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PARALLEL DIRECT SOLUTION OF SPARSE LINEAR SYSTEMS 

Esmond Ng 

Abstract 

In this paper the direct solution of sparse linear systems on multiprocessor 
systems is considered. Elimination trees are used as a tool for identifying and ex- 
ploiting parallelism in the parallel numerical factorization of the coefficient matrix. 
Some open problems are described and results of some numerical experiments are 
provided. 

This paper is based on a talk by the author at a Workshop on Methods and Algorithms for 
PDE’s on Advanced Processors held in Austin, Texas on October 17-18, 1988. 
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1. Introduction 

In this paper, we consider direct methods for solving large sparse Linear systems 

Ax = b 

on multiprocessor systems, where A is an n x n nonsingular matrix. The basic approach 
is to decompose A into triangular factors 

where Qr and Qc are some permutation matrices chosen to  preserve sparsity and/or 
maintain numerical stability, and L and U are respectively lower and upper triangular 
matrices. With the triangular factorization, the solution to  the linear system can be 
obtained by first solving Lu = Q t b  and Uv = u, and then setting z = QCv. 

In general the most expensive part of the solution process is the factorization of A.  
Thus much effort has been spent in designing efficient factorization algorithms for both 
sequential and parallel computers. The objective of this paper is to provide an overview 
of some of the approaches and to  discuss some of the issues in the design of effective 
parallel factorization algorithms. An outline of the paper is a6 follows. In Section 2, 
we briefly survey some of the effective sequential algorithms for solving sparse linear 
systems. Parallel algorithms are then described in Section 3. Tools for identifying and 
exploiting parallelism are introduced in Section 4, together with a discussion of related 
issues. Finally, some concluding remarks are provided in Section 5. 

2. Sequential Algorithms €or Sparse Linear Systems 

There has been extensive research in the design of efficient sequential algorithms for 
the solution of large sparse linear systems. For example, [17] contains an excellent 
discussion of most of the state-of-the-art methods for solving sparse symmetric positive 
definite systems and [5] has a detailed description of some methods for handling sparse 
nonsymmetric problems. The approach we consider in this paper can he summarized 
as follows. There are basically four steps in the solution process: 

1. Ordering: 
Compute permutations QT and Qc so that L and U are sparse, where LU = 
QTAQC. 

2. Symbolic factorization: 
Compute the structures of L and U .  Set up a compact data structure for storing 
the nonzeros of 1; and U .  

3. Numerical factorization: 
Input QrAQc and compute L and U numerically. (Pivoting may be needed to 
ensure stability.) Store the nonzeros in the fixed data structure determined at 
step 2. 
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4. Triangular solution: 
Solve Lu = Q,b  and U v  = ZR. Set x = Qcv.  

The approach stated above has been widely adopted for solving sparse symmetric 
positive definite systems [7,8,17], in which case Gholesky factorization is employed 
and is numerically stable by choosing the diagonal elements as pivots [37]. Moreover, 
Qc = QT and U = L T .  Because of the fact that the factorization is stable without 
pivoting, the structure of L can therefore be determined solely from the structure 
of Q,AQT, if we make the assumption that exact cancellation does not occur during 
numerical factorization. Once the structure of L is known, a compact data structure can 
then he set up to  exploit the sparsity of L .  There are efficient symbolic factorization 
algorithms for computing the structure of L and setting up the data structure [35]. 
Then the numerical factorization and triangular solution can be performed using the 
fixed data structure. 

The set of nonzeros introduced into L during numerical factorization is referred to  
as fill. The role of the permutation Qr is to  control the amount of fill in L.  It is well 
known that the choice of Qr can affect the sparsity of L drastically. This is illustrated 
by an example in Figure 2.1, in which O T A @  is obtained from Q,AQT by reversing 
the ordering of rows and columns. Unfortunately, the general problem of finding the 

Figure 2.1. An example illustrating the effect of permutations on the sparsity 
of the Cholesky factors. 

permutation that minimizes the number of nonzeros in L is NP-complete [38]. Thus, 
we have to  rely on heuristic strategies for finding permutations that reduce fill in L .  
Some of the well-known strategies are the nested dissection algorithm [10,16] and the 
minimum degree algorithm [18]. Efficient implementations of these ordering algorithms 
and algorithms for the other three steps can be found, for example, in the SPARSPAK 
package [2]. 

