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ABSTRACT 

By discretizing time and space in a PDE model for competitive systems, we 
derive the corresponding discrete maps. We analyze these maps from an analytical 
and numerical viewpoint with emphasis on the military interpretation of the system. 
For the one-species map we study the effect of convection on the bifurcation behavior 
and we find periodic solutions. For the two-species map, we limit our analysis to 
an illustrative example, but we indicate the general procedure. 
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1. INTRODUCTION 

One of the most common methods for the numerical solution of ordinary 
differential equations (ODE'S) is to transform the continuum system, through some 
approximation procedure, into a set of discrete-variable, algebraic equations. The 
fundamental assumption in such a situation is that the solution to the approximate 
difference equations converges to the solution of the original ODE as the number of 
discrete variables representing the continuum variables appruaches infinity. When 
this is indeed the case, one can estimate the range of deviation of the solution to 
the ODE'S from the calculated discretcvariable solution through a theoretical or 
empirical error analysis, thus determining the degree of confidence one can have 
in the numerical solution. However, simple examples relevant to combat modeling 
exist where the above assumption fails so severely that the numerical solution may 
violate certain properties that are essential for the physical acceptability of the 
solution, such as, for instance, positivity. 

To set the matter in perspective, let us start with an example, namely, the 
two-species, Loth-Volterra competitive system described by the ODE system 

Introducing the scaled variables, 

vi 4 (Lli/aj)ui, i, j = 1,2, i # j , 
T E? f f l t ,  y = crz/a1 > 0 ,  

the system of Equations (1.1) becomes, 

d v l / d T  = ~ ( 1  - 2'2) , 
d v z / d T  =z yvz(1 - V I )  . 

Solutions to this system have the following properties, 

i. The solution vi(T),  hence also U j ( T > ,  is positive. 

ii. There are two fixed points at VO = ( V I  = 0, v2 = 0) and VI = (vl  = 1,172 = 1). 

iii. Vo is unstable. 

iv. VI is a saddle point. 

These properties are schematically represented in the phase portrait in Figure 1, 
which represents the solution to Equations (1.3), namely, 

v2e-'2 = c [ v 1 ~ - ~ 1 ] '  . (1.4) 
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Figure 1. The phase portrait for the system of ODE'S, 
Equations (1.3) with y =  .5: e E fixed point, --+ E direction of flow 
for increasing time. 

By applying the explicit finite difference approximation, to Equations (1.3) we 
ob t a,in 

In Equations (1.5), we assumed that the time variable has been divided into equal 
intervals of size T ,  so that T, = n ~ ,  and TI! = vi(",), i = 1,2. It follows immediately 
that if for some n, including the initial guess n = 0, either v; > 1 + 1 / ~  and vr > 0, 
or vy > 1 + 1/77 and D; > 0, then .In+' < 0, or v;+' < 0, respectively, so that 
the invariance of the positive quadrant of the phase plane is not preserved by such 
numerical solutions. Moreover, the unbounded nature of all the trajectories but two 
in the phase plane of the continuum system, Figure 1, means that if the numerical 
solution resembles this feature, then no matter how small we choose the time step 
T, either vy or v; will become large enough that 21;" or $+' will become negative, 
respectively. 

On the other hand, the implicit variant of the finite difference method, applied 
to Equations (1.3), results in 



3 

Solving these two equations simultaneously for VI'' yields, 

If the terms in the square brackets on the RHS's of Equations (1.7) are negative, 
then there is at least one positive solution. Otherwise, we must choose the step size 
T so that 1 - T and 1 - yr have the same sign; that is, the condition 

1 

7 
~ < - < 1 ,  i f y > l ,  

1 

is sufficient (but not necessary) to preserve the invariance of the positive quadrant 
of the phase plane. 

It is also possible for Equations (1.5), obtained with the explicit method to 
produce periodic solutions, even though the ODE system does not. This is done by 
calculating v,+' from Equations (1.5) and setting them equal to vp, then solving 
for the latter. When this is done, we obtain the condition, 

that the step size has to satisfy in order to avoid periodic solutions to the explicit 
method. 

So, it is cleax that studying the dynamics of continuum systems using discrete- 
variable approximations can be very misleading unless great caution is exercised. 
On the other hand, iterative maps of the type discussed above are interesting in their 
own right as they can be used to model certain phenomena in which states evolve 
in a discrete, rather than continuous, manner. The most successful such example 
is the predator-prey system') where one looks at the evolution of generations of 
the two species and ignores the details of the inter-generation evolution. The same 
a.rgument may be applied to the case of combat in which the dynamic evolution of 
the war depends very strongly on the individual outcome of many battles, and very 
weakly on the details of each battle. Also, the same logic can be applied on various 
scales to the various size units in the military structures. The finest such scale, for 
example, would be the temporal development of a single battle where only the final 
result of a one-on-one confrontation between two soldiers, tanks, fighters, etc., is 
important, while the details of obtaining this result are far less relevant. 
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The approach we take in this work is to derive an iterative map, through 
the finite difference approximation, from a combat model based on a system of 
coupled nonlinear partial differential equations (?DE) in one spatial dimension, 
with diffusion and convection.2) This is done in Section 2. However, we do not 
give any importance to the approximate correspondence between the difference 
and differential sets of equations; rather, we study the dynamics of the difference 
equations by themselves for the reasons discussed above, without investigating at 
this stage the convergence to the solution of the ?DE system. In Section 3, we 
review previous work on the one species system, and discuss the observed effect of 
convection on the bifurcation diagrarn and on the dynamics as a whole. Section 4 
contains the results of our investigation into the two-species system, with samples 
of battle scenarios. 



