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Hypercube Simulation on a Local Area Netwmk 

T. H .  Dwigan 

Mathematical Sciences Section 
Engineering Physics and Mathematics Division 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee 3783 1 

ABSTRACT 

We describe the structure and use of a distributed computing 
environment based on a hypercube programming model that runs on most 
UNIX* systems with TCP/IP network support. The package uses a library 
of message-passing routines and multiple user processes, written in either 
C or FORTRAN, to provide an environment for the development and test- 
ing of algorithms for hypercube parallel processors simulated by a collec- 
tion of computers on a local area network. Each node of the simulated 
hypercube is a workstation on the network. The simulator produces a 
trice file that can be used for debugging, performance analysis, or graphi- 
cal display. 

1. Introduction. 
This report describes a distributed computing environment based on a hypercube 

programming model that will run on most UNIX-TCP/IP computing systems. The pack- 
age has been run on lJNLX 4.x BSD and derivative systems (including DEC's Ultrix, 
Sequent Dynix, Sun, and IBM RT). The package provides a programming library that 
can be used to develop distributed applications in either C or FORTRAN. The program- 
mer can use one or more computers on a TCP/'/I[P network to implement a parallel appli- 
cation. 

The package is a supplement to our interpretive sirnulator [ 11 and is derived from 
our portable hypercube simulator mpsim [2]. The distributed computing environment 
described in this report provides hypercube simulation and permits multiple computers 
on a network to work concurrently on an application and provide real speedups from 
parallel execution. The programming model is that of a message-passing, distributed- 
memory multiprocessor, based on the Intel iPSCY1 hypercube. Application codes written 
to run under the package are compatible with the iPSC/1 and could be easily modified to 
run on other hypercubes or other message-passing multiprocessors. 

'UhXX is a trademark of AT&T. 
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The availability of inexpensive, high-performance computers connected by high- 
speed networks was the primary motivation for the development of this distributed corn- 
puting package. The distributed environment permits the hypercube model to be 
extended to include machines with large virtual memory, graphics, and large file storage. 
The package provides a means to solve very large, computationally intensive problems 
using the growing corporate resource of high-performance workstations and other com- 
puters connected by high-speed local area networks. As a hypercube simulator, the pack- 
age permits us to test and develop hypercube applications for the next generation of 
hypercubes. The trace facility and other debugging aids available with the package can 
provide valuable debugging and performance information often not available on real 
hypercubes. For those who cannot afford a hypercube, the package provides an environ- 
ment to test and develop hypercube applications. 

The remainder of the report desc rhs  how to build hypercube programs with the 
distributed computing package. Section 2 is a guide to the use of the package with exam- 
ples and sample sessions for both C and FORTRAN. Section 3 summarizes the imple- 
mentation of the package, and section 4 analyzes its performance. 

2. User's Guide 
The simulator consists of a controlling process, dcube, and one or more application 

processes. A hypercube application typically consists of a host process and one or more 
hypercube node processes. The reader is referred to [7] for a description of constructing 
hypercube applications using the Intel i P W l  hypercube and to [4] and [9] for a survey 
of hypercube applications. An application program, in C or FORTRAN, is linked with a 
simulator library, libdcube.a, which provides the hypercube subroutines and the interface 
routines to dcube. Commands to dcube control the loading and execution of processes, 
host and node programs, and enable event tracing. The commands are modeled after the 
commands used to control the Intel iPSC/1 hypercube from the host processor and the 
syntax used by the Intel simulator [6]. The commands and libraiy routines are described 
in the following two sections, then sample programs and terminal sessions are presented. 

2.1. Command interface. 

A hypercube application consists of a host program and one or more node programs. 
For the simulator, the host and node programis are linked with 1ibdcube.a and then exe- 
cuted under the control of the program dcube with assistance from the program 
rmtdcube, There are seven commands available under dcuhe: 

c [losfile] 
h [-h remotejfile 
1 [-n node] [-c dim] [-h remote] file 

t ion1 
4 
u file 

S 
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The host program is identified and loaded with the h command. There can be only 
one host process, and it will be the program identified by the last h command. The node 
programs are loaded with the I command. The dimension of the hypercube, dim, to be 
simulated must be specified. The maximum number of subprocesses that a particular 
UNIX implementation allows determines the maximum dimension when using one 
machine to perform the application. Typically, the maximum dimension is three or four, 
providing ten or eighteen processes (including the host program and dcube). Using mul- 
tiple machines up to 32 processes may be used. Optionally, you may explicitly specify 
the node number, -n node, and machine, -h remote, that a node program is to occupy. If 
the options are not used, then 2dim node processes are loaded on the current machine, and 
the same program will be running on each node. Explicitly specifying the node number 
permits different programs to mn on different nodes. If a host name is not specified with 
the -h option, then all of the programs will be run on the current machine. It is recom- 
mended that the host program run on the current machine to facilitate terminal input- 
output. See the manual entry in Appendix A for sample command sequences. When 
using multiple machines, it may be necessary to copy the node programs to the appropri- 
ate machines if a network file system is not available. The support program rrntdcube 
must be executable on every machine as well, and the machine must support the rsh 
facility. 

