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A SCHEME FOR HANDLING RANK DEFICIENCY IN THE 

SOLUTION OF SPARSE LINEAR LEAST SQUARES PROBLEMS 

Esmond Ng 

Abstract 

Recently we have presented several schemes for computing spasse or- 

thogonal factorizations using static data structures. The novel feature of 

each scheme is that the data structures are large enough to store both the 

orthogonal transformations and upper triangular factor explicitly. Thus, 

riiultiple least squares problems with the same observation matrix can be 

solved easily. However, in order to make use of the static data structures, 

the orthogonal factorization is computed without column interchanges. In 

this article we develop an algorithm that makes use of the resulting fac- 

torization to solve rank-deficient least squares problems. The techniques 

used are similar to those employed by Bjorck. 
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1. Introduction 

In this article we consider the d-irect solution of a linear least squares problem 

. 

where A is a sparse M x n matrix, with M 2 n, and b is an m-vector. The 

solution scheme is based on an orthogonal decomposition of A: 

where Q is an rn x m orthogonal matrix and R is an n x n upper triangular 

matrix. When A has full rank, R is nonsingular and the solution to the least 

squares problem is obtained by solving Rx = c ,  where c contains thc first n 

components of QTb. 

There are several methods for computing the orthogonal decomposition of A 

when it is sparse and has full rank [lo]. In [2], George and Heath described a 

novel way of computing the upper triangular factor R, which is based on the 

observation that 12 is mathematically the Cholesky factor of A T A  (apart from 

possible sign differences in some rows). If ATA is sparse, techniques developed for 

solving sparse symmetric positive definite systems can be employed to  preserve 

and exploit the sparsity of R. More precisely, a symbolic Cholesky factorization 

algorithm can be applied to ATA to obtain the structure of R. This allows a 

storage scheme to be set up for storing the nonzeros of R [3]. Using the fixed (or 

static) storage scheme, the upper triangular factor R is then obtained by anni- 

hilating the rows of A using Givens rotations. Since the syrnbolic factorization 

algorithm does not predict the positions of the rotations, a static data structure 

cannot be set up to store the rotations. (It was shown in [7] that the symbolic 

factorization algorithm on A'A can be modified to predict the positions of the 

rotations, although the resulting data structures may be too generous.) In 123, 

thc rotations are applied to the vector b during the annihilation process and are 
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not savcd. It is well known that the sparsity of R depends not only on the striic- 

ture of ATA, but also depends on the ordering of the columns and rows of ATA. 

Thus, a fill-reducing symmetric ordering for ATA should be chosen to  preserve 

the sparsity of R. See [3] for details. Note that reordering the columns and rows 

of ATA symmetrically is equivalent to reordering the columns of A.  

In [8], Georgc and Ng described an efficient symbolic factorization algorithm 

that computes the structure of R directly from that of A.  If Q is a sequence of 

Woiiseholder transformations, the symbolic factorization algorithm also produces 

the structure of the transformations. Thus, not only can a static data structure 

be determined for storing the nonzeros of R, but a fixed storage scheme can 

also he set up for storing the nonzeros of the Householder transformations. In 

[4], George, Liu and Ng proposed an efficient way of storing and computing R 

and the Householder transformations. It shculd be noted that the sparsity of R 

and the Householder transformations depend on both the structure of A and the 

initial column ordering. 

To summarize, there are efficient methods €or reducing a sparse matrix to 

upper triangular forin using orthogonal trar sformations. However, the column 

ordering is often chosen beforehand to preserve sparsity of the upper triangular 

factor R. This implies that if a static data structure is used, the orthogonal 

decomposition must be computed without any column interchanges during the 

numerical computation phase, since colunm pivoting will change the sparsity of 

€2. Hence, the approaches in [a], [4] and [8] work well when the matrix A has 

full rank and is well-conditioned. 

We n o w  consider the case in which A is rank deficient. Suppose R is obtained 

from A without column pivoting. In exact arithmetic, some of the diagonal 

elements of R will he zero. However, for those rows whose diagonal elements are 

zcro, the off-diagonal elements need not be zero. Hence, the total rank-deficiency 

of A and R cannot be determined simply by counting the number of zeros on the 

diagonal in R. The situation becomes fuzzier in the presence of round-off errors. 

