ORNL/TM-10881

Performance of a Second
Generation Hypercube

T. H. Dunigan

National Technical Information Service
U.S. Department of Commerces
5285 Port Royal Read, Soringfield, Virginia 22181
NTIS price codes—Printed Copy: A03; Microfichia AQ1

N

This report was prepared as an account of work sponsorea by an agency of the
Uniied States Governmeant Neither the United States Goverament nor any agency
thercof, nor any of their emiployegs, makes any warranty, expiess or linplied. or
assumes any legal liability or responsibility for the accuracy, compieiencss, or
useiutness of any information, apparaius, produci, or process disclesed, or
represents thatits use would nct infringe privately owned rights. Reference hersin
to any spectfic comimercial product, process, or seivice oy trade name. irademark,
manufacturer, or oiherwise, doegs not necessarily constitute or imply its
endoisement, recommsandation, or favering by the United States Governmeni or
any agency thercof. The views and opinions of authors expressaed herein do not
necessartly state or reflect those of the United States Governiment or any agency

thereof.

ORNL/TH-10881

Enginsgering Fhysics and Mathematics Division

Mathematical Sciences Section

PERFORMANCE OF A SECOND GENERATION HYPERCURBE

T. H. Dunigan

Date Published - November 1988

The work was supported by the
Applisd Mathematical Sciznces subprogram
of the Gffice of Energy Research,

U. 5. Department of Energy

repared by the
Oak Kidge National Laboratory
Dak Ridge, Tennesses 37831
operated by
Martin Marietta Energy Systems, Inc.
for the
US. DEPARTMENT OF ENERGY
under Contract No. DE~-A{05-840R21400 ‘

‘ |

FTIN MARIETTA ENERMGY SYSTEMS LIBRARIES

[T

Table of Contents

ABSITACT oaviurreeereeeieeeenssonereantcereeesensssnsnsesans nrasssnsnananses saesensan s asesnsneseeann s anseenmesssenesnsensssn s s nees 1
L. OVEBIVIEW ooeeeriieeereeiavieeceeesoeconssansanssessnssnssmmnesansnensenmnesmessarnsenensnsnsaannnrsaesese urmnrerasansensnessanns
To0 INTTOAUCIION tvrerersnererssnsmrearssunsnseecsrssmrssnsassnnsmssenmnssnsnnssnansssmnssnnsessnnnssnsnmsessssssssmnsmnnnns
1.2 TSt SRVITOMMEIE tiorirreirecriiseseersseserssesncaersersmssssesssrasmananssesnsanennesse e snnsessesss s eessssssnnns
2. CONMGUTATIONS coereeerereeeacacmrrrrreeciranssassnssseesaesssmasnsnssssnmnssnessssosssasnnnsmmesnnsnaranseeeesssannesssnns . 3
2.1 Ametek System 14 ... narerarreneanene rearenessenaaneannneonanoEannanen Sy s ne s A s et nnnnn s s enannen 3
2.2 Intel iPSC ..., rera e eASeeanAnaenAnaeantnotaese Ay sE AN NS S nssen st aseennnpane bR nn e nann st annenesaenensane 3
2.3 TNCUDE 1 oitiiirciececacsereensasnrtaereerterersrstneassaeseseenstnssararssas e e mannssmsemn ot anaenansernsonessaes 4
3. Computation Benchmarks 4
3.1 Arithmieti 1E5LE rivireeeirrsmessienrenmecsennancomnaensnnrenn 4
3.2 SYNIBELIC TESLE cieeriiiieecricvasrenisceiiscnssseieesnee s sanesenneasssessmea s emsnenanensenansssrnnnnsn crenona 5
3.3 Memory ULILZALION oivieeeieceiircrine e ncsessanscssiassssesereeaasanae st emsnassansesnsansansensasanans)
4, Communication BemChmarks .oeciceeeeeevencesaoesseerrosmsesssrsmcesnsssssnsmsesassaransssssnn rerneanonne &
4.1 RIDG 18SL woeeeieeeercieeetietn s ne st n e st na e e n e n s e csbenes s s st nen et nanen teernsanenannens 6
4.2 Frho tBSIS covrrecceacrrecrsnsescoessassnraces reessanunironatasannrneennn e anAnsearronnennssaansabanrnn s g nnransenn 7
5. Routing overheadceoeerenae ontteceanerutiareatrsanrtennsAusanseteansnaana b enn oo nsrassessanannannesnntnsnanan 12
6. COMNCIUSIONS 1rvreevomireecrmineirsereraeesastresistassssnsesesnerasassssaressssssessmnsensessnnmsmsssssnnnessesossmnnsssssnnsns 14
ACKDOWIEAZEIIENTISE euvorireriarireirraineaaserrsraeasersanerasseaessssasessarescssssssnsaessnsseesansoesmesanesammmerssnesens 17
RIEIBICEE . ccrereicerierernererereessesisssrecsssasasssnssssnreasssasssemnansnasenmiasasssasasassnssssssesssnnsonnsnssnssennsn seos i8