2. DERIVATION OF THE ONE-DIMENSIONAL, 
DISCRETE-VARIABLE COMBAT MODEL 

Analytic models for combat (competition) originate in the seminal paper by 
Lanchester3) who described the dynamics of fighting troops in the battlefield by 
simple nonlinear ODE'S. Two basic models were proposed to account for aimed 
and area fire, and were supposed to support his principle of concentration. A good 
review on Lanchester's equations and later development can be found in Taylor's 
monograph. 4, 

One of the major drawbacks of the competition/combat models based on 
ODE'S is that they do not account for spatial dependence in the absence of which 
movement expansion, advance, retreat, maneuvers, and deployment, cannot be 
properly described. 

To correct-at least in part-this defficiency, an analytic description of low 
intensity combat based on semilinear parabolic PDE's has been recently ~roposed .~)  
A typical example for two species reads: 

with initial conditions 

and boundary conditions of mixed type, 

k d  k k k  k a; -ui(x;, t )  + b, ui(z; t )  = e; , i, k = 1,2  . 
dX 

In general, u f ,  b f ,  and e: are functions of x and t but in the present work, they are 
considered constant for simplicity. The two points zf , k = 1 ,2  are Iioncoincident in 
general, but if they are, then it must be required that the two equations (2.3) are 
compatible and linearly independent for each species. 

In the evolution Equations (2.1), the different terms have the following 
interpret at ions: 

i) - $ - [ D i ( x ) e ]  is R (Fickian) diffusion term that models that natural tcndency 
of any distribution to lose its initial configuration. The small scale irregular 
diffusive movement is produced by stochastic causes. 

It 
captures the intentional character of the directed movement as opposed to the 
random character of the diffusive displacement. 

iii) The interaction terms under the sum describe re-supply, self-repressing effects, 
and attrition while the terms sz(z) model external sources. 

ii) &[cs(z)u,] describes the large scale, ordered flow through convection. 

5 



In general? systems of the type (2.1)-(2.3) (usually called reaction-diffusion (R- 
D) systems) appear quite naturally in biology and ecology,6) as well as in chemistry, 
metallurgy, fluid flow through porous media, etc. Recent summaries of theoretical, 
applied, and computational aspects of R-D systems can be found in the monographs 
of Fife,7) Smaller,*) and Oran and In the following, we shall study the 
system (2.1)-(2.3) from a different viewpoint, namely, we shall transfer it into a map. 
The possible interest in this approach was suggested by (i) the potential elements of 
order and chaos contained in the R-D systems; (ii) the stability-instability interplay 
of numerical schemes used to solve PDE's, (iii) the principal resemblance of these 
schemes with discrete maps, (iv) the potential for order and chaos in discrete maps, 
(v) the extreme sensitivity of the solutions of certain R-D systems to minute changes 
in interactions, boundary conditions (B.C.), dimension and even form of phase 
space, (vi) predictability and unpredictability issues, (vii) the discrete nature of 
combat, and (viii) potentials of cellular automata. In short, a discretized version 
of the PDE (2.1) can be viewed either as a simplified version of the PDE system 
(2"1)-(2.3) or as a model in itself that could be derived, in principle, from the very 
beginning. In fact, further studies will reveal whether the discrete version is not a 
better approximation of the competitive systems than the continuous system. At 
this point, we shall view it as a promising alternative to the continuous R-D type 
model recently proposed to describe low intensity ~ o m b a t . ~ , ~ ' j ~ ~ )  

We divide the time-space plane into closed recta.ngular regions of equal size, 
and we denote the time step T and the spatial cell size by 6. That is, the point 
of intersection of the nth temporal line and the mth spatial line, denoted (n ,m) ,  
represents time level t ,  = nr at the point 2, = 7n6 in the physical space; L = ZM = 
M6. The density of species i at point (n ,m)  is denoted u : ' ~ ,  while volumetric 
quantities, such as the diffusion coefficient, the convection speed, and the external 
source m e  constant with respect to time, and piecewise constant within the spatial 
cell bounded by xm-l and x,, and are denoted Dm? cy, and s T ,  respectively, for 
species i = 1,Z. The quadratic and linear interaction coefficients, a ; j k  and P ; j ,  

respectively, are constant with respect to both time and space. Now, we apply 
an explicit (first order) finite difference approximation2) to the time derivatives, 
a space-centered (second order) finite difference approximation2) to the diffusion 
terms, and an upwind finite difference approximation2) to the convective terms to 
obtain the difference equations: 
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In Equation (2.4), wr is the “upwind parameter” which takes the value O ( 1 )  if 
c y  is negative (positive), in order to enforce the unconditionally stable’) upwind 
differencing of the convection terms. To simplify the writing, we shall define 

D”+’ ,?+I 
(1 - 2q)- 

6 ’  
V;=liz-  

so that Equations (2.4) take the multicomponent iterative map structure, 

i = l , 2 ,  n 2 0 ,  O < m L M .  

To discretize the boundary condition, Equation (2.3) at point x: = xmk = m k S ,  

for some 0 5 m k  5 M ,  we note that uf and bf cannot vanish simultaneously. 
Therefore, if uf = 0, the boundary condition reduces to 

(2.7) 
= e i / b i  & E  , bf # 0, n > 0 .  

UT’Tnk 

The general case U T ,  bf # 0 includes as a special case uf # 0, b: = 0. If 
the point xf is an internal point, Le., 0 < m k  < M ,  then the first order 
derivative in Equation (2.3) is immediately discretized using the same space- 
centered approximation which was applied in the derivation of Equation (2.4) 
above. This case is not of interest and will not be Considered further. If x: is 
truly a boundary point, m k  = 0, for example, then applying the space-centered 
approximation to Equation (2.3) yields 

This equation is solved for the fictitious quantity un,-’ (note that u: # 01, then it is 
used together with u’” and u’” in Equation (2.6) to calculate u~””, assuming that 
the properties of the fictitious computational cell m = 0, IC E [-6, 01, are identical to 
those of the adjacent computational cell m = 1. The boundary condition at x = L 
is treated in an analogous way. 

