility

for additional processors as this limit is approached, the scaled speed-up curve is essentially

linear over a large range of numbers of processors. The speed-up is approximately 75 for 100
processors, and is nearly 3350 for 10,000 processors. The efficiency does not fall below 50%
until P > 2211. The speed-up curve for the maximum size problem, N , = 625, is again a

reasonable approximation to the time-constrained scaled speed-up curve, but this problem is

so large that it does not represent a major constraint until the number of processors becomes

quite large.

In conclusion, unlike in the memory-constrained anaiysis, an unlimited number of processors

cannot be used. But tens of thousands of processors can still be utilized effectively. If 50%
utility is required, then a maximum of 2211 processors can be used, but half of the maximum

possible speed-up is not achieved until approximately 40,000 processors are used. The ratio of

communication to computation for this parallel algorithm is similar to that of the algorithm

in section 3. They are both the ratio of the surface to the volume of cubes, one dimensional

in section 3 and two dimensional here. But the algorithms differ in the absolute amount of

computation required per timestep, and this changes the analysis. The increased amount of

computation per timestep increases the speed-up for the time-constrained model. For the

analogous hyperbolic equation in three space dimensions, the analysis changes in a similar

fashion, and the exploitation of massive parallelism is even more strongly indicated.

5. Model Elliptic Problem - One Space Dimension

Consider the following elliptic equation in one space dimension with Dirichlet boundary condi-

tions,
a2 v

--ti(.) = g(z) for z E [0,1]
d X 2

18

Assume that we want the solution on a uniform mesh,

where Ax is the distance between consecutive locations and N , is the total number of locations,

N, = (l /Ax - 1). A4ssurne that values of the data function g(x) are also available on this mesh.

We approximate u (z) by solving the coupled system of linear equations

Cj is an approximation to u at the location j A x and g, = g(jAx). There is one equation

for each location in the mesh. These eqiiatiorrs are derived from the differential equation by

replacing the second-order derivative term by a centered finite difference approximation. The

resulting system can be represented as a matrix equation Aii = j where A is a symmetric

tridiagonal Nz x N , matrix, .ii is the vector of approximate solution values, and J is the vector

of data.

There are numerous techniques for solving this matrix equation. If a point iterative method

is used [27,11], then the analysis is very similar t o that described it1 section 3. Each step of the

iteration involves a weighted average of values associated with neighboring mesh locations, and

the number of iterations i s approximately a linear function of (l/Az)O for some positive a. But

the best serial and parallel algorithms for this problem have the form outlined in Figure 11.

0) Let N = Nz + 1.

1) Given a tridiagonal system of N - 1 equations representing N - 1 mesh locations, generate
a new tridiagonal system of N / 2 - 1 equations whose solution is the even numbered values
of the solution vector of the larger system. Set N = N / 2 .
Thus, there is now one equation for every location on a coarser mesh. We will refer
to this as the d i v e mesh during this stage of the algorithm. Each new equation is
a weighted sum of the original equation corresponding to that mesh location and the
equations corresponding to the mesh locations on either side of it in the original fine
mesh.

2) Repeat step 1 until the system is reduced to a single equation, saving all of the interme-
diate systems.

3) Solve the one equation and set N = 2.
4) Use the solution of the system of size N / 2 - 1 to solve for the remaining unknowns in the

tridiagonal system of size N - 1. Set N = 2 N . We will refer to the corresponding mesh
locations as being active during this part of the algorithm,

5) Repeat step 4 until. the original. problem is solved.

Figure 11: Outline of cyclic reduction algorithm for 1-D elliptic problem.

19

When Nx + 1 is an integer power of two this description applies to multigrid3 131, Gaussian

Elimination using the nested dissection ordering of the rows [8], and cyclic reduction [14]. The

approach can be modified to work even if N , is not a power of two. We will use the cyclic

reduction algorithm for our analysis.

