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MULTIPROCESSOR 

Michael R. Leuze 

Lawrence W. Dowdy 

Kee Hyun Park 

Abstract 

The development of computing systems with large numbers of processors has 

been motivated primarily by the need to solve large, complex problems more 

quickly than is possible with uniprocessor systems. 'I'raditionally, multiproces 

sor systems have been uniprogrammed, i.e., dedicated to  the execution of a single 

set of related processes, since this approach provides the fastest response for an 

individual program once it begins execution. However, if the goal of a niultiproces- 

sor system is to minimize average response time or to maximize throughput, then 

multiprogramniing must be considered. 

In this paper, a model of a simple multiprocessor system with a twaprogram 

workload is reviewed; the model is then applied l o  an Intel iPSC/2 hypercube mul- 

tiprocessor with a workload consisting of parallel wavefront algorithms for solving 

triangular systems of linear equations. Throughputs predicted by the model are 

compared with throughputs obtained experimentally from an actual system. The 

results provide validation for the model and indicate that significant performance 

improvements for multiprocessor systems are possible through multiprogramming. 
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1. Introduction 

Multiprocessor systems with large numbers of processors are becoming commonplace. 

This development has been motivated principally by the need to solve large, complex 

problems that are intractable using conventional uniprocessor systems. Over the past 30 

years, computing power (speed, capacity) has doubled approximately every two years. 

Until recently, these increases were achieved through miniaturization without resorting 

to changing the basic uniprocessor organization. However, further miniaturization has 

become increasingly difficult (and expensive) as fundamental physical limitations are 

approached. Hence, computer architects have begun to  increase computing power by 

coupling large numbers of processors together into a single system: thus allowing them 

to work simultaneously on a single problem. 

It is unlikely that such multiprocessor systems would have been developed without 

the motivation provided by large, complex problems. Nevertheless, now that rnultipro- 

cessor systems do exist, it  is important to determine how best to use such systems. 

The behavior of many parallel programs on a given multiprocessor system can be 

characterized, at least in part, by speedup curves similar to the one depicted in Fig- 

ure 1. The speedup curve indicates how effectively a program is able to  use additional 

processors allocated to it. For a typical parallel program, there is a maximum num- 

M 
number of processors 

Figure 1: Typical speedup curve for a prnllel progmm. The horizontal axis indicates 
the number of processors allocated to the progrnm; the vertical axis indicates throughput 
per unit time. M is the maximurn number of processors the program can use e,fectively. 
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ber of processors that can be used effectively. Allocating more than this number of 

processors will result in reduced throughput. The actual cause of this reduction in 

performance will vary from system to system, but may be the result of increased con- 

tention for the use of shared variables or of an increase in the volume of interprocessor 

communication. 

If the goal of a system manager is to minimize response time for certain high- 

priority programs, system policies should be designed to allocate such a program the 

maximum number of processors it can use effectively. If this number exceeds the number 

of processors available, all available processors should be allocated. If, on the other 

hand, the system manager’s god is to maximize system throughput, i.e., to maximize 

the number of jobs completed per unit time, or to minimize average response time, 

a different processor allocation policy is needed. Note, as i s  illustrated in Figure 1, 

that a typical speediip curve initially increases rather rapidly but flattens as the point 

of optimal processor allocation is approached. Thus, the effectiveness with which a 

parallel program uses an additional processor depends on the number of processors 

already allocated to the program. Throughpixt tends to be increased more by assigning 

an additional processor to a program allocated few processors relative to its optimal 

number than by assigning it to a program allocated close to its optimal number of 

processors. Consequently, maximizing multiprocessor system throughput may require 

that two or more independent programs be executed simultaneously. 

It is, therefore, worthwhile considering bow a multiprocessor system can be mul- 

tiprogrammed, that is, how it can be used to ma,nage simultaneonsly two or more 

independent sets o€ related processes. An important question is how to partition the 

processors among the active programs. Processor partitioning can be implemented in a 

number of ways andogous to the partitioning of a computer system’s primary memory. 

