

.

ORNL/TM-11064

Engineering Physics and Mathematics Division

Mathematical Sciences Section

MULTIPROGRAMMING A DISTRIBUTED-MEMORY
MULTIPROCESSOR

Michael R. Leuze t

Lawrence W. Dowdy
Kee Hyun Park

t

f

Oak Ridge National Laboratory
Mathematical Sciences Section

Oak Ridge, 'TN 37831-8083

Department of Computer Science
Vanderbilt University
Nashville, T N 37235

P.O. BOX 2009, Bldg. 9207-A

Date Published: January, 1989

r -1
Research of the first author was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy Research, 1J.S. Depart-
ment of Energy. Research of the second author was supported in part by
the Alexander von Humboldt Foundation while on leave to the TJniversity of
Erlangen-Nurnberg, Erlangen, FRG.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT O F ENERGY
under Contract No. DE-AC-05-840R21400

3 4 4 5 6 0 2 8 4 6 4 8 2

Contents

1 Introduction

2 The Model

3 Adaptation of the Model

4 Numerical Experiments

5 Summary

1

3

6

9

12

MULTIPROGRAMMING A DISTRIBUTED-MEMORY

MULTIPROCESSOR

Michael R. Leuze

Lawrence W. Dowdy

Kee Hyun Park

Abstract

The development of computing systems with large numbers of processors has

been motivated primarily by the need to solve large, complex problems more

quickly than is possible with uniprocessor systems. 'I'raditionally, multiproces

sor systems have been uniprogrammed, i.e., dedicated to the execution of a single

set of related processes, since this approach provides the fastest response for an

individual program once it begins execution. However, if the goal of a niultiproces-

sor system is to minimize average response time or to maximize throughput, then

multiprogramniing must be considered.

In this paper, a model of a simple multiprocessor system with a twaprogram

workload is reviewed; the model is then applied l o an Intel iPSC/2 hypercube mul-

tiprocessor with a workload consisting of parallel wavefront algorithms for solving

triangular systems of linear equations. Throughputs predicted by the model are

compared with throughputs obtained experimentally from an actual system. The

results provide validation for the model and indicate that significant performance

improvements for multiprocessor systems are possible through multiprogramming.

- v -

1. Introduction

Multiprocessor systems with large numbers of processors are becoming commonplace.

This development has been motivated principally by the need to solve large, complex

problems that are intractable using conventional uniprocessor systems. Over the past 30

years, computing power (speed, capacity) has doubled approximately every two years.

Until recently, these increases were achieved through miniaturization without resorting

to changing the basic uniprocessor organization. However, further miniaturization has

become increasingly difficult (and expensive) as fundamental physical limitations are

approached. Hence, computer architects have begun to increase computing power by

coupling large numbers of processors together into a single system: thus allowing them

to work simultaneously on a single problem.

It is unlikely that such multiprocessor systems would have been developed without

the motivation provided by large, complex problems. Nevertheless, now that rnultipro-

cessor systems do exist, it is important to determine how best to use such systems.

The behavior of many parallel programs on a given multiprocessor system can be

characterized, at least in part, by speedup curves similar to the one depicted in Fig-

ure 1. The speedup curve indicates how effectively a program is able to use additional

processors allocated to it. For a typical parallel program, there is a maximum num-

M
number of processors

Figure 1: Typical speedup curve for a prnllel progmm. The horizontal axis indicates
the number of processors allocated to the progrnm; the vertical axis indicates throughput
per unit time. M is the maximurn number of processors the program can use e,fectively.

- 2 -

ber of processors that can be used effectively. Allocating more than this number of

processors will result in reduced throughput. The actual cause of this reduction in

performance will vary from system to system, but may be the result of increased con-

tention for the use of shared variables or of an increase in the volume of interprocessor

communication.

