

.

A

ORNL/TM- 1101 1

4

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A PARALLEL DECOMPOSITION ALGORITHM
FOR STAIRCASE LINEAR PROGRAMS

Robert Entriken

Date Published: December, 1988

This research was supported by the Electric
Power Research Institute, the U.S. Air Force Office

of Scientific Research, the U S . Department of
Energy, the National Security Agency, the National

Science Foundation, the Science Alliance Program

of the State of Tennessee, and the Department

of Operations Research at Stanford University.

Prepared by the

Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-840R21400

HARTN MARIETTA ENFAGY SYSTEMS LI8H.WU.S

...
ll1

Table of Contents

Abstract . 1

1 . Introduction . 1

2 . Formulation of a Staircase Linear Program (SLP) 3
2.1. A One-Day Diet Problem . 3
2.2. A Two-Day Diet Problem . 4

2.3. A Three-Day Diet Problem . 5

3 . Refarmdating SLPs into Multiple Subproblems 7

3.1. Two-Period SLP . 7

3.2. n-Period SLP . 9

4 . Solving Subproblems with a Parallel Computer 11

4.1. Processes. Jobs and^ Queues . 12

4.2. Reaching an Equilibrium . 13
4.3. Infeasible and Unbounded Solutions . 14

5 . The Factors Affecting Speedup . 15

5.1. The Number of Subproblems . 16

5.2. The Number of Processors . 17

5.3. Subproblem Ordering . 18

Acknowledgements . 19

References . 19

Appendix A . The Diet Froblem Solution . 20

- 1 -

A PARALLEL DECOMPOSITION ALGORITHM
FOR STAIRCASE LINEAR PROGRAMS*

Robert .Entriken

Department of Operations Research

Stanford University

Abstract

As part of an extended research project on the parallel decomposition of linear programs, a
parallel algorithm for Staircase Linear Programs was designed and implemented. This class of
problems encompasses a large range of planning problems and when decomposed has simple
subproblem formulations and communication pat terns. This makes its solution a manageable
step toward our eventual goal of producing a general code that automatically exploits problem
structures of various forms.

The results presented here were derived from an implementation for a Sequent Balance
The algorithm itself is messagebased but can run on 8000 shared-memory multiprocessor.

either shared- or distributed-memory parallel computers.

A simple diet planning problem is used to demonstrate the principles of the algorithm’s
development and performance. When applied to this problem, the parallel decomposition algo-
rithm shows promise relative to present serial optimization codes. The nonlinear optimization
code MINOS 5.1 i s used both as a basis for comparison and as a generic subproblem solver. The
greatest room for speedup is in exploiting problem structures. The results show that decornpe
sition can improve efficiency even with a single processor. Examples are given where multiple
processors lead to still greater efficiency.

1. INTRODUCTION

The term Staircase Linear Program (SLP) describes a Linear Program (LP) that has a staircase

pattern in the nonzero coefficients of its constraint matrix, as illustrated in Figure 1.1. Each “step”

in the staircase typically corresponds to a collection of variables for a “period” of a planning horizon.

* This research was supported by the EIectrlc Power Research Institute, the 1J.S Air Force Office of Scientific Research,
the U.S. Department of Energy, the National Security Agency, the National Science Foundation, the Science Alliance

Program of the State of Tennessee, and the Department of Operations Research at Stanford University

- 2 -

Figure 1.1. The classic staircase pattern.

The collections of variables are described as periods because the staircase structure arises most

often from problems that represent systems over time [HL81]. In this report, we study multi-period

or multi-day diet plans as examples of SLPs. The diet planning problem is a very simple LP that

will help describe the reformulation and sohiion stages involved in solving staircase system with

a parallel computer.

To make proper use of a parallel computer, we must reformulate the original problem into

multiple subproblems and then submit them to multiple processors as a means of obtaining greater

throughput. The subproblems pass messages among themselves in a serial communication network

of the form shown in Figure 1.2, where the circles represent the subproblems and the lines between

them the contxnunication paths. Each period’s variables are associated only with the previous and

following periods’ variables in Figure 1.1. The serial structure results directly from the pattern of

interdependencies between variables in the SLP. The medium of communication between processors

in the parallel computer should have the ability to mimic a serial network.

Figlire 1.2. A serial communication network.

Abrahremson [Abr83] and Wittrock [Wit831 developed the topic of nested diad decomposition.

The same rriaterid is repeated here for completeoess, but in much less detail. Their work focused

on the solution of such problems with a serial computer. We will consider here an extension to the

use of a parallel computer, and paraphrase their results to prove the parallel algorithm converges.

Three major factors have been identified that significantly aRect the speed and efficiency with

which a solution is obtained in this framework:

(1) the number o f s ~ b p r o b l e ~ ~ into which we divide the SLP,

(2) the number of processors used to solve the subproblems, and

(3) the order in which the subproblems are solved.

A given subproblem may itself be a lower-dimensional SLP containing any number of adjacent

steps of the original staircase.

- 3 -

It will be shown that there are diminishing returns associated with extensive decomposition of

SLPs, and in the same way with increasing the number of processors used. The argument against

both further decomposition and the use of more processors is the increasing cost of communica-

tion. It should be noted, however, that communication costs will diminish because of technology

breakthroughs. Hence, this effect should be less significant in the future. Finally, with a better

understanding of the dynamic and unpredictable path that the following parallel optimization al-

gorithm takes to a solution, we will be better able to appreciate the subtle effect that the solution

order of the subproblems has on overall performance.

2. THE FORMULATION OF SLPS

2.1. A One-Day Diet Problem
The One-Day Diet Problem is an example taken from Chvbtal [Chv83]. Its mathematical formula-

tion can be found below as DIET1, with specific examples for the problem data A, b, c, and u. The

problem is to find the optimal selection of six commodities* 2, based on their corresponding costs

(given by e) , and their relative contributions toward satisfying the minimum daily requirements

b , for CALCIUM, PROTEIN, and ENERGY. The number of requirements is limited to three for

simplicity’s sake, while the amount of each commodity selected to satisfy them is bounded above

by satiation points u. The boxes in Figure 2.1 represent the pattern of nonzero coefficients in the

costs and constraints. The problem is dense.