The file on which application-generated messages (sysfog()) are saved and the simu- 
lator events logged is specified with the c command. Tf the file name specified is stclout 
then output will be directed to the controlling terminal. The tracing of simulator events, 
message send’s and receive’s, is enabled with t on. The default trace file is SIMLQG. 
After the host and node progrtms have been specified, simulation is started with the s 
command. One may place a sequence of commands in a comiiiand file, and then use the 
u command to execute the command file. 

2.2. Simulator subroutines 
The message-passing conventions are modeled on those used on the Intel iPSC/l 

hypercube. Appendix A summarizes these subroutines and supplemental information is 
available from [7 ] .  The subroutines are described using the syntax of C; corresponding 
subroutines exist for FORTRAN. Programs written for the simulator should port to the 
iPSC/l hypercube with no source code changes. To send or receive messages the pro- 
gram must first establish one or more communication channels with copen. The argu- 
ment to copen is an arbitrary integer, sometimes called the process id*. Copen returns 
an integer value which can be regarded as a file descriptor in C or a FORTRAN logical 
unit number. The syntax used to send a message is 

setidw(ci, type, rnesg, size, node, pid) 

where ci is the channel identifier established with the cupen. Type is an arbitrary integer 

* On the Intel cube, it is possible to have more than one  task running on a node processor. The 
process id permits the sending task to sclect a particular process on the node. 
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which can be used by the application to indicate different kinds of messages. Mesg is 
the address of size bytes that will be sent to the task with id node on the channel that 
node has opened with the process id of pid. Nodes are numbered from 0 to 2dim-l, and 
the host has an id of 32768. There is a corresponding subroutine sendmsg with the same 
arguments that the Intel host is required to use. 

The syntax for receiving a message (or waiting for a message to arrive) is 

recvw(ci, type, mesg, size, &length, &node, &pid) 

When a message Of the specified type arrives it is stored starting at mesg up to a max- 
imum of size bytes. Length is set to the actual number of bytes sent, and node and pid 
are set to the node number and process id of the sending process. The corresponding host 
version is 

recvmsg(ci, &type, mesg, size, &length, &node, &pid) 

Note that the host version does not distinguish on type; but rather a message of any type 
is received, and the value of type is set. Both recvw and recvrnsg are synchronous 
(blocking); that is, the program is suspended until a message arrives. 

Asynchronous versions of sendw and recvw, called send and recv, are supported on 
the nodes for more complex message management. The status function is provided to 
indicate whether the transmission on the given channel (the argument to status) has been 
completed. Completion of send does not mean the message has been received, only that 
the mesg area has been copied into the operating system area. Completion of a recv 
indicates that a message has a,rrived and that the arguments to recv have been set. Test- 
ing for the completion of a recv must be done with a “busy wait.” On the Intel hyper- 
cube, the recommended sequence usesJick(). Flick permits other processes on a node to 
run, but on the simulator the function has no effect because the simulator supports only 
one process per node. A code fragment illustrating a proper “busy wait” follows: 

recv(ci, type, mesg, size, &lrh, &node, &pid); 
while(status(ci)) pick(); 

By opening several channels, one can have multiple receives outstanding. The probe(ci, 
type) permits the program to see if a message of a given type is in the receive queue. 
Probe returns the length of the message if one is queued; otherwise -1 is returned. A 
recv must still be issued to retrieve the message. 

The host and node programs can write intermediate results or debugging informa- 
tion into the trace file supported by the simulator using sL.slog(pid,message). The charac- 
ter string message will be appended to the trace file along with value of the integer yid. 

Figure 1 illustrates the use of some of the simulator routines in a contrived example. 
The program, written in C, calculates the product of a matrix (matrix) and a vector (vec- 
tor) and prints the resulting vector (result). The result is calculated in parallel by 
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creating processes to perform the vector products. The host process (iph.c) issues a 
copen, then sends to each process a message of type 1 containing a row of the matrix and 
a message of type 2 containing the vector. Then it waits for each process to send back 
the resulting inner product. 

/ *  iph.c vector matrix(transpose) inner product using r n e s s d g e s  */ 
#include <Stdl0 .h> 
#define DIM 4 
int vector[DIMl = (2,3,1,4); 
int matrix[DIMl [DIM] = { 1,2,3,4, 2,3,1,0, 3 , 3 , 1 , 2 ,  4,3,2,1 };  
int r e s u l t  [DIM] ; 
main() / *  h o s t  task * /  
t 

int d,i,val, type,lth,node,pjd; 

d = copen(l5); 
for (i=O; i<DIM; i++) { / *  start and send data to each node * /  

sendmsg(d,l,matrix[i],sizeof (matrix[il) s i , 1 5 ) ;  
sendmsg(d, 2,vector, sizeof (vector), i ,  15) ; 

} 
i=D IN; 
while(i--) { / *  wait for results * /  

recvmsg(d, &type, &Val, sizeof(irit), & l t h ,  &node, cpid) ; 
result [node] = Val; 

1 

syslog(3,"a host message"); 
for(i=O;i<DIM;it+) printf ('I %d",result [il) : 
printf(" (should be 27 14 24 2 3 ) " ) :  

} 

/ *  ipn.c node * /  
#define DIM 4 
main ( )  

/ *  do inner product of two vectors * /  
int vl[DIM], v2[DIM], i, s u m ,  d, me, node,pid,lth; 

me-mynode ( ) ; 
d = copen (15) ; 
recvw(d,  I, vl, sizeof (vl) , & l t h ,  &node, &pid) ; 
recvw (d ,2 ,  v2,  sizeof (v2), &lth, &node, &pid)  ; 
sum=O; 
for(i=O;i< ( l t h /  slzeof(int));i++) sum t= vl[il v2[il; 
sendw(d,3, &sum,sizeof (int) ,node,pid); 

Figure 1. C host and node programs for matrix-vector product. 