If the goal of a system manager is to minimize response time for certain high-

priority programs, system policies should be designed to allocate such a program the

maximum number of processors it can use effectively. If this number exceeds the number

of processors available, all available processors should be allocated. If, on the other

hand, the system manager’s god is to maximize system throughput, i.e., to maximize

the number of jobs completed per unit time, or to minimize average response time,

a different processor allocation policy is needed. Note, as i s illustrated in Figure 1,

that a typical speediip curve initially increases rather rapidly but flattens as the point

of optimal processor allocation is approached. Thus, the effectiveness with which a

parallel program uses an additional processor depends on the number of processors

already allocated to the program. Throughpixt tends to be increased more by assigning

an additional processor to a program allocated few processors relative to its optimal

number than by assigning it to a program allocated close to its optimal number of

processors. Consequently, maximizing multiprocessor system throughput may require

that two or more independent programs be executed simultaneously.

It is, therefore, worthwhile considering bow a multiprocessor system can be mul-

tiprogrammed, that is, how it can be used to ma,nage simultaneonsly two or more

independent sets o€ related processes. An important question is how to partition the

processors among the active programs. Processor partitioning can be implemented in a

number of ways andogous to the partitioning of a computer system’s primary memory.

The simplest approach is to divide the processors into a number of fixed-size partitions.

At any time, a processor partition executes at most a single program, i.e., a single col-

lection of related processes. Each progrant is designed to run using a specific partition

and can be executed only by that partition. A somewhat more restrictive approach

may also he taken in which partitions are private; i.e., a partition and a program are

paired, and as long as the program remains in the system, no other program may use

its partition. An alternative approach is to allow programs to execute in any available

fixed-size partition. Finally, partitions may be variable. As the processing needs of a

workload change, the size and configuration of processor partitions may change in re-

- 3 -

sponse to these needs. In this paper, we consider modeling systems with two fixed-size,

private partitions.

Section 2 contains a description of a simple model of a multiprocessor system with a

two-program workload. In section 3, the model is adapted to an Intel iPSC/2 hypercube

multiprocessor. Section 4 contains results from numerical experiments performed on

the Intel iPSC/2 and compares throughputs obtained empirically to those predicted by

the model.

2. The Model

In [2], a high-level model of a simple multiprocessor system whose processing elements

(PES) can be partitioned into two sets is described. The model assumes that program

scheduling is done via a separate host processor, and that the parallel workload consists

of two programs. The model description uses the following notation:

N-the total number of PES in the multiprocessor.

n; (i = 1,2)-the number of PES assigned to partition Pi. (n1 + 122 = N) .

p; (i = 1,2)-the fraction of PES assigned to partition R. (p ; = n ; / N .

PI +P2 = 1).

(A , B)-the current system state. “A” represents the location of program 1,

either at the host (H) or in partition PI. “B” represents the location of

program 2, either at the host (If) or in partition P2. The set of allowable

states is { (H , HI7 (Pl, r J) , (H , P2), (PI, P2)).

pj(A,B)-the state-dependent service rate of device j , j E { H , M } . “H”

denotes the host; “M” denotes the multiprocessor. Service times axe

assumed to be exponentially distributed.

SM (A , S)-a s t a te-dep endent “inter ference factor” which represents degra-

dation in multiprocessor performance due to contention for shared re-

sources.

X-throughput of the multiprocessor system.

This model can be represented by the closed queuing network model of Figure 2.

The following assumptions are made with regard to the model:

- 4 -

two parallel programs

Multiprocessor

P M (A , B)

Figure 2: Closed queuing network model of a multiprocessor system with its parallel
workload.

~ H (A , B) = A. Service time at the host is state independent. The host

treats both programs identically; i.e., the demands each program places

on the host are statistically identical. Processor sharing at the host is

assumed

p ~ (P 1 , H) and ~ M (N , P2) are the ‘6execution signatures” of the two parallel

programs. Each term represents the processing rate of a program when it

alone executes on the multiprocessor. Execution signatures depend not

only on a program’s characteristics, but also on the specific architecture

and on the size of the program’s partition. Expressions for execution

signatnres are suggcstcd below. Execution signatures are analogous to

speedup curves (see Figure 1).

S M (H , I I) = S M (P ~ , H) = S ~ (6 1 , l ‘ ~) = 1. When at most one program

is executing on the multiprocessor, no performance degradation is ex-

perienced, since there is no contention for the shared resources of the

multiprocessor.

SM(P~, Pz) = s. When both programs execute 011 the multiprocessor, the

performance of each is degraded by a fa,ctor s (0 5 s 5 1)) assumed to

be a constant.