DAY 1

minimize

Figure 2.1. Structure of the one-day diet problem.

DIETl is a linear program for determining a single day’s purchases while spending the least

amount of money. It will be used as a base case for formulating and studying multi-day diet-

planning SLPs as examples. The primal and dual formulations of DIETl are:

(Primal) minimize c T z subject to Ax 2 b, 0 5 z 5 u.

(Dual) maximize bTn- - uTu subject to A T r - CT 5 e, u 2 0, r 2 0.

The following notation combines the dual variables A and 0 with the primal formulation:

(DIETI) minimize e*z
subject to T: Ax 2 b

5: O < x < u ,

* OATMEAL, CHICKEN, EGGS, MILK, PIE, and PORK & BEANS.

- 4 .

where

2 12 54 285 22 80

110 205 160 160 420 260
A = (4 32 13 8 4 1 4) , b = (" s " s ") , 2000

c T = (3 24 13 9 20 1 9) , u = (4 3 2 8 2 2) T .

The optimal selectiou of commodities is 5 = (4 0 0 4.5 2 O) T , with the corresponding

dual solution ,fi = (0 0 0.05625)T and i? = (3.1875 0 0 0 3.625 O) T . Seven iterations

of the simplex method [Dan631 are required to obtain this solution using MINOS 5.1 [MS8'7] with

the default parameter settings, resulting in a minimum cost of ~ ' ~ 2 = 92.5. From the solution

to the dual, one might determine that the ENERGY constraint is the most difficult to satisfy

given the available commodities. Because there are zero prices on the CALCIUM and PROTEIN

constraints, one can quickly determine that the commodities chosen are relatively low in ENERGY

and high in CALCIUM and PROTEIN.

2.2. A Two-B~Y Diet P ~ ~ b l e m

DIET2 is a linear program that plans a selection of commodities over two days. It is sirnilar to

repeating DIET1 twice, but the daily requirement of ENERGY is relaxed to be satisfied in any

combination over both days instead of each individually. The individual ENERGY constraints

were added together, doubling the value of the right-hand side (RHS) entry.

DAY 1 DAY2

minimize

?

Figure 2.2. Structure of the two-day diet problem.

Figure 2.2 shows the 2-step sparse staircase coefficient pattern of DIETP. If the two individual

DIET1-type ENERGY constraints had not been added together when forming DIET2, the optimal

solution f of DIET1, repeated twice, woiald be the unique optimal solution to such a problem.

However, because we combined the individual ENERGY constraint,s into a single constraint, this

optimal solution to DIET2 is not unique, nor i s i t basic".

* See Appendix A foe a proof.

- 5 -

where
2 12 54 285 22 80

A1= (4 32 13 8 4 14

110 205 160 160 420 260
8 0) . 110 205 160 160 420 260

.I=(0 0 0 0 0 0) . A 2 = (2 12 54 285 22
0 0 0 0 0 0 4 32 13 a 4 14

4000
b 2 = = (y :) ,

c T = ~ ; = (3 24 13 9 20 1 9) , ~ 1 = ~ 2 = (4 3 2 8 2 2) T .

The set of optimal solutions to DIET2 contains the optimal solution to DIET1 repeated twice.

The locus of DIET2’s optimal solutions is:

(e? 2;) = A (4 0 0 5.125 2 0 4 0 0 3.875 2 0) +

(iiT*F) = (0 0 0.05625 0 0) ,
(1 - X) (4 0 0 3.875 2 0 4 0 0 5.125 2 0) , Ae[O,l],

6T - -T - - u 2 - (3.1875 0 0 0 3.625 0) .

The added freedom in choosing the two-day selectioIi of goods allows selections of each day

to be mutually dependent. Pair-wise dependence between repeating collections of variables is the

characteristic of SLPs that gives them their serial communication structure. DIET2 is our example

two-period SLP.

2.3. A Three-Day Diet Problem
Our example three-period SLP (DIET3) determines the optimal selection of three days’ commodi-

ties. In this example the general staircase pattern begins to emerge from the nonzero coefficients

of the constraints as shown in Figure 2.3. There are the first and last periods (DAY1 and DAY3)

with only one adjacent period or collection of variables, and there is the middle period (DAY2)

whose neighbors precede and follow it. For an n-day problem, there will be n - 2 such “middle“

periods, each of which has two neighbors.

- 6 -

DAY P DAY2 DAY 3

minimize

2 4

I PROTEIN I 2110

Figure 2.3. Structure of the threa-day diet prohiem.

In DIET3 the ENERGY requirement is shared between the first two days as in DIET2. In

addition, the PRQTEIN requirement is shared between the last two days. This pattern can be

propagated by extending the least constra.int over two days and listing the remaining two individ-

ually below it. The third and fourth day share CALCIUM and after that the cyclical pattern

repeats: ENERGY, PROTEIN, CALCIUM.

where

2 12 54 285 22 80
4 32 13 8 4 14 A1= (

2 12 54 285 22 80
110 205 160 160 420 260 110 205 160 160 420 260
0 0 0 0 0 0 B1= (

2 12 54 285 22 80

4 32 13 8 4 14 4 32 13 8 4

0 0 0 0 0 0
B z = (O 0 0 0 0 0) . A3 == (110 205 160 160 420

~ : = (3 24 13 9 20 1 9) , ~ i = (4 3 2 8 2 2) T , i = l , 2 , 3 .

The solution to DIET3 is similar t o that of DIET2 in that the optimal single-day selection

from DIET1, repeated three times, is optimal overall. Jn addition, as before, this solution is one

of a class of optimal solutions to DIET3:

(iT2if) = A (4 0 0 5.125 2 0 4 0 0 3.875 2 0) +
(1 - A)(4 0 0 3.875 2 0 4 0 0 5.125 2 0) , X E [0,1],

2 + (4 0 0 4.5 2 O),
(i iy l i f %;) = (0 0 0.05625 0 0 0.05625 01,

GT ~ &; = u3 -T - - (3.18'75,O 0 0 3.625 0) .

