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Abstract 

A new class of optimization algorithms for linear and nonlinear problems is proposed. The 

algorithms are based on sigmoidic updatings and can be looked upon as nonlinear 

multidimensional maps. The bifurcation and chaotic regimes of these maps are analyzed 

and their possible applications in optimization problems are indicated. 

V 





1. Introduction 

Recently, a new class of optimization algorithms has been introduced [1,2,3] that are 

inspired both by Neural Network models (such as Hopfield's model [4]) and tuy classical 

saddle-point seeking techniques (such as Arrow-Hurwicz-Uzawa algorithms [5]).  We want 

to present here these algorithms and their properties from a different point of view which 

could open the way to better and more stable numerical schemes. The main difference with 

"standard" optimization algorithms, lies in the use of she gradient information: a nonlinear 

(sigmoidic) operation is applied to the gradient before it is included in the updating part. 

A motivation for this updating and its connection with the standard gradient algorithm 

follows here on a very simple example. Suppose that we attempt to minimize the function 

F(x) = (x- 1)2 on the real line R. A gradient algorithm would proceed along the following 
1 

updating scheme: 

- given an initial point xo and a "small" positive parameter p, 

- for every IC, compute xk+l according to: 

xk+l = xk - p F(xk) = xk - p (xk-1) = (1-p) .k + p 

For some values of p, the sequence defined by (I j will converge to 1 while for other values 

it will diverge. Indeed, we see from the last expression in (1) that as long as p i s  smaller 

than 1, xk+l i s  contained between xk and 1 ,  and thus the sequence will monotonically 

converge to 1. Note that the rate of convergence to the solution x*=1 increases with p. 

When p = 1, x1 = 0 -t- p = 1 ,  which is the fastest possible convergence. 

For p. larger than 1, she algorithm will provide either an alternate convergent sequence or 

an unbounded sequence. In one and only one case, p = 2, i t  will generate an alternating 

sequence. To show this, let us define p = 1 + p', with p' > 0 and rewrite (1) as 

1 
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We denote the mapping associated with Eq. (2) by C3 : R - > R : G(x) = - p' x -i- 1 + 1-1'. 

'I'he only fixed point of @, solution of @(x) -IS x, is x* = 1. We are interested in the 

stability of this unique fixed point. Since G'(x*) = - p', as long as p' < 1, X* will be 

stable because lG'(x*)l< 1. This can also be shown by rewriting (2) in the following way: 

xk+l - 1 = - p' (xk - l),  which implies Ixk+l - 11 = p' Ixk - 11 < Ixk - 11. For p' = 1 (or 

p = 2), we can observe some "bifurcation" cycles which depend on the initial condition 

xo: for example, if xo = -1, the generated sequence i s  ( - 1 ,  3, -1, 3, ...} ; if xo = 2, the 

sequence is { 2 ,  0, 2, 0, ...). In any case, only a period two oscillation will occur and the 

mean of the two alternating values will be xc, the fixed point, The convergence speed i s  the 

best that can be achicved (if we exclude the case p = 1 which was more a smart guess than 

a real computation). Note that this oscillating behavior will only be detected on an infinite- 

precision computer, otherwise, round-off effects will mask this particular case. 

As soon as p' > 1 (or p > 2), the gradient algorithm will diverge because for every real x, 

since IG'(x)l = p' > 1 and the fixed point becomes repulsive. On a computer, the gcnerated 

sequence will end in a sekes of negative or positive overflows. 

The analysis of the above example shows a very general feature of recursive algorithms, 

irrespective of their specific form and/or of the specific problem they are applied to. 