The simplest approach is to divide the processors into a number of fixed-size partitions. 

At any time, a processor partition executes at most a single program, i.e., a single col- 

lection of related processes. Each progrant is designed to run using a specific partition 

and can be executed only by that partition. A somewhat more restrictive approach 

may also he taken in which partitions are private; i.e., a partition and a program are 

paired, and as long as  the program remains in the system, no other program may use 

its partition. An alternative approach is to allow programs to  execute in any available 

fixed-size partition. Finally, partitions may be variable. As the processing needs of a 

workload change, the size and configuration of processor partitions may change in re- 
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sponse to these needs. In this paper, we consider modeling systems with two fixed-size, 

private partitions. 

Section 2 contains a description of a simple model of a multiprocessor system with a 

two-program workload. In section 3, the model is adapted to an Intel iPSC/2 hypercube 

multiprocessor. Section 4 contains results from numerical experiments performed on 

the Intel iPSC/2 and compares throughputs obtained empirically to those predicted by 

the model. 

2. The Model 

In [2], a high-level model of a simple multiprocessor system whose processing elements 

(PES) can be partitioned into two sets is described. The model assumes that program 

scheduling is done via a separate host processor, and that the parallel workload consists 

of two programs. The model description uses the following notation: 

N-the total number of PES in the multiprocessor. 

n; (i = 1,2)-the number of PES assigned to partition Pi. (n1 + 122 = N ) .  

p; (i = 1,2)-the fraction of PES assigned to partition R.  ( p ;  = n ; / N .  

PI +P2 = 1). 

( A ,  B)-the current system state. “A” represents the location of program 1, 

either at the host ( H )  or in partition PI. “B” represents the location of 

program 2, either at the host (If) or in partition P2. The set of allowable 

states is { ( H ,  HI7 (Pl, r J ) ,  ( H ,  P2), (PI, P2)). 

pj(A,B)-the state-dependent service rate of device j ,  j E { H , M } .  “H” 

denotes the host; “M” denotes the multiprocessor. Service times axe 

assumed to be exponentially distributed. 

SM ( A ,  S)-a s t a te-dep endent “inter ference factor” which represents degra- 

dation in multiprocessor performance due to contention for shared re- 

sources. 

X-throughput of the multiprocessor system. 

This model can be represented by the closed queuing network model of Figure 2. 

The following assumptions are made with regard to the model: 
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two parallel programs 

Multiprocessor 

P M ( A ,  B )  

Figure 2: Closed queuing network model of a multiprocessor system with its parallel 
workload. 

~ H ( A ,  B) = A. Service time at the host is state independent. The host 

treats both programs identically; i.e., the demands each program places 

on the host are statistically identical. Processor sharing at  the host is 

assumed 

p ~ ( P 1 ,  H )  and ~ M ( N ,  P2) are the ‘6execution signatures” of the two parallel 

programs. Each term represents the processing rate of a program when it 

alone executes on the multiprocessor. Execution signatures depend not 

only on a program’s characteristics, but also on the specific architecture 

and on the size of the program’s partition. Expressions for execution 

signatnres are suggcstcd below. Execution signatures are analogous to 

speedup curves (see Figure 1). 

S M ( H , I I )  = S M ( P ~ , H )  = S ~ ( 6 1 , l ‘ ~ )  = 1. When at most one program 

is executing on the multiprocessor, no performance degradation is ex- 

perienced, since there is no contention for the shared resources of the 

multiprocessor. 

SM(P~, Pz)  = s. When both programs execute 011 the multiprocessor, the 

performance of each is degraded by a fa,ctor s (0 5 s 5 1)) assumed to 

be a constant. 