The node process ipn.c issues a copen and awaits a message of type 1 containing a 
row of the matrix, then it awaits a message of type 2 containing the vector. The inner 
product of the two vectors is calculated, and the result sent back to the host program. 
Additional sample programs are included with the simulator distribution. 
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2.3. Trace file and post-processors 

The simulator can provide extensive debugging and performance information if 
tracing is enabled with the t on command to dcuhe. The cfikename command may be 
used to specify a trace file. If the file name is stdout then the trace output is directed to 
stdout and thus may be viewed directly on the terminal as the program runs. 

One line is written to the trace file for each simulator event, such as process initia- 
tion, process termination, sending a message, or message arrival. Figure 2 is an excerpt 
from a trace file. Each entry is time-stamped. The trace file entry for a send or recv 
includes the node id (node) of the originator along with message type, address, and size 
and destination (or sender) id. The programmer may include his own data in the trace 
file with syslog, which writes an integer @id) and a character string to the trace file. The 
crzt entries indicate the number of processors active at the given time. The active and 
waiting processors can be deduced from the “waking” and “blocking” substrings of a 
trace entry. In practice, the trace file can grow quite rapidly, so discretion is advised. 

recvw c l o c k  2 1 0  node  1 pid 15  t y p e  1 l t h  1 6  b l o c k i n g  1 
c n t  3 c l o c k  2 1 0  
r ecvw c l o c k  230 node  2 p i d  1 5  t y p e  1 l t h  1 6  b l o c k i n g  2 
c n t  2 c l o c k  230 
r ecvw c l o c k  250 node  0 p id  1 5  t y p e  1 l t h  1 6  b l o c k i n g  0 
c n t  1 c l o c k  250 
s e n d  c l o c k  270 node  32768 f p i d  15 t o  0 p i d  15  t y p e  1 l t h  1 6  wak ing  0 
c n t  2 c l o c k  270 
s e n d  c l o c k  300 node  32768 f p i d  15 t o  0 p i d  15 t y p e  2 l t h  1 6  
r ecvw c l o c k  320 node  0 p i d  15 t y p e  2 l t h  1 6  from 32768 
s e n d  c l o c k  350 node  32768 f p i d  1 5  to 1 pid 1 5  t y p e  1 l t h  1 6  wak ing  1 
c n t  3 c l o c k  35G 
send c l o c k  370 node  0 f p i d  15 t o  32768 p i d  15 t y p e  3 l t h  4 
r e c v w  c l o c k  6 6 0  node  32768  p i d  1 5  type -1 l t h  4 f r o m  1 
t e x i t  node  3 c l o c k  690 
c n t  1 c l o c k  690 
r ecvw c l o c k  720 node  32768 p i d  15 t y p e  -1 l t h  4 f r o m  3 
s y s l o g  c l o c k  750 node  32768 i d  3 i x s g  a h o s t  message  

Figure 2. Tracefile excerpt. 

The raw trace file can be a very useful debugging aid (see §2.6), but trace files are 
usually interpreted by post-processors to give performance summaries. Tabular sum- 
maries of sends and receives and processor utilization can be displayed with the nstats 
command. A sample output of nstats is part of the sample session in Figure 5 .  Two 
post-processors, ccplot and trace], produce graphical output suitable for use by the 
UNIX graph command. For example, 

ccplot tracefile f graph -b f plot -T4010 

would plor processor utilization over time on a Tektronix 4010 graphics terminal. Ccplot 
and tracel provide more meaningful data when run with the interpretive simulator [ 13. 
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s u n %  dbld iph 
sun% dbld ipn 
s u n %  cat i p . i n  
h Fph 
1 -c 2 
1 -n 0 -h m t h s u n  i p n  
1 -n 1 -h c r f s u n  i p n  
1 -n 2 -h yhesun i p n  
1 -n 3 -h puwsun i p n  
s u n %  dcube 

d c u b e  v1.0 7 / 2 3 / 8 7  

Icube> u i p . m  

d c u b e >  t on 

dcube> s 
d c u b e  s t a r t i n g  r e r n o t e s  . . . . . s t a r t e d .  

d i m e n s i o n  2 cube 

trace and logging  on t o  SIMLOG 

2 7  1 4  24 2 3  (should be 27  1 4  24 2 3 )  
d c u b e  e x i t i n g  

sun% ns ta t s  SIMLOG 
node  stdrt e n d  d u r a t i o n  busy u t i l i z  s e n d s  

0 40 1 0 0  60 60 100% 1 
1 4 0  8 0  40 4 0  100% 1 
2 40 1 0 0  60 4 0  67% 1 
3 40 1 2 0  8 0  60 75% 1 

HOST 20  12 0 1 0 0  100 100% a 

Noda l  u t i l i z a t i o n  85% N o d a l + h o s t  u t i l i z a t i o n  88% s e n d s  12 r e c v s  1 2  
Gross  u t i l i z a t i o n  6 0 %  