Namely, since these algorithms are most often represented by nonlinear maps, one is not 

surprised to see that they exhibit regions of stability, alternating sequences, and chaotic 

regimes. Usually one would like to use an algorithm in its stability region, in order to 

ensure convergence. However, one may be constrained to choose paranieters that drive the 

algorithm outside this region (one may not always have the time to find the right 

parameters). In most cases, this apparent inconvenience turns out to be only apparent and 

sometimes, it becomes even beneficial. Namely, (i) one can recover a fair approximation of 
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the right answer from a bifurcating 

than in the normal regime. In order 

(chaotic) region, and (ii) one can do it more quickly 

to take advantage of these properties, and to design 

some optimization algorithms with good convergence speed on computers, one way could 

be to "magnify" the set on which bifurcations occur, and reduce, possibly to a zero- 

measure set, the set for which unbounded sequences are generated. The latter part can be 

easily achieved with a "hard-limiter", i.e. a bound included into the updating that will 

prevent the sequences ( xk) from diverging. For example, a "hard-limited" gradient 

algorithm could be (with B a large positive number): 

xk+l = Min( Max { xk - p (xk -l), -B}, +B}. (3) 

But it is not difficult to see that this implementation will generate, for every p 2 pB some 

alternating sequences of the form (..., B, -B, B, -B], the mean of which is 0 and not x*. 

The mapping associated with (3) is now given by 

G(x) = Min( Max ( (I-p) x + p , - B ) ,  + B ) .  

Note that x*=l is still a fixed point of G. To compute pB, we just need to write 

G(B) I - B or B - p (B-1) 5 - B, which leads to 

Thus a "hard-limiter" is thus not the right "device" to obtain "good" bifurcations. An 

alternative is a "soft-limiter". A "soft-limiter" should provide an updating 

xk+l = G (xk, p) such that x* is still a fixed point of C, the ranges of p for which there 

are bifurcations will be "large enough", and the mean of the bifurcating values will be as 

close as possible to x*. With these properties, such an updating should have a good 

convergence speed to (at least) an approximation of x*. In the remainder of this paper, we 

shall introduce the sigmoidic algorithms as possible candidates for a "soft-limiter" 

approach. We shall study their bifurcating and chaotic properties and their possible 

utilization in linear and nonlinear optimization problems. 
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2. Sigmoidic A l g ~ r i t h ~ n s  

2.1 Definitions and Elementary ProDerties 

A one dimensional parameter-dependent mapping gP : R -> @,I) defined by 
1 

gp ( Y ) =  I +  exp(- py) 

will be referred to as a sigmoidicfunction. 

The most important properties of sigmoidic functions are summarized below: 

(4) 

We define a sigrnoidic algorithm as a recursive algorithm that realizes the updatings via a 

sigmoidic function. When designing a sigmoidic algorithm, one will use a linear updating if 

the function to be minimized, F, is linear in x, and a nonlinear updating otherwise. As will 

be seen in the following, in the first case it is critical to have, beforehand, an upper bound 

for every variable that will be updated. In the second case, it is time-saving to have some 

information on the sign of the sought solution, since the nonlinear updating does not 

change the sign of the generated sequence (xk]. Without any knowledge of that sign, one 

could choose it at random ; if the sign is wrong, the algorithm converges to 0. Thus one 

has to check if xk = 0 is an optimal solution ; if this is not the case, one must rerun the 

algorithm with x* = - 8. One could also run the algorithm twice in parallel, but this 

must be done for each variable and may lead to combinatorial explosion for large 

dimensions. 
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Since we are going to introduce several "primal-dual" algorithms, we shall recall the 

definition of the saddle-point of a functional L : Rn x Rm -> R. The couple (x*,p*) in Rn 

x Rm is called a saddle-point of the functional L, if there exists a neighborhood V(x*,p*) 

in Rn x Rm, such that 

L(x*,p) I L(x*,p*) I L(x,p*), tr (x,p> E V(x*,p*). (6 )  

We shall call x a primal variable and p a dual variable, In optimization problems, when 

the functional L has the meaning of a cost function, the primal variables are usually the 

controls that enable to minimize a given criterion and the dual variables have the 

interpretation of prices associated with the constraints. 