Instead of having exact zeros on the dia,gonal, it is likely the case that some of 
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the diagonal elements of R will be close to zero or small in magnitude compared 

to the remaining diagonal elements. 

In [ll], Heath proposed a technique for handling rank-deficiency in the basic 

method described in [2]. Let 6 be a user-specified tolerance, the choice of which 

will depend on the magnitude of the diagonal elements of R and the machine 

precision. The basic idea is to use additional Givens rotations to annihilate the 

offdiagonal nonzeros in any rows of R whose diagonal elements are less than S in 

magnitude. When the annihilation process is completed, any rows in the resulting 

upper triangular matrix will be regarded as null if their diagonal elements are 

less than 6 in magnitude. Using the resulting upper triangular matrix, Heath 

developed an algorithm for computing the minimum-norm solution to  thc least 

squares problem. In [l], Bjorck extended the ideas in [ll] to develop an algorithm 

for solving a general sparse constrained linear least squares problem in which the 

least squares and constraint matrices can have arbitrary ranks. 

For the approaches described in [4] and [8], Heath’s approach can be employed 

to compute the minimum-norm solution as well, so long as only one right hand 

side vector b has to be solved, or when numerous right hand sides are available 

at the same time. If several right hand sides are to be solved and if each has to 

be processed one after another, then the Givens rotations needed to process the 

upper triangular factor R must be saved. However, the static data structures 

described in [4] and [SI have space to  store only the nonzeros of Q (represented 

as a sequence of Householder transformations); they do not have space to  store 

the extra transformations needed to process R. Thus, we need an algorithm for 

solving a rank-deficient probIem that uses the upper triangular factor obtained in 

the initial orthogonal factorization. The objective of this note is to describe such 

an algorithm, in which rows of R with diagonal elements lcss than 6 are treated as 

updates to the problem. Rank-deficiency is determined using the singular value 

decomposition during the updating process. The techniques are similar to those 

employed in [I]. An outline of the article is as follows. In Section 2, the updating 

algorithm is derived. Some implementation issues are presented in Section 3.  
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Finally, sonie concluding remarks are given in Section 4. 

2. The updating algorithm 

Consider the linear least squares problem 

where A is large and sparse. ltccall that the upper triangular factor R is math- 

ematically the Cholesky factor of ATA. If some of the rows of A are relatively 

dense, then ATA, and consequently €2, may be dense. In order to preserve 

sparsity, it may be desirable to withhold any dense rows from the initial sparse 

orthogonal factorization. Instead of solving (I), the sparse orthogonal decompo- 

sition is used to solve a srnallcr least squares problem. Then any dense rows that 

were withheld can be used to update the solution. 

The technique of handling dense rows is uscful in another context. It is quite 

often the case that after a least squares problem has been solved, more equations 

become available. For large and sparse problems, if the number of new equations 

is small, it is desirable to be able to update the solution to the first least squares 

problem using the new equations to obtain the new solutions. 

With the disciission above, we assume that A and b are partitioned respec- 

tively into (g) and (3) ~ The matrix C is assumed to be largc and sparse, but 

D is small and may be dense. Let C be rn x n and D be p x n. We assume that 

n 5 m and p << n. These assumptions on rn, n and p are not essential for the 

correctness of the algorithm we will develop, but are vital for its efficiency. We do 

not make any assumptions on the ranks of C and A. If A is rank deficient, (1) 

does not have a unique solution, and in that case, the minimum-norm solution is 

computed. 