The details of cyclic reduction and further references to the method can be found in Hockney

and Jesshope [14, pages 286-2981. For now, assume that N 5 Nx -f 1 is an integer power of

two. Step 1 requires 4 additions, 5 multiplications, and 2 divisions per new equation, and step

1 i s executed log, N - 1 times. Step 3 requires 1 division, and is executed once. Step 4 requires

2 additions, 2 multiplications, and 1 division per new solution value, and step 4 is executed

log, N - 1 times. The total execution tinie of a serial implementation is4

For simplicity, we will assume that the same execution time holds when N is not an integer

power of two. This algorithm requires storage for approximately 7 . N x floating paint values.

Most of the work in steps 1 and 4 of the algorithm can be done in parallel. Assume that

the multiprocessor has P processors and can be configured as a binary hypercube with two

communication channels between neighboring processors (allowing duplex communications).

Partition the interval [0,1] into P equal subintervals, map neighboring subintervals to neigh-

boring processors, and assign the calculation of the solution locations in each subinterval to the

corresponding processor. As long as there is at least one active mesh location associated with

each processor, each processor needs to receive only four floating point numbers from each of

two neighbors to finish the current iteration of step 1, and one floating point number from each

of two neighbors to finish the current iteration of step 4. During these stages of the algorithm

only a linear array interconnection topology is being used by the parallel implementation. For

some iterations of steps 1 and 4 the active mesh is too coarse for all processors to have active

mesh locations, and some processors will be idle. But, if some care is taken when mapping the
subintervals to the processors, the processors that need to communicate will only be a distance

of t w o apart [15]. That is, the information must pass through only one intermediate processor.

This uses the entire hypercube interconnection network.

If both N and P are integer powers of two and N >_ 2 . P, then the execution time of this

parallel implementation is

3Since multigrid only approximately reduces the system in step 1, steps 0-5 will need to be repeated a number

*This differs fmm the expresion given by Hodcney and Jesshope in [14] because we are takmg advantage of
of times until the process converges.

the symmetry in the matrix.

20

This is a lower bound on the execution time otherwise. For this implementation there is

no advantage to having more than N / 2 processors. While more can be used, the execution

time grows when more than N / 2 are used due to the additional time spent in interprocessor

communication. Each processor needs to hold a t least 7 . N,/P floating point values, but a t

least one needs to hold 7 . N , / P + 4.10g2(N,/P) floating point values.

5.1. Fixed-size speed-up curves

The algorithm can he executed on one processor as long as approximately 7 . N , floating point

numbers can be stored. Therefore, if the size of the memory is the only limitation on the size

of the problem, then the maximum value of N, in a serial implementation of the algorithm is

approximately 8035, or Ax w .00012. If the execution time of the problem must be less than 1
second, then the maximum value of N , in a serial implementation is 8341, which is greater than

the memory capacity will allow. Unlike the examples in sections 3 and 4, the memory constraint

is more limiting than the time constraint. Therefore, N , = 8035 is also the maximum value for

a time-constrained example on this multiprocessor model. This time constraint is arbitrary for

this problem since there is no corresponding real-time. But some bound will hold in practice,

and this one is appropriate given the earlier analyses.

Figure 13 contains the graph of the speed-up curve for this fixed-size example. While over

4000 processors can be used, the execution time begins increasing again when more than 359

processors are used. Therefore, Y < 360 is a practical limit for this example. The maximum

speed-up is approximately 25.6, using 359 processors, and a speed-up of 19 is achieved when

using only 45 processors. Thus, the speed-up curve levels off long before even this practical

maximum is reached. The efficiency is less than 50% when P > 34. This example is much more

pessimistic than the memory-constrained examples in sections 3 and 4. The difference is due

to the presence of a term that grows as a function of P. It is only logarithmic in P , hut it still

strongly lirnits the achievable speed-up.

5.2. Memory-constrained scaled speed-up curves

If the size of the problem grows to fill the available memory, then N2 satisfies

when P > 1. A very good approximation to the maximum value that satisfies this inequality is

N, = 8035. P .

We will refer t o this as the memory-constrained model. This function is graphed in Figure 12.