T o t a l  messages 1 2  1 4 4  b y t e s  

l t h  
8 
16 
32 
6 4  

256 
5 1 2  

1 0 2 4  
2 0 4 8  
4 0 9 6  
8192 
16000 

hops 
-1 
0 
1 
2 
3 
4 
5 
6 

1 2 8  

c o u n t  b y t e s  
4 3 3 %  16 
0 0 %  0 
8 67% 128 
0 0% 0 
0 0% 0 
0 0 %  0 
0 0 %  0 
0 0% 0 
0 0% 0 
0 0% 0 
0 0 %  0 
0 0% 0 

c o u n t  
1 2  100% 
0 0% 
0 0 %  
0 0 %  
0 0 %  
0 0% 
0 0% 
0 0% 

11% 
0% 

8 9% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0% 
0 %  

1 4 4  
0 
0 
0 
0 
0 
0 

0 

b y t e s  
100% 
0% 
0 %  
0 %  
0% 
0% 
0% 
0% 

recvs 
4 
2 
2 
2 
2 

Figure 3. Sample sintufator sessionfbr C 
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2.4. Sample session 

Figure 3 is a transcript of a terminal session illustrating how one builds simulator 
programs in C and invokes post-processors. The files used are part of the simulator dis- 
tribution tape. The actual location of these files is determined by where the simulator 
was installed at a given site. The files iph.c and ipn.c are the vector-matrix programs 
described in 52.2. The script dbld is used to cotnpile the host and node programs and 
link them with the simulator library 1ibdcube.a. Typical usage is dbldfile where .c is 
assumed as the extension tofile. The executables iph and ipn produced by dbld are run 
by dcube using a command file ip.in and the resulting vector is printed. It is assumed 
that the executables have been copied to the appropriate network nodes or are accessible 
by a network file system. The trace file is analyzed by nstats, and a summary of proces- 
sor utilization and message counts is reported. 

c iphf.f host 
implicit integer ( a - z )  

c do simple inner product with snd rcv 
integer matrix(4,4) ,vector (4), 
data matrix /1,2, 3,4,2,3,1,0,3,3,1.2,4,3,2,1/ 
data vector /2,3,1,4/ 

result (4) 

d = copen(l5) 
do 10 i=1,4 

call sendrnsg(d, l,mat.rix(l,i), 16, i-1,15) 
call sendmsg(d,2,vector,l6, i-1,15) 

10 continue 
do 20 i = 1 , 4  

call recvmsq(d, itype,val, 4,1th,node,pid) 
rfsult [nodetl) = val 

20 continue 
write ( * ,  * )  result 
end 

c ipnf.f node 

c multiply twg vectors 
implicit integer (a-z) 

integer v1(4), v2(4) 

d = copen(i5) 
call recvw(d, l,vl, 16, lth,nodc,pid) 
call recvw(d,2,v2,16, Ith,node,pid) 
sun? = 0 
do 10 i-i,4 

call sendw(d,3, sumr4,node,pid) 
end 

10 sum --= sum + vl(i) * v2(i) 

Figure 4. FORTRAN prograin for matrix-vector producr. 

2 5  FORTRAN interface 
The simulator subroutines are available to the FORTRAN programmer as well. 

Figure 4 illastrates some of the simulator FORTRAN subroutines using the sample 
described in 92.2. The program calculates the inner product of a matrix (matrix) with a 
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vector (vector) and prints the resulting vector (result). The result is calculated in parallel 
by creating processes to perform the vector products. The host process (iphjfj) issues a 
copen and sends a message of type 1 containing a column of the matrix and a message of 
type 2 containing the vector to each process. Then it waits for each process to send back 
the resulting inner product. 

The node process ipnfjissues a copen and awaits a message of type 1 containing a 
column of the matrix, then it awaits a message of type 2 containing a vector. The inner 
product of these two vectors is calculated and the result sent back to the host program. 
Several simulator functions return values of type INTEGER but do not follow the FQR- 
TRAN default naming convention, so these functions (copen, sfuutm, probe, cubedim, 
clock) must be declared as INTEGER. 

Figure 5 is a transcript of a terminal session illustrating how one builds FORTRAN 
simulator programs and invokes post-processors. The files used are part of the simulator 
distribution tape. The file i p f k f  is the matrix-vector host program described above. The 
script dfbld is used to compile the host and node programs and link them to the simulator 
library libdcube.a, using a command like dfbldfile, where :f is assumed as the extension 
tofile. The executables iphf and ipnf produced by clfbld are run by dcube using the com- 
mand file ipf.in and the resulting vector is printed. It  is assumed that the executables 
have been copied to the appropriate network nodes or are accessible by a network file 
system. The trace file is analyzed by nstuts and a summary of processor utilization and 
message counts is reported. 