We assume that a sparse orthogonal factorization of C has been computed, 

using, for example, the approach and the static storage scheme described in [4] 
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or [SI: 

C = Q (  :). 
Here Q is rn x rn and orthogonal, and €2 is n x n and upper triangular. As 

we pointed out in the previous section, an a priori column ordering of C is 

chosen to preserve sparsity in Q and R. Thus, the orthogonal decomposition of 

C is computed with a fixed column ordering. It is well known that, in floating 

point arithmetic, some of the diagonal elements in the upper triangular f x t o r  R 

will be close to zero or small in ma,gnitude compared to the remaining diagonal 

elements if C is rank deficient. Furthermore, since the orthogonal factorization 

is computed without column interchanges, rows with small diagonal elements (in 

terms of magnitude) may occur anywhere in €2. Without loss of generality, we 

assume that R has t,he form 

Here R1, R2 and R3 are upper triangular. We assume that the diagonal elements 

of R, are less than S in magnitude, where S is some tolerance dependent on the 

magnitiides of the diagonal elements of R1 and R3 and the machine precision. 

That is, we assume that R1 and R3 are nonsingular, but R2 rnay be rank deficient. 

Note that the offdiagonal nonzeros in R2 and S23 need not he small, and hence 

the rank-deficiency of C may be less than the order of R2. Let n2 be the order 

of R2. We assume that 122 << n. Again the assumption on 112 is for efficiency; it 

is not needed for the correctness of the algorithm. 

It is important to note the difference in handling rank-deficiency between our 

scheme and Heath’s approach [Ill. In Heath’s approach, diagonal elements that 

are less than S in the final upper triangular factor are regarded as nuinerically 

zero. That is, rank-deficiency is determined when the final upper triangular 

factor is comput,ed. Thus, the choice of suitable 6 is important and is a delicate 
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issue. As we shall see below, S is not used to determine rank-deficiency in our 

case; it is used to decide which rows should be in R2. Hence the choice of S can 

be quite liberal. The deterinination of rank-deficiency is delayed until a dense 

least squares problem is solved using the singular value decomposition during the 

updating process. 

To compute the minimum-norm solution to (1) using the orthogonal decom- 

position given by (2) and (3), we proceed as follows. First note that, 

We have partitioned D according to the partitioning in the upper triangular 

factor R. Let IC = ( uT vT wT ) and QTe = ( e: e$ e: e: ) be 

partitioned accordingly. Then 

T r 

Hence, l lAx bl12 is minimized when u, v and w are chosen to rninimize 

If a unique solution does not exist (in the case when A is rank deficient), we will 

choose u, and TU so that (4) and llzl12 are both minimized. 
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We define the residuals rl,  r2 ,  r 3  and rg by 

Note that r2 = e2 in Bjorck's approach since R2 and S23 would be zero. We 

rewrite (7) as 

w = R,;'r3 + &-'e3 = + &. (9) 

Substituting (9) into ( 5 ) ,  we obtain 

and, after rearranging, 

With (9) and ( lo) ,  (6) and (8) can be expressed as 

Equations (11) and (12) correspond to an (n2 + p )  x ( n  + p )  underdetermined 
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system of linear equations 

M r = K v - g ,  

where M ,  K ,  T and g are defined below. 

Note that the coefficient matrix M always has full rank. (In 13jorck's updating 

algorithm, M = ( -DIR,' -D3 I ), K = D z ,  T = ( r: r: rg  ) and 

g = f . j  Hence the minimuin-norm residual vector of the original least squares 

problem is obtained by computing the minimum-norm solution to (13) .  

T 

Denote an orthogonal decomposition of M by 

wliere QE is orthogonal a,nd LT is upper triangular and nonsingular. Using the 
orthogonal decomposition of M and writing T as Qf, T S  ( t  ), (13) becomes 

( L  0 )  (.) = K v - g .  

Thus, s 1= L-IKv - L-'g and t is arbitrary. The minimum-norm solution to 

(13)  is obtained by setting t = o and by choosing v to  be a solutioii to the 

following dense linear least squares problem 
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The coelficient, matrix L-'K is (nZ+p) x nz and may be rank deficient. A reliable 

way to solve (14) is to use the singular value decomposition of L-'K.  When (14) 

has been solved, r ,  and hence w ,  will be known. It should be noted that this is 

the only place in the algorithm where rank deficiency has to be determined. 