There is only one degree of freedom in the solution because the PROTEIN constraints are

nonbinding.

3. REFORMULATING SLPS INTO MULTIPLE SUBPROBLEMS

We will now focus on reformulating the original general SLP into many interrelated subproblems

using a technique called Benders decomposition Pen621. The purpose of creating a collection of

subproblems in place of a single problem is to solve the collection simultaneously with a parallel

computer. It will suffice for the scope of this report to present the subproblem formulations

directly, and then go on to the parallel algorithm for solving the SLP. Each subproblem formulation

contains independent portions of the original problem data, additional necessary conditions (cuts),

and accounting variables that are simple machinery for algorithmic support -- most calculations are

implicit in the formulations, not explicit in the algorithm.

The following discussion will focus mainly on the case when the subproblems are solved to

optimality, placing less emphasis on on cases when their solutions are infeasible or unbounded.

This facilitates the exposition of the algorithm, saving the more coniplex cases for the next section

when our insight is sufficiently developed.

3.1. Two-Period SLP
Benders decomposition differs from the more familiar Dantzig-Wolfe decomposition in that the

former partitions an LP according to its variables, whereas the latter partitions it according to its

constraints. Each subproblem fixes the values of certain primal and dual variables of the original

SLP in order to solve a reduced problem over a smaller set of variables. DIET2 can easily be

decomposed into the two interdependent subproblems DIET2.1 and DIET2.2, that are solved one

after the other, with appropriate modifications to certain algorithm parameters (f i 2 , &,fiz, 5: and

gf), until the modifications no longer affect the solutions of the two subproblems. These parameters

are explained in detail following the formulations. In general, a subscript refers to a subproblem

number, and a superscript k refers to a variable's value in the kth solution to the subproblem. We

- 8 -

will use the notation 5 for intermediate subproblein solutions, with f to denote the final solution

for the full SLP. All other variables, grinaal and dual, will follow the same notation.

Figure 3.1. Information Bow in Gbe two-period SLP.

DIET2.l initially drops the ENERGY constraint and the second day’s PItOTETN and CAL-
CIUM constraints from t h e original SLP, and solves only with regard to the first day’s CALCIUM

and PROTEIN requirements and minimum COSTS. Naturally, a certain amount of EWER6Y is

thereby offered by DIET2.1. It is calculated as y1 1 Blzl in the rows corresponding to the d u d

variables p1.

(DiET2.1) minimize cT.1 +- 01 = z1
subject to r1 : A l t l 2 bi

P1 : 231x1 - I Y l = o
PI : fi2Y1+8201 2 F2

(DIET2.2) minimize eTz2 = 22

subject to q 2 : 1 ’ 2 - 1
5 k W - g k

a2 : A ~ E ~ - I - $ w ~ 2 bz

c2 : o 5 x 2 1. u 2 , w2 > Q, v2 = I) if 5: = Q.

Taking ($:,$, .:,$,e”:) as the first solution to DIET2.1 with its parameters f?2,&, and F 2

set to zero, we note that 5; and 5: will be used in DIET2.2’s formulation. We set 8; = 0 if DIET2.1

finishes unbounded, 8: = 1 if it finishes optimal, and 8: = undefined if it finishes infeasible, because

the entire SLP must be infeasible.

Let us assume that, DIET2.1 finishes optimal. We set 8: = 1 so that DIET2.2 adopts 27: as

the amount of ENERGY offered by DIE’1’2.1. (Note that 6; is effectively subtracted from the

right-hand side when s: = 1 became wz is fixed at 1.) After solving DIET2.2 and assuming

optimality, we return to DTE’1‘2.1 with the optimal prices on DIET2.2’s constraints corresponding

to r2. These are used to irnpase a new constraint on y1 to ensure that the same dual feasible

extreme point 5: wi!l not he obtained again when DIET2.2 is solved, unless the optimal value of

y1 has been reached. This is the verbal interpretat,ioii of the pi rows of the first-day subproblem.

- 9 -

The inequality fI2yl + 8201 2 f i2 in DIET2.1 is a collection of added constraints (if$)Tyl +
s',k& 2 jji obtained from Ii' dual solutions to the second-day subproblem (@,.Et,ij;,k$, b =
1,2, . . . , I<). In particular, & = (84,. . . , if)' is 8 vector of Kronecker delta functions indicating

optimality in each of the K solutions. If the kth dual solution to DIET2.2 is dual feasible and

bounded above, then we set d$ = 1; if it is dual feasible and unbounded above then $5 = 0; if dual

infeasible (indicated by an unbounded primal solution) , the two-period primal SLP is unbounded.

The vector &! = (jii,. . . ,j$)* is a corresponding collection of scalars calculated as = 2; - 4;
from 55 (the objective value, or sum of infeasibilities) and ijt (the price, or multiplier, on the

constraint corresponding to 112) . Finally, f i 2 = (if;, i f F) T , where ii$ is the vector of prices or

multipliers on the constraints corresponding to a2.

One way of interpreting the addition of constraints to DIET2.1 is thah the matrix A2 is being

approximated by the independent rows in f i 2 . It is therefore sufficient to carry along at most the

number of constraints corresponding to the row-rank of Az. In other words, when such constraints

become slack, they may be discarded. However, if they turn out to be binding in the final optimal

solution, they will be regenerated. Discarding cuts runs the risk of cycling due to degeneracy; it

could lead to a repeated pattern of discarding and regenerating the same constraints.

'

3.2. n-Period SLP
The subproblems of the n-period SLP are of three types: the first period as in DIET2.1, the last

period as in DIET2.2, and those with two adjacent subproblems, which are a combination of the

two other forms. The three subproblems of DIET3 (DIET3.1, DIET3.2, DIET3.3) exemplify these

three types and thereby those of an n-period SLP.

Figure 3.2. Information flow in the n-period SLP.

Following the manner in which DIET2 was decomposed into two subproblems, we will quickly

go through the division of the three-day diet problem into three subproblems. This exercise will

demonstrate two key procedures. The first is the formulation of a subproblem that accepts solutions

from two others, the previous and following subproblems, as opposed to only one other in the

DIET2 cases; this allows a generalization to the n-period SLP. The second procedure is associated

with the possibility of using more than one processor, thereby carrying Benders decomposition into

- 1 0 -

the multiprocessor environment. As described, a subproblem may have more than one neighbor.