2.2 Algorithms For Nonlinear Outimization. 

We consider a constrained optimization problem: 

Find 

Minx F(x) 

subject to the constraint 

Q(x> = 0 (74 )  

with F : RXI -> R convex and differentiable and Q : R" -> R*I, also convex and 

differentiable. The Lagrangian associated with (7) is given by L(x,p) = F(x) - <p,Q(x)>, 

where p is an element of Rm and <.,.> is the inner product in Rln. We assume that 

problem (7) has a solution and we denote by (x*,p*) the corresponding saddle-point of L. 

A standard saddle-point algorithm for (7) is the Arrow-Hurwicz algorithm ([5]) which 

updates the primal and dual variables xk and pk, according to 
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pk+l = p k +  E Q(xk+l) 

with p and E two small non-negative real constants. The Arrow-Hurwicz algorithm is often 

described as "performing one gradient-descent step on the primal and one gradient-ascent 

step on the dual". Figure 1 illustrates this feature. 

We propose as an alternative the nonlinear sigmoidic algorithm: 

(9-a> 

(943) 

with gp(.) applied componentwise to its vector-argument. The primal variable, xk, is 

updated through a nonlinear sigmoidic mapping. This updating provides, as will be seen 

later, a better stability. Note that if the constraint in (7) is Q(x) I O  (the inequality is 

understood componentwise in Rm), then (9-b) is simply transformed into 

pk+l = Max {pk + E Q(xk+*), 0) .  (9-b') 

1 
Since gp(0) = z; the solutions of (7) are the fixed points of algorithm (9). Their stability 

can be studied in the same way as was done for the non-constrained example given in the 

Introduction. When varying p, one discovers similar properties concerning the speed of 

convergence and the approximation of the solution (see Section 2.3). 

Remarks: 

(i) Sometimes it is cumbersome or even impossible to get an analytical expression of 

the derivative of F. Since - as will be seen later - the standard algorithm gives 

interesting results when p is large, we propose the following updating: 
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Figure 1: Arrow-Hunvicz Algorithm: "one descent step on the primal, one ascent 

step on the dual" : xk+l = xk - p a;r(xk,pk) and pk+l = pk + E ap aL aL 

(xk+l,pk), with p and E small positive constants. 

u>> 1. 

Figure 2 shows that this variant behaves essentially as well as the original algorithm . 
We have made this comparison using the unconstrained problem of finding the 

minimum of F(x) = (cos(x)-x)~. We have chosen p = 1 for the standard variant and 

p, = 5 for the finite-differcnce variant. The latter needs just a few more iterations to 

1 

converge. 

(ii) The reader will find in the Appendix some comments on the transformation 

performed on F(x) by the nonlinear sigmoidic updating (9-a). 
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Standard Variant ; p = 1. 

Q X  
+ cos(x) 

X 

1 6 

iterations 

Finite-Difference Variant ; p = 5. 

1 

X 

0.6 1 I x 1 

1 6 1 1  

iterations 

* x  
-+ cos(x) 

Figure 2: A Finite-Difference Version. 
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2.3. Alporithms For Linear Qptimization, 

The standard linear programming problem can be stated as follows: 

Find 

Max xi c i  xi 

subject to the constraints 

xi 2 0 ,  i = l , 2  ,..., n. 

i 
J 

Z i  a. x i  = bj , j = 1,2 ,..., m. 