~ M ( P I , P ~ )  = (~M(P~)A)-C~~(H,P~))XSII.~(P~,P~). When both programs 

are executing on the multiprocessor, the processing rate is the sum of 

the individual processing rates times the degradation factor SM(PI ) P2). 
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Execution signatures of the form 

P2 
and PM(H,p2)= D2lP2 + D22 

Pl 
DllPl + 0 1 2  

PM(P1,H) = 

have been suggested [2], where D;1 and Di2 axe parameters dependent on characteristics 

of the specific architecture and of the specific program i. If Da1 = 0, program i 
experiences a lineas speedup; if Di2 = 0, the execution rate of program i is constant, 

independent of the number of processors used. 

The model is solved by applying standard techniques to the balance equations 

derived from the Markov diagram shown in Figure 3. 

Figure 3: Markov diagmm of the two-program multiprocessor system model. States 
correspond to locations of the programs; arcs are labeled with the transition flow rates. 

Throughput as a function of the system parameters is 
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3. Adaptation of' the Model 

3.1. The multiprocessor system 

Experiments were performed on a 32-node Intel iPSC/2 multicomputer [4]. The iPSC/2 

is a distributed-memory machine, connected in a binary n-cube configuration. Com- 

munication in the iPSC/2 is handled by a separate communications processor on each 

node, known as a "Direct-ConnectTM module." The Direct-Connect module supports 

two modes of message-passing: short messages (100 bytes or less) are passed using a 

datagram technique; long messages (more than 100 bytes) are passed using a virtual cir- 

cuit technique known as "worm-hole routingT9 [l]. Consequently, there i s  a jump in the 

cost of transmitting messagcs at  the 100-byte boundary. The Direct-Connect module 

network requires only slightly longer to pass multi-hop messages than to  pass single- 

hop messages. Consequently, the iPSC/2 appears to the user to be a fully-connected 

machine. 

Adaptation of the model to  the iPSC/Z is straightforward. There are only two major 

considerations: the manner in which the 32 nodes of the iPSC/2 are partitioned and the 

value used for the interference factor s. Preliminary experiments investigating possible 

ways to partition the 32 nodes of the iPSC/2 were conducted. The results of these 

experiments indicate that the critical factor in determining a program's performance is 

the number of processors allocated to that program; the specific processors assigned to  

a program have little impact on its behavior, due to the L ' ful ly-~~nne~ted97 nature of the 

iP§C/2. Therefore, for convenience, program 1 is always run in a partition consisting of 

nodes numbered 0 through i - 1, and program 2 is always run in a partition consisting 

of nodes numbered i through 31 (0 5 i 1. 32). 

Experiments were also performed to  determine the value of the interference factor 

s. The results of these experiments indicate that a program running in one partition 

has negligible impact on a program running in another partition. Consequently, s is 

set to one. 

3.2. The parallel workload 

The application programs used in these experiments are based on parallel wavefront al- 

gorithms [3] for solving triangular systems of linear equations. The wavefront idea pro- 

duces both a column-oriented vector-sum algorithm and a row-oriented scalar-product 

algorithm. For these experiments, the row-oriented algorithm was chosen. In this dgo- 
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rithm, messages consist of segments of the solution vector. SmaJler segments increase 

the potential for parallelism but also increase the number of messages that must be 

passed. A performance trade-off exists, therefore, between potential parallelism and 

communication volume. Heath and Romine [3] have examined the issue of choosing 

an optimal segment size. The effect of varying the segment size ( 0 )  is illustrated in 

Figures 4 and 5. 

0 20 40 80 80 1 OB 

segment size 

Figure 4: Throughput as a function of segment size for 8 and for 32 processors solving 
a triangular system of order 1500 using the row-oriented wavefront algorithm. The 
dashed lines indicate the point at which the iPSC\2 switches message-passing modes 
fmm datagmm service to virtual eiwuit service. 

