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A PARALLEL DECOMPOSITION ALGORITHM 
FOR STAIRCASE LINEAR PROGRAMS* 

Robert .Entriken 

Department of Operations Research 

Stanford University 

Abstract 

As part of an extended research project on the parallel decomposition of linear programs, a 
parallel algorithm for Staircase Linear Programs was designed and implemented. This class of 
problems encompasses a large range of planning problems and when decomposed has simple 
subproblem formulations and communication pat terns. This makes its solution a manageable 
step toward our eventual goal of producing a general code that automatically exploits problem 
structures of various forms. 

The results presented here were derived from an implementation for a Sequent Balance 
The algorithm itself is messagebased but can run on 8000 shared-memory multiprocessor. 

either shared- or distributed-memory parallel computers. 

A simple diet planning problem is used to demonstrate the principles of the algorithm’s 
development and performance. When applied to this problem, the parallel decomposition algo- 
rithm shows promise relative to present serial optimization codes. The nonlinear optimization 
code MINOS 5.1 i s  used both as a basis for comparison and as a generic subproblem solver. The 
greatest room for speedup is in exploiting problem structures. The results show that decornpe 
sition can improve efficiency even with a single processor. Examples are given where multiple 
processors lead to still greater efficiency. 

1. INTRODUCTION 

The term Staircase Linear Program (SLP) describes a Linear Program (LP) that has a staircase 

pattern in the nonzero coefficients of its constraint matrix, as illustrated in Figure 1.1. Each “step” 

in the staircase typically corresponds to a collection of variables for a “period” of a planning horizon. 

* This research was supported by the EIectrlc Power Research Institute, the 1J.S Air Force Office of Scientific Research, 
the U.S. Department of Energy, the National Security Agency, the National Science Foundation, the Science Alliance 

Program of the State of Tennessee, and the Department of Operations Research at Stanford University 
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Figure 1.1. The classic staircase pattern. 

The collections of variables are described as periods because the staircase structure arises most 

often from problems that represent systems over time [HL81]. In this report, we study multi-period 

or multi-day diet plans as examples of SLPs. The diet planning problem is a very simple LP that 

will help describe the reformulation and sohiion stages involved in solving staircase system with 

a parallel computer. 

To make proper use of a parallel computer, we must reformulate the original problem into 

multiple subproblems and then submit them to multiple processors as a means of obtaining greater 

throughput. The subproblems pass messages among themselves in a serial communication network 

of the form shown in Figure 1.2, where the circles represent the subproblems and the lines between 

them the contxnunication paths. Each period’s variables are associated only with the previous and 

following periods’ variables in Figure 1.1. The serial structure results directly from the pattern of 

interdependencies between variables in the SLP. The medium of communication between processors 

in the parallel computer should have the ability to mimic a serial network. 

Figlire 1.2. A serial communication network. 

Abrahremson [Abr83] and Wittrock [Wit831 developed the topic of nested diad decomposition. 

The same rriaterid is repeated here for completeoess, but in much less detail. Their work focused 

on the solution of such problems with a serial computer. We will consider here an extension to  the 

use of a parallel computer, and paraphrase their results to prove the parallel algorithm converges. 

Three major factors have been identified that significantly aRect the speed and efficiency with 

which a solution is obtained in this framework: 

(1) the number o f s ~ b p r o b l e ~ ~  into which we divide the SLP, 

(2)  the number of processors used to solve the subproblems, and 

(3) the order in which the subproblems are solved. 

A given subproblem may itself be a lower-dimensional SLP containing any number of adjacent 

steps of the original staircase. 
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It will be shown that there are diminishing returns associated with extensive decomposition of 

SLPs, and in the same way with increasing the number of processors used. The argument against 

both further decomposition and the use of more processors is the increasing cost of communica- 

tion. It should be noted, however, that communication costs will diminish because of technology 

breakthroughs. Hence, this effect should be less significant in the future. Finally, with a better 

understanding of the dynamic and unpredictable path that the following parallel optimization al- 

gorithm takes to a solution, we will be better able to appreciate the subtle effect that the solution 

order of the subproblems has on overall performance. 

2. THE FORMULATION OF SLPS 

2.1. A One-Day Diet Problem 
The One-Day Diet Problem is an example taken from Chvbtal [Chv83]. Its mathematical formula- 

tion can be found below as DIET1, with specific examples for the problem data A, b, c, and u. The 

problem is to find the optimal selection of six commodities* 2, based on their corresponding costs 

(given by e ) ,  and their relative contributions toward satisfying the minimum daily requirements 

b ,  for CALCIUM, PROTEIN, and ENERGY. The number of requirements is limited to three for 

simplicity’s sake, while the amount of each commodity selected to satisfy them is bounded above 

by satiation points u. The boxes in Figure 2.1 represent the pattern of nonzero coefficients in the 

costs and constraints. The problem is dense. 