- 10- 

s u n %  dfbld iphf  
i p h f .  f : 
M A I N  : 
s u n %  dfbld ipnf 
i p n f .  f : 

MAIN : 
s u n %  cat i p f  . i n  
h i p h f  
1 -c 2 
1 -n 0 -h tiithsun i p n f  
1 -n 1 -h c r f s u n  i p n f  
1 -n 2 -h y h e s u n  i p n f  
1 -n 3 -h puwsun i p n f  
s u n %  dcube 

d c u b e  v1.0 7 / 2 3 / 8 7  
d c u b e >  u ipf.in 

d c u b e >  t on 

d c u b e >  6 

d c u b e  s t a r t i n g  r e m o t e s  . . . . . s t a r t e d .  

d i m e n s i o n  2 c u b e  

t r a c e  a n d  l o g g i n g  on  t o  SIMLOG 

21 14 24 23 

s u n %  nstats SIMLOG 

n o d e  s t a r t  e n d  d u r a t i o n  busy utj.1j.z s e n d s  recvs 
HOST 2 0  420 400 400 100% 8 4 

0 40 260 220 220 100% 1 2 
1 40 300 260 100 38% 1 2 
2 40 300 260 100 38% 1 2 
3 40 3 0 0  260 80 31% 1 2 

d c u b e  e x i t i n g  

Nodal u t i l i z a t i o n  52% N o d a l + h o s t  u t i l i z a t i o n  62% s e n d s  12 recvs 12 
Gross u t i l i z a t i o n  45% 

T o t a l  messages 12 144 b y t e s  
l t h  

8 
16 
32 
64 

128 
25 6 
512 
1024 
2048 
4096 
8192 
16000 

h o p s  

-1 
0 
1 
2 
3 
4 
5 
6 

c o u n t  
4 
0 
8 
0 
0 
0 
0 
0 
0 
0 
0 
0 

b y t e s  
33% 16 11% 
0% 0 0% 
61% 128 89% 
0% 0 0% 
0% 0 0% 
0% 0 0% 
0% 0 0% 
0% 0 0% 
0% 0 0% 
0% 0 0% 
0% 0 0% 
0% 0 0% 

c o u n t  
12 100% 
0 0% 
0 C %  

0 0% 
0 C %  

0 2% 
0 0% 
D 0% 

b y t e s  
144 100% 

0 0% 
0 0% 
0 0% 
0 0% 
0 0% 
0 0% 
0 0% 

Figure 5. Sample FORTRAN session. 
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2.6. Debugging 

The simulator provides a number of aids for discovering bugs in a parallel applica- 
tion. As a general rule, the initial implementation of an application should be kept sim- 
ple, deferring optimizations for speed or storage savings until later. The program should 
be written so that it can run with an arbitrary number of nodes and then tested with just a 
few, initially on one machine. This will reduce the size of the trace file, as well as any 
debugging output. If possible, the message-passing logic of the application should be 
isolated and tested. 

The trace file provides a wealth of information when things go wrong. Often syn- 
chronization problems arise from messages arriving in an unanticipated order, The trace 
file shows who is sending what to whom and when. Synchronization problems can be 
reduced by using different “type” fields in the send and recv calls. Distinct message 
types also make following the program sequence in the trace file easier. Use of sysfog to 
note different phases of the application also aids in reading the trace file. Messages are 
sometimes not received because the process-id in the send does not match the process-id 
used by the receiving task in its copen. Message sizes in the trace file should also be 
checked. Sometimes a program is changed to send different data, but the user fails to 
adjust the message size in the send or TWV.  Failure to specify proper lengths in recv can 
have fatal results, since other variables in the program may be over-written. In C, care 
must be taken in specifying addresses of variables, using “&” where required. 

2.7. Compatibility with the Intel iPSC/l hypercube 

Dcube provides both an environment for developing distributed applications and a 
simulation of the Intel iPSC/l hypercube. The simulation is sufficiently close to the 
actual iPSC/l programming environment that, in most cases, no changes to the source 
code are required. Our initial algorithm design and program development for message- 
passing architectures were done on simulators. We then acquired an Intel iPSC/1 d6 
hypercube, and the simulator was modified to utilize calling sequences of the Intel cube 
[7 ] .  Even with access to a real message-passing machine, simulators still are useful tools 
in program development and algorithm analysis for the following reasons. First, the 
simulator is presently better instrumented than the iPSC/1 hypercube for providing 
debugging information and performance data (trace files, plots, processor utilization). 
Second, the simulator as implemented with a collection of workstations runs faster than 
the real cube for some programs (see section 4). 

Developing a program to run correctly on both dcuhe and the Intel iPSC/l does 
require some care. The iPSC/1 is based on the Intel 80286 CPU. Tf the machines used 
by dcithe have a different architecture then the source code inay have to bc modified 
when moving from the simulator to the iPSC/l hypercube. For example, the default 
word size for a VAX or Sun is four bytes, but it is only two bytes for the iPSC/l and its 
host. Thus the default precision for int in C and INTEGER in FORTRAN is, different for 
the two machines. For arguments to simulator subroutines, one may just declare the 
arguments as int or INTEGER and the calls should be comp:itible between the simulator 
(which uses four-byte arguments) and the iPSC/1 (which uses two bytes). However, 
other areas of the user’s code may give incorrect results because of the different word 
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size, 

A distributed collection of machines i s  not a true simulation of the Intel iPSC/I for a 
number of reasons. There may be only one process per node on the simulator. The 
message-passing delays do not model the behavior of a hypercube network. The sirnula- 
tor does not account for message delays induced by traffic from other nodes nor does it 
account for compute delays induced by message routing. Nevertheless, dcube provides a 
useful and reayonably accurate predictor of actual cube performance and is a powerful 
tool for performance analysis and debugging, 

3. Implement a t' ion. 

Dc~ibe is based on the portable hypercube simulator, mpsim [2]. The distributed comput- 
ing package consists of a controlling program, dcube, a support process, rmtdcube, and 
libdcubea, a run-time library for the user's application processes, host and node pro- 
grams. The library and control programs are written in C, and the library supports both C 
and FORTRAN. The implementation uses standard IJNIX system calls and TCP/lY 
socket library routines. All message passing among the application processes is handled 
by dcube. The application processes do not communicate directly with each other. 