For sparse nonsymmetric problems, it i s  well known that pivoting is necessary to 
ensure stability during numerical factorization [37]. Since the choice of pivot at each 
step of the numerical factorization depends on both the structure and the numerical 
values of the active matrix, it is not clear how steps 1 and 2 can be performed prior 
to  step 3. In fact, in almost all implementations of sparse triangular factorization with 
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symbolic factorization 
numerical factorization 

triangular solution 

pivoting, steps 1, 2 and 3 axe often combined together [3,25,27,36]. For example, at 
each elimination step in MA28 (during which a column is elimination), the pivot i s  
chosen to  preserve sparsity and to maintain stability [3]. Then storage for the nonzeros 
is allocated immediately before the elimination of the column is performed numerically. 

However, if we relax somewhat the condition that only nonzeros are stored, then it is 
possible to  apply the previous four-step approach to nonsymmetric problems. Suppose 
8,. = Qc = I for the moment. Consider computing a triangular factorization of A 
using Gaussian elimination with partial pivoting (i.e., row interchanges): 

1.917 2.150 2.450 2.783 3.117 
59.533 73.317 89.167 105.817 126.567 

4.867 5.733 6.550 7.617 8.667 

where P; corresponds to  the row interchange that occurs at step i and Li is a Gauss 
transformation at  step i. Define L = Cy.: L; - ( n  - 2)I. In [21], George and Ng 
have presented a symbolic factorization algorithm that dl generate a lower triangular 
matrix and an upper triangular matrix I!? from the structure of A alone so that 
the structures of and 0 contain respectively those of L and U, irrespective of the 
choice of PI, 1 5 i 5 n - 1. Thus, we can use the structures of L and U as bounds 
on the structures of L and I/ respectively in step 2 of the solution process. Using 
this approach, an effective static data structure for Gaussian elimination with partial 
pivoting can be set up [20]. Preserving the sparsity of and 0 is important for the 
effectiveness of this scheme. It was demonstrated in [21] that the sparsity of 1 and U 
depends on the column ordering of A,  and furthermore a good symmetric reordering 
of ATA appears to be a good column reordering of A.  

We conclude the discussion in this section by presenting results of some numerical 
experiments. The objective is to illustrate the cost of performing each step in the 
solution process. There are two sets of test problems, all of which are finite element 
problems defined on L-shaped domains with triangular elements. The problems in the 
first set are symmetric positive definite and those in the second set are nonsymmetric 
(with symmetric structures). The experiments were performed on (one processor of) 
a Sequent Balance 8000 using single-precision floating-point arithmetic and execution 
times are in seconds. The symmetric positive definite problems were solved using the 
SPARSPAK package, and the nonsymmetric problems were solved using the approach 
described in [20]. The results are provided in Tables 2.1 and 2.2. 

n I 3025 I 3466 3937 1 4438 I 4969 
ordering I 8.550 I 9.917 I 11.533 I 13.183 I 15.100 

Table 2.1. Execution time statistics (in seconds) for symmetric positive 
definite problems. ( n  is the order of the matrix.) 
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Table 2.2. Execution time statistics (in seconds) for nonsymmetric problems. 
( n  is the order of the ma.trix.) 

3. Parallel Sparse Matrix Factorization Algorithms 

It is clear from the numerical results in the previous section that the ordering, symbolic 
factorization and triangular solution phases are relatively inexpensive; the numerical 
factorization phase is usually the most expensive part of the solution process. Thus, 
when multiprocessor systems became available, much effort was spent on parauelizing 
numerical factorization. In this section, we discuss the potential sources of parallelism 
in sparse numerical factorization. 