Hence, an algorithmic choice must be made as to which neighbor to solve next when there is only

one processor. When multiple processors are available, a choice need not be made-all of the

neighboring subproblems may be solved simultaneously.

The three subproblem of DIET3 are formed by partitioning the daily selections as before.

DIET3.1 will plan purchases for the first day, DIET3.2 for the second day, and DIET3.3 for the

third day. As before, 61 is the amount of ENERGY in the first day's selection, while jj2 is the

amount of PROTEIN in the second day's Relection.

Subproblem Parameters

UIET3.1 l"2,82,1?2

DIET3.2 a":, &fi3,83,P3

DIET3.3 a";, 6:

Each of the subproblem formidations contains parameters that are based on the solutions of

neighboring subproblems. The next section will describe the continual updating of these pararneters

as part of a parallel decomposition algorithm.

- 11 -

4. SOLVING SUBPROBLEMS ON A PARALLEL COMPUTER

From the subproblem formulations in the previous section, we have seen that any given subproblem

contains from two to five parameters. These are initially undefined, and are first given values when

a neighboring solution is communicated. In the serial dual-decomposition algorithm we begin by

solving the last-period subproblem (knowing that any solution must meet the dual constraints

corresponding to zn), and then work toward obtaining a dual-feasible solution and then an optimal

solution for all periods, if possible.

In the parallel algorithm we begin by solving all subproblems simultaneously, with their com-

munication parameters initially set to zero. Their solutions, despite not including neighboring

information, are still relevant and can be used to construct modifications. When used to modify

right-hand sides, they will direct the new optimal solutions to a possibly different set of relevant

solutions. When used to add constraints, the type of constraint depends on whether the neighbor-

ing subproblem solution was infeasible or feasible and, if feasible, whether bounded or unbounded.

Initially only the last subproblem solution may be used to add an optimality constraint, yet any

infeasible solution may be used to generate a necessary condition for feasibility (a feasibility con-

straint). In general, an optimality constraint may be passed only if the present subproblem already

contains such a constraint (except the last subproblem, of course).

Just as a two-subproblem decomposition, with no middle subproblems, is a special case of an

n-subproblem decompwition, the single-processor algorithm is a special case of the multiprocessor

parallel algorithm with one subproblem being solved at a t h e instead of many. With only one

processor, the parallel algorithm reduces to Benders decomposition.

The parallel computer architecture used for solving SLPs with the parallel algorithm is as-

sumed to have numerous independent and powerful processors. The amount of memory available

locally for the use of each individual processor is assumed to be substantial (2 5 Megabyte)

since the optimization code (MINOS 5.1) stored for each processor is large, and each subprob-

lem data-set can be large. Shared- and distributed-memory multiprocessing computers as well as
distributed-processing computers are suitable for our application. Table 4.1 gives some examples

of commercially available processors.

Size of Number of

Table 4.1. Examples of parallel computer architectures.

In a discussion of alternative architectures, the issues of Computational and communication

loads are of primary importance. The ideal is to distribute the computational load equally across

- 1 2 -

all processors while keeping the time used for communication to a minimum. The reformulation

(initialization) stage requires a large flow of information between the processors, but in the solution

stage the messages are typically small and infrequent. This is evident because reformulation

involves distributing the original data into n subproblems, whereas during the solution stage most

time is spent solving LIP subproblems with the simplex method.

The description of this algorithm is directed primad) toward a shared-memory implementa-

tion. Parallel processors with distributed memory require an additional scheme for distributing

the work load so that the processors are responsible for disjoint subsets ~f the subproblems. If

the subset of a processor contains more than one subproblem, they should be handled as in the

single-processor shared-memory case (a special case ~f the parallel algorithm below). In addition,

the sclaeduling of subproblems between processors becomes an implicit result of message passing.

4.1. Processes, Jobs and Queues
There will he a user-specified number of subproblems n and processors p involved in solving a

general S1,P. The number of processors could exceed the number of subproblem (p > n) but this

would lcave the extra ~ ~ Q C ~ S S O W unused, or inefficiently loaded. Hence, we assume that p 5 n.
Associated with each of the n subproblems k a job consisting of the loop of tasks in Figure 4.1.

The term '(job" is used to emphasize the fact that it encompasses more than solving linear program

subproblem. The tasks of each job axe repeated in succession and any processor can execute thein

A job is always in one of three states: run, running; pend, waiting to be run; or sleep, solved

and waiting for new information.

Ji'igure 4.1. The RUN JOB bop.

The p processors repeatedly execute the loop in Figure 4.2, which transfers jobs among three

shared queues (run, peaad, and sleep) according to the result of running through the job loop.

Each queue corresponds to one of the three job states.

Figure 4.2. The process loop.

- 13 "

The run queue contains the jobs currently running on p or fewer processors, the results of

which will define the next states of the jobs. Thus, it will never contain more than p jobs. The

pend queue is where a processor finds jobs (subproblems) waiting to be run (solved), and the

sleep queue is where jobs reside while at the WAIT FOR MESSAGE step.

In the process loop of Figure 4.2, GET JOB involves inspecting the pend queue and, if there

is an available job, transferring it to the run queue. Jobs are run (RUN JOB) as a repeated

sequence of tasks, beginning at the SOLVE step. After the jobs pass through the SOLVE step,

they continue around the loop unless the solution is unchanged, in which case the job is placed in

the sleep queue (QUEUE JOB) to wait for a message.

In a more advanced implementation, one might consider interrupting the SOLVE step after

a specified number of iterations and placing the job, though unfinished, "back in the yerid queue.

This would have the effect of further balancing the computation power across the subproblems,

and would incorporate new information more quickly. In addition, it has recently been observed

that if the simplex method is applied to the dual formulation of a subproblem, every dual-feasible

extreme point visited by the simplex method has the potential to form a new necessary constraint

on the preceding neighbor [HLS88].

get job wake job

Figure 4.3. The transfer of jobs amongst queues.