(10-a) 

(10-b) 

(10-c) 

We suppose that this problem is bounded and has a solution, denoted by x*. We denote by 

p* the solution of the dual problem associated with (10) (see [ 6 ] ) .  The Lagrangian 

functional is now: 

In [ 13, we have proposed the following updatings: 

k+l  k i k+l 
= p .  + E  [ C. a. xi - b j ]  pj J 1 . l  

i = 1 ,  2,  ..., n 

j = 1,2, ..., m 

(1 1-a) 

(1 1-b) 

applied until an optimality criterion is satisfied. Here, Xi is a bound on Xi (typically, Xi has 

to be greater than xi*).Convergence and optimality for this linear-programming algorithm 

J have been studied in [ 13 when all coefficients ai are positive (which is the case for the 

Transportation Problem or for the Assignment Problem). We recall the main results of [l]: 

For E and p-1 small enough, the algorithm converges to an approximation (xa,pa) 

of the actual solution (x*,p*). The couple (xa,pa) is feasible ( is .  (10-b) and (10-c) 

are satisfied), and the duality-gap, defined as I <c,xa)> - <b,pa> I, is linearly 

bounded by p-1. 
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Thus, when the parameters E and p-1 are sufficiently small, the sigmoidic algorithms 

(Pa-b) and (I la-b) are expected to follow the "classical behavior", namely they generate 

sequences which converge to the optimal solution. We give in Figure 3 the trajectories of 

the linear algorithm cmesponding to the solution of the following problem: 

subject to the constraints 

xi + x2 +x3 = 4  and xi a 4  x2 a x4 = 8 

The optimal solution is x* =r (0,2,2,0), p* = (4,Q) and z* = 16. The algorithm 

parameters are E = 0.02, p = 5. 

In the "classical regime", the sigmoidic algorithms do not perfom particularly beater than 

the standard optimization algorithms (e.g. Simplex, AITQW-HUI-W~CZ, etc.). However, 

interesting properties occur when E and p-1 can take larger values. In that case, we 

discover that the linear and nonlinear sigmoidic updatings act as the "soft-limiters" that we 

were looking for in the Introduction: they enhance the ranges of E and p in which 

bifurcations and high-speed convergence can occur and provide a greater overdl stability to 

the algorithm. Due tca the commn structure of the sigmoidic updatings, the study of chaotic 

behavior and bifurcations leads to very similar features for both the linear or nonlinear case. 

Therefore we shall illustrate different essential aspects for each of these updatings by 

indiscriminately using either the linear m the nonlinear version. 
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Example 1 ; primal variables. 

" 1  

0 100 

b r a t  ions 

Example 1 ; dual variables. 

Example 1 ; primal variables. 

5 

4 

3 

0 x3 
e x4 

2 

200 100 200 

Iterations 

Example 1 ; primal and dual costs. 

-1  ! I 1 
0 100 200 

llsrations 

prinial M! - uualcost L- LU 

10 

0 100 200 

Iterations 

Figure 3: Trajectories of primal, dual variables and cost with the sigmoidic 
1inear-programminl:nming algorithm. 
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3. Bifurcation and Chaotic Behavior of Sigmoidic Algorithms 

3.1 Nonlinear UDdating 

Let us study the behavior of the sigmoidic updating for a single-valued function F(x) and 

suppose that there is no constraint, i.e. Q 0. In that special case, we have prcbposed in (9) 

the following "soft-limiter" updating: 

xk+l = 2 xk gp (F'(xk)) 

with gp(.) given by (4). We thus have 

For any critical point x* of F, since F'(x*) = 0, this expression reduces to 

G'(x*,p) = 1 - F'(x*). 

We can conclude that: 

- if x* is equal to zero, or F'(x*) = 0, then G'(x*,p) = 1 and the algorithm may converge 

to a set of limit-points containing x*. 

- if x* > 0 and F is locally strictly convex in x*, then F'(x*) > 0, and: 
X* 

X* 

- for p < I,F"(x*)] 'I, we have G'(x*,p) < 1 and thus convergence to x*. 

- for p 2 @F"(x*)] -1, some bifurcation and chaos may appear. 