Given an initial condition of the form u ’ , ~ ,  m = 0, , . . , M ,  Equation (2.6) and 
the appropriate set of discrete-variable boundary conditions represent an iterative 
map where n, the time step index plays the role of the iteration index. At# each tirne 



a 
step, the state of the system, up”n, is fully determined by the map from the previous 

. The iterative map can have one or more fixed points, periodic states state ui 
which may undergo period doubling bifurcations, and transition to chaos, depending 
on the specific set of parameters used in a given case. The determination of the 
various possible asymptotic states, their stability, basins of attraction, and their 
bifurcation into other states, and particularly understanding the dependence of all 
these things on the various parameters involved in the system is of great importance. 
For example, in combat modeling, two asymptotic states may exist , one representing 
victory and the other defeat for a given army. Knowledge of the dependence of the 
dynamics of the model on the system parameters should allow the commander of 
this army to control these parameters in order to bias the battle outcome in his 
army’s favor. 

We implemented the iterative map for the one-dimensional two-species system 
described above into the computer code CMAP1. The code accepts boundary 
conditions of the mixed type specified at z = 0 and z = 1; for each species. 
The initial condition can be uniformly specified in the input file, or read-in from 
another file to enable continuation of a previous calculation. All the parameters 
in the system are specified in the input, except for the number of species which is 
“hardwired” to two. Several options exist for handling the output data: it can either 
be printed out in ail output file, or it can be used in conjunction with DISSPLA 
graphics routines to generate time evolution plots of each species density on one 
of the boundaries, or to animate the time evolution of the densities of the two 
specics simultaneously as a function of space. The first option is useful in comparing 
numbers exactly to determine convergence to a fixed point or to a periodic state. 
The second option was used to compare our results with previous work as described 
in the next section, and the third mode, animation in time, is particularly useful in 
gaining a comprehensive feeling for the extremely large amount of data generated, 
which can guide the intuition in probing complex dynamical patterns. In addition, 
minor modifications can be made to the coding of these three options, for example, 
to obtain “snap shots” of the evolution. 

One of the interesting features of the iterative map approach to solving this 
system is that it is highly parallelizable. Equation (2.6) and the boundary conditions 
relate only three spatial points, at most, at the old time level to one species’ 
density at the new time level. Hence, by decomposing the spatial mesh into sets of 
adjacent, non-intersecting regions, the only connection between the computational 
development in one region and a neighboring region will be the mesh point on the 
common boundary. That is, each region can be assigned to one processor which 
calculates u, n-t-”m for all interior points from u;’” and shares with other CPU’s 
only the species density on the cominon inter-region boundaries. It is not realistic 
to expect very high efficiencies from the parallelization in the one-dimensional case, 
because the interprocessor communication overhead will probably be comparable 
to the solution time on each processor. However, two- and three-dimensional 
extensions of the present work will be very suitable for implementation on parallel 
machines, and efficiencies in excess of 8#%, with about ten-fold speedups, especially 
on shared memory machines, are conceivable. 

?l-l,m 



3. EFFECT OF CONVECTION 
ON THE ONE-SPECIES SYSTEM 

The one-species system equations can be obtained from the equations of 
Section 2 by setting 

Q i j k  = P; j  = 0, if i # j or IC . (3.1) 

This results in two non-interacting species. 
Equations (2.6) yields the iterative map 

Substituting Equation (3.1) into 

u y j ' n  = T(D;u; n,m+l + q n q m  + D r U ;  n,m-1 

(3.2) - a i ( U ; ' m ) 2  - p i u y  + 3?} , i = 1 , 2 )  

which is supplemented by appropriate discrete-variable boundary conditions and 
solved using the computer program described in the previous section. Indeed, the 
coding of the program was benchmarked for several dynamic regimes against the 
results of Mitchell and Bruch12) for a one-species non-convective system. In this 
section) we review previous work12,13) on this system and expand on the available 
description of its dynamics, then proceed to investigate the effect of convection on 
the dynamics. 

Consider the non-convective one-species system described by 

which follows directly from Equation (3.2) and the boundary conditions if we drop 
the species index, set the external source and convection equal to zero, and set 
@ = p i =  -a;. This system was studied in Refs. 12 and 13, but the results were 
limited to experimentation with the dynamics of this system as a function of the 
various parameters. That is, a number of asymptotic states were ~ b t a i n e d ' ~ , ~ ~ )  from 
a given initial condition without relating them to one another in a comprehensive 
way. Moreover, the results presented in these previous studies were extracted from 
the behavior of only one variable, namely unjo, under the map ing described by 

as described below. In contrast) here we consider the dynamics of the Ad discrete- 
variables, u ~ , ~ ,  m = 0,. . . , M - 1, and we obtain some asymptotic states, i.e., n -+ 
03, independent of the initial condition. 