E d  program was written to run in two modes, a multiprocessor mode and a host 

mode. When in multiprocessor mode, a program solves a single triangular system in its 

private partition of the iPSC/2; when in host mode, a program executes a delay loop 
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Figure 5: Execution signatures for the row-oriented wavefront algorithm on the iPSC/2 
hypercube with a matra’z of order 1500. 

on the host machine (see Figure 6). The duration of a delay is randomly chosen from a 

predetermined probability distribution. The delay loop is used to  simulate vaxious host 

speeds, various amounts of required activity on the host, or various ““ladings” placed 

on the multiprocessor by the host. A single experiment consists of the simultaneous 

execution of the two test programs for a predetermined period of time, during which 

each program cycles between its multiprocessor and host modes. 

To study empirically the throughput of a partitioned system, two programs based 

on the row-oriented wavefront algorith were selected. Program 1 solves a triangular 

system of order 1500 with a se ent size of IO, and program 2 solves a triangular 

system of order 1800 with a segment size of 100. The empirically determined execution 

signatures of these two programs are illustrated in Figure 7. Corresponding execution 
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k = 222500.0 * tmin 

j = O ;  
for (i = 0 ;  i C k; i++) 

+ 222500.0 * (tmax - tmin) * random0 ; 

j = (j+1)%1000 ; 

Figure 6: Sample delay loop executed by  a program in host mode. The routine r<andomO 
genemtes a uniform random deviate between 0 and 1 .  The constant 222500.0 was 
empirically determined so that in this example, a delay of from tmin to tmax seconds 
would occur. 

signatures of the form of equation (1) were determined by a non-linear least-squares 

fit. These execution signatures 

are also illustrated in Figure 7. 

Adapting the model (Section 2) to a specific architecture (Section 3.1) and to a 

The specific workload (Section 3.2) results in parameter values listed in Table 1. 

Table 1: Parameters for the theowtical model. 

expression for throughput as a function of the partition size and host speed becomes 

4. Numerical Experiments 

The 32 nodes of the iPSC/2 were allocated so that program 1 was executed in partitions 

of size 0, 2,4, . . . , 32, with program 2 executing in the complementary partitions. Host 
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Figure 7 :  Ezecution signatures of the two test pp.ograrns, The solid curves are empir- 
ically determined signatuses; dotted carves l t ~ s t - ~ p ~ m s  fits of signatups of the 
form of equation (1)  to the empirical signatums. 

delays were uniformly distributed between 2 and 4 seconds. The value for the speed of 

the host (A)  was 0.3268, the reciprocal of the sum of the average time spent in the de- 

lay loop (3 seconds) and a s m d  measurable host-multiprocessor communication time 

(0.06 seconds). Each experiment was run for 10 minutes. System throughputs were 

both measured empirically and predicted using equation (4). The empirically deter- 

mined and theoretically predicted throughputs are illustrated in Figure 8. Throughputs 

as high as 0.2134 jobs per second were observed. This throughput is 36.5% greater than 

the throughput for the same job mix in the corresponding iixniprograrnming environ- 

ment, 0.1563 jobs per second. 

The experimental and theoretical throughput values match quite well. The great- 
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0 8 16 24 

number of processors allocated to program 1 
32 

Figure 8: Throughput as a function of the n u m b -  of pnxessors adlocated to program 1. 
The solid line connects observed volues. The dashed line wnnects values pmdicted by 
the theoretical model wing the input values of Table I .  

est discrepancy in throughput values occurs when 18 processors are assigned to pro- 

gram 1 and 14 processors are assigned to program 2. When allocated 18 processors, 

program 1 requires approximately 4.97 seconds to solve a triaangular system; when 

allocated 14 processors, program 2 requires approximately 4.94 seconds to  solve a tri- 

angular system. Thus, since each program places the same demands on the host, the 

average multiprocessor-host cycle times for both programs are nearly identical in length 

for this particular partitioning. When the program traces for this partitioning were ex- 

amined, it was discovered that, despite the random delays incurred at the host, the 

programs tended to execute in lock-step, Le., both programs were together at the host 

and then both programs were together at the multiprocessor. This tendency toward 
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synchronized behavior resulted in increased contention at the host and in a consequent 

decrease in throughput. 