Figure 13 contains the graph of the memory-constrained scaled speed-up curve. The speed-

up appears to grow linearly as a function of P with a slope near 1. Thus, like all of the

previous memory-constrained examples, very good speed-up and efficiency are maintained for

any number of processors. Figure 14 contains the graph of the execution time of the memory-

constrained model as a function of P. Note that, unlike the previous graphs, this i s a log-linear

21

P
Memory-constrained (. . -) Time-constrained (- -)

Figure 12: Bounds on scaled problem sizes for 1-D elliptic problem.

lo6

lo5

104

s 103

lo2

lo1

1 oo

P
Memory-constrained (. I .) Time-constrained (- -) N , = 8035 (-)

Figure 13: Scaled speed-up curves for 1-D elliptic problem.

22

1.10

1.05

seconds 1.00

.95

.90

P
Memory-constrained (. . e) Time-constrained (- -)

Figure 14: Execlition time for scaled speed-up models vs. number of processors for 1-D elliptic
problem.

graph with a small linear scale. For this problem the execution time hardly increases at all.

The execution time is approximately 0.96 seconds when one processor is used, and increases to

only 1.06 seconds when 1,000,000 processors are used. The execution time does not exceed one

second until P > 26. Thus, while the fixed-size analysis is very pessimistic for this example,

the memory-constrained analysis is both optimistic and believable.

5.3. Time-constrained scaled speed-up curve

To satisfy the one second bound on the execution time introduced earlier, N , must satisfy

when P > 1. It must also satisfy the memory constraint. This was not an issue before, but the

memory constraint is more restrictive until P > 26. This bound is graphed in Figure 12. We
will refer to this as the time-constrained model. While this model will also have a maximum

size problem that can be solved, the size of the time-constrained model grows almost as fast

as the memory-constrained model for all reasonable numbers of processors. Figure 13 contains

the time-constrained scaled speed-up curve for this problem. The speed-up appears to grow

linearly as a function of P with a slope very close to 1. The memory-constrained scaled speed-

up is a little better, but not significantly so. Thus, the time-constrained scaled speed-up is

just as optimistic as the memory-constrained scaled speed-up, indicating no practical limits

on the number of processors that can be used. This is in distinct contrast with the fixed-size

23

scaled speed-up curve, which was very pessimistic. The decision as to whether a massively

parallel processor is appropriate for this problem is very sensitive to the degree to which a

scaled analysis is appropriate.

5.4. Other architectures

The previous analysis was based on the family of multiprocessors having a binary hypercube in-

terconnection network. This topology is difficult and expensive to scale to very large numbers of

processors. Each processor is connected to logz P communication channels, and the processors

necessarily become larger and more expensive as P increases. Additionally, the physical packag-

ing of the interconnection network forces the length of the communication channels to grow as
P increases, which degrades the maximum possible interprocessor communication speed [18,9].

In contrast, the one, two, and three dimensional meshes have fixed numbers of communication

channels connected to each processor and no packaging constraints on the lengths of commu-

nication channels. Some manufacturers are moving to these topologies for the next, generation

of distributed-memory multiprocessors [24].
If a different topology is assumed, then the analysis will change. To indicate the degree

to which the conclusions can change, assume instead that the multiprocessor family can only

support a one dimensional mesh interconnection topology. In this case processors must send

messages progressively farther as the active mesh becomes coarser in steps 1 and 4 of the

algorithm. The execution time of this modified parallel implementation is

This expression grows linearly as a function of P , and the fixed-size analysis is even more

pessimistic than before. This is indicated by the speed-up curve in Figure 15. The execution

time begins increasing when P > 24, and this represents a practical limit on the number of

processors that can be used. Thus, the maximum speed-up is approximately 10, using 24

processors. The e%ciency is less than 50% when P > 20.
Figure 15 also contains the graph of the memory-constrained scaled speed-up. While there is

still no upper bound on the number of processors that can be used, there is now an upper bound

on the achievable speed-up. For large P , the execution time of the parallel implementation is

essentially a linear function of the number of processors, while the execution time of the serial

implementation is a linear function of N,. But the memory-constrained model defines N , to be

a linear function of the number of processors. Therefore, the ratio of these two will approach

a constant. The maximum speed-up is approximately 552. But a speed-up of 400 is achieved

when P = 1479, and the efficiency falls below 50% when P > 540. Even lhis limited amount of

speed-up comes at the cost of an increase in the execution time. Figure 16 contains the graph

of the execution time of the memory-constrained model as a function of P. The execution time

for one processor is still approximately .96 seconds, and it increases to only 3.6 seconds when

P = 1500. But the execution time is approximately 29 minutes when Y = 1,000,000.