DAY 1 

minimize 

Figure 2.1. Structure of the one-day diet problem. 

DIETl is a linear program for determining a single day’s purchases while spending the least 

amount of money. It will be used as a base case for formulating and studying multi-day diet- 

planning SLPs as examples. The primal and dual formulations of DIETl are: 

(Primal) minimize c T z  subject to Ax 2 b, 0 5 z 5 u. 

(Dual) maximize bTn- - uTu subject to A T r  - CT 5 e, u 2 0, r 2 0. 

The following notation combines the dual variables A and 0 with the primal formulation: 

(DIETI) minimize e*z 
subject to T: Ax 2 b 

5:  O < x < u ,  

* OATMEAL, CHICKEN, EGGS, MILK, PIE, and PORK & BEANS. 
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where 

2 12 54 285 22 80 

110 205 160 160 420 260 
A = (  4 32 13 8 4 1 4 ) ,  b = ( " s " s " ) ,  2000 

c T = ( 3  24 13 9 20 1 9 ) ,  u = ( 4  3 2 8 2 2 ) T .  

The optimal selectiou of commodities is 5 = ( 4  0 0 4.5 2 O ) T ,  with the corresponding 

dual solution ,fi = ( 0  0 0.05625)T and i? = (3.1875 0 0 0 3.625 O ) T .  Seven iterations 

of the simplex method [Dan631 are required to obtain this solution using MINOS 5.1 [MS8'7] with 

the default parameter settings, resulting in a minimum cost of ~ ' ~ 2  = 92.5. From the solution 

to the dual, one might determine that the ENERGY constraint is the most difficult to satisfy 

given the available commodities. Because there are zero prices on the CALCIUM and PROTEIN 

constraints, one can quickly determine that the commodities chosen are relatively low in ENERGY 

and high in CALCIUM and PROTEIN. 

2.2. A Two-B~Y Diet P ~ ~ b l e m  

DIET2 is a linear program that plans a selection of commodities over two days. It is sirnilar to 

repeating DIET1 twice, but the daily requirement of ENERGY is relaxed to be satisfied in any 

combination over both days instead of each individually. The individual ENERGY constraints 

were added together, doubling the value of the right-hand side (RHS) entry. 

DAY 1 DAY2 

minimize 

? 

Figure 2.2. Structure of the two-day diet problem. 

Figure 2.2 shows the 2-step sparse staircase coefficient pattern of DIETP. If the two individual 

DIET1-type ENERGY constraints had not been added together when forming DIET2, the optimal 

solution f of DIET1, repeated twice, woiald be the unique optimal solution to  such a problem. 

However, because we combined the individual ENERGY constraint,s into a single constraint, this 

optimal solution to DIET2 is not unique, nor i s  i t  basic". 

* See Appendix A foe a proof. 
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where 
2 12 54 285 22 80 

A1= ( 4 32 13 8 4 14 

110 205 160 160 420 260 
8 0 )  . 110 205 160 160 420 260 

.I=( 0 0 0 0 0 0 ) .  A 2 = (  2 12 54 285 22 
0 0 0 0 0 0  4 32 13 a 4 14 

4000 
b 2 = =  ( y : ) ,  

c T = ~ ; = ( 3  24 13 9 20 1 9 ) ,  ~ 1 = ~ 2 = ( 4  3 2 8 2 2 )  T . 

The set of optimal solutions to DIET2 contains the optimal solution to DIET1 repeated twice. 

The locus of DIET2’s optimal solutions is: 

(e? 2;) = A ( 4  0 0 5.125 2 0 4 0 0 3.875 2 0 ) +  

(iiT*F) = ( 0  0 0.05625 0 0 ) ,  
( 1 - X ) ( 4  0 0 3.875 2 0 4 0 0 5.125 2 0 ) ,  Ae[O,l], 

6T - -T - - u 2  - (3.1875 0 0 0 3.625 0 ) .  

The added freedom in choosing the two-day selectioIi of goods allows selections of each day 

to be mutually dependent. Pair-wise dependence between repeating collections of variables is the 

characteristic of SLPs that gives them their serial communication structure. DIET2 is our example 

two-period SLP. 