~ M (P I , P ~) = (~M(P~)A)-C~~(H,P~))XSII.~(P~,P~). When both programs

are executing on the multiprocessor, the processing rate is the sum of

the individual processing rates times the degradation factor SM(PI) P2).

- 5 -

Execution signatures of the form

P2
and PM(H,p2)= D2lP2 + D22

Pl
DllPl + 0 1 2

PM(P1,H) =

have been suggested [2], where D;1 and Di2 axe parameters dependent on characteristics

of the specific architecture and of the specific program i. If Da1 = 0, program i
experiences a lineas speedup; if Di2 = 0, the execution rate of program i is constant,

independent of the number of processors used.

The model is solved by applying standard techniques to the balance equations

derived from the Markov diagram shown in Figure 3.

Figure 3: Markov diagmm of the two-program multiprocessor system model. States
correspond to locations of the programs; arcs are labeled with the transition flow rates.

Throughput as a function of the system parameters is

- 6 -

3. Adaptation of' the Model

3.1. The multiprocessor system

Experiments were performed on a 32-node Intel iPSC/2 multicomputer [4]. The iPSC/2

is a distributed-memory machine, connected in a binary n-cube configuration. Com-

munication in the iPSC/2 is handled by a separate communications processor on each

node, known as a "Direct-ConnectTM module." The Direct-Connect module supports

two modes of message-passing: short messages (100 bytes or less) are passed using a

datagram technique; long messages (more than 100 bytes) are passed using a virtual cir-

cuit technique known as "worm-hole routingT9 [l]. Consequently, there i s a jump in the

cost of transmitting messagcs at the 100-byte boundary. The Direct-Connect module

network requires only slightly longer to pass multi-hop messages than to pass single-

hop messages. Consequently, the iPSC/2 appears to the user to be a fully-connected

machine.

Adaptation of the model to the iPSC/Z is straightforward. There are only two major

considerations: the manner in which the 32 nodes of the iPSC/2 are partitioned and the

value used for the interference factor s. Preliminary experiments investigating possible

ways to partition the 32 nodes of the iPSC/2 were conducted. The results of these

experiments indicate that the critical factor in determining a program's performance is

the number of processors allocated to that program; the specific processors assigned to

a program have little impact on its behavior, due to the L ' ful ly-~~nne~ted97 nature of the

iP§C/2. Therefore, for convenience, program 1 is always run in a partition consisting of

nodes numbered 0 through i - 1, and program 2 is always run in a partition consisting

of nodes numbered i through 31 (0 5 i 1. 32).

Experiments were also performed to determine the value of the interference factor

s. The results of these experiments indicate that a program running in one partition

has negligible impact on a program running in another partition. Consequently, s is

set to one.

3.2. The parallel workload

The application programs used in these experiments are based on parallel wavefront al-

gorithms [3] for solving triangular systems of linear equations. The wavefront idea pro-

duces both a column-oriented vector-sum algorithm and a row-oriented scalar-product

algorithm. For these experiments, the row-oriented algorithm was chosen. In this dgo-

- 7 -

rithm, messages consist of segments of the solution vector. SmaJler segments increase

the potential for parallelism but also increase the number of messages that must be

passed. A performance trade-off exists, therefore, between potential parallelism and

communication volume. Heath and Romine [3] have examined the issue of choosing

an optimal segment size. The effect of varying the segment size (0) is illustrated in

Figures 4 and 5.

0 20 40 80 80 1 OB

segment size

Figure 4: Throughput as a function of segment size for 8 and for 32 processors solving
a triangular system of order 1500 using the row-oriented wavefront algorithm. The
dashed lines indicate the point at which the iPSC\2 switches message-passing modes
fmm datagmm service to virtual eiwuit service.

E d program was written to run in two modes, a multiprocessor mode and a host

mode. When in multiprocessor mode, a program solves a single triangular system in its

private partition of the iPSC/2; when in host mode, a program executes a delay loop

- 8 -

Figure 5: Execution signatures for the row-oriented wavefront algorithm on the iPSC/2
hypercube with a matra’z of order 1500.

on the host machine (see Figure 6). The duration of a delay is randomly chosen from a

predetermined probability distribution. The delay loop is used to simulate vaxious host

speeds, various amounts of required activity on the host, or various ““ladings” placed

on the multiprocessor by the host. A single experiment consists of the simultaneous

execution of the two test programs for a predetermined period of time, during which

each program cycles between its multiprocessor and host modes.