The modification of a subproblem in Benders decomposition is governed by the neighbor that

sent the message; if it was the preceding neighbor, then the RHS is modified; if it was the following

one, then a constraint is added. Once modified, subproblems are solved using the simplex method

and their solutions are broadcast to their neighbors. If a neighbor is in the sleep queue when the

solution is sent, it is awakened and transferred to the pend queue, since it, is now able to leave the

WAIT FOR MESSAGE step (see Figure 4.3).

4.2. Reaching an Equilibrium
The p processors continue their loops, becoming idle only when there are no jobs in the pend

queue. If this happens, a quick inspection of the run queue will determine if all jobs are sleeping.

If so, the system is deadlocked. Each processor recognizes deadlock as the signal to stop, but before

stopping, one predesignated processor will execute a cleanup operation such as printing a solution.

In the current design, deadlock is needed to stop the algorithm.

Given that a system cannot reach deadlock when jobs wait for messages that will always be

sent, one may wonder whether the processors will ever stop, and if so, how? When a subproblem

parameter modification does not cause an optimal solution of the subproblem to change, the job

does not rebroadcast its solution to its neighbors. At this point, the subproblem is said to be

- 1 4 -

in “equilibrium” with its neighbors; it is then placed in the sleep queue to wait for updating

information. All subproblems must reach a simultaneous equilibrium for the same reason that the

single-processor Benders algorithm does: 1) there are a finite number of dual extreme points in the

subproblems, and 2) a different one must be communicated each time to maintain disequilibrium.

Hence, at some point the collection of useful d u d extreme points is exhausted. The equilibrium

relationship is reflexive and transitive, and so a system-wide equilibrium is achieved.

This argument is also valid when many such dual extreme points are being passed simultane-

ously, as in the multiprocessor case. The conditioii for equilibrium is precisely deadlock, with all

jobs sleeping, since no new and useful information is forthcoming.

4.3. Infeasible and Unbounded Solutions
What should be done if a subproblem finishes with an infeasible or feasible unbounded solation? If

it is the first subproblem and it is infeasible (INF) then the entire SLP must be infeasible because

the constraints corresponding to and p1 cannot be satisfied. If it is the last subproblem finishing

unbounded (IJNB) then the SLP must be unbounded because there do not exist prices ?r, that can

satisfy the dual conditions associated with the variables x,, and ti),%. These two cases correspond

to the top and bottom entries in Figure 4.4. In both cases the algorithm stops.

S J J Infeasible
PW EX~TNW Ray IT.brward

Pass Feasibility Constraint Back
e Pass Extreme Xay Forward

Pass Feasibility Constraint Back
@ SLPUnbounded

Figure 4.4. Alternative recourses for infeasible and unbounded subproblems.

In the remaining cases the algorithm continues. If a subproblem other than the first is infea-

sible, the infeasibility multipliers, say i i .2, are used to impose a constraint of the form % r y l 2 %;bl

on the preceding subproblem (8,” gets a zero entry). This constraint is a necessary condition on yl

for the feasibility of the second subproblem and thus the entire SLP. In general, a chain of such

infeasibility conditions may extend from the jth subproblem back to the first and indicate that the

entire SLP is infeasible.

Likewise, if a subproblem other than the last finishes unbounded, the extreme point, say

$1, obtained from the primal feasible solution and the extreme ray, say a& (a 2 0) , from the

column entering the basis and its accompanying cost S1 from the incoming column’s reduced cost

are inserted in the following subproblem as two tu2-type columns. Only extreme-ray columns

ever have coefficients in the objective row, which is why they were not explicitly included in the

formulations of the previous section. The extreme-point column has its 8: parameter set to one in

order to modify the RHS (Section 3.3.) and the extreme-ray column has its 6‘; set to zero to allow

freedom in the direction of the unboundedness. Its accompanying cost permits the subproblem to

weigh the benefitits of this direction against present and future costs.

- 15 -

If a finite solution is found to the ray-modified subproblem, the constraint it returns will

necessarily restrict the old ray solution of the previous subproblem by giving the ray an unattractive

positive cost.

If an infeasible solution is found to the ray-modified subproblem, the: returned constraint will

cut off the old ray solution outright (since it leads to infeasibility).

If an unbounded solution is found, it passes a new ray one step further. Such new rays can

form a path to the last subproblem, which if unbounded too, means the entire SLP is unbounded.

Figure 4.5 summarizes the Benders algorithm for the 2-period SLP. The reader shoyld imagine

any number of middJe subproblems inserted into the diagram to represent the general case.

SLP
Infeasible

S L P
Unbounded

Figure 4.5. Flow of the parallel decomposition algorithm.

The boxes each represent a subproblem and its possible solution states (Inf, Unb, and Opt).

The labeled arcs represent the passed information based on subproblem solutions, and the test for

equilibrium is a repeated solution to the second subproblem.

5. THE FACTORS AFFECTING SPEEDUP

The behavior of the parallel decomposition algorithm will now be investigated using a seven-day

diet problem (DIET7) generated in the same fashion as DIET2 was extended to DIETS. The three

parameters (dimensions) of our behavioral study will be the number of subproblems, n, into which

the seven-day problem is decomposed, the number of processors, p, used to solve the subproblems,

and the order in which the subproblems are solved. Tn each case we will discuss the factors involved

in obtaining an SLP’s solution more swiftly. DIET7 turns out to be well suited for decomposition

because many of the proposed algorithm’s benefits are realized in the results obtained. Not all

problems are so amenable to decomposition, but we feel confident that significant speedups are

often attainable on parallel computers.

- 16 -

5.1. The Number of Subproblems
Some of the issues involved in deciding how many subproblems to create are:

1) the natural structure of the problem,

2) the overhead involved in decomposing,

3) the resulting sizes of the subproblems, or how long they will take to solve on average, and

4) the number of processors available.