Equations (3.3). This resulted in confusing solution b r a n c h e ~ l ~ l ' ~  P with one another 

3.1 FIXED POINTS 

A fixed point 'urn of the map, Equations (3.3)) is defined by 

9 
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+ p + l  D - 2 1 u m + 1 u m - 1 ] + a u  l m  [l- l m  u ] = 0 ,  O < m < M ,  

u ] + CrluO[l - luo]  = 0 . 1,M = 0, --[lu1 - 
(3.4) 

6 2  

1 0  2 0  
6 2  

This can be reduced to a single equation of order 2M in ' u 0  as follows. First, we 
solve the boundary condition at m = 0 for ' u l ,  

Similarly, the map equation is solved at each point m for 'urn+' in terms of 'urn 
and 'urn-'; i.e., 

Starting at m = 1, the mesh is swept recursively in the direction of increasing m 
by eliminating 'urn and in ter.ms of ' u 0  alone using expressions derived in 
previous steps of the sweep. Applying the boundary condition at nz = M - 1, 

0 ,  , lUM--1] -1 U M - 2  = 
2 0  

2ltLM4 [ (1 - !g) (3.7) 

(where 'uM-' and are actually expressed as polynomials in ' u 0  as 
described above) produces a single polynomial condition of order 2M in '21'. Each 
homogeneous real root of this polynomial represents a fixed piont of the map, where 
the remaining ' u r n ,  0 < m < M can be calculated by substituting 'u0 successively in 
Equations (3.5) and (3.6). Clearly, the number of fixed points of the map can become 
very large as M increases, making it practically impossible to explicitly calculate 
them all. One simple fixed point, the trivial solution 'urn = 0, 0 5 m 5 M ,  follows 
directly from the homogeneity of the polynomial in ' u 0 .  Another approximate 
solution which has been obtained b e f ~ r e ' ~ J ~ )  ignores the boundary condition at 
m = M altogether, and assumes a uniform density distribution, 

um+-1, m = 1,. . . , M - 1 . (3.8) 
1 0 -1 m-1-1  =1 u - '11 - 

Substituting Equation (3.8) into (3.5) and (3.6) immediately results in the trivial 
fixed point, and 

(3.9) 
l m  u = l , m = O  ,..., M .  

This fixed point is only approximate because it does not satisfy the boundary 
condition, Equation (3.7). Indeed, in a very strict sense, the iterative map does 
not have a uniform solution of the form (3.8), except possibly in the limit M -+ 
00. Numerical experiments, however, show that for cases where d 2 / 2 D  is large, 
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Equation (3.8) approximates the solution very well over most of the region, and fails 
only at a few points in the neighborhood of m = M .  A better approximation of the 
fixed point can be calculated as an asymptotic expansion in a small parameter, E ,  

as follows. Suppose 

‘t irn = I - e‘-m, m = O ,  ..., M ,  (3.10) 

so that lurn  --+ 1 as rn -+ 0, for very large M .  Substituting Equation (3.10) into 
Equation (3.7) yields, 

2(1 - €)[(I - d) + d ( 1 -  e)]  - 1 + 2 = 0 , (3.11) 

where d E aS2/20. Equation (3.11) can be solved for e? 

E = 1, 1/(2A + 1) . (3.12) 

The first root again represents the trivial fixed point, while the second root 
represents the “almost uniform” solution. One should note that the condition E 

very small, which is necessary for the asymptotic expansion to make sense, is valid 
when A is very large. Now we show that with the asmptotic expansion (3.10) and 
the relation (3.12) between E and d, the fixed point equations are satisfied to order 
c2 for all 1 5 m < M - 1. Substituting Equation (3.10) into Equation (3.6) yields 

~m = 1 - EM-m-l - 2(1- p - m )  (1 - A p m )  + 1 - p - m + 1  

where Rm is the residue for the mth equation. Eliminating A using the second root 
of Equation (3.11) yields 

R“ = p - m ( l  - E)(l  I EM--m--l ) = O(e’-”), m = 1,. . . , A4 - 2 . (3.13) 

Analogously, the residue €or the boundary condition at m = 0, Equation (3.5), 
is Ro = O(eM-’). Therefore, for all cases where M 2 3 (which is necessary 
for the discrete-variable approximation of the diffusion term), all the fixed point 
equations are satisfied by Equations (3.10) arid (3.12) up to order two, at least, 
in the expansion parameter e.  This analysis dso shows that the p r e ~ i o u s l y l ~ j ~ ~ )  
employed approximation, Equation (3.91, is approached in the limits E -+ 0 or 
M --+ 00, and m < M .  

Fixed points that are not uniform in space can also be found. For example, 
consider the class of oscillatory solutions with wavelength, A, equd to 26 (see 
Figure 2.b), 

g l =  -1 26 m-1 =1 Um+l , g 2 =  -1 u m - 1  - m > O ,  (3.14) 
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a. uniform solutions, X = 6 ,  for A > 0 

X 

b. oscillatory solutions 
X = 26, for d > 2 

91 ZE [d - 2 + > 0, 
g2 E [A - 2 - - ] / 2 d  < 0. 

c. oscillatory solutions 
X = 36, for A > f i  
hi G [d - 2 + J T Z ] / 2 d ,  
hz E [A - 2 - J m ] / 2 A  < 0, 
K3 E [d - 1 -+ J m ] / 2 A  > 0 ,  
j/4 E [d - 1 - d K 2 ] / 2 A .  

d. oscillatory solutions X = 46 

fi [A - 1 + d E +  2 d m l I 2 A  > 0,A > 1, 

0,A > 1, 

O,A > 6) 
O,A > A, 

Figure 2. Classes of fixed point solutions to the nonconveetive onc- 
dimensional case ignoring the effect of the boundary condition at z = L, m = M, 
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where we will ignore the effect of the boundary condition at m = M .  Substituting 
Equations (3.14) into Equation (3.6) yields 

(3.15) 

which can be solved simultaneously for g1 and 92, yielding the trivial and uniform 
solutions as before, as well as the two new roots, 

(3.16) 

Hence, the spatially oscillatory fixed points (3.14) exist only for A > 2, and even 
then always produce a negative density, Le., either gl < 0 or g2 < 0 (see Figure 2.b). 
Even though such fixed points have no physical significance, they are valid solutions 
from the mathematical point of view, as they can be achieved asymptotically from 
some initial conditions that may lie within their basins of attraction. In the limit 
A -+ 2, gl and g2  -+ 0, so that the X = 26 oscillatory solution can be considered as 
bifurcated from the trivial fixed point as shown in Figure 3. In the limit A 4 cy), 

gl 3 1 and g2 --+ 0 i.e., a steady state solution that oscillates in space between the 
two uniform-solution fixed points. 