2.3. A Three-Day Diet Problem 
Our example three-period SLP (DIET3) determines the optimal selection of three days’ commodi- 

ties. In this example the general staircase pattern begins to emerge from the nonzero coefficients 

of the constraints as shown in Figure 2.3. There are the first and last periods (DAY1 and DAY3) 

with only one adjacent period or collection of variables, and there is the middle period (DAY2) 

whose neighbors precede and follow it. For an n-day problem, there will be n - 2 such “middle“ 

periods, each of which has two neighbors. 
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DAY P DAY2 DAY 3 

minimize 

2 4  

I PROTEIN I 2110 

Figure 2.3. Structure of the threa-day diet prohiem. 

In DIET3 the ENERGY requirement is shared between the first two days as in DIET2. In 

addition, the PRQTEIN requirement is shared between the last two days. This pattern can be 

propagated by extending the least constra.int over two days and listing the remaining two individ- 

ually below it. The third and fourth day share CALCIUM and after that the cyclical pattern 

repeats: ENERGY, PROTEIN, CALCIUM. 

where 

2 12 54 285 22 80 
4 32 13 8 4 14 A1= ( 

2 12 54 285 22 80 
110 205 160 160 420 260 110 205 160 160 420 260 
0 0 0 0 0 0  B1= ( 

2 12 54 285 22 80 

4 32 13 8 4 14 4 32 13 8 4 

0 0 0 0 0 0  
B z = ( O  0 0 0 0 0 ) .  A3 == ( 110 205 160 160 420 



~ : = ( 3  24 13 9 20 1 9 ) ,  ~ i = ( 4  3 2 8 2 2 ) T ,  i = l , 2 , 3 .  

The solution to  DIET3 is similar t o  that of DIET2 in that the optimal single-day selection 

from DIET1, repeated three times, is optimal overall. Jn addition, as before, this solution is one 

of a class of optimal solutions to DIET3: 

(iT2if) = A ( 4  0 0 5.125 2 0 4 0 0 3.875 2 0 ) +  
(1 - A)(4 0 0 3.875 2 0 4 0 0 5.125 2 0 ) ,  X E [0,1], 

2 + ( 4  0 0 4.5 2 O), 
( i iy l i f  %;) = ( 0  0 0.05625 0 0 0.05625 01, 

GT ~ &; = u3 -T - - (3.18'75,O 0 0 3.625 0 ) .  

There is only one degree of freedom in the solution because the PROTEIN constraints are 

nonbinding. 

3. REFORMULATING SLPS INTO MULTIPLE SUBPROBLEMS 

We will now focus on reformulating the original general SLP into many interrelated subproblems 

using a technique called Benders decomposition Pen621. The purpose of creating a collection of 

subproblems in place of a single problem is to  solve the collection simultaneously with a parallel 

computer. It will suffice for the scope of this report to present the subproblem formulations 

directly, and then go on to the parallel algorithm for solving the SLP. Each subproblem formulation 

contains independent portions of the original problem data, additional necessary conditions (cuts), 

and accounting variables that are simple machinery for algorithmic support -- most calculations are 

implicit in the formulations, not explicit in the algorithm. 

The following discussion will focus mainly on the case when the subproblems are solved to  

optimality, placing less emphasis on on cases when their solutions are infeasible or unbounded. 

This facilitates the exposition of the algorithm, saving the more coniplex cases for the next section 

when our insight is sufficiently developed. 

3.1. Two-Period SLP 
Benders decomposition differs from the more familiar Dantzig-Wolfe decomposition in that the 

former partitions an LP according to its variables, whereas the latter partitions it according to its 

constraints. Each subproblem fixes the values of certain primal and dual variables of the original 

SLP in order to solve a reduced problem over a smaller set of variables. DIET2 can easily be 

decomposed into the two interdependent subproblems DIET2.1 and DIET2.2, that are solved one 

after the other, with appropriate modifications to certain algorithm parameters ( f i 2 ,  &,fiz, 5: and 

gf), until the modifications no longer affect the solutions of the two subproblems. These parameters 

are explained in detail following the formulations. In general, a subscript refers to  a subproblem 

number, and a superscript k refers to a variable's value in the kth solution to  the subproblem. We 
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will use the notation 5 for intermediate subproblein solutions, with f to denote the final solution 

for the full SLP. All other variables, grinaal and dual, will follow the same notation. 

Figure 3.1. Information Bow in Gbe two-period SLP. 