We begin with a description of a sequential numerical factorization algorithm, in 
which columns are eliniinated, and we will ignore sparsity for the moment. 

for k = 1 to R 
perform row and/or column interchanges, if necessary 
compute multipliers at step k 
for j = k +  1 to n 

modify row/column j by row/column k 

Whether we use a row-oriented algorithm or a column-oriented algoritlim will depend 
on the choice of data structure for the matrix A .  For example, if the elements of A arp 
stored by columns, then it may be beneficial to use the column-oriented algorithm to 
facilitate access of the matrix elements. At any rate, we see from the algorithm above 
that the computation at each major step can be broken up into subtasks: cd iv (k )  and 
mod(j ,k) .  The subtask c d i v ( k )  refers to the computation of the multipliers at step I C ,  
which includes the row and/or column interchanges that may be necessary to  ensure 
numerical stability, and the subtask m o d ( j ,  k )  is the modification of row/coliimn j by 
row/column k .  TIIUS, we can express the computation in a compact way. 

for k = 1 to n 
d i u (  k )  
for j = k t  1 t o n  

m o d ( j ,  

It is important to note that for a given I C ,  each m o d ( j , k )  subtask uses data from 
row/column IC to  update row/column j .  Hence, the m o d ( j ,  k )  subtasks are independent 
subtasks for a fixed k .  Suppose there are several processors available in a multiproces- 
sor system. As long as c d i v ( k )  has been performed arid row/column k is available to 
each processor, the iodppendent subtasks m o d ( j ,  k ) ’ s  may therefore be performed con- 
currently. Note that the operations within a mod subtask are also independent. Such 
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independence may be exploited, for example, if the processors have vector processing 
capability or if there are enough processors in the multiprocessor system. However, we 
will not consider such fine-grain pa rde l  algorithms in this paper; we are interested in 
medium-grain parallel algorithms. Furthermore, note that the c&v(k) subtask cannot 
begin until mod(C,i) has been performed for all i < k. Thus, if the matrix is dense, 
the cdiv subtasks will be executed sequentially even though some of the mod subtasks 
can be carried out in parallel. 

Sparsity of the matrix can enhance the amount of parallelism available. Following 
is an illustration. 

X 

A =  1 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 
X 

X 

X 

X 

X 

X 

X 

X 

X 
X 

For definiteness, suppose we are using a row-oriented factorization algorithm. Consider 
the first three steps of the factorization, and for simplicity ignore the necessity of 
pivoting. Because of the nonzero pattern, the first three columns are independent. 
This implies that c$iv( i ) ,  1 5 i 5 3, can be carried out simultaneously, provided that 
there are enough processors available. This small example illustrates the fact that 
because of sparsity in the matrix, not only can some of the mod subtasks be executed 
in parallel, but some of cdiv subtasks may become independent during fdctorization, 
and they can be performed concurrently. 

Parallel sparse numerical factorization algorithms have been developed for various 
classes of multiprocessor systems [4,6,12,14,15,22,23]. Of course, the crucial issue is 
how the independence among the ediu and mod subtasks can be identified and how 
such independent computations can be scheduled in such a way that the computational 
load is balanced and the amount of synchronization or commiinication is kept low. We 
will discuss these issues in the next section. 

We have concentrated our discussion in this section on the potential for parallelism 
in sparse numerical factorization. We conclude the section by making a few remarks 
about parallel algorithms for the other phases in the solution process. Although the nu- 
merical factorization phase is usually the most expensive phase in the solution process 
on sequential machines, if we are able to  reduce the factorization time by employing 
multiple processors on a multiprocessor system, the cost of doing the remaining three 
phases (sequentially) may become significant, Thus, research on designing efficient par- 
allel algorithms for the ordering, symbolic factorization and triangular solution phases 
has been initiated. Some of the work has been reported in [1,12,13,14,24,2G,39,40]. 
However, since the amount of computing in ordering, symbolic factorization or trian- 
gular solution is often relatively small, and the sequential algorithms for each of these 
three phases are extremely efficient, it is in general difficult to devise parallel algorithms 
with good efficiencies for thew three phases. On the other hand, there are situations 
in which pmallel algorithms for ordering, symbolic factorization and triangular solii- 
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A =  