Other discrepancies between experimental and theoretical throiighput values OCCIBIT 

at the 8-24 and at the 26-6 partitionings. For these partitionings, the cycle time of 

one program was approximately twice the cycle time of the other. Again, a tendency 

toward synchronization was observed, with each multiprocessor phase of the slower 

program and every second multiprocessor phase of the faster program beginning at 

approximately the same time. Thus, every second host phase for the faster program was 

without contention; no host phase of the slower progmm was ever without contention. 

Experiments were conducted to determine whether increasing the variance in the 

host delay, while maintaining a mean delay of 3.0 seconds, would counteract the ten- 

dency toward synchronization. Using a partition of 18 processors for program 1 and 14 

processors for program 2, the minimum host delay was varied in 0.5 second intervals 

from 0.0 seconds to 3.0 seconds. Experimental results are summarized in Figure 9. As 

the variance in the host delay increases, the behavior of the two programs becomes 

m o ~ e  asynchronous. Consequently, contention at the host decreases, and throughput 

increases. With a host delay between 0 and 6 seconds, the observed throughput is less 

than 4% below the value predicted by the model. 

TIost-speed sensitivity experiments were also performed. Average delay at the host 

( l / X )  was varied from 0.5 to  10.0 seconds in increments of 0.5 seconds. All host-speed 

sensitivity experiments were conducted with 24 processors assigned to  program 1 and 

8 processors assigned to  program 2. The empirically determined and theoretically pre- 

dicted throughputs are illustrated in Figure 10. There is excellent agreement between 

experimental and model throughput values. 

5 .  Summary 

Although the development of most multiprocessor systems has been motivated by the 

need to  execute single programs quickly, once an actiial miiltiprocessor is in operation, 

system goals may change. For example, it may be important to  complete the execution 

of a diverse workload as effciently as possible, minimizing average response time or 

maximizing throughput. Pursuit of this goal leads to  consideration of rnultiprogram- 

ming the multiprocessor system, which leads in turn to  consideration of issues related 

to the partitioning of processors among the set of active programs. 
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Figure 9: Throughput as a function of variation in host delay. Pmgram 1 was allocated 
18 processors and program 2 was allocated 1.4 pmessors .  Meon delay at the host was 
maintained at a constant 3.0 seconds. The dashed line represents throughput predicted 
b y  the theoretical model. 

In this paper, the adaptation of a model of a multiprocessor system with two fixed- 

size private partitions and a two-program workload to an actual system and an actual 

workload has been described. Validation experiments show a good match between 

theoretically predicted and empirically observed values. It is demonstrated that mul- 

tiprogramming a distributed-memory multiprocessor can substantially improve perfor- 

mance. For the example selected, multiprocessor throughputs under multiprogramming 

that were as high as 0.2134 jobs per second were observed. For the same job mix in the 

corresponding uniprogramming environment, throughput would be 0.1563 jobs per sec- 

ond. Thus, an increase in throughput of 36.5% due to multiprogramming is observed. 
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0 2 4 6 8 10 

mean host delay (seconds) 

Figure PO: Throughput QS a function of the mean delay ai! the host. The solid line 
connects observed values. The dashed line connects values predicted by the theoretical 
model using the input values of Table 1 .  

A number of extensions to this work are possible. 'The model of Section 2 can be 

generalized to  account for more partitions and more programs. Increasing the num- 

ber of partitions and programs will necessitate the use of heuristics in solving the 

model, since standard Markov analysis quickly becomes intractable. 8 ther partition- 

ing schemes, such as dynamic partitioning, can he incorporated into the model. The 

parallel workload can dso be generdized. Different forms for the execution signatures 

can be considered, and the effects of different processing requirements at the host can 

be explored. For example, host requirements might vary from program to program, 

and the mimber of programs in the multiprogramming set may change as new 

enter the system and old programs complete and exit. All of these generalizations of 
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the model and of the workload should be validated experimentally. Because of the 

performance improvements that may be achieved through multiprogramming of multi- 

processor systems, research in this area is important. 
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