DIET2.l initially drops the ENERGY constraint and the second day’s PItOTETN and CAL- 
CIUM constraints from t h e  original SLP, and solves only with regard to  the first day’s CALCIUM 

and PROTEIN requirements and minimum COSTS. Naturally, a certain amount of EWER6Y is 

thereby offered by DIET2.1. It is calculated as y1 1 Blzl  in the rows corresponding to  the d u d  

variables p1. 

(DiET2.1) minimize cT.1 +- 01 = z1 
subject to r1 : A l t l  2 bi 

P1 : 231x1 - I Y l  = o  
PI : fi2Y1+8201 2 F2 

(DIET2.2) minimize eTz2 = 22 

subject to q 2  : 1 ’ 2 -  1 
5 k W  - g k  

a2 : A ~ E ~ - I - $ w ~  2 bz 

c2 : o 5 x 2  1. u 2 ,  w2 > Q, v2 = I) if 5: = Q. 

Taking ($:,$, .:,$,e”:) as the first solution to DIET2.1 with its parameters f?2,&, and F 2  

set to zero, we note that 5; and 5: will be used in DIET2.2’s formulation. We set 8; = 0 if DIET2.1 

finishes unbounded, 8: = 1 if it finishes optimal, and 8: = undefined if it finishes infeasible, because 

the entire SLP must be infeasible. 

Let us assume that, DIET2.1 finishes optimal. We set 8: = 1 so that DIET2.2 adopts 27: as 

the amount of ENERGY offered by DIE’1’2.1. (Note that 6; is effectively subtracted from the 

right-hand side when s: = 1 became wz is fixed at 1.) After solving DIET2.2 and assuming 

optimality, we return to DTE’1‘2.1 with the optimal prices on DIET2.2’s constraints corresponding 

to r2.  These are used to irnpase a new constraint on y1 to ensure that the same dual feasible 

extreme point 5: wi!l not he obtained again when DIET2.2 is  solved, unless the optimal value of 

y1 has been reached. This is the verbal interpretat,ioii of the pi rows of the first-day subproblem. 
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The inequality fI2yl + 8201 2 f i2 in DIET2.1 is a collection of added constraints (if$)Tyl + 
s',k& 2 jji obtained from Ii' dual solutions to the second-day subproblem (@,.Et,ij;,k$, b = 
1,2, .  . . , I<). In particular, & = (84,. . . , if)' is 8 vector of Kronecker delta functions indicating 

optimality in each of the K solutions. If the kth dual solution to DIET2.2 is dual feasible and 

bounded above, then we set d$ = 1; if it is dual feasible and unbounded above then $5 = 0; if dual 

infeasible (indicated by an unbounded primal solution) , the two-period primal SLP is unbounded. 

The vector &! = (jii,. . . ,j$)* is a corresponding collection of scalars calculated as = 2; - 4; 
from 55 (the objective value, or sum of infeasibilities) and ijt (the price, or multiplier, on the 

constraint corresponding to 112) .  Finally, f i 2  = (if;, . . . . i f F ) T ,  where ii$ is the vector of prices or 

multipliers on the constraints corresponding to a2. 

One way of interpreting the addition of constraints to DIET2.1 is thah the matrix A2 is being 

approximated by the independent rows in f i 2 .  It is therefore sufficient to carry along at most the 

number of constraints corresponding to the row-rank of Az. In other words, when such constraints 

become slack, they may be discarded. However, if they turn out to be binding in the final optimal 

solution, they will be regenerated. Discarding cuts runs the risk of cycling due to degeneracy; it 

could lead to a repeated pattern of discarding and regenerating the same constraints. 

' 

3.2. n-Period SLP 
The subproblems of the n-period SLP are of three types: the first period as in DIET2.1, the last 

period as in DIET2.2, and those with two adjacent subproblems, which are a combination of the 

two other forms. The three subproblems of DIET3 (DIET3.1, DIET3.2, DIET3.3) exemplify these 

three types and thereby those of an n-period SLP. 

Figure 3.2. Information flow in the n-period SLP. 

Following the manner in which DIET2 was decomposed into two subproblems, we will quickly 

go through the division of the three-day diet problem into three subproblems. This exercise will 

demonstrate two key procedures. The first is the formulation of a subproblem that accepts solutions 

from two others, the previous and following subproblems, as opposed to  only one other in the 

DIET2 cases; this allows a generalization to the n-period SLP. The second procedure is associated 

with the possibility of using more than one processor, thereby carrying Benders decomposition into 
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the multiprocessor environment. As described, a subproblem may have more than one neighbor. 