Let V be any solution to (14). Furthermore, suppose the columns of N form 

a basis of the null space of L-IK. The matrix N can be obtained easily from 

the singular value decomposition of L-'K. Thus, the general solution to (14) is 

given by v = ;ii + N z ,  where z is arbitrary. Now consider ( 5 )  again: 

TI = RIu + S12v + SI3w - el 

= Rlu + SlzNr - (el - S12ij - S I 3 2 u ) .  

That is, 

Note that both u a.nd v depend on z.  Hence z can be chosen to minimize (1 ( z )  1 1 2 .  
(Note that w is uniquely determined when (14) is solved.) 'This is equivalent to 

solving the following linear least squares problem: 

Since the order of R2 is assumed to be small and the columns of N are linearly 

independent, (16) is just a small dense least squares problem with full rank, 

which can be solved using standard dense techniques, such as dense orthogonal 

decomposition. The solution vector (';.) is given by the minimurn-norm residual 

vector in (16). 
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3. Implementation details 

In the algorithm described in the previous section, we have to deal with different 

portions of the upper triangular factor R obtained in the orthogonal factoriza- 

tion of C at various stages. Since R is normally stored in some compact data 

structure, the irnplemcntation of the algorithm appears to be complicated. We 

will demonstrate below that the implementation can actually be done cleanly. 

We first define R to be the upper triangular matrix 

which can be obtained easily by scanning the data structure for the upper triangu- 

lar factor R and replacing R2 by the identity matrix. We will assume that R2 is 

saved elsewhere. Let n, be the order of R,, for i = 1,2,3. Hence n1 + n2 +n3 = n. 

In the following discussion, we will make use of partitioned vectors and matri- 

ces frequently and we assume that the partitionings are consistent with the row 

partitionings in R and k. 
The first three qua.ntitics we need are 

II' 
Define c = ( e:' e: e: ) . Then k l ,  iz and G3 can be obtained by solving 

R d  = c iising a modified backward substitution algorithm, which is described 

below. Let d = ( d: d: d: ) . Solving the last n2 + 723 equatioiis of R d  = c 

gives 

T 

Now we save dz  elsewhere and set d2 = 0.  The solution of the first n l  equations 
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would then produce 

T 
Thus, d = ( &: 0 ST ) . 

Next we need the matrices DIRL1, D2 = D2 - D1R11S12 and fi3 = 

D3Ri1 - DIR11S13%-1. These matrices can be computed using an approach 

similar to the modified backward substitution algorithm described above. Con- 
- T  

sider the p lower triangular systems R E = DT. Let E = ET ET E$ 

Solving the first n1 + n2 equations yields 

Now we save E2,  set E2 = 0, and continue the forward substitution. Then 

That is, a t  the end of - the modified forward substitution process, we have E = 

. The vector in (12) is obtained by computing f -Dd.  To form M in (13), we 

need the matrix -S23R;', which can be obtained by solving 122 lower triangular 

(0 I O ) T .  I fF= ( FT FT F T )  , t hen  systems R F I= i, with I = 

it  is easy to see that FT = - S 2 3 . R i 1 .  The matrix K is easy to construct since 

both R2 and D 2  have been saved. 

Finally, we have to compute the matrix (-R'z12N) and the vector ($) 
in order to solve (16). The matrix can be obtained by solving the upper trian- 

gular systems kG = fi, where N = ( 0 N?' 0 ) . Note that the solution 

is G = ( -(R;1S12N)T NT 0 ) T .  To compute (%), we proceed as fol- 

lows. After the solution of (131, we construct the vector i; = ( TT 0 y z  ) 

T A - T  

T 

T 
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and solve the upper triangular system R h  = .i. using a strategy similar to  the 

modified backward substitution described above. Let h = ( h: h: h; ) . 
The solution of the last n2 + n3 equations gives h3 = Rg1r3 and h2 = -S23h3. 

Now we replace h2 by V ,  which is a solution to (14). Then the solution of 

the first n1 equations will give hl = RT'(r1 - SI25 - S13RY1r3). Note that 

h3 + d3 = 4 - l ' ~ ~  -t €2;'e3 = w. Also h2 + d2 = v .  Furthermore, 

T 

which is the same as e l .  