24

lo6

105

104

s 103

lo2

10'

100 6

P
Memory-constrained (- e a) Time-constrained (- -) N , = 8035 (--)

Figure 15: Scaled speed-up curves for 1-D elliptic problem when a 1-D mesh topology is used.

seconds

6

P
Memory-constrained (. . .) Time-constrained (- -)

Figure 16: Execution time for scaled speed-up models vs. number of processors for 1-D elliptic
problem when a 1-D mesh topology is used.

25

The graph of the time-constrained scaled speed-up is in Figure 15. Since the expression for

the execution time has a term that is linear in P , at some point an increase in P will decrease

the size of the problem that can be solved and still satisfy the time constraint. This occurs

when P = 282, and N , = 1,1119,570. This is a practical limit t o the number of processors

that can be used. The basic assumption behind the time-constrained scaled speed-up analysis

is that the goal is to solve larger problems, subject to the time-constraint. For P > 282, the

size of the problem can no longer increase, and there is no advantage to using more processors.

In any case, the time-constrained scaled speed-up curve decreases monotonically for P > 282.

The speed-up is 138 when P = 282, and the efficiency is 49%.

In conclusion, the execution time of the algorithm for the elliptic problem has a component

that grows as a function of P. When the interconnection network of the multiprocessor is a

binary hypercube, this does not affect the scaled speed-up curves for any reasonable number

of processors. Both memory-constrained and time-constrained scaled speed-up curves indicate

that massively parallel multiprocessors are appropriate for this problem. When the intercon-

nection network is a one dimensional mesh, the memory-constrained speed-up curve indicates

that it is not productive to use more than approximately 1500 processors. The time-constrained

speed-up curve is even more restrictive, indicating that there is no advantage to using more

than 282 processors. Thus, massively parallel multiprocessors of this type are not appropriate

for this problem. If the multiprocessor family is instead limited to a two or three dimensional

grid interconnection network, then the conclusions will fall somewhere between these two ex-

tremes. Note that the fixed-size analysis indicates that relatively few processors can be used in

either case.

6. Conclusions

The speed-up curves for the current workload are often the most appropriate measures to use

to decide how many processors to buy when buying a new multiprocessor or upgrading an old

one. But, if the sizes of some of the problems are expected to grow, then scaled speed-up curves

can also be appropriate measures. Since the time-constrained scaled speed-up curve and the

memory-constrained scaled speed-up curve are intrinsically different, it is important to identify

how a problem will grow. For any practical problem, there will be some bound on the execution

time that must be satisfied. And, for the algorithms and multiprocessor families analyzed here,

a time constraint tends to be more limiting than the memory constraint. In all cases examined,

an indication of how the execution time varies for a memory-constrained model is necessary

to interpret the memory-constrained scaled speed-up curve. For this reason, we argue that

including a bound on the execution time is necessary when defining scaled speed-up curves.

We also claim that these results hold far the majority of the application codes in scientific

computation and for the current generation of distributed-memory MlMD multiprocessors.

For certain problems, the time-constrained analysis is very pessimistic, indicating that mas-

sive parallelism is unlikely to be useful. For other problems, the analysis indicates that tens

of thousands of processors could conceivably be useful, although for that number of processors

the analysis is somewhat simplistic. We have ignored costs like loading the program and data

and unloading the results. Additionally, there will usually be an upper bound on t8he size of a

26

problem that is useful t o solve, and this will need to be incorporated in a realistic analysis. The

examples described here seem to indicate that simple problem and architectural parameters

may be sufficient to categorize whether massive parallelism will be useful. For example, the

higher the number of space dimensions, the more likely it is that a large number of processors

can be used for the hyperbolic problem. For the elliptic problem, the interconnection network

of the multiprocessor determines how many processors to use. But these examples are too

simple to he more than indicators that such a categorization might be possible.

Note that the definition of the scaled speed-up curve can be generalized by allowing the

algorithm to vary as a function of the number of processors, with only the problem being fixed.