Hence, an algorithmic choice must be made as to  which neighbor to solve next when there is only 

one processor. When multiple processors are available, a choice need not be made-all of the 

neighboring subproblems may be solved simultaneously. 

The three subproblem of DIET3 are formed by partitioning the daily selections as before. 

DIET3.1 will plan purchases for the first day, DIET3.2 for the second day, and DIET3.3 for the 

third day. As before, 61 is the amount of ENERGY in the first day's selection, while jj2 is  the 

amount of PROTEIN in the second day's Relection. 

Subproblem Parameters 

UIET3.1 l"2,82,1?2 

DIET3.2 a":, &fi3,83,P3 

DIET3.3 a";, 6: 

Each of the subproblem formidations contains parameters that are based on the solutions of 

neighboring subproblems. The next section will describe the continual updating of these pararneters 

as part of a parallel decomposition algorithm. 
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4. SOLVING SUBPROBLEMS ON A PARALLEL COMPUTER 

From the subproblem formulations in the previous section, we have seen that any given subproblem 

contains from two to five parameters. These are initially undefined, and are first given values when 

a neighboring solution is communicated. In the serial dual-decomposition algorithm we begin by 

solving the last-period subproblem (knowing that any solution must meet the dual constraints 

corresponding to zn), and then work toward obtaining a dual-feasible solution and then an optimal 

solution for all periods, if possible. 

In the parallel algorithm we begin by solving all subproblems simultaneously, with their com- 

munication parameters initially set to zero. Their solutions, despite not including neighboring 

information, are still relevant and can be used to construct modifications. When used to modify 

right-hand sides, they will direct the new optimal solutions to a possibly different set of relevant 

solutions. When used to  add constraints, the type of constraint depends on whether the neighbor- 

ing subproblem solution was infeasible or feasible and, if feasible, whether bounded or unbounded. 

Initially only the last subproblem solution may be used to add an optimality constraint, yet any 

infeasible solution may be used to generate a necessary condition for feasibility (a feasibility con- 

straint). In general, an optimality constraint may be passed only if the present subproblem already 

contains such a constraint (except the last subproblem, of course). 

Just as a two-subproblem decomposition, with no middle subproblems, is a special case of an 

n-subproblem decompwition, the single-processor algorithm is a special case of the multiprocessor 

parallel algorithm with one subproblem being solved at a t h e  instead of many. With only one 

processor, the parallel algorithm reduces to Benders decomposition. 

The parallel computer architecture used for solving SLPs with the parallel algorithm is as- 

sumed to have numerous independent and powerful processors. The amount of memory available 

locally for the use of each individual processor is assumed to be substantial (2 5 Megabyte) 

since the optimization code (MINOS 5.1) stored for each processor is large, and each subprob- 

lem data-set can be large. Shared- and distributed-memory multiprocessing computers as well as 
distributed-processing computers are suitable for our application. Table 4.1 gives some examples 

of commercially available processors. 

Size of Number of 

Table 4.1. Examples of parallel computer architectures. 

In a discussion of alternative architectures, the issues of Computational and communication 

loads are of primary importance. The ideal is to distribute the computational load equally across 
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all processors while keeping the time used for communication to a minimum. The reformulation 

(initialization) stage requires a large flow of information between the processors, but in the solution 

stage the messages are typically small and infrequent. This is evident because reformulation 

involves distributing the original data into n subproblems, whereas during the solution stage most 

time is spent solving LIP subproblems with the simplex method. 

The description of this algorithm is directed primad) toward a shared-memory implementa- 

tion. Parallel processors with distributed memory require an additional scheme for distributing 

the work load so that the processors are responsible for disjoint subsets ~f the subproblems. If 

the subset of a processor contains more than one subproblem, they should be handled as in the 

single-processor shared-memory case (a special case ~f the parallel algorithm below). In addition, 

the sclaeduling of subproblems between processors becomes an implicit result of message passing. 

4.1. Processes, Jobs and Queues 
There will he a user-specified number of subproblems n and processors p involved in solving a 

general S1,P. The number of processors could exceed the number of subproblem ( p  > n)  but this 

would lcave the extra ~ ~ Q C ~ S S O W  unused, or inefficiently loaded. Hence, we assume that p 5 n. 
Associated with each of the n subproblems k a job consisting of the loop of tasks in Figure 4.1. 