In practice, rows with small diagonal elements could occur anywhere in the 

upper triangidar factor. Thus, the structure of R would not have the form given 

in (3).  However, for efficient implementation of the algorithm, all one nceds is 

the ability to distinguish those rows from the remaining rows in R. This can 

he achieved by maintaining a flag for each row so that the flag is set if the 

corresponding row has a small diagonal element. 

We now summarize the algorithm step by step below. We also indicate the 

time complexity a t  each step (in terms of the number of multiplicative operations 

requirccl); the operation counts for some standard matrix operations are obtained 

from [9] and only high order terms arc retained. 

1. Compinte a sparse orthogonal decomposition of C .  

It is generally impossible to give the time complexity for this step, since 

it is problem-dependent. Thus, we will use TC to denote the nurrher of 

operations required to compute the orthogonal factorization. 
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2. Save R2 and construct R. Denote by u the number of nonzeros (including 

the diagonal) in R. 

- ( 0  I CgT. - T  
3. Compute E'$ = -S23Rq1 by solving R F = i, where 1 = 

The time complexity for this step is 73 = onz, since there are n2 triangular 

systems to solve. 

4. Use the modified forward substitution algorithm described above to solve 

R E = DT to obtain E = ( DIRrl 0 f13 ) and 5 2 .  The time 

complexity for this step is r4 = up,  since La is p x n. 

T - T  

€ 2 2  

D 2  
5. Construct K = ( ) and 

0 I -S23Rg1 
M =  ( 

-DIRTs 0 -bz I -ET I 

T LT Compute an orthogonal decomposition of MT = QIl( 0 >. Since M' 

is (n  + p )  x (n2 + p ) ,  the nuinber of operations rcquired to compute the 

orthogonal decoriiposition is TS = ( n  + p ) ( n z  + 11) - $ 0 2 2  + P ) ~ .  2 

6. Form t h e  (7L2 + p )  x n2 matrix L-'K and compute a singular value dccom- 

position of L-'K.  Ihtermine N whose columns form a basis of the null 

space of L- 'K .  T h c  time complexity for the singular va,lue decomposition is 

approximately T, = [+(nZ + p)2n2] + [2(nz + p)'n2 + 4(n2 + p > n ;  + ?la;]. 
T 

7. Solve RG = fi, where N = ( 0 NT 0 ) , to obtain 

G =  ( - (R;sS12N)T N~ 0 )'. 
Compute an orthogonal decomposition of G.  Since N is at most 712 x n2,  

computing G requires at most on2 operations, Similarly, the orthogonal 

decomposition of G requires at most nni - in:  operations. Thus, the time 

complexity for this step is bounded by 7-7 = a912 + nni - p,. 1 3  
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8. Form Q T e .  Let c be the first n components of Q T e .  Here Q is the or- 

thogonal matrix we obtain at step 1, which is in factored form. As in step 

1, it is difficult to say how many operations are required in forming &'e. 

Hence, wc will use TQ to denote the time complexity a t  this step. 

T 

9. Solve k d  = c in the way described above to obtain d = ( 6: o i5: ) 
I -  1 and 2 2 ~  L he time complexity a t  this step is rg = a. 

10. Compute f = f - Dd.  The number of operations required to form f is 

rlo = pn. 

11. Compute L-'g = L- ' (? ) .  Since L is (n2 + 11) x (122 + p ) ,  the time 
2 complexity for tliis step is 7 1 1  = $ ( n 2  + p )  . 

12. Solve the linear least squares problem minv ~ ~ L ~ - ' f C v  - t - ' g l (  using the 

singular value decomposition computed at  step 6. Let V be any solution. 

Determinc the minimum-norm residual vector s.  The number of operations 

required at this step is approximately 7-12 = 2 ( n 2  + p ) 2  + ni .  

2 

13. Compute the minimum-norm residual vector of the original problem T = 

&E(:). Let r = ( TT r: p :  T;  ) . The time complexity for this step 

is 713 - [2(n + p )  - ( n 2  -t- p ) ]  ( n 2  + p ) .  

T 

T 
14. Construct i = ( p T  0 T: ) and solve kh = + as described above. The 

number of operations required in the solution of the triangular system is 

T i 4  - (7. 