' X  X X 
X X X 

X X X 
X X X 

X X X 
x x  X X 

X X X 
X X X X 

x x  X 
X X X 

I X  
X 

X 
X X 

X X 
x x  X 

X t c x  
X x + t x  

X + x t t x  
\ x x + x  

Figure 4.1. A sparse symmetric positive definite matrix and its Cholesky 
factor. ( x  is a nonzero in the original matrix and + is a fill element.) 

tion are desirable even though efficiencies may be poor. For example, if the numerical 
factorization is performed on a local-memory multiprocessor, the columns of L will be 
distributed among the processors. Instead of sending the columns from the processors 
to  a single processor and performing the triangular solution sequentially, it may be 
desirable to have all the processors collaborate in the computation. 

4. Identifying Parallelism and Scheduling Independent Subtasks 

In the previous section, we have described the potential parallelism available in sparse 
numerical factorization. However, in order to make use of multiple processors in the 
numerical factorization, it is important to have efficient tools for identifying indepen- 
dent subtasks in the computation and scheduling these subtasks among the processors. 
For simplicity, let us consider the case in which the matrix A is symmetric and positive 
definite. Denote by L the Cholesky factor of A .  Thus, A = LLT and L is lower tri- 
angular. If column k of L has more than oiie nonzero, then let f(k) be the row index 
of the first off-diagonal nonzero; otherwise, let f ( k )  = 0. Then {f(C)} forms a tree 
structure, which is often referred to as the elimination tree of A.  More precisely, if 
f ( k )  # 0, then node f ( k )  is the parent of node k in the elimination tree and k is one of 
several children of f(k). An example is given in Figures 4.1 and 4.2. In general, there 
may be several disjoint elimination trees associated with A .  However, there is exactly 
one elimination tree if A is irreducible. In our discussion below, we will assume that 
the matrix A is irreducible. Each elimination tree has a distinct node k ,  called the 
root, such that f(L) = 0. There is a unique path between the root of the elimination 
tree and any node in the same tree. Suppose nodes i and j are in the same elimination 
tree, with i < j. If node J is on the path between the root and node i, then node j is 
an ancestor of node i and node i is a descendant of node j .  A subtree rooted at node 
i is the set of all descendants of node i in the elimination tree. 

The notion of elimination trees has been used extensively in research on sparse 
direct methods, and an excellent survey can be found in [31]. For example, elimination 
trees are employed in [4,6,11,14,15,20,22,28,30,32,39,40]. Other references related to 
elimination trees are in [31]. It should be noted that the structure of the elimination 
tree depends solely on the structure of A.  Moreover, the elimination tree can be 
computed directly from the structure of A .  

The elimination tree of A provides much information about the dependency among 
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Figure 4.2. The elimination tree associated with the matrix in Figure 4.1. 

the subtasks d i u ’ s  and mod’s in sparse numerical factorization. It serves as a tool for 
identifying and exploiting parallelism in sparse matrix factorization. Consider Cholesky 
factorization and suppose we are using a column-oriented algorithm. We note that in 
order to perform cdiv(k) ,  mod(k , i )  has to be performed first, for all d < k such that 
Lk. # 0. It is easy to  show that node i must be a descendant of node k in the elimination 
tree; the proof follows from the way the Cholesky factor L is computed. A corollary 
of this result is that column k of L depends explicitly on column k of A and a subset 
of the columns of L that are associated with the subtree rooted at node k. In other 
words, cd iv (k )  cannot be executed unless 

1. cdiv(i)’s have been performed, for all nodes i in the subtree rooted at  node k, 
and 

2. mod(k, i) has been applied, for appropriate nodes i in the subtree rooted at  node 
k .  