The term '(job" is used to emphasize the fact that it encompasses more than solving linear program 

subproblem. The tasks of each job axe repeated in succession and any processor can execute thein 

A job is always in one of three states: run, running; pend, waiting to be run; or sleep, solved 

and waiting for new information. 

Ji'igure 4.1. The RUN JOB bop. 

The p processors repeatedly execute the loop in Figure 4.2, which transfers jobs among three 

shared queues (run, peaad, and sleep) according to the result of running through the job loop. 

Each queue corresponds to  one of the three job states. 

Figure 4.2. The process loop. 
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The run queue contains the jobs currently running on p or fewer processors, the results of 

which will define the next states of the jobs. Thus, it will never contain more than p jobs. The 

pend queue is where a processor finds jobs (subproblems) waiting to be run (solved), and the 

sleep queue is where jobs reside while at the WAIT FOR MESSAGE step. 

In the process loop of Figure 4.2, GET JOB involves inspecting the pend queue and, if there 

is an available job, transferring it to the run queue. Jobs are run (RUN JOB) as a repeated 

sequence of tasks, beginning at the SOLVE step. After the jobs pass through the SOLVE step, 

they continue around the loop unless the solution is unchanged, in which case the job is placed in 

the sleep queue (QUEUE JOB) to wait for a message. 

In a more advanced implementation, one might consider interrupting the SOLVE step after 

a specified number of iterations and placing the job, though unfinished, "back in the yerid queue. 

This would have the effect of further balancing the computation power across the subproblems, 

and would incorporate new information more quickly. In addition, it has recently been observed 

that if the simplex method is applied to the dual formulation of a subproblem, every dual-feasible 

extreme point visited by the simplex method has the potential to form a new necessary constraint 

on the preceding neighbor [HLS88]. 

get job wake job 

Figure 4.3. The transfer of jobs amongst queues. 

The modification of a subproblem in Benders decomposition is governed by the neighbor that 

sent the message; if it was the preceding neighbor, then the RHS is modified; if it was the following 

one, then a constraint is added. Once modified, subproblems are solved using the simplex method 

and their solutions are broadcast to their neighbors. If a neighbor is in the sleep queue when the 

solution is sent, it is awakened and transferred to the pend queue, since it, is now able to leave the 

WAIT FOR MESSAGE step (see Figure 4.3). 

4.2. Reaching an Equilibrium 
The p processors continue their loops, becoming idle only when there are no jobs in the pend 

queue. If this happens, a quick inspection of the run queue will determine if all jobs are sleeping. 

If so, the system is deadlocked. Each processor recognizes deadlock as the signal to stop, but before 

stopping, one predesignated processor will execute a cleanup operation such as printing a solution. 

In the current design, deadlock is needed to stop the algorithm. 

Given that a system cannot reach deadlock when jobs wait for messages that will always be 

sent, one may wonder whether the processors will ever stop, and if so, how? When a subproblem 

parameter modification does not cause an optimal solution of the subproblem to change, the job 

does not rebroadcast its solution to its neighbors. At this point, the subproblem is said to be 
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in “equilibrium” with its neighbors; it is then placed in the sleep queue to wait for updating 

information. All subproblems must reach a simultaneous equilibrium for the same reason that the 

single-processor Benders algorithm does: 1) there are a finite number of dual extreme points in the 

subproblems, and 2) a different one must be communicated each time to maintain disequilibrium. 

Hence, at some point the collection of useful d u d  extreme points is exhausted. The equilibrium 

relationship is reflexive and transitive, and so a system-wide equilibrium is achieved. 

This argument is also valid when many such dual extreme points are being passed simultane- 

ously, as in the multiprocessor case. The conditioii for equilibrium is precisely deadlock, with all 

jobs sleeping, since no new and useful information is forthcoming. 

4.3. Infeasible and Unbounded Solutions 
What should be done if a subproblem finishes with an infeasible or feasible unbounded solation? If 

it is the first subproblem and it is infeasible (INF) then the entire SLP must be infeasible because 

the constraints corresponding to and p1 cannot be satisfied. If it is the last subproblem finishing 

unbounded (IJNB) then the SLP must be unbounded because there do not exist prices ?r, that can 

satisfy the dual conditions associated with the variables x,, and ti),%. These two cases correspond 

to the top and bottom entries in Figure 4.4. In both cases the algorithm stops. 

S J J  Infeasible 
PW EX~TNW Ray IT.brward 

Pass Feasibility Constraint Back 
e Pass Extreme Xay Forward 

Pass Feasibility Constraint Back 
@ SLPUnbounded 

Figure 4.4. Alternative recourses for infeasible and unbounded subproblems. 