‘rhus, we assume that there is an underlying family of algorithms, each one “best” for a given

number of processors. This will not normally be a useful measure for a system administrator.

The choice of algorithms is not his to make, and he must evaluate the impact of increasing the

number of processors on the current programs. It is also not an interesting generalization for

the examples we have analyzed since the standard serial algorithms are easily parallelized. But,

the theory described in Worley (25,261 is algorithm-independent. Thus, for problems to which

the theory applies, the qualitative behavior of the generalized time-constrained scaled speed-up

curve is the same as before.

Acknowledgements

We thank Michael Heath and Charles Romine for their helpful suggestions on the presentation

of the material in this paper.

References

[I] G. Amdahl, The validity of the single processor appT-OaCh to achieving large scale computing

capabilities, AE’IPS Conference Proceedings, Vol. 30 (1967), PP. 483-285.

PI lll_ , Limits of ezpeclalzon, International Journal of Supercomputer Applications, Vol. 2,
No. 1 (Spring 1988), pp. 88-97.

[3] A . Brandt, Guide 2 0 multigrid development, in Multigrid Methods, W. Hackbusch and

U. Trottenberg, eds., Berlin, 1982, Springer-VerIag, pp. 220-312.

[4] T. H. Dunigan, Performance of R second generation hypercube, Tech. Rep. ORNL/TM-
10881, Oak Ridge National Laboratory, September 1988.

[5] M. J . Flynn, Some computer organizations and their eflecliveness, IEEE Transactions on
Computers, Vol. C-21 (1972), pp. 948-960.

[6] G. C . FOX and S. W. Otto, Algorithms f o r concurrent processors, Physics Today, Vol. 37,
NO. 5 (1984), pp. 50-59.

VI - , Concisrrent computation and ihe theory of complez systems, in Hypercube Multi-

processors 1986, M. T. Heath, ed., Philadelphia, 1986, Society for Industrial and Applied

Mathematics, pp. 244-268.

27

[8] A. George and J . W. Liu, Computer Solution of Large Sparse Positive Definete Systems,

Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

191 L. A. Glasser and C. A. Zukowski, Continuous models for communication density con-
straints on multiprocessor performance, IEEE Transactions on Computers, Vol. 37, No. 6
(June 1988), pp. 652-656.

[lo] J . L. Gustafson, G. R. Montry, and R. E. Benner, Development of paraZIel methods for a

1024-processor hypercube, SIAM Journal on Scientific and Statistical Computing, Vol. 9,
NO. 4 (July 1988), pp. 609-638.

[ll] L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press, New York,

1981.

[12] M. T. Heath, ed., Hypercube Multiprocessors 1986, Society for Industrial and Applied

M athernatics, Philadelphia, 1986.

~ 3 1 - , ed., Hypercube Multiprocessors 1987, Society for Industrial and Applied Mathemat-

ics, Philadelphia, 1987.

[14] R. W. Iiockney and C . R. Jesshope, Parallel Computers: Architecture, Programming, and

Algorithms, Adam Hilger Ltd., Bristol, United Kingdom, 2981.

[15] S. L. Johnsson, Solving tridaagonal systems on ensemble architectures, SIAM Journal 011

Scientific and Statistical Computing, Vol. 8, No. 3 (May 1987), pp. 354-392.

[16] L. Lapidus and G. F. Pinder, Numerical Solution of Partial Differential Equations in

Science and Engineering, John Wiley and Sons, New York, 1982.

[I71 0. A. McBryan, Numerical computation on massively parallel hypercubes, in Hypercube

Multiprocessors 1987, M. T. Heath, ed., Philadelphia, 1987, Society for Industrial and

Applied Mathematics, pp. 706-719.

[18] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley Publishing Corn-
pany, Reading, Massachusetts, 1980.

[19] P. C. Messina, Emerging supercomputer urchitectures, in The U S . Supercomputer Industry,

Federal Coordinating Council on Science, Engineering and Technology, ed., Department

of Energy, 1987, appendix B, pp. Bl-B37.

[20] R. Peyret and T. D. Taylor, Computational Methods for F h i d Flow, Springer-Verlag, New

York, 1983.