iii

Performance of a Second Generation Hypercube

T H. Dunigan

Matbematical Sciences Section
Engineering Physics and Mathematics Division
Qak Ridge National Laboratory
Oak Ridge, Tenmesses 37831

ABSTRACT

The performance of four commercially available hypereube parallel
processors is analyzed. Computation and sommunication performancs for a
number of low-level benchmarks are presented for the Ametek S14 hyper-
cube, the Intel iPSC/1 hypercube. the DNeube hypercube, and the second gen-
eration Intel iPSC/2 hypercubs.

i. Overview

1.1. Introduction.

This report summarizes the results of a set of benchmarks run on four commercially
available hypercubes, updating earlier results in [3] and [4]. Three of the hypercubes are
members of the first generation of the hypercube family of parallel computers, descen-
dants of the pioneering work done at Caltech {12]. The fourth cube is a second generation
hypercube. A hypercube parallel processor is an ensemble of small computers intercon-
nected by a communication network with the topology of an n~dimensional hypercube.
Each processor, or node, has its own local memory and communication channels to n other
nodes. The processors work concurrently on an application and coordinate their computa~
tion by passing messages. The architecture is worthy of study because of the wide range
of applications that are suitable for the hypercube architecture [6] and because of its cost-
performance.

We are interested in the performance of hvpercubses for several reasons. First, our
main ares of research iz the development of slgorithms for matriz computations on paral-
lel computer architectures. To produce algorithms that make effective use of a parallel
architecture it is necessary 1o understand the basic structure of the architecture and the
relative performance and capacities of the fundamental components — CPU, memory. and
1/0 (message passing). Second, some of our development work is done on hypercube
simulators. both to debug and 1o analyze our algerithms [5]. Performance results from
real hypercubes enable us to construct more gccurale simulators. Finally, a set of bench-
marks and performance results can belp us evaluate new implementations or architectures.

In the remainder of this section. we summarize the hypercube configurations and pro-
grams used in our fest suite. Section 2 discusses the four hypercube architectures in more
detail, emphasizing the distinctive features of esach implementation. The computational
power and memory capacity of the four hypercubes and their single~channel message-
pessing capacity are compared in Sections 3 and 4, respectively. Bection ¥ iilustrates the
effect of communication overhead on computations. Section § summarizes and Jooks

z work.

1.2. Test onvivonmmont

Fouy commercially available 64-node hyper

Ne bave both Intzl and Nculw

PUDIEN N

hypercubes

were used for our benchmark suite.
at Oak mdge National Laboratory. In addition.

Ametek Corporation provided us dial-in accesz to onmg of their hypercubes.
configurations ntilized in the tc:t: 1147 marﬁ in Table 1. In this report, 'iP‘QC/l"
tel hypercube, and TiFZC/2" refers to th\ szcond gener

efers to the fisi generation
nte! &vmr‘:-.:.,‘

It should “c,v\-? nicied that °ach noae

p oceszor in the i

BC2 com.am 3 64

Amet iP‘SC/ 1 iPSC/2 Ncube
Number of nodes 54 64 64 64
Nods CPU 8G286/287 80286/287 80386/387 custom 32-bit
Clock rate 8 MHz 8 Mhz 16 MHz 8 Mz
Mamory/node 1024K 512K aM 512K
Nominz! data rate 3 Mbps 10 Mbps 22 Muops 8 Muops
Node (S XG5 vl v3.0 NX v2.2 Axis v2.3
C compiler Lattice © v3.1 enix 3.4 | C-386 1.8.3A CF&G v1.0