In the remaining cases the algorithm continues. If a subproblem other than the first is infea- 

sible, the infeasibility multipliers, say i i .2, are used to impose a constraint of the form % r y l  2 %;bl 

on the preceding subproblem (8,” gets a zero entry). This constraint is a necessary condition on yl 

for the feasibility of the second subproblem and thus the entire SLP. In general, a chain of such 

infeasibility conditions may extend from the jth subproblem back to the first and indicate that the 

entire SLP is infeasible. 

Likewise, if a subproblem other than the last finishes unbounded, the extreme point, say 

$1, obtained from the primal feasible solution and the extreme ray, say a& (a 2 0 ) ,  from the 

column entering the basis and its accompanying cost S1 from the incoming column’s reduced cost 

are inserted in the following subproblem as two tu2-type columns. Only extreme-ray columns 

ever have coefficients in the objective row, which is why they were not explicitly included in the 

formulations of the previous section. The extreme-point column has its 8: parameter set to one in 

order to  modify the RHS (Section 3.3.) and the extreme-ray column has its 6‘; set to  zero to allow 

freedom in the direction of the unboundedness. Its accompanying cost permits the subproblem to 

weigh the benefitits of this direction against present and future costs. 
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If a finite solution is found to the ray-modified subproblem, the constraint it returns will 

necessarily restrict the old ray solution of the previous subproblem by giving the ray an unattractive 

positive cost. 

If an infeasible solution is found to the ray-modified subproblem, the: returned constraint will 

cut off the old ray solution outright (since it leads to  infeasibility). 

If an unbounded solution is found, it passes a new ray one step further. Such new rays can 

form a path to the last subproblem, which if unbounded too, means the entire SLP is unbounded. 

Figure 4.5 summarizes the Benders algorithm for the 2-period SLP. The reader shoyld imagine 

any number of middJe subproblems inserted into the diagram to represent the general case. 

SLP 
Infeasible 

S L P  
Unbounded 

Figure 4.5. Flow of the parallel decomposition algorithm. 

The boxes each represent a subproblem and its possible solution states (Inf, Unb, and Opt). 

The labeled arcs represent the passed information based on subproblem solutions, and the test for 

equilibrium is a repeated solution to the second subproblem. 

5. THE FACTORS AFFECTING SPEEDUP 

The behavior of the parallel decomposition algorithm will now be investigated using a seven-day 

diet problem (DIET7) generated in the same fashion as DIET2 was extended to DIETS. The three 

parameters (dimensions) of our behavioral study will be the number of subproblems, n, into which 

the seven-day problem is decomposed, the number of processors, p,  used to solve the subproblems, 

and the order in which the subproblems are solved. Tn each case we will discuss the factors involved 

in obtaining an SLP’s solution more swiftly. DIET7 turns out to be well suited for decomposition 

because many of the proposed algorithm’s benefits are realized in the results obtained. Not all 

problems are so amenable to decomposition, but we feel confident that significant speedups are 

often attainable on parallel computers. 
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5.1. The Number of Subproblems 
Some of the issues involved in deciding how many subproblems to create are: 

1) the natural structure of the problem, 

2) the overhead involved in decomposing, 

3) the resulting sizes of the subproblems, or how long they will take to solve on average, and 

4) the number of processors available. 

The seven-period problem was solved as a single LP in 48 iterations using MINOS 5.1. This 

is the benchmark for comparing combinations of the above parameters. Along the subproblem 

dimension n,  DIET7 was solved in 2-, 3-, and 7-subproblem decomposition schemes using a single 

processor. Efficiencies can sometimes be gained by merely breaking a problem into two subproblems 

because the amount of work per iteration is less and even the total work of both subproblems can 

he less. This proved to be true for DIET7. 

As a quick measure of performance, we will assume that the amount of work per iteration 

is proportional to  the number of rows in the subproblem-a reasonable approximation for sparse 

linear programs. The number of iterations per subproblem is the cumulative sum of iterations 

in successive solves until the entire SLP is solved. Hence, the iterative work per subproblem is 

approximated as the product of the number of rows and number of iterations. We can observe 

from Table 5.1 that the total amount of iterative work actually decreased from the single to  the 

double subproblem case for DIET7 

Table 5.1. Total work as seen in the subproblem dimension. 