[21] D. A. Reed, L. M. Adams, and M. L. Patrick, Stencils and problem partitionings: Their
influence on the performance of multiple processor systems, IEEE Transactions on Com-

puters, Vol. (2-36, No. 7 (July 1987), pp. 845-858.

[22] R. D. Richtmeyer and K. W. Morton, Difference Methods for Initial Value Problems, John

Wiley and Sons, New York, second ed., 1967.

28

[23] c. L. Seitz, The cosmic cube, Communications of the ACM, Vol. 28, No. 1 (January 1985),
pp. 22-33.

[24] Y. Shih and A. Kernek, A new generation in pamllelprucessing sys tems, SuperComputing,

Winter 1988, pp. 5-6,27-28.

[25] P. 11. Worley, Information Requirements and the Implications for Parallel Compuiat ion,

Ph.D. dissertation, Stanford University, June 1988.

[26] -, Limi ts on parallelism in the numerical solution of linear P D E s , Tech. Rep.
ORNL/TM-10945, Oak Ridge National Laboratory, October 1988.

[27] D. M. Young, Iteratave Solution of Large Linear Sys tems, Academic Press, New York, 1971.

29

ORNL/TM- 1103 1

INTERNAL DISTRIBUTION

1.
2.
3.
4.
5.
6.

7-8.
9.

10-14.
15.

16-20.
21.
22.
23.

A. Alexiades
B. R. Appleton
J. B. Drake
R. E. Flanery
G. A. Geist
L. Gray
R. F. Harbison
M. T. Heath
J. K. Ingersoll
M. R. Leuze
F. C. Maienschein
E. G. Ng
B. W. Peyton

C. H. Romine

24-28.
29.

30-34.
35.
36.
37.
38.
39.
40.
41.

42.
43-44.

R. C. Ward
D. G. Wilson
P. H. Worley
A. Zucker
J. J . Doming (Consultant)
R. M. Haralick (Consultant)
Central Research Library
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library
/Document Reference Station
Laboratory Records - RC

Laboratory Records Department

EXTERNAL DISTRIBUTION

45. Dr. Loyce M. Adams, Department of Applied Mathematics, University of Washington,

Seattle, WA 98195

46. Dr. Christopher R. Anderson, Department of Mathematics, University of California, Los

Angela, CA 90024

47. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research, ER-7,

Germantown Building, U.S. Department of Energy, Washington, DC 20545

48. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Graduate

Center, 19600 N.W. Walker Road, Beaverton, OR 97006

49. Dr. Jesse L. Badow, Department of Computer Science, Pennsylvania State University,

University Park, PA 16802

50. Dr. Dov S. Bai, Department of Mathematics, Utah State University, Logan, U T 84322-
4125

51. Dr. David EI. Bailey, NASA Ames, Mail Stop 258-5, NASA Aines Research Center, Moffet

Field, CA 94035

52. Dr. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,

New York, NY 10012

30

53. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping 58183,

Sweden

54. Dr. John H. Bolstad, L-16, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

55. Dr. James C. Browne, Department of Computer Sciences, University of Texas, Austin,

TX 78712

56. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric]Re-

search, P. 0. Box 3000, Boulder, CO 80307

57. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, Wniversity

of Michigan, Ann Arbor, MI 48109

58. Ur. Tony Chan, Department of Mathematics, University of California, Los Angeles, 405

Hilgard Avenue, Los Angeles, CA 90024

59. Dr. Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,

North Carolina 27709

60. Dr. Melvyn Ciment, National Science Foundation, 1800 G Street, NW, Washington, DC

20550

61. Prof. Tom Coleman, Department of Computer Science, Cornel1 TJniversity, Ithaca, NY

14853

62. Dr. Jane K. Cullurn, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown

Heights, NY 10598

63. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley,

CA 94720

64. Dr. George Cybenko, Computer Science Department, University of Illinois, Urbana, IL
61801

65. Dr. Jack J. Dongarra, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

66. Dr. Iain Duff, CSS Division, Harwell Laboratory, Didcot, Oxon OX11 ORA, England

67. Prof. Pat Eherlein, Department of Computer Science, SUNY/Buffalo, Buffalo, NY 14260

68. Dr. Stanley Ekelistat, Department of Computer Science, Yale University, P. 0. Box 2158
Yale Station, New Haven, CT 06520