Another class of spatially oscillatory fixed points is the X = 36 solutions. 
Repeating the same process as above, one obtains three quadratic equations which 
have eight solutions. These equations were solved analyticdly using the symbolic 
manipulator MACSYMA.14) Two of the eight solutions are the trivial and uniform 
fixed points. Hence, this class contains six fixed points, sunimarized in Table I, and 
schematically depicted in Figure 2.c, which are truly of wavelength 36. The behavior 
of this fixed point components, hl,  h2, h3, and hq, as a function of parcameter st is 
shown in the bifurcation diagram Figure 3. The X = 36 fixed points exist only €or 
A > A, and they differ from the X = 26 fixed points in that as A --+ &, hl and 
h2 4 (112 - I/&?) while h3 and h4 4 (1/2 - 1/2&). That is, the X = 36 solutions 
do not bifurcate from either one of the uniform fixed points as did the X = 26 fixed 
points. The X = 36 fixed points are similar to the X = 26 fixed points, however, in 
that for i = 1,. . . ,4, hi -+ the uniform fixed points 0 and 1 as A 4 00, and in that 
the oscillations always involve non-physical negative densities. This is clearly the 
case because hlhl 5 0 and h2h3 6 0 for all values of A. 

Of course, one can consider longer wavelengths indefinitely, since we have 
neglected the boundary conditions. As a last example, we calculated the X = 46 
fixed points using MACSYMA") and the results are summarized in Figure 2.d, 
Table 11, and Figure 4. For this case, there is a total of 16 fixed points, four of 
which are the two uniform fixed points, and the two X = 26 fixed points, leaving 
twelve truly X = 46 oscillatory solutions. These share two features with the above 
fixed points: each includes a negative, physically unacceptable density, and for 
A -+ 00, 2' = 1,. . . , 6 ,  f i  --+ 0 or 1 as shown in Figure 4. Also, four fixed points, the 
( f 3 ,  f 6 ,  f4,  f 6 )  sequence, exist only for A 2 &, and do not bifurcate from either one 
of the uniform fixed points, 0 or 1. Rather, f3(A) and f4(d) -+ gl(A) as A --f A, 
so that this member of the X = 46 class actually bifurcates from the positive branch 
of the X = 26 class as shown in Figure 5. 

( A  - 2) f d m  ( A  - 2) q= d m  
2A 7 g2 = 2d g1 = 
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Table I. 

Members of the Class of Spatially Oscillatory 
Fixed Points with Wavelength X = 35 

Table 11. 

Members of the Class of Spatially Oscillatory 
Fixed Points with Wavelength X = 45 

l u r n - l  

f4 

f 3  

fl 
f 5  

f 2  

f 5  

f 5  

f 5  

f6 

f G  

f G  
f6 

f 6  

f 6  

f 3  

f 4  

f 5  

f 2  
f 5  
fl 
f 5  

f 5  

f6 
f6 

f 3  

f4 

f 2  

f 5  
fl 
f 5  

f5 
f 5  

f6 

f G  

f6 

f 6  

f6 

f6 

f4 

f3 

f 5  

fl 
f 5  

f 5  

f 6  



16 

u
)
 

0
 

v1 
0

 
M
 

0
 

r4 
P

 
0
 

0
 

?
 

Y 
.- 

\ I $ 



17 

I I 

4 t i t I I I I I I I 

i I I 

t .c t I 

I I 

I
"

"
I

"
"

l
"

"
 



18 

The results presented here on fixed points for the one species map have 
concentrated on the actual calculation of their values, without really considering 
the two important questions of stability and the effect of the boundary conditions. 
Importance of these two questions follows from their impact on the observability of 
the oscillatory solutions. The procedure applied to the uniform solutions to ta.ke 
into account the effect of the boundary conditions may be extended to oscillatory 
fixed points as well. Initial indications are, however, that oscillatory solutions which 
yield negative densities are unstable and result in arbitrarily small densities that 
cause underflow errors on the computer. In this case, these solutions may still be 
useful in establishing a count for all 2M fixed points. 

3.2 PERIODIC SOLUTIONS 

such that 
A periodic solution of the iterative map (3.3) exists if there is some integer v > 0 

unrm, rn = 0 ,..., M ,  n 2 0 .  u rn - U n S u , n  ~ u =  (3.17) 

In this case, Yu'n is called a period-v solution of the map. Clearly, 'urn, the period- 
one solution i s  a fixed point as defined by Equation (3.4). In previous studies of 
this iterative map,*2913) the dynamics of only was considered, and period-2 and 
period-4, as well as chaotic patterns for this single quantity were obta.ined. These 
results had some unexpected and unexplained features, such as the discontinuities 
and "blips" in the amplitude of 2uo as a function of the parameter b E ( 0 ~ / 6 ~ ) . ~ ~ 3 ' ~ )  
We will show here that these are due to the evolution of the particular initial 
condition used in these studies12J3) to two different solution branches, both of the 
period-:! class. 