To study empirically the throughput of a partitioned system, two programs based

on the row-oriented wavefront algorith were selected. Program 1 solves a triangular

system of order 1500 with a se ent size of IO, and program 2 solves a triangular

system of order 1800 with a segment size of 100. The empirically determined execution

signatures of these two programs are illustrated in Figure 7. Corresponding execution

- 9 -

k = 222500.0 * tmin

j = O ;
for (i = 0 ; i C k; i++)

+ 222500.0 * (tmax - tmin) * random0 ;

j = (j+1)%1000 ;

Figure 6: Sample delay loop executed by a program in host mode. The routine r<andomO
genemtes a uniform random deviate between 0 and 1 . The constant 222500.0 was
empirically determined so that in this example, a delay of from tmin to tmax seconds
would occur.

signatures of the form of equation (1) were determined by a non-linear least-squares

fit. These execution signatures

are also illustrated in Figure 7.

Adapting the model (Section 2) to a specific architecture (Section 3.1) and to a

The specific workload (Section 3.2) results in parameter values listed in Table 1.

Table 1: Parameters for the theowtical model.

expression for throughput as a function of the partition size and host speed becomes

4. Numerical Experiments

The 32 nodes of the iPSC/2 were allocated so that program 1 was executed in partitions

of size 0, 2,4, . . . , 32, with program 2 executing in the complementary partitions. Host

- 10 -

0 4 -

03 -

8
3

s 0.2 ~-

3 a

+d

3
Q
c
u)
3

2 s
0.1 -

0.0 -

_-
p q r a m 2

r- r-- -7 --T I v-

2 8 14 2a 26 32

number of processors

Figure 7 : Ezecution signatures of the two test pp.ograrns, The solid curves are empir-
ically determined signatuses; dotted carves l t ~ s t - ~ p ~ m s fits of signatups of the
form of equation (1) to the empirical signatums.

delays were uniformly distributed between 2 and 4 seconds. The value for the speed of

the host (A) was 0.3268, the reciprocal of the sum of the average time spent in the de-

lay loop (3 seconds) and a s m d measurable host-multiprocessor communication time

(0.06 seconds). Each experiment was run for 10 minutes. System throughputs were

both measured empirically and predicted using equation (4). The empirically deter-

mined and theoretically predicted throughputs are illustrated in Figure 8. Throughputs

as high as 0.2134 jobs per second were observed. This throughput is 36.5% greater than

the throughput for the same job mix in the corresponding iixniprograrnming environ-

ment, 0.1563 jobs per second.

The experimental and theoretical throughput values match quite well. The great-

- 11 -

0 8 16 24

number of processors allocated to program 1
32

Figure 8: Throughput as a function of the n u m b - of pnxessors adlocated to program 1.
The solid line connects observed volues. The dashed line wnnects values pmdicted by
the theoretical model wing the input values of Table I .

est discrepancy in throughput values occurs when 18 processors are assigned to pro-

gram 1 and 14 processors are assigned to program 2. When allocated 18 processors,

program 1 requires approximately 4.97 seconds to solve a triaangular system; when

allocated 14 processors, program 2 requires approximately 4.94 seconds to solve a tri-

angular system. Thus, since each program places the same demands on the host, the

average multiprocessor-host cycle times for both programs are nearly identical in length

for this particular partitioning. When the program traces for this partitioning were ex-

amined, it was discovered that, despite the random delays incurred at the host, the

programs tended to execute in lock-step, Le., both programs were together at the host

and then both programs were together at the multiprocessor. This tendency toward

- 12 -

synchronized behavior resulted in increased contention at the host and in a consequent

decrease in throughput.