69. Dr. Howard C. Elman, Computer Science Department, University of Maryland, College

Park, MD 20742

70. Dr. Peter G. Eltgroth, L-298, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 04550

31

71. Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Claremont, CA
91711

72. Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of 'Technology,
Pasadena, CA 91125

73. Dr. Chris fialey, c/o Dr. J . P. Vialde, Universite de Geneve, Dept SES-COMIN, 2 rue de

Candolle, Geneva, Switzerland

74. Dr. Paul 0. Frederickson, Computing Division, Los Alamos National Laboratory, Los

Alamos, NM 87545

75. Dr. Fred N . F'ritsch, L-300, Mathematics and Statistics Division, Lawrence Livermore

National Laboratory, P. 0. Box 808, Livermore, CA 94550

76. Dr. Itobert E. Funderlic, Department of Computer Science, North Carolina State Univer-

sity, Raleigh, NC 27650

77. Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Bloomington,

IN 47405

78. Dr. C. William Gear, Computer Science Department] University of Illinois, Urbana, IL

61801

79. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research Council,

Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada K1A OR8

80. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of

Waterloo, Waterloo, Ontario, Canada N2L 3G 1

81. Dr. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

82. Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA 94550

83. Dr. William D. Gropp, Department of Computer Science, Yale University, P. 0. Box 2158

Yale Station, New Haven, CT 06520

84. Dr. Per Christian Hansen, Copenhagen University Observatory, Bster Voldgade 3, DK-
1350 Copenhagen K, Denmark

85. Dr. Gerald W. IIedstrom, L-71, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

86. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development Co.,
P. 0. Box 481, Houston, T X 77001

87. Dr. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

88. Dr. Charles J . Holland, Air Force Ofice of Scientific &search, Building 410, Bolling Air

Force Rase, Washington, DC 20332

32

89. Or. Robert E. Huddleston, Computation Department, Lawrence Livermore National Lab-

oratory, P. 0. Box 808, Livermore, CA 94550

90. Dr. Hse Ipsen, Department of Computer Science, Yale University, P. 0. Box 2158 Yale

Station, New Haven, CT 06520

91. Dr. Lennat S. Johnsson, Department of Computer Science, Yale University, P. 0. Box
2158 Yale Station, New Raven, C T 06520

92. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO $0309

93. Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87

Umea, Sweden

94. Or. Hans Kaper, Mathematics and Computer Science Division, Argonne National Labo-

ratory, 9700 South Cass Avenue, Argonne, IL 60439

95. Dr. Alan 11. Karl), IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

96. Prof. Richard Karp, Computer Science Division, University of California, Berkeley, CA
94720

97. Br. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J 07974

98. Dr. Robert J . Kee, Applied Mathematics Division 8331, Sandia National Laboratories,

Livermore, CA 94550

99. Br. Joseph B. Xeller, Department of Mathematics, Stanford University, Stanford, CA

94305

100. Prof. Clyde P. Kruskal, Department of Computer Science, University of Maryland, College

Park, MD 20742

101. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

102, Dr. Robert K,. Launer, Army Research Office, P. 0. Box 12211, Research Triangle Park,

North Carolina 2'77'09

103. Dr. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,

Pasadena, CA 91103

104. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York

University, 255 Mercer Street, New York, N Y 10012

105. Prof. Tom Leighton, Lab for Computer Science, Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139

106. Dr. Randall J . LeVeque, Department of Mathematics, University of Washington, Seattle,

WA 98195

33

107. Dr. John G. Lewis, Boeing Computer Services, P. 0. Box 24346, M/S 7L-21, Seattle, WA

98124-0346

108. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department of Com-

puter Science and Statistics, Queen Mary College, University of London, Mile End Road,