As the number of subproblems is increased, the overhead of reformulating increases and there 

is a greater need for communication. At some point, overhead and communication will begin to 

outweigh any benefits associated with creating more subproblenls. Hence, a plot of the total work 

done against the number of subproblems created should look qualitatively like Figure 5~1, which 

attains a minimum at some point n*. 
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Total 4 

I 
n' 

Number of Subproblems 

Figure 5.1. Total work in the subproblem dimension. 

In the case of DIET7, n* = 2 subproblems using a single processor. For a different problem 

or a different number of processors, the value of nL may be different-possibly even equal to one. 

5.2. The Number of Processors 

Choosing the number of processors is subject to its own set of complexities. The design of any 

parallel algorithm is based upon the hope that the incorporation of more processors will offer 

almost linear speedup. However, the allocation of additional processors is a key issue because 

there are decreasing returns on investment. It is important that extra processors are used and do 

not sit idle. Having more processors than subproblems is an obvious case of inefficiency, but even 

when their numbers are equal, some processors will inevitably become idle (e.g. n = p = 2). For 

any given problem, there is some compromise position at which the best performance is achieved. 

29 26 1 
24 216 
1 1  99 

I 7 6 7 42 
totals 5 8  138 I165 

2 1 7 23 161 

Table 5.2. Total work as seen in the processor dimension. 



- 18 - 

Note in Table 5.2 that with two or four processors the total work necessary to solve the 

problem is less than in the single processor case. This phenomenon is due to the order in which 

subproblem are solved, and will be discussed further in the next section. 

5.3. Subproblem Ordering 
In the present implementation of the parallel decomposition algorithm, there is no explicit control 

over the order in which subproblems are solved. They are solved as they are taken by idle processors 

from the pend queue on a first-in first-out basis. (The first in the pend queue will be the 

subproblem that received a message least recently.) The importance of order on solution time 

is demonstrated in Table 5.3, where DIET7 was  solved twice with four processors on a Sequent 

Balance 8000. This machine has 8 CPUs, but because the processors are continually shared with 

other users, the order in which the subproblems are solved is not guaranteed to be the same in any 

two otherwise identical runs. As Table 5.3 shows, this can significantly deet the performance of 

the algorithm. 

P 
4 

4 I 

2 9 26 234 
3 9 17 153 
4 9 31 279 
5 9 32 288 
6 9 11 99 
7 6 7 42 

totals 5 8  1 5 6  1319j 

Table 5.3. Total work as seen in the order dimension. 

A possible remedy was previously alluded to during the discussion of the R U N  JOB loop. 

If the algorithm were enhanced SO that each job were put back into the pend queue after some 

predetermined number of iterations, the power of the GPUs would be more evenly distributed over 

the subproblems and the processors would be utilized more eficiently. This practice has the effect 

of incorporating new information more quickly because the latest solutions can be used to make 

modifications midway through a solution step. It also reduces the time that subproblems spend 

waiting for a processor. Future work will include such an enhancement to  the algorithm. 
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Appendix A. THE DIET PROBLEM SOLUTION 

We wish to show how an optimal solution to (2) can be fashioned from aa optimal solution of the 

smaller LP (1). 
niinimizc Crx = z1 

With 2 and (% p )  as the optimal primal and dual solutions to (l), and (21 22) and (7il 6 1  %2) as 

the optimal primal and dual solutions to ( 2 ) ,  we know from strong duality that 

i l  = cT2 = bT7i + pfi/a, 

2 2  3 c T i l  + ~ ' 2 2  = bT%l -t ,@b1 + b'7iz. 

(3) 

(4) 

and 

a) Show that (i) is primal feasible for (2). 

Clearly i 2 0. The x coiistraints of (1) imply that the r1 and 7 2  constraints of (2) are 

1 satisfied, and the p constraints of (1) imply that a T 2  2 p/2,  i.e. 2 a T 2  2 p. 

b)  Show that (5- 7i )  is dual feasible for (2). 

The dual of (2) i s  

maxiniize b'nl + P p 1  + bTn2 = z2 

21 : ATnl -1- up1 > c  

a p 1 4  ATx2 2 c 

T 2  2 0. 

x2 : 

K1 2 0,  

The dual of (1) implies that AT% 1- ab 2 c and Sr 2 0. 

c) show that (!), (+ fi  i s  optimal for (2). 

they satisfy (4). From (3), 

1 

X 

Knowing these primal fea3ible and dual feasible solutions of ( a ) ,  it is sufficient to show that 

Note that if i is non-degenerate, (s> cannot be basic for (2) because it has an even number of 

variables off their bounds, and (2) has an odd number of constraints. 
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