In general, column k of L depends either explicitly or implicitly on the columns of L 
that are associated with the subtree rooted at node k. Hence, for kl # k2, if nodes k1 
and are in two disjoint subtrees, then columns kl and ka are independent, since the 
two sets of columns on which columns kl and k2 depend are disjoint. For the example in 
Figures 4.1 and 4.2, columns 1 , 2  and 3 are therefore independent. Also, columns 5 and 
7 are independent, but column 7 depends either explicitly or implicitly on colunins 2 , 3 ,  
4 and 6. In summary, dependencies among subtasks in sparse numerical factorization 
can be identified by analyzing the structure of the elimination tree associated with the 
matrix A .  

Since the elimination tree provides information on the dependency among the sub- 
tasks in sparse numerical factorization, the tree can be used to schedule the independent 
computations on a multiprocessor system. One strategy is to schedule the columns by 
pruning the elimination tree. The idea is to schedule the columns so that the cdiv’s 
can be performed as soon as possible. For example, for the matrix in Figurp 4.1, we 
will first schedule columns 1 ,  3 and 2. This amounts to removing the leaves lioin the 
elimination tree. Then based on the pruned tree, we schedule columns 5 and 6, and 
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again this corresponds to renzoving the leaves from the pruned tree. The process is 
repeated until all the columns are scheduled. Note that the height of the elimination 
tree is a lower bound on the number of serial. d i u ’ s  that have to  be performed in a 
parallel sparse numerical factorizatioii algorithm. 

The elimination tree is dso useful in reducing the amount of communication or 
synchronization required in parallel sparse numerical factorization. Observe that if the 
coliimns of a subtree are assigned to a subset of processors, then the comrnunicatiori 
or synchronization involved when these columns are computed will be limited to the 
processors in this subset, although communication or synchronization may be required 
in order to make these columns available to  those associated with the ancestors of the 
subtree. Thus, by assigning disjoint suhtrees to  different disjoint sets of processors, 
communication or synchronization requirements are reduced. George, Liu and Ng have 
used this observation to  assign columns to  processors to reduce the cost of cotnmii- 
nication in the numerical Cholesky factorization on multiprocessor systems with the 
hypercube topology [ 193. 

‘fhe discussions above demonstrate that effective p a r d e l  sparse numerical factoriza- 
tion relies on the structure of the elimination tree. For example, a balanced elimination 
tree with many branches appears to be desirable. So what is a good elimination tree 
for parallel sparse numerical factorization? Note that the elimination tree is defined in 
terms of the structure of the Cholesky factor of A .  Since we know that the structure 
of the Cholesky factor depends on the reordering of columns and rows of A ,  the struc- 
tiire of the elimination tree depends on the row and column reordering. An example 
illustrating the effect of reordering on the structure of the elimination tree is provided 
in Figures 4.3 and 4.4, in which A is obtained from the matrix A in Figure 4.1 by 
reversing the ordering of r o w  and columns. Thus, we can rephrase the question as 
follows. Given the structiire of a matrix, what is a good reordering for parallel sparse 
numerical factorization? 

Figure 4.3. A symmetric matrix A and its Cholesky factor. ( A  is obtained 
by reversing the ordering of the rows and columns of the matrix A in Figure 
4.1.) 

Since the height of the elimination tree is a lower bound on the number of serial 
cdiw’s that have to be performed, it is desirable to find a reordering for A so that the 
elimination tree is as short as possible. However, Pothen has shown that the problem 
of finding such a reordering is NP-complete [34]. 

Recall that the sparsity of L also depends on the choice of the reordering. Hence, it 
is desirable not only to find a reordering so that the associated elimination tree is short, 
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7 

4 5 6A 3 2 

Figure 4.4. The elimination tree associated with the matrix A in Figure 4.3. 

but also the fill is small. This suggests the following heuristic. We first determine a 
reordering UT that attempts to  minimize fill in I,, where LLT = PTAPT. Thus, there 
is an elimination tree associated with 1:APT. Then the tree is restructured in such 
a way that the new tree has a dilfermt shape and hopefully has a smaller height, but 
the fill and operation count are preserved. This approach is proposed by Liu [30,32]. 
It amounts to finding another reordering P,. for PrAP,T with the constraint that both 
fill and operation count are preserved. When fill and operation count are preserved, 
the reordering P, is said to be equivalent to P,. 