Other discrepancies between experimental and theoretical throiighput values OCCIBIT

at the 8-24 and at the 26-6 partitionings. For these partitionings, the cycle time of

one program was approximately twice the cycle time of the other. Again, a tendency

toward synchronization was observed, with each multiprocessor phase of the slower

program and every second multiprocessor phase of the faster program beginning at

approximately the same time. Thus, every second host phase for the faster program was

without contention; no host phase of the slower progmm was ever without contention.

Experiments were conducted to determine whether increasing the variance in the

host delay, while maintaining a mean delay of 3.0 seconds, would counteract the ten-

dency toward synchronization. Using a partition of 18 processors for program 1 and 14

processors for program 2, the minimum host delay was varied in 0.5 second intervals

from 0.0 seconds to 3.0 seconds. Experimental results are summarized in Figure 9. As

the variance in the host delay increases, the behavior of the two programs becomes

m o ~ e asynchronous. Consequently, contention at the host decreases, and throughput

increases. With a host delay between 0 and 6 seconds, the observed throughput is less

than 4% below the value predicted by the model.

TIost-speed sensitivity experiments were also performed. Average delay at the host

(l / X) was varied from 0.5 to 10.0 seconds in increments of 0.5 seconds. All host-speed

sensitivity experiments were conducted with 24 processors assigned to program 1 and

8 processors assigned to program 2. The empirically determined and theoretically pre-

dicted throughputs are illustrated in Figure 10. There is excellent agreement between

experimental and model throughput values.

5 . Summary

Although the development of most multiprocessor systems has been motivated by the

need to execute single programs quickly, once an actiial miiltiprocessor is in operation,

system goals may change. For example, it may be important to complete the execution

of a diverse workload as effciently as possible, minimizing average response time or

maximizing throughput. Pursuit of this goal leads to consideration of rnultiprogram-

ming the multiprocessor system, which leads in turn to consideration of issues related

to the partitioning of processors among the set of active programs.

- 13 -

0.22

0.21

6
8
%
%
g 0.x

C

\

c
3 a
S
0)
3 e
5

0.15

0.18

T - - I I ~1 i__i.__~._.,~__________ ___

3.0 . 3.0 2.5 - 3.5 2.0 - 4.0 1 5.4.5 1.0.5.0 0.5 .5.5 0.0 - 6.0

host delay (sewn&)

Figure 9: Throughput as a function of variation in host delay. Pmgram 1 was allocated
18 processors and program 2 was allocated 1.4 pmessors . Meon delay at the host was
maintained at a constant 3.0 seconds. The dashed line represents throughput predicted
b y the theoretical model.

In this paper, the adaptation of a model of a multiprocessor system with two fixed-

size private partitions and a two-program workload to an actual system and an actual

workload has been described. Validation experiments show a good match between

theoretically predicted and empirically observed values. It is demonstrated that mul-

tiprogramming a distributed-memory multiprocessor can substantially improve perfor-

mance. For the example selected, multiprocessor throughputs under multiprogramming

that were as high as 0.2134 jobs per second were observed. For the same job mix in the

corresponding uniprogramming environment, throughput would be 0.1563 jobs per sec-

ond. Thus, an increase in throughput of 36.5% due to multiprogramming is observed.

- 14-

0 2 4 6 8 10

mean host delay (seconds)

Figure PO: Throughput QS a function of the mean delay ai! the host. The solid line
connects observed values. The dashed line connects values predicted by the theoretical
model using the input values of Table 1 .

A number of extensions to this work are possible. 'The model of Section 2 can be

generalized to account for more partitions and more programs. Increasing the num-

ber of partitions and programs will necessitate the use of heuristics in solving the

model, since standard Markov analysis quickly becomes intractable. 8 ther partition-

ing schemes, such as dynamic partitioning, can he incorporated into the model. The

parallel workload can dso be generdized. Different forms for the execution signatures

can be considered, and the effects of different processing requirements at the host can

be explored. For example, host requirements might vary from program to program,

and the mimber of programs in the multiprogramming set may change as new

enter the system and old programs complete and exit. All of these generalizations of

- 15 -

the model and of the workload should be validated experimentally. Because of the

performance improvements that may be achieved through multiprogramming of multi-

processor systems, research in this area is important.

Acknowledgements

The authors wish to express their gratitude to Chuck Romine and to Pat Wclrley for

helpful discussions. Their efforts have significantly improved the quality of this work.