London E l 4NS, England

109. Dr. Joseph Liu, Department of Computer Science, York University, 4700 K.eele Street,

Downsview, Ontario, Canada M3J 1P3

110. Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

111. Dr. Thomas A. Manteuffel, Computing Division, Los Alamos National Laboratory, Los

Alamos, NM 87545

112. Dr. Anita Mayo, IBM T. J. Watson Research Center, P. 0. Box 218, Yorktown Heights,

NY 10598

113. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena, CA

91125

114. Dr. Willard L. Miranker, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown

Heights, NY 10598

115. Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086

116. Dr. Gary R. Montry, Parallel Processing Division, 1413, Sandia National Laboratories,

Albuquerque, NM 87185

117. Dr. William A. Mulder, Department of Mathematics, University of California, Los Ange-

les. CA 90024-1555

118. Dr. Dianne P. O'Leary, Computer Science Department, University of Maryl'and, College

Park, MD 20742

119. Dt. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA

94305

120. Maj. C. E. Qliver, Office of the Chief Scientist, Air Force Weapons Laboratory, Kirtland

Air Force Base, Albuquerque, NM 87115

121. Dr. James M . Ortega, Department of Applied Mathematics, University of Virginia, Char-
lottesville, VA 22903

122. Prof. Beresford N. Parlett , Department of Mathematics, University of Califcirnia, Berke-

ley, CA 94720

123. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

34

124. Dr. Peter C. Patton, Patton Associates, Inc., 101 International Plaza, 7900 International

Drive, Minneapolis, MN 55425

125. Dr. Linda R. Petzold, L-316, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

126. Dr. Rnbert J . Plemmons, Departments of Mathematics and Computer Science, North

Carolina State University, Raleigh, NC 27650

127. Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon, England

OX11 ORA

128. Prof. John Reif, Department of Computer Science, Duke University, North Building,

Durham, NC 27706

129. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette, IN

47907

130. Dr. Garry Rodripe, Numerical Mathematim Group, Lawrence Livermore National Lah-

oratory, Livermore, CA 94550

131. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

132. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Urbana, IL

61801

133. Dr. Jorge Smiz, IBM Almaden Research Center, Department K53/802, 650 Harry b a d ,

San Jose, CA 95120

134. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic Institute,

Troy, NY 12180

135. Dr. Martin H. Schultx, Department of Computer Science, Yale University, P. 0. Box 2158
Yale Station, New Haven, CT 06520

136. Prof. Robert B. Schnabel, Department of Computer Science, University of Colorado at

Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, Colorado 80309-0430

137. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Reaver-

ton, OR 97006

138. Prof. Charles L, Seitz, Department of Computer Science, California Institute of Technol-

ogy, Pasedena, CA 91125

139. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,

Dallm, T X 75275

140. Dr. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

35

141. Dr. Burton Smith, Teracomputer Company, 400 North 34th Street, Suite 300, Seattle,

WA 98103

142. Dr. Marc Snir, IBM T.J. Watson Research Center, Department 420/36-241, P. 0. Box 218,
Yorktown Heights, NY 10598

143. Prof. Larry Snyder, Department of Computer Science, FR-35, University of Washington,

Seattle, WA 98195

144. Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argoiine National

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

145. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College

Park, MD 20742

146. Mr. Steven Suhr, Computer Science Department, Stanford University, Stanford, CA 94305

147. Dr. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada N21 3G1

148. Dr. Joseph F. Traub, Department of Computer Science, Columbia University, New York,

NY 10027

149. Dr. Lloyd N. Trefethen, Department of Mathematics, Massachusetts Institute of Technol-

ogy, Cambridge, MA 02139

150. Prof. Charles Van Loan, Department of Computer Science, Cornel1 University, Ithaca,

NY 14853

151. Dr, Robert G. Voigt, ICASE, MS 1 3 2 4 , NASA Langley Research Center, Rampton, VA

23665

152. Mr. Bi R. Vona, Center for Numerical Analysis, RLM 13.150, University of Texas at

Austin, Austin, TX 78712

153. Dr. A. J. Wathen, School of Mathematics, University Walk, Bristol BSB lTW, ENG-
LAND

154. Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory, Lo6 Alamos,

NM 87545

155. Dr. Arthur Wouk, Army Research Office, P. 0. Box 12211, Research Triangle Park, North

Carolina 27709

156. Office of Assistant Manager for Energy Research and Development, U S . Department of

Energy, Qnk Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N 37831-8600

157-166. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, TN 37831