Now, we derive the equations for the period-2 class of solutions. For n = n + 1, 
Equation (3.3) becomes 

(3.18) 

where we defined the constant quantities K: zz 7 - 0 / b 2 ,  < = ~ a .  Replacing the LHSs 
of Equations (3.18) using Equation (3.17), and eliminating the (n+l)-level variables 
on the RHSs in terms of the n-level variables using Equation (3.3), we obtain,14) 
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ZUn,O = - 53(2,n,O 4 + 25y5 - 2x: + 1 ) ( ~ , 0 ) ~  

+ [416(2 2Un,1 - [(( - 2K + l)(( - 2x: + 2)](2u",0)2 

+ [ 2 P  - 4K:((5 - 2K: + 1) 2unJ + (5 - 2x: + 1)2] 2Un,0  

- 2K:S(2K: + 1)(2un,l)2 + 4K(5 - 2K: + 1)(2u"J) + 2 K 2  21Ln,2 , 

(3.19 b)  

and 

For M computational cells, Equations (3.19) represent a set of M fourth-order 
algebraic equations whose real solutions are period-2 solutions of the iterative 
maps. Solving this system analytically for any reasonable value of M is practically 
impossible. Therefore, as was done previously with the fixed points, we rely on 
numerical experiments to specify some classes of periodic solutions which simplify 
Equations (3.19) significantly to the point of making them solvable analytically, at 
least for 2un,0. 

By observing the behavior of unjm, for several values of the parameters in the 
problem, as a function of the iteration index n, for all mesh points m, one notices 
that the solution consists of a spatially oscillatory component with an almost fixed 
amplitude. The peaks and troughs of this component of the solution interchange 
with n giving rise to the periodic nature of the solution. In addition, there is 
a uniform component of the solution; one or more neighboring points having the 
same magnitude at each n. The oscillatory and uniform components of the solution 
are interspersed along the x-axis as depicted in Figure 6. The particular pattern, 
i.e., the position and width of the oscillatory and uniform components, that an 
initial point converges to depends on that initial point as well as the parameters in 
the problem. Hence, we immediately identify two classes of period-:! solutions which 
are easily dissociated from the large system of Equations (3.19) and are solved for 
2uo as a function of 1;: and 5. 
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X 

Figure 6. Sample period-2 solution for 0 5 m 5 SO, ru = 16.8, D = .002, and 
initial condition a 0 * O  = 3.1/3, uDym = 0, m > 0. 

The first class of period-2 solutions is characterized by the relations 

Z u ?  
.un,O = u n , l  ~ U n f 2 , 0  =L- Un+2,1 

? 

2 0 - n + l , O - u n + l , l  2 0 
u2 = u - # % , n > _ O .  

Substituting these relations into the last equation in (3-18) yields 

(3.20) 

(3.21) 

Solving these two equations simultaneously yields the two fixed points 'u0 = 0 and 
1 in addition to the two period-2 values of u, at m = 0, 

(3.22) 

Hence, periodic solutions in this class have a magnitude that is independent of ic, 
and exist only when the value of prarneter ( > 2. For 5 = 2, the two solutions 
2uo coincide with the fixed point ' u 0  = 1, so that this pcriod-2 solution seems to 
bifurcate from the uniform steady-state solution at 5 = 2 for any K. 

The second class of period-:! solutions is characterized by the relations 
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2 0 = n,O - n+l, l  = n+2,0 = Un+3,1 

2 0 I un+l,O - un,l  2 0 

u l - u  - u  9 

uz = - # u , , n 2 0 .  

Substituting these solutions into the last equation in (3.18) yields 

(3.23) 

2u; = % & ; { I  - 2K + [(l - " i ) }  + 2K 2u; , 
2.; = 2UY{ 1 - 2K + ((1 - " ; ) }  + 21c 2u; . 

(3.24) 

Again, solving these two equations simultaneously produces the two fixed points 
' u 0  = 0 and 1 in addition to the two period-2 values of u at nz = 0, 

The magnitude of the periodic solutions in this class depends on both C and K, in 
such a way that period-2 solutions of this type exist only in the shaded region of the 
(K, 5) plane shown in Figure 7, where we have also enforced the physical constraints 
K, 5 2 0. This figure clearly indicates that for any physical value of I C ( [ ) ,  there are 
infinitely many values of ((K) at which the period-2 second class solution exists, 
respectively. The magnitude of 2uo on the boundary of the period-2 region is 0 on 
the solid line portion, and 1 on the dashed portion, indicating that period-2 second 
class solutions bifurcate from the trivial (uniform) fixed point solution on the solid 
(dashed) boundary in the ( K ,  C )  plane. Figure 8 shows 2uo as a function of C for 
several values of IC; thc dashed curve represents the class 1 solution, Equation (3.22)) 
for all K, while the solid curves represent the class 2 solutions, Equation (3.25), for 
the indicated values of K. Note that at K: = 0, the period-2 class 2 solution coincides 
with the class 1 solution. On the other hand, Figure 9 presents second class 2uo 
as a function of X: for severd vdues of 5; first class 2uo is not a function of IC, 
therefore, it is not shown. The closed curves indicate that solutions in this class do 
not exist for indefinitely large values of K, as also clear from Figure 7; rather, for 
each [, this solution exists only for a finite range of K. Two additional, interesting 
facts immediately follow from Figure 9. First, for 5 < 2, the bifurcation of the 
fixed point into the periodic solution occurs at a positive value of K, so that both 
steady-state and periodic solutions can be observed for physical values of X: 2 0. In 
contrast, for all .(" > 2, the bifurcation point occurs at K < 0, so that only periodic 
solutions can be observed for physical values of K 2 0; this type of behavior has 
been computed numerically in Refs. 12 and 13. Second, for values of ,C > .5, one 
of the period-2 points is negative, while for all K < .5, both points far any C are 
positive. This behavior was not observed in previous studies12J3) because period 
doubling bifurcations, chaos, and divergence occured at much smaller values of IC 
than 0.5. 
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The analytic investigation of periodic solutions that is presented in this 
section is based completely on equality properties that are experimentally 
(i.e., computationally) observed which enabled us to dissociate two equations 
from the full system, Equations (3.19), whose simultaneous solution specifies 
certain classes of period-2 solutions. Obviously, there are many more classes 
of period-2 solutions satisfying other more complicated symmetry conditions, 
and resulting in larger systems of coupled algebraic equations, whose analytic 
solution is more difficult. However, by comparing the period-2 solution branches 
obtained here with those reported in Ref. 12, one finds that the initial condition 
used in that work results in asymptotic convergence to period-2 solutions of 
the second class in the majority of the parameter ranges considered. However, 
discontinuities and “blips” 12913) appearing, and not explained, in the bifurcation 
diagram actually correspond to asymptotic period-2 solutions that do not belong to 
either class considered here. These classes of period-:! solutions, as well as period-4 
solutions may be studied in the future with the aid of the symbolic manipulator 
MACSYMA.’*) Plots of the asymptotic state for 0 5 3: 5 10 at n and n + 1 for 
parameter values corresponding to these d iscont in~i t ies l~*~~)  are shown in Figure 10 
clearly justifying the above statement. 