References

[l] William J. Dally and Charles L. Seitz, Deadlock-free message routing in multipro-

cessor interconnection networks, IEEE Trans. on Cornpest. C-36(5), May 1987,
54 7-55 3.

[2] Lawrence W. Dowdy, On the partitioning of multiprocessor systems, Technical Re-

port, Department of Computer Science, Vanderbilt University, Nashville, TN,

37235, March 1988.

[3] Michael T. Heath and Charles H. Romine, Parallel solution of triangular systems

on distributed-memory multiprocessors, SIAM J . Sci. Statist. Cornput. 9(3),
May 1988,558-588.

[4] iPSC/2 User's Guide, Intel Scientific Computers, Beaverton, Oregon (1988).

- 1 7 -

ORNL/TM-11064

INTERNAL DISTRIBUTION

1.

2.
3.

4-5.
6.

7-11.

12-16.
17-21.

22.

23.
24.

25.

B. R. Appleton

J . B. Drake
G. A. Geist
R. F. Barbison
M. T. Heath
J . K. Ingersoll

M. It. Leuze
F. C. Maienschein
E. G . Ng
G . Ostrouchov
B. W. Peyton

C. H. Romine

26-30.

31.
32.
33.
34.
35.
36.
37.
38.

39.
40-41.

R. C. Ward

P. H. Worley
A. Zucker
J. J. Doming (Consultant)
R. M. Haralick (Consultant)
Central Research Library

ORNL Patent Office
K-25 Plant Library
Y- 12 Technical Library

/Document Reference Station
Laboratory Records - RC

Laboratory Records Department

EXTERNAL DISTRIBUTION

42. Dr. Virgilio Almeida, Rua do Ouro, 958/401, 30210 Belo Horizonte, Brazil

43. Dr. Donald M, Austin, Office of Scientific Computing, Office of Energy Research,

ER-7, Germantown Building, 1J.S. Department of Energy, Washington, DC 20545

44. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon

Graduate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

45. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-

ton, TX 77252-2189

46. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State Uni-

versity, University Park, PA 16802

47. Dr. Chris Bischof, Mathematics and Computer Science Division, Argonne Na-

tional Laboratory, 9700 South Cass Avenue, Argonne, TL 60439

48. Prof. Ake 3jorck, Department of Mathematics, Linkiiping University, S-581 83

Linkoping, Sweden

- 18 -

49. Dr. James C. Browne, Department of Computer Sciences, University of Texas,

Austin, TX 78712

50. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmo-

spheric Research, P.O. Box 3000, Boulder, CO 80307

51. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering,

University of Michigan, Ann Arbor, MI 48109

52. Dr. Tony Chan, Department of Mathematics, University of California, Los An-

geles, 405 Hilgard Avenue, Los Angeles, CA 90024

53. Dr. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle

Park, NC 27709

54. Dr. Prasad Chintamaneni, Software Productivity Consortium, 1880 Canipus Com-

mons Drive N, Reston, VA 22071

55. Dr. Eleanor Chu, Department of Computer Science, University of Waterloo, Wa-

terloo, Ontario, Canada N2L 3G1

56. Prof. Tom Coleman, Department of Computer Science, Cornell University, Ithaca,

NY 14853

57. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory,

Berkeley, CA 94720

58. Prof. Andy Conn, Department of Combinatorics and Optimization, University of

Waterloo, Waterloo, Ontario, Canada N2L 3G1

59. Dr. Jane K. Cnllum, IBM T. J. Watson Research Center, P.Q. Box 218, Yorktown

Heights, NY 10598

60. Dr. George Cybenko, Computer Science Department, University of Illinois, Ur-

bana, IL 61801

61. Dr. George J. Davis, Department of Mathematics, Georgia State University, At-

lanta, GA 30303

62. Dr. Jack J . Dongarra, Mathematics and Computer Science Division, Argonne

National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

- 1 9 -

63. Dr. Lawrence W. Dowdy, Department of Computer Science, Vanderbilt Univer-

sity, Nashville, T N 37235

64. Dr. lain Duff, CSS Division, Harwell Laboratory, Didcot, Oxon OX11 ORA,