The seven-period problem was solved as a single LP in 48 iterations using MINOS 5.1. This

is the benchmark for comparing combinations of the above parameters. Along the subproblem

dimension n, DIET7 was solved in 2-, 3-, and 7-subproblem decomposition schemes using a single

processor. Efficiencies can sometimes be gained by merely breaking a problem into two subproblems

because the amount of work per iteration is less and even the total work of both subproblems can

he less. This proved to be true for DIET7.

As a quick measure of performance, we will assume that the amount of work per iteration

is proportional to the number of rows in the subproblem-a reasonable approximation for sparse

linear programs. The number of iterations per subproblem is the cumulative sum of iterations

in successive solves until the entire SLP is solved. Hence, the iterative work per subproblem is

approximated as the product of the number of rows and number of iterations. We can observe

from Table 5.1 that the total amount of iterative work actually decreased from the single to the

double subproblem case for DIET7

Table 5.1. Total work as seen in the subproblem dimension.

As the number of subproblems is increased, the overhead of reformulating increases and there

is a greater need for communication. At some point, overhead and communication will begin to

outweigh any benefits associated with creating more subproblenls. Hence, a plot of the total work

done against the number of subproblems created should look qualitatively like Figure 5~1, which

attains a minimum at some point n*.

- 17-

Total 4

I
n'

Number of Subproblems

Figure 5.1. Total work in the subproblem dimension.

In the case of DIET7, n* = 2 subproblems using a single processor. For a different problem

or a different number of processors, the value of nL may be different-possibly even equal to one.

5.2. The Number of Processors

Choosing the number of processors is subject to its own set of complexities. The design of any

parallel algorithm is based upon the hope that the incorporation of more processors will offer

almost linear speedup. However, the allocation of additional processors is a key issue because

there are decreasing returns on investment. It is important that extra processors are used and do

not sit idle. Having more processors than subproblems is an obvious case of inefficiency, but even

when their numbers are equal, some processors will inevitably become idle (e.g. n = p = 2). For

any given problem, there is some compromise position at which the best performance is achieved.

29 26 1
24 216
1 1 99

I 7 6 7 42
totals 5 8 138 I165

2 1 7 23 161

Table 5.2. Total work as seen in the processor dimension.

- 18 -

Note in Table 5.2 that with two or four processors the total work necessary to solve the

problem is less than in the single processor case. This phenomenon is due to the order in which

subproblem are solved, and will be discussed further in the next section.

5.3. Subproblem Ordering
In the present implementation of the parallel decomposition algorithm, there is no explicit control

over the order in which subproblems are solved. They are solved as they are taken by idle processors

from the pend queue on a first-in first-out basis. (The first in the pend queue will be the

subproblem that received a message least recently.) The importance of order on solution time

is demonstrated in Table 5.3, where DIET7 was solved twice with four processors on a Sequent

Balance 8000. This machine has 8 CPUs, but because the processors are continually shared with

other users, the order in which the subproblems are solved is not guaranteed to be the same in any

two otherwise identical runs. As Table 5.3 shows, this can significantly deet the performance of

the algorithm.

P
4

4 I

2 9 26 234
3 9 17 153
4 9 31 279
5 9 32 288
6 9 11 99
7 6 7 42

totals 5 8 1 5 6 1319j

Table 5.3. Total work as seen in the order dimension.

A possible remedy was previously alluded to during the discussion of the R U N JOB loop.

If the algorithm were enhanced SO that each job were put back into the pend queue after some

predetermined number of iterations, the power of the GPUs would be more evenly distributed over

the subproblems and the processors would be utilized more eficiently. This practice has the effect

of incorporating new information more quickly because the latest solutions can be used to make

modifications midway through a solution step. It also reduces the time that subproblems spend

waiting for a processor. Future work will include such an enhancement to the algorithm.

- 19 -

ACKNOWLEDGEMENTS

The seed for this research into the use of parallel computers was formed three years ago

in a so-called flash of awareness. By being given the opportunity to work at (,he Oak Ridge

National Laboratory in the Autumn of 1987, where the resources of the Mathematical Sciences

Section were open to me, I was able to implement this idea and see it yield new and exciting

prospects. The friendly and colloquial atmosphere at the laboratory speeded my progress, and

having direct access to the people and parallel computers there proved priceless. Especially valuable

was the opportunity to meet visitors to the Special Year an Numerical Linear Algebra. Particular

recognition must be given to George Dantzig, Ed Klotz, Chuck Romine, and Michael Saunders for

reviewing drafts of this paper. Thanks also go to Stanford’s Department of Operations Research

for the use of their m t u r e s software] Macintosh computers and Laserwriter printer.

m t u r e s is a trademark of Addison-Wesley Publishing Company, Inc. TEX is a trademark

of the American Mathematical Society. Macintosh and Laserwriter are a trademarks of Apple

Computer, Inc.

REFERENCES

[Abr83] Philip G . Abrahamson (1983). A Nested Decomposition Approach for Solving Staircase

Linear Programs, Ph.D. Dissertation] Dept. of Operations Research, Stanford University,

Stanford, CA.

[Ben621 J . F. Benders (1962). Partitioning procedures for solving mixed-variable programming

problems, Numerische Mathematkk 4, 238-252.

[Dan631 George B. Dantzig (1963). Linear Programmiag and Eztensions, Princeton University

Press, Princeton.

[Chv83] VGek Chvital (1983). Linear Programming, W. €I. Freeman and Company, New York

and San Francisco.

[GMSW87] Philip E. Gill, Walter Murray, Michael A. Saunclers and Margaret Ii. Wright (1987).

Maintaining LU factors of a general sparse matrix, Linear Algebra and its Applicaiions,

[HL81] James K. Ho and E. Loute (1981). A set of staircase linear programming test problems,

[BLSSS] James K. Ho, Tak C. Lee and R, P. Sundarraj (1988). Decomposition of linear programs

using parallel computation (revised), Invited paper at the Symposium on Parallel Opti-

mization, Madison, WI.
[MS87] Bruce A. Murtagh and Michael A. Saunders (1987). MINOS 5.1 user’s guide (revised)]

Report SOL 83-20R, Dept. of Operations &searchl Stanford University, Stanford, GA.