3.3 NON-VANISHING CONVECTION 

With the present understanding of the non-convective case, now we turn our 
attention to the case of non-zero convection. Obviously, the effect of convection on 
the time-space evolution of the density of one species is that it superimposes a bulk 
motion of that species on its diffusive motion. This indeed has been observed in 
numerical experiments we performed using values of c = .25, .5, and .75. In some 
sense, c represents the speed of propagation of a signal (or density perturbation) 
in the complete absence of diffusion. Hence, for a battlefield of length L, a signal 
originating at one end reaches the other end in time T = L/c due to convection 
alone. 

Another important effect of convection is the way it alters the bifurcation 
diagram. To study this feature, we selected a few cases from the bifurcation 
diagrams in Ref. 3 which represent all possible steady state and periodic regimes, 
and calculated their time evolution using the non-zero convection values mentioned 
above. The nature of the asymptotic regime for each case, as well as for c = 0l2) 
is listed in Table 111. The results suggest that convection, in general, appears to 
increase the effective value of the diffusion coefficient. That is, regimes with non- 
zero convection at a given value of the diffusion coefficient produce asymptotic 
regimes of the same nature as those produced with zero convection and a larger 
value of the diffusion coefficient. Clearly, this is only a rough observation because 
we did not consider a sufficiently large number of points in parameter space, and 
because we compared only the general nature of the asymptotic regimes rather 
than the full temporal evolution. However, it is easy to see from the definitions 
of D$, Dl, and Dr, Equations (2.5), that a positive convection results in the 
values of these parameters larger or equal to their vdues when c = 0, the case of 
pure diffusion. In other words, for non-zero convection, Eq. (3.2) will have effective 
diffusion coefficients, the D’s, that are anisotropic (i.e., DG # a:), and larger in 
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Figure 10. Sample plots of u vs. 2 at two consecutive time steps, 
with parameter values corresponding to points surrounding discontinuities 
in Figure 4 ob Ref, 12. These plots clearly show that these discontinuities 
occur at parameter values that cause a change in the solution class (;.e., the 
symmetry relations at the left boundary). 
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magnitude than their counterparts in the same equation for c = 0. This, at least 
partially, explains the observations made from the results in Table 111. Moreover, 
these results suggest that the system is structurdy stable in the shape of the 
diffusion coefficient as a function of space. That is, perturbations in D ( z )  of the 
non-isotropic type described above in connection with the D’s, does not change the 
bifurcation diagram dramatically. 

Table III. 

Effect of Convection on the Temporal Behavior of 
Sample Cases Presented Previously in Refs. 12 and 13 

Case Q! D UO c=Ot  c=.25 c = .5 c = .75 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

12 
12 
15.32 
15.32 
16.8 
16.8 
16.8 
16.8 
19.2 
19.2 
19.2 
19.2 

.2 

.4 

.03 

.08 

.02 

.04 

.06 

.08 

.012 

.03 

.05 

.07 

.8333 
3333 
.761097 
.76 1097 
.738096 
.738096 
.738096 
.738096 
.708333 
.708333 
.708333 
.708333 

P-1 
chaotic 

P-1 
Pl 
P-1 
P-1 
P-1 
Pl 
P2 

chaotic 
Chaotic 
chaotic 

P-1 
chaotic 
PI Pl 
PI chaotic 
Pl chaotic 
P- 1 chaotic 

chaotic 
chaotic 

tFrom Refs. 12 and 13. 
* p  - n solution has period 2n; p - 0 is steady state 



4. THE DYNAMICS OF INTERACTING 
TWO-SPECIES SYSTEMS 

In this section, we investigate the dynamics of the two-species iterative map, 
Ecl. (2.6), with non-vanishing competitive interaction. Because of the very large 
amount of data generated in the process of evaluating the evolution of example 
cases, we equipped our computer program, CMAP1, that performs this function, 
with animation capability that utilizes DISSPIA library subroutines. This has the 
advantage of enabling us to visually observe the evolution of a battle for extended 
periods of time, i.e., large iteration numbers, in full spatial detail. It also has 
the disadvantage of making it  very difficult to report the results in an exhaustive 
manner; therefore, here we will present thc input paramctcrs, discuss the purpose 
of each calculation, and the specific features of the solution that we believe makes 
each case interesting. 