England

65. Prof. Pat Eberlein, Department of Computer Science, SUNYIBuffalo, Buffalo,

NY 14260

66. Dr. Stanley Eisenstat, Department of Computer Science, Yde University, P.0. Box

2158 Yale Station, New Haven, CT 06520

67. Dr. Lars Elden, Department of Mathematics, Linkoping University? 5-581 83

Linkoping, Sweden

68. Dr. Howard 6. Elman, Computer Science Department, University of Maryland,

College Park, MD 20742

69. Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Paxk West,

Tukwila, WA 98188

70. Dr. Peter Fenyes, General Motors Research Laboratory, Department 15, GM

Technical Center, Warren, MI 48090

71. Prof. Patrick C. Fischer, Department of Computer Science, Vanderbilt University,

Nashville, T N 37235

72. Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Clare-

mont, CA 91711

73. Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of

Technology, Pasadena, CA 91125

74. Dr. Paul 0. fiederickson, Computing Division, Los Alamos National Laboratory,

Los Alamos, NM 87545

75. Dr. Fred N. Fritsch, L-316, Mathematics and Statistics Division, Lawrence Liv-

ermore National Laboratory, P.O. Box 808, Livermore, CA 94550

76. Dr. Robert E. Fiinderlic, Department of Computer Science, North Carolina State

University, Raleigh, NC 27650

- 20 -

77. Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Rloom-

ington, IN 47405

78. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

07974

79. Dr. C. William Gear, Computer Science Department, University of Illinois, Ur-

bana, IL 61801

80. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research

Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada

K1A OR8

81. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University

of Waterloo, Waterloo, Ontario, Canada N2L 3G1

82. Dr. John Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo

Alto, CA 94304

83. Dr. Jacob D. Goldstein, The Analytic Sciences Corporation, 55 Walkers Brook

Drive, Reading, MA 01867

84. Prof. Gene H. Golub, Department of Computer Science, Stanford University,

Stanford, CA 94305

85. Dr. Karen D. Gordon, IDA/CSED, 1801 N. Beauregard Street, Alexandria, VA

22311

86. Dr. Joseph F. Grear, Division 8331, Sandia National Laboratories, Livermore,

CA 94550

87. Dr. Per Christian Ransen, Technical University of Denmark, Danish University

Computing Center, UCI-C Lyngby, Building 305, DK-2800 Lyngby, Denmark

88. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development

Co., P.O. Box 481, Houston, TX 77001

89. Dr. F. J. Helton, GA Technologies, P.O. Box 81608, San Diego, CA 92188

90. Prof. Dr. Ulrich Herzog, University of Erlangen-Nurnberg, Martensstrasse 3,8520

Erlangen, FRG

- 21 -

91. Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 410,

Bolling Air Force Base, Washington, DC 20332

92. Dr. William H. Hooper, Mailstop W-425 (Data Networks), The MITRE Corpo-

ration, 7525 Colshire Drive, McLean, VA 22102

93. Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore Na-

tional Laboratory, P.O. Box 808, Livermore, CA 94550

94. Dr. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158

Yale Station, New Haven, CT 06520

95. Ms. Elizabeth Jessup, Department of Computer Science, Yale University, Y.0. Box

2158, Yale Station, New Haven, CT 06520

96. Prof. Barry Joe, Department of Computer Science, University of Alberta, Ed-

monton, Alberta, Canada T6G 2H1

97. Dr. Harry Jordan, Department of Electrical and Computer Engineering, Univer-

sity of Colorado, Boulder, CO 80309

98. Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, S-

901 87 Umea, Sweden

99. Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South C a s Avenue, Argonne, IT, 60.139

100. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

07974

101. Dr. Robert J. Kce, Applied Mathematics Division 5331, Sandia National Labo-

ratories, Livermore, CA 94550

102. Ms. Virginia Klema, Statistics Center, E40-131, MIT, Cambridge, MA 02139

103, Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA
91101

104. Dr. Alan J . Laub, Department of Electrical and Computer Engineering, Univer-

sity of California, Santa Barbara, CA 93106

- 22 -

105. Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle

Park, NC 27709

106. Dr. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, California Institute

of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

107. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New

York University, 251 Mercer Street, New York, NY 10012

108. Dr. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21,

Seattle, WA 98124-0346

109. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department

of Computer Science and Statistics, Queen Mary College, University of London,

Mile End Road, London E l 4NS, England

110. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele

Street, Downsview, Ontario, Canada M3J 1 P3

111. Dr. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca,

NY 14853

112. James G. Malone, General Motors Research Laboratories, Warren, MI 48090-9055

113. Dr. Thomas A. Manteuffel, Computing Division, Los Alamos National Labora-

tory, Los Alamos, NM 87545

114. Dr. Bernard McDonald, National Science Foundation, 1800 G Street, NW, Wash-

ington, DC 20550

115. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena,

CA 91125

116. Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086

117. Dr. Brent Morris, National Security Agency, Ft. George G. Meade, M11 20755

118. Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland,

College Park, MD 20742

119. Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory,

Kirtland Air Force Base, Albuquerque, NM 87115

- 23 -

120. Dr. James M. Ortega, Department of Applied Mathematics, University of Vir

ginia, Charlottesville, VA 22903

121. Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher-

brooke Street W., Montreal, Quebec, Canada H3A 2K6

122. Dr. John IF. Pdmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ

85284

123. Prof. Roy P. Pargas, Department of Computer Science, Clemson University,

Clemson, SC 29634-1906

124. Prof. Beresford N. Parlett, Department of Mathematics, University of California,

Berkeley, CA 94720

125. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,

NC 27706

126. Dr. Alfredo Perez-Davila, Department of Computer Science, University of I'itts-

burgh, Pittsburgh, PA 15260

127. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science,

North Carolina State University, Raleigh, NC 27650

128. Dr. Alex Pothen, Department of Computer Science, Pennsylvania State Uiiiver-

sity, University Park, PA 16802

129. Prof. Daniel A. Reed, Department of Computer Science, Center €or Supercom-

puting Research and Development, University of Illinois, Urbana, IL 61801

130. Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon,

England OX11 ORA

131. Dr. John R. Itice, Computer Science Department, Purdue University, West Lafayette,

IN 47907

132. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Labo-

ratory, Livermore, C R 94550

133. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham,

NC 27706

- 24 -

134. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Ur-

bana, IL 61801

135. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research

Department , Stanford University, Stanford, CA 94305

136. Dr. Larry Saxton, University of Regina, 53 Bobolink Bay, Regina, Saskatchewan,

Canada S4S 4K2

137. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic

Institute, Troy, NY 12180

138. Dr. Martin II. Schultz, Department of Computer Science, Yale University, P.O. Box

2158 Yale Station, New Haven, CT 06520

139. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,

Beaverton, OR 97006

140. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist Uni-

versity, Dallas, TX 75275

141. Dr. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,

FL 32611

142. Dr. Horst Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field,

CA 94035

143. Dr. Danny @. Sorensen, Mathematics and Computer Science Division, Argonne

National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

144. Prof. G. W. Stewart, Computer Science Department, university of Marylmd,

College Park, MD 20742

145. Dr. Kosmo D. Tatalias, Atlantic Aerospace Electronics Corporation, 6404 Ivy

Lane, Suite 300, Greenbelt, MD 20770-1406

146. Prof. Satish K. Tripathi, Department of Computer Science, University of Mary-

land, College Park, MD 20742

147. Prof. Charles Van Loan, Department of Computer Science, Cornel1 University,

Ithaca, NY 14853

- 25 -

148. Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hamp-

ton, VA 23665

149. Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory,

Los Alamos, NM 87545

150. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211, Research Triangle

Park, NC 27709

151. Dr. Margaret Wright, Belt Laboratories, 600 Mountain Avenue, Murray Hill, N J

07974

152. Dr. A. Yeremin, Department of Numerical Mathematics of the USSR Academy

of Sciences, Gorki Street 11, MOSCOW, 103905, USSR

153. Prof. John Zahorjan, Department of Computer Science FR-35, IJniversity of

Washington, Seattle, WA 98195

154. Office of Assistant Manager for Energy Research and Development, U.S. Depart-

ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N

37831-8600

15.5-164. Office of Scientific k Technical Information, P.O. Box 62, Oak Ridge, T N

37831