1 
For the simple example given in the Introduction, Le. F(x) = (x-1)2, the updating takes 

the form 
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1.4 - 
1.2 - 

1.0 - 

0.8 - 

0.6 - 

0.4 - 

and x* = 1 and F"(x*) = 1. Thus the critical value of p is 4. For p larger than 4, the 

analytical study of the bifurcation sequences is more involved than in the "hard-limiter" 

case. However, we can turn to numerical experimentations. Figure 4 illustrates that: 

- while p is smaller than p0 = 4.0, the sequence converges to 1. 

- if p belongs to the interval [PO, V I ] ,  with 

This is the first bifurcation. 

= 5.1, there is a period-two limit cycle. 

- for p > pl, we enter a short region of period-four bifurcation and then a "chaotic 

scenario", similar to the features of nonlinear maps like Feigenbaum's quadratic map (See 

Refs. [7, 81). In particular, for p = 6.50 and p = 6.66, we have respectively a period-three 

and a period-six limit cycle. 

1.2 

1.1 

I x- 1 .o 

0.9 

0.8 
3.7 3.8 3.9 4.0 4 .1  4.2 

1.4 1 
"1 
'.O 1 

0.6 

0.4 3-1 

4 . 9  5 .0  5.1 5 . 2  5.3 5.4 5 .5  5.6 

0.2 + 1 

5 . 4  6 4  

X 

Figure 4: Bifurcation diagram. Limits of the algorithm vs the values of p, 
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These experiments also confirm two computationally interesting properties already 

mentioned: (a) the speed of convergence (to a fixed point or to a limit-cycle) increases with 

the value of p (this follows immediately from the expression for C'(x,p)); (b) the mean 

value of the points of the limit cycles is, for small even periods (i.e. 2 or 4), an 

approximation of the sought solution (Figure 5). These properties suggest that a rapid 

scanning of several values of p should quickly enable one to obtain the best compromise 

between speed of convergence and accuracy of the solution. For the sake of completeness, 

we give in Figure 6 the first five iterates of G for p = 6. 

Lyapunov Exponents. 

For a one-dimensional mapping like G(x), the unique Lyapunow exponent is usually 

def ied  by [7,10]: L(p) = Limk-- %Log I(Gk)'(xo)I, with an initial point xo that does 
1 

not lead to a pathological behavior (fixed point, repeller, etc.). According to the chain-rule, 
1 

we have L(p) = Lirnk,>- E Log I(d)'(x1)l, with x1 = Gl(x0). Applied as such, this 

formula does not provide good numerical results since, due to the boundedness of the 

attractor, we do not have the expected exponential divergence far a large number of 

iterations. Instead, we observe only a transient divergence. Indeed, suppose that we start 

with two very close points xo and x 1. If, at a certain stage, the iterates xo and x1 are such 

that I ~0 - x1 1 = M = Sup, G(x), then clearly one of them is close to 0 and the other one is 

close to M. Let us assume ~0 =: 0 and xl  = M. Then xo = G(M) < M, 

k k 

k k  

k k k+ 1 k+ 1 = 0 and x1 

which means that the iterates do not diverge any more. This is illustrated by Figure 7. We 

have computed the Lyapunov exponents with the following technique (proposed in [9]): 

- start the algorithm with two very close points xo and x 

- record the iterates xo and x1 as long as these iterates diverge 

- estimate the exponent with a least mean-square algorithm. 

k k 



1 6  

X m  

0.5 

0.0 
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I.(. 

Figure 5: The mean of the small period limit cycles is an approximation of x*. 
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Figure 6:  First five iterates of G(x) for p = 6. 
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Figure 8 indicates an estimation of the Eyapunov exponent associated with G when 

p = 4.5 (stable period 2 limit cycle, the exponent is negative) and p = 5.75 (chaotic 

behavior, the exponent is positive). 