[Wit831 Robert J . Wittrock (1983). Advances in a Nested Decomposition Algorithm for Solving

Staircase Linear Programs, Ph.D. Dissertation, Dept. of Operations Research, Stanford

University, Stanford, CA.

88/89, 239-270.

Mathematical Programming 20, 245-250.

- 20 -

Appendix A. THE DIET PROBLEM SOLUTION

We wish to show how an optimal solution to (2) can be fashioned from aa optimal solution of the

smaller LP (1).
niinimizc Crx = z1

With 2 and (% p) as the optimal primal and dual solutions to (l), and (21 22) and (7il 6 1 %2) as

the optimal primal and dual solutions to (2) , we know from strong duality that

i l = cT2 = bT7i + pfi/a,

2 2 3 c T i l + ~ ' 2 2 = bT%l -t ,@b1 + b'7iz.

(3)

(4)

and

a) Show that (i) is primal feasible for (2).

Clearly i 2 0. The x coiistraints of (1) imply that the r1 and 7 2 constraints of (2) are

1 satisfied, and the p constraints of (1) imply that a T 2 2 p/2, i.e. 2 a T 2 2 p.

b) Show that (5- 7i) is dual feasible for (2).

The dual of (2) i s

maxiniize b'nl + P p 1 + bTn2 = z2

21 : ATnl -1- up1 > c

a p 1 4 ATx2 2 c

T 2 2 0.

x2 :

K1 2 0,

The dual of (1) implies that AT% 1- ab 2 c and Sr 2 0.

c) show that (!), (+ fi i s optimal for (2).

they satisfy (4). From (3),

1

X

Knowing these primal fea3ible and dual feasible solutions of (a) , it is sufficient to show that

Note that if i is non-degenerate, (s> cannot be basic for (2) because it has an even number of

variables off their bounds, and (2) has an odd number of constraints.

-21 -

ORNWTM-11011

INTERNAL DISTRIBUTION

1.
2.

3-7.
8.

9-10.
11.

12-16.
17.

18-22.
23.
24.
25.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

B. R. Appleton
J. B. Drake
R. Enviken
G. A. Geist
R. F. Harbison
M. T. Heath
J. K. Ingersoll
M. R. h e
E C. Maienschein
E. 6. Ng
B. W. Peyton
C. H. Romine

26-30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
404 1.

R. C. Ward
P. H. Worley
A. Zucker
3. J. Doming (Consultant)
R. M. Hamlick (Consultant)
Central Research Library
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library/

Document Reference Station
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,
ER-7, Germantown Building, U.S. Department of Energy, Washington, DC 20545

Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Gra-
duate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Houston,

Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Dr. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, E
Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping
58 183, Sweden

Dr. James C. Bmwne, Department of Computer Sciences, University of Texas, Aus-
tin, TX 78712

Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

Dr. Donald A. Calahan, Depamnent of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, NI 48 109

Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Nilgard Avenue, Los Angeles, CA 90024

TX 77252-2189

- 22 -

52. Dr. Sagdish Chmdra, Amy R e s
Box 12211, Research Triangle Park, NC 277

53. Dr. Eleanor Ctmm, Ilqmtment of Computer Science, University of Watedoo,
Cmda N2L 3G1

54. Pmf. Tom Cole an, DepaMnlent of Corn ter Science, Cornea University, I
NY 14853

55. I%. Paul Concm, Mathematics md ~ o ~ ~ ~ t i n ~ , Lawrence Berkeley Laboratory,
Berkeley, CA W72Q

56. Prof. Andy Corn, Dep of Combinatotics, and Optimization, University of
Waterloo, Waterloo, On

57. Dr, Jane K. Cullurn, IBM T.J. WaLwn Research Center, P.0, Box 218, Yorktowrn

58. Dr. George Cybenko, Computer Science Department, University of Illinois, Urbana,
IL 61801

59. Dr. Ceorge J. Davis, Depament of Mathematics, Georgia State University, Atlanta,
@A 30383

Bo. Dr. Jack J. Dongam, Mathenraatics and Computer Science Division, Argome National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

61. Dr. Iain Duff, CSS Division, Hawell La ratory, Didcot, O X Q ~ OX1 1 O M , England

62. Prof. Pat Eberlein, pament of Computer Science, SUNY/”xsuffals, Buffalo, NY
1.6260

63. Dra Stanley Eisensrat, Bpartrment of Computer Science, Yale University, P.8. Box
2158 Yale Station, New Haven, CT 06520

64. Dr. Lars Elden, Department of Mathematics, Linkoping University, 58133 Liraksping,
Swden

65. Dr. Howard C. Elman, Computer Science mient, University of Maryland, Col-
lege Park, MD 20742

66. Dr. Albert M. Erisman, Boeing Computer Services, 555 Andover Park West, Tukwila,
WA 98188

67. Dr. Peter Fenyes, General Motors Resieasch I,absratory, Department 15, GM Techni-
cal Center, Warren, MI 48090

68. Prof. David Fishen; Department of Mathematics, Harvey Mudd College, Claremont,
CA 91711

69. Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Tech-
nology, Pasadena, CA 9 1 125

40. Dr. Paul 0. Fredericksoxn, Computing vision, LQS Alamos National Laboratory, ZBS
AImss, NM 87545

h Office, P.Q. Box 1221 1, Research Office, P.O.