If A is a finite dement matrix arising from a two-dimensional problem, and PT is a 
nested dissection reordering, then our experience is that the resulting elimination tree is 
often short and balanced, and more importantly, Pr often adequately reduces fill. Thus, 
nested dissection reorderings are often good reorderings for parallel sparse numerical 
factorization, at least for certain classes of problems. For general sparse symmetric 
positive definite problems, a minimum degree reordering is in general a much better 
reordering in terms of fill-reduction. Unfortunately, the resulting elimination tree is 
often tall and unbalanced, and hence, may not be suitable for parallel factorization. 
The example in Figure 4.5 is an elimination tree associated with a minimum degree 
reordering on a 7 x 7 grid, with a nine-point operator. When we apply Liu's heuristic to 
the elimination tree in Figure 4.5, we obtain the elimination tree in Figure 4.6, which 
is again not balanced, although the height of the new tree is somewhat sIrzaller than 
that of the old tree. In fact, it is our experience that such a phenomenon is typical for 
minimum degree reorderings. 

There is a different way of finding an elimination tree with a short height. S ~ p p o s e  
we first find a reordering P, that attempts to minimize fill in .L, where LLT = P,)TAP~. 
There may be equivalent reorderings which preserve fill and operation count. Each 
equivalent reordcring will result in a Cholesky factor with different structure from that 
of L ,  and consequently a different elimination tree. Thus, a possibility is to choose from 
the set of equivaknt rcorderings the one that has an elimination trec of the shortest 
height. The scheme for firiding the equivalent reordering was first described by Jess and 
Kees [28], but it was Liu wlio proved that the resulting elimination tree indeed has the 
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Figure 4.5. The elimination tree associated with a minimum degree reorder- 
ing on a 7 x 7 grid. 

Figure 4.6. The elimination tree obtained by applying Liu’s heuristic to  the 
elimination tree in Figure 4.5. 



- 11 - 

shortest height [30]. lmplementations of this scheme were described in [a91 ancl [33]. 
Unfortunately, we do not have much numerical experience with this approach, since 
the codes are not available to us. However, even though the new reordering gives an 
elimination tree that has the smallest height, there is no guarantee that the new tree 
is balanced or has many branches. Investigation into the effectiveness of this technique 
in terms of parallel sparse numerical factorization is underway. 

The height of a,n elimination tree is not the only criterion for effective parallel sparse 
numerical factorization. The shape of the elimination tree is also important. Tt is our 
experience that elimination trees which are balanced and have many branches, such as 
those corresponding to  nested dissection orderings, appear t o  be desirable. However, for 
most reorderings, their elimination trees are not balanced. Thus, for unbalanced elim- 
ination trees, another issue is how to schedule the columns so that the computational 
work is balanced and the synchronization or communication requirements are reduced. 
Based on the structure of a weighted elimination tree, Geist and Ng have proposed a 
heuristic for assigning the columns so that part of the computation can be distributed 
evenly among the processors, and at the same time the amount of synchronization or 
communication i s  reduced [9]. 

Finally, although our discussions in this section are on the solution of sparse sym- 
metric positive definite systems, they apply equally well to  nonsymmetric problems. 
When A is nonsymmetric, the elimination tree is defined in terms of the structure of 
the Cholesky factor of ATA [20,22,233. 

5. Numerical Experiments and Concluding Remarks 

In this paper, we have provided an overview of the current state of affairs in the direct 
solution of sparse linear systems on multiprocessor systems. Clearly one of the open 
problems is how to  characterize and determine an appropriate reordering for parallel 
sparse numerical factorization. Note that there are several constraints to  be satisfied. It 
is important to find a reordering so that fill is reduced, and it is desirable to choose the 
reordering SO that the height of the resulting elimination tree is minimized. Moreover, 
it is also important to have an elimination tree that contains many branches and is 
balanced, so that there is a high degree of parallelism. Of course, to  make the problem 
even harder, it is desirable to be able to compute the reordering itself in parallel. There 
are other problems to consider as well, such as the design of efficient parallel algorithms 
for performing symbolic factorization and triangular solution. These problems are 
undcr investigation. 