In order to simulate a battle between two military forces, we consider a 
battlefield of length L = 25 units, divided into 50 computational cells, each of 
width 6 = .5 units. The finite time increment is set to .125 units. The first military 
force, 2 ~ : ' ~ , n  2 0, 0 5 m 5 50, is the defender initially entrenched in one-fifth 
of the battlefield, 0 5 m _< 10, and moving forward only through the effect of 
diffusion hut no convection, c1 = 0 uniformly. The initial density of the defender is 
u" '~  = U1,O 2 rn 5 10, and 2 ~ ; ' ~  = 0, 10 < m 5 50. The second military force, 
u $ ' ~ ,  n 2 0,O 5 m _< 50, is the attacker approaching the defender at a uniform 
bulk speed of c2 f 0 from outside the battlefield so that initially the density of the 
attacker is 2 ~ : ' ~  == V2 # 0, m = 50, and u:'" = 0, 0 _< m < 50. With c2 < 0, 
the attacker moves into tlhe battlefield through the left boundary at L under the 
effect of both convection and diffusion. The boundary conditions imposed on both 
species were kept analogous to those used in Refs. 12 and 13; namely, 

dul/ds = 0, at 5 = 0, u l (L , t )  = 0 , 
u2(0,t )  = 0, du2/dx = 0, at z I= L . 

The volumetric external source i?r is set equal to zero for both species, relying on the 
boundary source represented by the boundary conditions to replenish the supply for 
each force. To simplify the investigation of the possible bifurcations, we reduced the 
number of independent interaction parameters by assuming the following relations 
among them, 

a';;; -p. .  - . 
2 2  - a, , 

a" '  = or"' r j a  = aij 7 (4.2) 1 2.7 

At this point, the set of independent parameters that can be adjusted to study 
the dynamical behavior of this battle model includes, for each species, the uniform 
magnitude of the diffusion coefficient, Di, the initial density parameter, Vi, the 
interaction coefficients, ai and a;j, and for the attacking force the convective 
speed, c2. In selecting values for these parameters, however, we tried to keep 
them consistent with values chosen previously at varioiis dynamic regimes for the 
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one species system as shown in Table 111. By choosing aijj = 0 = & j ,  one force 
will evolve as it would have in a one-species system in all regions where the other 
force has a vanishing density. Hence, in the approach stage of a battle preceding 
engagement of the two forces, they move toward one another in an uncoupled 
fashion. Only after engagement is the evolution of each force influenced by the 
existence of the other force. 

As a first example, we ran a symmetric (in the two species) low diEusion case, 
D1 = D2 = .05, with the attacker approaching at a speed of c2 = .75. We chose 
Ul = U2 = -8333, and a1 = a2 = 12, a 1 2  = a 2 1  = 12. [We noticed that increasing 
the “enemy” destruction rate, aij, i # j, to 15, for example, leads to unbounded 
solutions.] The noninteractive case for this battle leads to steady state solutions 
for both species at very large times. The “front” of each species progresses due to 
diffusion for species 1 , and combined diffusion-convection for species 2, unhindered 
until it reaches the opposite end of the battlefield where it is forced by the boundary 
condition to stop and reach a steady, almost uniform, distribution asymptotically 
in the iteration index, or time variable. 

The case with interaction was allowed to run for 240 time steps, i.e., 30 time 
units. Each species moves forward unhindered for 41 time steps, t == 5.125, at 
which time they engage halfway through the battlefield, x 11 12.5. Progress of both 
species then is halted for a few time steps then the attacking species overcomes the 
defender and starts pushkg it back very slowly, so that by the end of 80 steps, 
t = 10, the battle front is at x - 11. Two features that are interesting from the 
dynamical point of view result from introducing intraspecies interactions. First is 
the onset of oscillations, both in space and time, in the two species, but which are 
far more pronounced in the defender. These oscillations are larger new the battle 
front and get smaller as one moves toward the edges of the battlefield. Second is 
the appearance of negative densities, which are very small in magnitude and are of 
oscillatory nature, in spite of the imposed condition a i j j  = 0 = /?.. z J ,  i # j .  The 
negative densities for each species occurs immediately outside the battle front for 
that species, where the density is small to start with and very small losses can be 
larger than the local density. 

As time passes, the attacker continues to push the defender backwards, 
continuously depleting the latter’s total population, so that by the end of 240 time 
steps, t = 30, the defender is back to x N 6, close to where it originally started at 
t = 0, down from a maximum at the time of engagement of z N 12.5. 

As a variation on this battle, we reduced the destruction rate of the defender 
by the attacking force by one half, i.e., all2 = a121 = 6, thus giving the defender a 
factor of two advantage in the enemy destruction rate over the attacker. This case 
was allowed to run for 160 time steps, Le., until t = 20. Of course, the approach stage 
remained unchanged, and the two species engaged at z 21 12.5, t E 5,125. Then, 
the defender, species 1, was able to stop the advance of the attacker, species 2, 
and pushed it back slowly so that at t = 20, the battle front occurred at z N 17. 
This behavior, however, should not be confused with enemy pursuit, which may be 
desirable to include in future models, because here the advance of the defender is of 
pure diffusive nature. Pursuit, on the other hand, should be based on a deliberate 
decision at a given point during the progi-ess of the battle to change the convective 
speed of the species to a nonzero value. The previous remarks on the onset of 
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oscillations in the densities of the two species, and on the occurrence of negative 
densities of small magnitude are true here also. 

One final variation on this sample battle is an intermediate value of the defender 
destruction rate, 0 1 2  = 9. Everything else left unchanged this case produced a 
stalemate, i.e., a nontrivial steady state, whereby the battle front stayed at the same 
point for many time steps. This result gives an explicit example of the practical 
usefulness of this research effort. A commander of a friendly military force that is 
subject to battle with an enemy (attacking or defending) can estimate the necessary 
improvement in his army’s destructive power that will enable him to win the battle. 
That is, if he is defending, he has to make sure his army can destroy the enemy at 
a rate larger than 4/3 the enemy’s rate of destroying his force, and vice versa. 

At present, a more flexible variant of the program has been developed15) on 
which an exhaustive parametric study will be conducted. A parallelized version of 
the same program is also completed16) and preliminary tests show a reduction of 
the CPU time by a factor of 20-25 to less than one second. The full exploitation of 
these programs and the interpretation of their results will be reported in a future 
publication. 
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