- 2 3 -

71. Dr. Fred N. Fritsch, L-308, Marhematics and Statistics Division, Lawren% Livemore
National Laboratory, P.O. Box 808, Livennore, CA 94550

72. Dr. Robert E. Funderlic, Depaxtment of Computer Science, North Camlina State
University, Raleigh, NC 27650

73. Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

74. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

75. Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

76. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-SO. Room 344, Montreal Roadd, Ottawa, Ontario, Canada KIA
OR8

77. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

78. Dr. John Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road Palo Alto,
CA 94304

79. Dr. Jacob D. Goldstein, The Analytk Sciences Corporation, 55 Walkers Brook Drive,
Reading, MA 01 867

80. Prof. Gene H. Golub. Department of Computer Science, Stanford University, Stan-
ford, CA 94305

81. Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratones, Livennore, CA
94550

82. Dr. Per Christian Hansen, Copenhagen University Observatory, @&@ster Voldgade
3, DK-1350 Copenhagen K, Denmark

83. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

84. Dr. F. I. Helton, GA Technologies, P.O. Box 81608, San Diego, CA 92188

85. Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

86. Dr. Robert E. Huddleston, Computation Department, Lawrence Livemore National
Laboratory, P.O. Box $08, Livennore, CA 94550

87. Dr. Use Ipsen, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CI' 06520

88. Ms. Elizabeth Jessup, Department of Computer Science, Yale University, P.O. Box
2158, Yale Station, New Haven, CT 06520

89. Prof. Bany Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta, Canada T6G 2H1

- 24 -

De r Engineering, University of
I-, c

91. Dr. Bo Kagstrom, Institute of Momation ssing, University of Umea, 5-901 87
Umea, Sweden

92. Dr. Hans K Mathematics and Computer Science fivision, iargome National
South Cass Avenue, Agome, Td, 60439

93. Dr. Linda Maufman, Bell Laboratories, Mountain Avenue, Mumy Hill, NJ 07974

94. Dr. Robert J. Kee, Applied ~ a ~ e ~ a ~ c ~ Division 8331, Sandia National Laboratories,
Livemore, CA !%I558

95. Ms. Virginia Klema, Statistics Center, Ea0-131, MIT, Cambridge, MA 02139

96, Dr. Richard Lau, Office of Naval Research, 1033 E.Green Street, Pasadena, CA 91 101

97. DP. Alan J. Laub nt of Electrical and Computer Engineering, University of
California, Santa A 93106

98. Dr. Robert L. Launer, A m y Research Office, P.8. Box 12211, Research Triangle
Park, NC 27709

arks Lawson, MS 301490, Yet Propulsion Laboratory, 4800 Oak Grove Drive,

100. Pmf. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New Yo&, NY 10012

101. Dr. John G. Eewis, Boei~g Computer S e ~ i ~ s , P.O. BOX 24346, MIS 7E-21, %e
WA 98 124-8346

102. Dr. Heather M. Liddell, Dimtor, Centm for Parallel Computing, nt of Com-
Mile End puter Science and Statistics, Queen Mary College, Univesity o

Read, London El 4NS, England

103. Dr. Joseph Liu, Ue
Stmt, Dowview,

104. Dr. Franklin h k , Electrical Engineering
14353

105. James G. Malonc, Genes Motors Research Lahmtories, Waren, MI 48

106. Dr. Thomas A. Marateeuffel, Computing Division, Los Alamos National Laboratory,
Los Alamos, NM 87545

107. Dr. Bernard McDonald, National Scienw Foundation, 1800 G Stmt, NW, Washing-
ton, DC 20550

108. Dr. Pad C. Messha, California Institute of Te e 158-79, Pasadena,
CA 91 125

ent of ~ ~ ~ ~ ~ t ~ r Science, Yo& Univemiry, 4780 Keele

p m e n t , Cornell University, lehaca, NY

, Canada M3J 1P3

- 25 -

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086

Dr. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

Dr. Dianne P. O’Leary, Computer Science Department, University of Mmland, Col-
lege Park, MD 20742

Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory, Kirt-
land Air Force Base, Albuquerque, NM 871 15

Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia,
Charlotksville, VA 22903

Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher-
brooke Street W., Montreal, Quebec, Canada H3A 2K6

Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ 85284

Prof. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,

Prof. Beresford N. Parlett, Department of Mathematics, University of California,
Berkeley, CA 94720

Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,
NC 27706

Dr. Robert J. Flemmons, Departments of Mathematics and Computer Science, North
Cmli ia State University, Raleigh, NC 27650

Dr. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon, Eng-
land OX1 1 ORA

Dr. John R. Rice, Computer Science Department, h rdue University, West Lafayette,
IN 47907

Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livemore, CA 94550

Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Urbana,
IL 61801

Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research
Departonent, Stanford University, Stanford, CA 94305

Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic Wti-
Ute, Troy, NY 12180

Dr. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

SC 29634-1906

- 2 6 -

129.

130.

131.

132.

133.

134.

135.

136,

137.

138.

139.

140.

141.

142.

Dr. David S.
Beaverton, OR

Dr. law^^^ F. Shampine, Mathennatics Department, S o ~ ~ e ~ Metluxlist Unhmsity,
Dallas, TX 75275

Intel Scientific Computers, 15201 N.

on, Depmeamt of Mathe atics, University of Florida, Gainesvifle,

Dr. Horst Simon, Mail Stop 258-5, NASA A es ~ ~ ~ e a r c h Center, Maffett Field, CA
9403s

Nathx~al Laboratory, 9700 South Cas Avcnue, Argome, IL 60439

Prof G. W. Stewart, Comp~ter Scieiim m e n t , University of Maryland, College
Park, MB 20742

Dr. Kosmo D. Tatalias, Atlantic Aerospace Electronics Corporation, 6184 Ivy Lme,
Suite 308, Breenbelo, MD 20770- 1406

Prof. Charles Van Loan, Depament of C p t e r Science, Cornell University, ItXlaca,
NY 14853

DP. Robert G. Voig, ICASE, MS 13242, NASA Langley Research Center, Hamptsn,
VA 23665

Dr. Andrew B. White$ Computing Division, Las Alamos National Laboratory, Los
Alarnos, hT4 87545

Dr. Arthur Wouk, Army Research Office, P,O. Box 12211, Research Triangle Park,
NC 27709

Dr. Margaret Wfight, Bell Lahramries, 6 0 Mountain Avenue, Murray H a , NJ
07974

DP. A. Yelrernin, k p a m e n t of Numerical Matlmnatics of the USSR Academy of
Sciences, Gorki Street 11, Moscow, 103905, USSR

Officc of Assistant Manager for Energy Research and Development, U.S. i2qmtment
of Energy. Oak Iiidgc. Operations Office, P.0. Box 2001 Oak Ridge, TN 37831-86

Dr. Danny C. Sormsen, M Chnputer Science Divisi~n, A g o

143-152. Office of Scientific & Tcdmical Infomiation, P.O. Box 62, Oak Ridge, TN 37831