The user identifies the application processes to dcube and starts the distributed com- 
putation. Dcube uses rsh to invoke rmtdcube on the participating machines. Each 
rmtdcube opens a TCP/IP socket with dcube and then starts an application process with 
execl(). Dcube maintains a queue of processes awaiting messages and a queue. of mes- 
sages to be delivered and manages the trace file. Dcube exits when all application 
processes have terminated. 

The application processes are linked with the simulator library, 1ibdcube.a. The 
library includes FORTRAN interface routines to translate FORTRAN argument passing 
to C conventions. The library translates the hypercube subroutine calls to message 
exchanges with dcube. The application processes are spawned from rmtdcube and inherit 
the socket file descriptor for the controlling task dcuhe. Messages are transferred 
between the application processes through the dcube process using the TCP/IP socket. If 
an application is not ready to receive a message, the message is queued by dcube until it 
is requestcd. If an application requests a message that has not yet arrived, the application 
process is blocked on the TCP/IP socket read() request to dcube. Since application mes- 
sages must pass through dcube, there is some loss of performance, but such an imple- 
mentation simplifies message queueing, does not require an application to furward mes- 
sages, and provides a central point for tracing the progress of the parallel application. 

4. Performance. 

Table 1 compares the relative computational and message-passing performance of 
our various sirnulators with that of the iPSC/l hypercube for a Cholesky matrix factoriza- 
tion. A matrix of size 128x128 is factored on four nodes and timed on an Intel iPSC/l 
hypercube arid 011 several machines using various simulators. Smpsim is the shared- 
memory version of nzpsim and performs the factorization on four processors of the 
Sequent in approximately the same time as the Intel iPSC/l hypercube. Ppsim is an 
interpretive simulator [ 11 that provides instruction-level trace inforniation in asp-mode. 
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Cholesky factorization time 4 

Intel iPSC/l 
smpsim (Sequent B8000) 
dciibe (5 Sun 3/50) 
ppsim (Vax 780) 
ppsim (Sun 3/50) 
ppsim (Sequent BSOOO) 
dciibe (Sequent B8000) 
dcube (5 IBM RTs) 
rnpsim (Sun 3/50) 
mpsim (Sequent BSOOO) 
mpsim (Vax 780) 
mpsim (Intel 310) 
ppsim-aspp (Vax 780) 
ppsim-aspp (Sequent BSOOO) 
ppsim-aspp (Sun 3/50) 

econds) 
9 
9 

17 
17 
18 
25 
36 
44 
44 
54 

120 
157 

1627 
2354 
2730 

Table 1. Hypercube and simulator perjmnance. 
Figure 6 compares the message-passing performance of dcuhe and the Intel iPSC/l 

hypercube to our various simulators run on various computers. The figure shows the data 
rate for sending a message between two adjacent nodes over a range of message sizes. 

Empirically for most hypercubes, the communication time for a one-hop message is 
a linear function of the size of the message 231. That is, the time T to transmit a one-hop 
message of length N is 

where a represents a fixed startup overhead and p is the incremental transmission time 
per byte. Table 2 shows the startup and transmission time coefficients that were calcu- 
lated from a least-squares f i t  of the echo data for single-hop messages for several hyper- 
cubes [31 and dcube. The large startup time for the dcube package reflects the high over- 
head of TCP/IP compared to the minimal protocols used on most hypercubes. Forward- 
ing all messages through the dciibe task further degrades communication performance. 

Table 2. hast-squares estimate o j  communication coefficients. 
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Figure 6. Simulator and hypercube message-passing perJormance. 

Table 3 compares the Intel iPSC/l and dcube implemented on a collection of Sun 
3/50 workstations with respect to several metrics, including Cholesky factorization, 
numerical integration, computational speed, and communication speed. The Cholesky 
factorization is relatively fine grained and communication intensive, whereas the numeri- 
cal integration is comer grained and much less communication intensive. The large 
communication-to-computation ratio of the dcube packase indicates that it is better 
suited to applications with heavy computation between message exchanges. 

5. Future work 

Although meeting the initial objectives, the computing environment provided by 
dcube is far from ideal. Message-passing performance could be improved by permitting 
direct process-to-process communication, rather than passing all messages through the 
dcube process; the trace file facility would be lost, but the user could still use sysfog() for 
debugging. Communication could be further enhanced by taking advantage of the broad- 
cast nature of Ethernet and token rings. Providing broadcast would require a protocol 
other the TCP, so further study of underlying protocols is warranted. 
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Metric 
Choles ky(4) (sec) 
Cholesky(8) (sec) 
Integration@) (sec) 
Integration( 16) (sec) 
Megaflops 
Kilobytes/sec 
8 byte comm. (ps) 
8 byte multiply(ps) 
comm./comp. 

iPSC/1 
9 
6 

26 
13 

0.04 
504 

1,120 
43 
26 

Sun 
20 
16 
9 
5 

0.16 
46 

12,200 
17 

718 

Table 3. Hypercube and dcube performance on Sun workstations. 