0 

-1 0 

-20 

/ A =  4.5 

y = 0.1 077 - 1 . 3 2 2 ~  R = 0.97 

I 
I ' I ' I ' I ' I . l ' l  

0 2 4 6 8 1 0  1 2  
Iterations 

p = 5.75 

y = - 11.51 56 + 0.2833~ R = 0.98 

0 1 0  20 30 40 
Iterations 

Figure 8: Lyapunov exponents. 
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Boundaries of the Bifurcation Map 

We have also computed the boundaries of the bifurcation map shown in Figure 9. As 

noticed previously 111, 121, these boundaries are the successive images of the critical. 

points of the iterates of G(x). It can be shown easily that the critical point fcir a given p is 

obtained through the fixed point iteration: x = 1+ - log(-) the convergence of which 

takes less than 25 iterations. 

1 1 
P W - 1 )  

Limiting Distribution. 

For a given p, we denote by M a number larger than Sup, C(x,p). 

We consider h(x) = ~ ~ p ~ ] ( x ) ,  the uniform density on the interval [O,M]. If we associate 1 

with each point x in (O,MI its image under G, we get a new density which can be 

computed by the application of the Perron-Frobenius operator [ 131. This operator, uniquely 

associated with G, is given by: 

We call yl(x) and y2(x) the two counterimages of a given x (see Figure lo), and write: 

Or Ph(x) = yl'(x) h(yl(x)) - y2'(x) h(y2(x)), where the derivatives are computed 

numerically. After several applications of the Perron-Frobenius operator to a given density 

measure on [O,M], the successive images tend to approach rapidly a limiting density h* 

that depends on p and is the solution of Ph* = h* . We have computed the first and second 

images of the uniform density on [O,M] for p = 4.5 (period-2 limit cycle), 5.75 (chaotic 

behavior) and 6.5 (period-3 limit cycle). For the first and third examples, the limiting 
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1 .o 

0.0 
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)I 

Figure 9: Boundaries of the bifurcation map. 
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0.15 - 

0.10 - 
- 
X z 

distribution is obtained very quickly (@ h = P5 h, see Figures 11 to 14). In the chaotic 

case, convergence is not obtained after 5 iterations (Figures 12 and 14) and the density 

function continues to generate new peaks which correspond to the images of the critical 

points of G(x). 

p = 4.5 

X 

p = 4.5 

I m2(X) 

0.0 
0 .0  0.4 0.8 1 . 2  
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fi = 4.5 

m m3(x) 

0.0 0.4 0.8 1 . 2  

X 

Data from "test-images-4.5" 
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0 .0  0 4  0.8 1.2  

X 

Figure 11: First four iterates of the Perron-Frobenius operator, p = 4..5 

II rn4(x) 



2 2  
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X 
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m4 

Figure 12: First four iterates of the Perron-Frobenius operator, p = 5.75 
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Figure 13: First four iterates of the Perron-Frobenius operator, p = 6.5 
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Figure 14: Fifth iterate for p, = 4.5, 5.75 and 6.5. 
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3.2 Linear Uudatine. 

We have shown in Section 3 the behavior of the linear-programming algorithm when E and 

p are small enough. We wish to show here that even if those parameters are not chosen 

optimally, one can get very quickly some useful information concerning the actual 

solution. If, instead of taking for p and E some values which ensure convergence, we take 

a small E and progressively increase p, a scenario of bifurcations and cham appears. In 

Figure 15, we have typical trajectories for a large p. In Figure 16, we also depict the 

bifurcation diagram for x3 and the least square estimation of x3 vs. p E [10,16] which 

happens to be a quasi-horizontal line 9 = a p + b with a = 2.01 and b = - 0.001. We 

conclude that as p increases, the convergence speed to the limit cycle is improved and we 

still get, on a large range of p (for a given E), a fair approximation of x*. We also note that 

the quality of the approximation is better than in the nonlinear case. 

5 1  

- x3  
4- P’ 

1 0  20 30 

Iterations 

Figure 15: An example of bifurcation. Typical trajectories for large p (p > 100). 
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1 0  1 1  1 2  13 1 4  15  1 6  

Figure 16: Bifurcation diagram and least squares estimation of x3 vS. P. 
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4. Summary 

We have presented here a class of optimization algorithms based on sigmoidic updatings. 