We conclude this paper by providing some numerical results for parallel sparse nii- 
rnericd factorization we have obtained on two different parallel computers, The lest 

problems are the finite element problems we have used in Section 2. Tables 5.1 and 
5.2 contain respectively the performance statistics for sparse symmetric positive defi- 
nite problems and sparse nonsymmetric problems on a Sequent Balance 8000, whicli 
is a multiprocessor system with shared-memory. Table 5.3 contains the performance 
statistics for sparse symmetric positive definite problems on an Ttitel/iPSC-2, which 
is distributed-memory parallel machine. For each sparse symmetric positive definite 
problem, a nested dissection reordering was computed to reduce fill. For each sparse 
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b f i 0 5 . 8 1 7  

nonsymmetric problem, a minimum degree reordering with multiple elimination was 
used [MI. In all tables, 78 is the order of the matrix, and the second column (“sequen- 
tial”) contains the execution times in seconds required by the sequential algorithm. 

79.92% 75.87% 71.79% 
66.233 34.633 24.467 

1.60 3.06 4.32 

n I sequential I p =  2 1 p = 4  I p =:= 6 
3025 I 59.533 I 37.700 I 19.967 I 14.333 

1 1 1 1.58 1 2.98 1 4.15 I 
3466 73.317 45.967 24.200 17.183 

78.96% 74.54% 69.23% 
I_ H2*{ 79.75% 75.74% 71.11% 

I 1 79.88% I 76.38% I 72.08% 
4969 I 126.567 I 78.533 I 41.133 1 29.033 

I 1.61 I 7i::i 1 4.36 I 
80.58% 72.66% 

Table 5.1. Performance results on a Sequent Balance 8000 for sparse sym- 
metric positive definite systems. For each problem/processor pair, the three 
entries are respectively the execution time in seconds, the speed-up ratio and 
the efficiency. 

Table 5.2. Performance results on a Sequent Balance 8000 for sparse non- 
symmetric systems. For each problem/processor pair, the three entries are 
respectively the execution time in seconds, the speed-up ratio and the effi- 
ciency. 

Like most parallel algorithms, we see from the tables that, for a fixed number of 
processors, the efficiency increases as the size of the problem increases. However, for 
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p = 1 6  
4.695 
3.79 

23 70% 
6.198 
3.63 

22.70% 
7.456 
3.78 

23.62% 
8.980 
3.85 

24.09% 
10.670 
3.97 

24.82% 
12.551 
4.01 

25.09% 
14.498 

25.84% 
1 4.13 

p = 3 2  
3.513 
5.07 

15.84% 
4.400 
5.12 

15.99% 
5.292 
5.33 

16.64% 
6.313 
5.48 

17.13% 
7.565 
5.60 

17.50% 
8.437 
5.97 

18.66% 
9.872 
6.07 

18.97% 

p = 8  
6.500 
2.74 

34.24% 
8.480 
2.65 

33.18% 
10.532 

2.68 
33.45% 
13.141 
2.63 

32.92% 
15.175 

2.79 
34,90% 
18.224 
2.76 

34.56% 
21.868 

2.74 
34.26% 

2614 

3025 

3466 

3937 

4438 

4969 

22.512 

28.183 

34.607 

42.368 

50.379 

59.932 

Table 5.3. Performance results on an Intel/iPSC-2 for sparse symmetric 
positive definite systems. For each problem/processor pair, the three entries 
are respectively the execution time in seconds, the speed-up ratio and the 
efficiency. 
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a fixed problem, the eificiency decreases as the number of processors increases. The 
efficiencies on the Intel/iPSC-2 are poor; this is niainly because the communication 
overhead is relatively high compared to the speed of computation. 
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