The present implementation works only with a collection of homogeneous architec- 
tures; there is no provision for converting data to account for differing data representa- 
tions (byte order, floating point representation, etc.) among differing architecures. A net- 
work file system simplifies program and data distribution, but heterogeneous architec- 
tures would still dictate multiple copies of the executables. The distributed program 
models provided by Sun (RPC/XDR) and Apollo (NCS) address these problems. The 
model is best implemented within a collection of machines under one administration, 
since issues of cost-recovery, “using someone else’s machine,” and disk space have not 
been addressed. 

The hypercube model does not accurately reflect the communication structure of 
most local area networks, so a different program model could be developed (see, e.g., 
[5]) .  Indeed, many of the applications and algorithms that we have ported from the 
hypercube environment perform poorly under dciibe because these codes use message- 
passing structures that are optimized for a hypercube network. We also are investigating 
other promising distributed/parallel computing models such as Sprite [ SJ and i M C H  
[lo]. 
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NAME 
dcube - distributed hypercube simulator 

dcube commands: 
SYNOPSIS 

c [filename] 
h [-h remote] file 
1 [-n nodeno] [-c dim] [-h remote] file 

disable logging or log tofilename 
load file as host on remote 

load nodeno node or all nodes of a 
cube of dimension dim with file 
on remote 

q quit 
S start simulation 
t [on1 
u file 

enable or disable trace 
use file for command input 

The host and node programs should be linked with the library 1ibdcube.a which contains the following sub- 
routines: 

int copen(int pid); 
void cclose(); 

void send(int d, int type, char *msg, int msglth, 

void sendw(int d, int type, char *msg, int msglth, 

void sendmsg(int d, int type, char *msg, int msgllh, 

int dstnode, int dstpid); 

int dstnode, int dstpid); 

int dstnode, int dstpid); 

void recv(ht d, int type, char *msg, int maxlth, 
int *msglth, int *srcnode, int +srcpid); 

void recvw(int d, int type, char *msg, int maurlth, 
int *msglth, int *srcnode, int rsrcpid); 

void recvmsg(int d, int *type, char *msg, int maxlth, 
int *msglth, int *srcnode, int *srcpid); 

irit probe(int d, type); 
int status(int d); 

int niynode(); 
int mypid(); 
int cubedim(); 
int clock(); 
void syslog(int pid, char *rnsg); 
void flick(); 

A simulator driver task, dcuhc, provides a set of commands for loading and controlling a sct of hypcrcubc 
application programs built with the simulator library 1ibdcube.a and optionally distributed over a nctwork 
of computers. The simulator can be used to exxutc  programs developcd for the Intel iPSC/l hypcrcubc, 
and a trace file is providcd to assist in dcbugging or performance analysis. The simulator uses the UNIX 
fork, rsh, and TCP/IP facilitics and has been testcd on cliistcrs of Sun workstations, IBM RT’s, DEC VAX 
with UNIX 4.3, and a Sequent Balance 8000 with DYNIX. The various application proccsscs that 

DESCRIPTION 

4th Berkeley Distribution 28 July 1987 1 
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constitute the hypercubc simulation may be run on one machine or distributed ovcr a nctwork of machines. 
Since the simulation will spawn multiple processes when run on a single niachinc, you may wish to use 
nice(l) to reduce system load. When run on a single parallel-processor machine such as thc, Scqucnt or 
Encore, the simulation will utilize multiple processors. The simulation does not provide the dctailcd tim- 
ings, large number of processors, or message-passing model of the simulator described in ppsim(l), but 
does permit porting of programs between the Intel cube and the simulator with no source code changes. 
With dcube one can develop applications taking advantage of the large virtual memory and I/O serviccs 
available fmm a coIlection OF remote machines. 'The programmer compiles and links his host and node 
programs with Zibdcube.a and then runs dcube to load the application programs into the simulaior cubc and 
start the simulation. 

The c commmand (cubelog) turns off logging with no argumcnts, or iE a filc nanic: is providcd, enables log- 
ging to the given file. The h command (host) specifies an executable file that will be the application host 
prog-am and, optionally, a remote machine on which the application is to bc run. It is recommendcd that 
the host program be run on the same machine as dcube (omit the -h option) so that the host program may 
perform terminal input and output. The 1 command loads the simulator nodes with the program file. A 
specific node may be loaded with the -n option. The -h option can be used to specify a remote machine on 
which the node program(s) are to be run. The -c option specifies the dimension of the cubc and must be in 
the range 0-4. The number of processes that can be controlled by dcube is limited by the maximum 
number of files a process may open. The f command (trace) enablcs or disables tracing of simulator events 
send's and recv's. Once all application programs are "loaded the s command (start) will start the simula- 
tion, you can exit with the q comtnand (quit). If all processes exit then the simulator will exit, otherwise it 
will be necessary to use CTRL-C to terminate the sirnulation. Commands can be placed in a lilc and used 
with the u command. A sample scssion for running the programs on one machine might be 

cc -o host host.c 1ibdcube.a -1m 
cc -0 node n0rie.c 1ibdcube.u -1m 
dcube 
t on 
1 -c 3 node 
h host 
S 

To run the node programs on a collection of machines on the network, one could construct the following 
command file, sumpkin,  

h host 
1 -c 2 
1 -n 0 -h mthsun node 
1 -n 1 -h crfsun node 
1 -n 2 -h puwsun node 
1 -n 3 -h yhcsun node 

then invokc &&.e and use the following commands: 

u sampkin 
S 

The functions provided in iihdcuhe.a mirror those described in tlic Intel rPSC User's Guide The program- 
mer must first establish one or more cubc communication channel data structum with calls to copen. copen 
takes a value to be used as proccss identifier and returns an mtcgcr descriptor that IS uscd in, siibscqucnt 
mcssagc-passing l'tmciions. A proccss i s  addressed by its nodc number anti process idcntificc. crloscl frees 
the channel data structure. 