In different variants, the algorithms can be applied to linear and nonlinear problems with or 

without constraints. All variants are in fact nonlinear multidimensional maps and as such 

they may display bifurcations and chaotic regimes for certain ranges of parameters. 

Although a priori these features are not desirable in numerical schemes, we have shown 

that they enhance stability regions, provide meaningful (even if partial) information on the 

solution of the optimization problem, and increase the speed of convergence. 
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Appendix 

Implicit transformation due to the nonlinear sigmoidic updating. 

Suppose we minimize a convex but not necessarily strictly convex real function F(x). We 

assume in the following discussion than the sought optimal value x* is positive (x*2 0). 

A standard gradient descent algorithm would be: 

- choose an initial point xo and a threshold A ; 

- at step k, compute xk+l = xk - 13 F'(xk) 

- stop if IF ' (X~) I  < A. 

The sigmoidic algorithm is 

- choose an initial point xo and a threshold A ; 
2 

1 + exp(pF'(xk)j 
- at step k, compute xk+* = xk 

- stop if IF(xk)l< A. 

We shall show that [SA] is equivalent to a certain [GA] applied to another function than F 

but with the same critical set, Le. there exists H(x) such that: 

xk - 13 H'(xk) = xk , forevery k. 
I + exp(pF'(xkj) 

A sufficient condition is 

13 W(x) = x tanh( P F W  

Indeed, given F, it is always possible to find H (modulo a constant function) such that the 

set of critical points of H is the union of zero with the set of critical points of F. 

Now, for given 13 >O and p >O, if we consider the mapping a which associates to any real 

function F the function H defined by (SZ)  and by H(x*) = F(x*), one can be interested in 

how some properties such as fixed points, convexification, art: transformed by Q. 
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For example, let us take F(x) = a x + b, with a > 0 so that Min F(x) has the positive 

solution x* = 0. M=m is defined by: B H'(x) = x tanh( E ) and H(0) = F(0) = b. 

xz E 
Thus H(x) = tanh( ) f b. The function F has no c ~ t i c a l  point and is not convex. 

The gradient algorithm cannot work properly with A c a. On the contrary, E-I is quadratic, 

extremely steep (8 <<1) and one can expect a good numerical behavior. 

b 
Let  us consider now F(x) = la x - bl with a > 0 and b > 0 and x* = 2 
We have: for x > a b , 13 H'(x) = x tanh( CLa ) 

for x c - b PI H'(x) = - x tanh( CLa ) a '  
b b 

and H( a)  = F( a)  = 0. 

Hence, 

b b tanh(Y) 
H(x) = - [ ~2 - (?)2 ] a '  2 0  for x < - 

The function H(x) is given in Figure 17 for IJ = 0.01, a = 1, b = 5 ,  p. =r 4.5. 

1 
At last, for F(x) = 7 (x-a)2 with a 2 0, we have 13 W(x) = x tanh(p(x-a)). Since H(x) is 

difficult to integrate directly, let us discuss its properties from the expression of its 

derivative. Two cases can be considered: 

- when x=a, x tanh(,u(x-a)) can be approximated by p. x (x-a) which is a quadratic map 

arid is positive €or x > a and negative in [O,a], which provides exactly the attracting and 

repelling effects that one would expect from a good algorithm. 

- when x >> a (recall that xo and a are assumed positive), the approximation becomes 

simply D H'(x) = x, which is equivalent to the classic gradient of F(x). 

Figure 18 shows a picture of H'(x) and H(x) in the case 13 = 0.01, p = 4.5 and a = 1.00. 
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Figure 17: H(x) when F(x) = I x - 5 I, p = 4.5, and p = 0.01. 
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Figure 18: H(x) and H'(x) for p = 4.5, f3 = 0.01, and a = 1-00. 
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