T 

15. Compute h + d. At this point, (h + d )  = ( ET V~ wT ) . 

16. Solve the linear least squares problcm minz llGr --.- (h + d)l12 using the or- 

thogonal decomposition computed at step 7. The minimum-norm residual 

vector is the minimum-norm solution to mina llAz - bl12. The time com- 

plexity for solving the least squares problem is at most 716 = 2(2n - n2)n2. 
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In the case when several vectors b are to be solved, steps 1-7 have to  be performed 

only once. Steps 8-16 have to be repeated for each different b.  Whcn new 

cquations are added, the matrix D changes. In this case, steps 4-16 have to be 

repeated. 

Note that computing the orthogonal decomposition of C in step 1 is usually 

the most expensive step. Thus, if n is large and p and n2 are small, and if a sparse 

orthogonal factorization of C has been computed, then the computation involves 

basically the solutions of a few sparse triangular systems and a Ieew small dense 

problems. When a single least squares problem is solved, the time complexity of 

the entire algorithm i s  given by 

The first three terms are respectively the times for cornputing the orthogonal 

decomposition of C in step 1, for applying the transformations to e in step 

8, and for solving various linear systems using the upper triangular matrix R. 

‘The fourth term in (17) is essentially the time for computing thc orthogonal 

decompositions of M and G .  

Assuming p and n2 are small, the storage requirement is dominated by the 

space for Q and R,  as the following discussioii shows. As in the time complexity 

analysis, it is in general difficult to say how rnuch storage is required by Q arid 

R. Tbus, we simply denote it by Oc. In the updating algorithm, we need space 

for the matrices K and M ,  the dimensions of which are respectively ( n z  4 - p )  x n2 

and (n2 + p )  x ( n  + p ) .  We also need space for G ,  the dimension of which is at 

most n x n2 .  Moreover, we have to store the singular value decomposition of K 
and various vectors throughout the algorithm. It is easy to see that the total 

storage rcquirernent is given approximately by 
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and the dominating term i s  + n(2n2 + p ) ,  assuming n2 and p are small. 

As we have mentioned above, if a sparse orthogonal factorization of C has 

been computed and if n 2  arid p are small, the remaining computation involves 

mainly the solutions of a few sparse triangular systems and a few small dense 

problems. There are nuinerically stable algorithms for solving the small dense 

problems [9]. Stability may be an issue if the matrix C is ill-conditioned, since 

the orthogonal factorization of C is computed without any column interchanges. 

However, any ill-conditioning can be detected by computing an estimate of the 

condition number of k. See [l] and [ll] for more discussions. 

4. Conclusion 

In this article, we have derived an algorithm for solving a rank-deficient sparse 

least squares Imhlern using an orthogonal factorization of the least squares matrix 

that is computed without any column interchanges for stability. If the approach 

described in [4] or [8] is employed to compute the sparse orthogonal decompo- 

sition, then enough information can be saved easily and explicitly in a static 

data structure so that multiple problems with the same least squares matrix can 

be handled effectively. The algorithm is vcry similar to that described in [l]. 

One major difference is in the solution of niultiple problems. In order to solve 

rnultiple problems using the algorithm in [1], either a dynamic data structure 

or auxiliary storage is needed to store the Givens rotations. Another difference 

is in the handling of rank-deficiency. In the algorithm described in this article, 

rows of the upper triangular factor R with diagonal elements close to zero are 

treated as row updates and the determination of rank-deficiency is delayed until 

the singular value decomposition of LI1K is computed. Thus the criterion for 

deciding whether a diagonal elcment of R i s  close to zero is not as crucial as 

in Heath’s approach. We have also presented techniques for implementing the 

algorithm described in this article. Once the initial sparse orthogonal factoriza- 

tion has been computed, tho solution can be obtained by solving a few sparse 

triangular systems of equations and some small dense matrix problems. An ef- 
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ficient implementation of the algorithm will be available in a future release of 

SPARSPAK [5,6]. The algorithm described in this article will be effective if thc 

order of €22 (nz) and the number of rows in D ( p )  are small. 
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