4th Berkclcy Distribution 28 July 1987 2 
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send and sendw send the message pointed to by msg to the process at node dstnodc with process id dstpid. 
The type and size of the messagc (msglth) in bytes are also provided. send returns immediately, but one 
cannot use the message area until srati*s returns FREE (0), indicating that the kernel has sent the rncssage. 
sendw does not rcturn until the message has been sent. (This does not imply that the message has bccn 
received.) sendrmg behaves exactly like sendw but is intendcd as the host version for compatibilty with the 
Intel iPSC/l hypercube. 

recv and recvw await the arrival of a message of the given type for the node and process id associated with 
integer channel descriptor d. The functions provide addresses to store the message, the actual. lenglh of the 
message, and the node and process id of the sender. For recvw the process blocks until a mcssage of the 
given type arrives. For recv the process may continue executing after issuing the recv, and when status 
returns a value of FREE (0), then a message of the given type has arrived. Upon receipt of the message, 
the simulator sets the srcnode and srcpid to those of the sender, sets the msglth to the length of the rcceived 
message, and copies the message into msg. No more than maxlth bytes are copied. Messages are handled 
in a FIFO fashion. recvmsg behaves like recvw except it does not discriminate on message type, rather the 
type of the message is returned along with the message in accordance with the Intel iPSC/l hypercube. 
sendnisg and recvmsg are intended (by Intel) to be used only by the host processes, but the simulator pcr- 
mits node usage as well. 

probe detcrrnines if a message of the given type is available for the node and process id associated with the 
given channel descriptor d. If a message i s  available, probe returns the length of the message; otherwise, a 
value of -1 is returned. One must issue a recv actually to fetch the message. Note, the channel data SINC- 
ture should not be in use by other message-passing functions. status returns a value of BUSY (1) or FREE 
(0) indicating whcthcr the given channel data structure is in use or not. For send, BUSY indicates that the 
kernel has not yct sent the mcssage, For recv. BUSY indicates that the dcsired rncssage has not arrived. 

mynode returns the node number of the process. The host has a node number of x8000 (32768). cubedim 
returns the dimension of the cubc. clock returns the present value of the time-of-diiy clock in milliseconds. 
syslog placcs the givcn mcssage and pid in the trace file. flick relinquishes control from thc given process 
to othcr runnable processes. Pick is usually used in busy-wait conditions with sraru,r Pollowing a recv or 
with probe, althoughflick docs nothing in the distributed cubc simulation. 

Note that dcube uses one file descriptor (logical unit numbcr 3) in managing the simulation through TCP 
sockets. 

If lracing has bccn enabled thcn a tracc file is produced with simulator data that can be suinrnarizcd by 
nstats or ccplot. nslats fracefile will produce a per-node summary of compute time and scnds and rcceivcs. 
ccplot tracefile > plotfrle will produce a plotfile that can be plotted with various plotting prograins such as 

Posr I~ROCESSORS 

graph(] ). 

FORTRAN 
The message passing subroutines may also be called fromf77 programs. 

The following iilcs arc providcd; the actual location is site dependent. 
1ibdcube.a simulator subroutines 
dcube simulator driver 
rrntdcube remote simulator application initiator 
dbld sample C build script 
dfhld sample t77 build script 

It is assurncd that rrnldcube is in thc dcfault execution path on thc rcmote. It is suflicicnt [or it to rcsidc in 
the user's execution path. It is assurncd rhat the execuiablcs to be run on the remote exist on thc remote 
and that the uscr has accounts under the same name on all rcmotes. 'The various remotes should all be in 
the 1eiclhosts.equiv or the user's .rhosts file. 

FILES 

ASSUMPTIONS 

4th Berkclcy Distribution 28 July 1987 3 
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SEE ALSO 
nipsirno), ppsim(l), hep(l), intel(1) and Intel’s iPSC User’s Guide 

The delay in message passing is due to delays i n  relaying the messages through TCP sockets and does not 
mflcct a hypercube structure. Mcssages are passed hrough the simulator driving task dcube. The clock 
used is just the computer’s time of day clock and typically has a resolution of only 20 milliseconds. Pass- 
ing time-stamps between remote applications is not rwommendcd since the clocks of Ihe remote rnachincs 
are not likely synchronized. Time stamps in the trace file are synchronized. Using a collcction of hctero- 
gencous machines as rernotes may require additional application programming to account for difference in 
data representations (byte order, floating poinl format, etc.j. Whcn dcube terminatcs you may ignore the 
messages nnr no such process. The handler function and the Intel dynamic loader functions are not 
presently implemented. 

T. tt. Dunigan 

BUGS 

AUTHOR 
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