run on the first generation hypercubes
in the first quar cond genergtion Intel hypercubts were per-
formed in the second quaftﬂ" @f 19%% The large model memory option was used with the
C cr-"ny er foi the Intel iPSC/1 (~Alfi) and Ametek (-ml), and stack checking was disabled
for the iPRC/1 and Ncum, C cnmmleo. The tost suit&: wWas %slmted for Qimplici;y of imple«v
meniation and wid 1 use,
changes and io mmp the resu 'us to other architectures rcvmie‘d in q.he-r utemture. I:m:‘
the computation ies1s, the call to the node clock subroutine and the code to send the result
back to the host were the only s

vendor o another. Table

The test progr n‘s WEIT /ii"

rurce-code changes made
51 programs

in porting the tests from one

Calizch integer and floating point arithmastic operations + - * /
Sizve finding primes vsing integer arithmetic

Floatsmath || double precision floating point arithmetic
Dhrystone

Whetstone

ithmetic and f unctions

&
integer ar
o

i arithimetic and built-in

STOT y test using 1K maxlor

a-cods ring messagz passing

by

Spincom N iterations of a loop timed with simultanecus mes-

uiing

d 17 LesEs.

WK LTOgTanTs

2. Configurations.

Each hypercube configuration consists of a hypercube atiached to a host processor.
The host processor is used for program development and as an interface to the outside
world for the hypercube. A typical hypercube application program consists of one or more
node programs and usually a host program to provide input data and report results.
Besides the application program., each node contains a small operating system that manages
message passing.

2.1, Ametek System 14,

The Ametek System 14 consists of from 16 10 256 nodes attached to & VAX host via
a 16-bit parallel interface. (Unly one corner of the cube, node O, is attached to the host.
The host runs DEC's ULTRIX operating syvstem. and thus provides the full set of software
management toocls associated with UNIZ., The hypercube nodes are Intel 802856/80287
chips running at 8 MHz with cne megabyte of memery per node. The node-to-node com-
munication channels are controiled by a separate somrounication coprocessor, a 10 MHz
Intel 80186. Each node-to-node data channel is rated by the vendor at 2 million bits per
second. Such a vendor rating implies communication shall never exceed that data rate.

The node operating system, XOS, is structured much like the Crystalline system (121
Communication is synchronous at the application level and only between nearsst neigh-
bors. There iz no implicit message routing. Message passing is based on &-byie packets,
though multipackel subroutines ars provided as well. Various routines are provided for
ring and mesh communications as well a5 full hypercube topology routines [1]. A simula-
tor is provided on the host to assist in program debugging and analysis. Command pro-
cedures enable one to switch from simujator mode to hypercube mode with little effort,

Ametek has announced a second generation mesh ensemble, the 2010, based on the
Motorola 68020 processor. We plan on running the benchmark suite on their multiproces-
sor in the near future.

2.2. Intel iPSC.

The first generation Intel hypercube, IPSC/L, consists of from 32 to 128 nodes
attached to an Intel 310 host processor. The bost and node processors are 80286/80287
running at 8 MHz. Each rode bas 512 kilobytes of main memory and is attached o the
host via a global communication channel. The first generation machine can be expandsd to
4.5 Megabytes per node, and a vector processor option is available as well. The host
operating system is Xenix and supports the typical UNMIX program development environ-
ment. Since the host and node CPUs are the same, one compiler supports both environ-
ments. Fortran and C are supported on the hypercube, and Lisp is supported with the
large memory option. Their first generation hypercube is a single-user subsystem.

The node operating system supporis message routing, asynchronous communications.
and multi-tasking within each node [9]. A node-to-host logging facility is provided for
application debugging and diagnostics. Messages larger than 1024 bytes are broken into
1024-byte segments. A node debugger is provided on the host as well a5 2 simulator.

The second generation Intel hypercube, iPSC/2, consists of from 32 to 128 nodes
attached to an Intel 301 host processor. The host and node processors are 80386/80387
processors running at 16 MHz, where each node processor has a 64 kilobyte cache memory.
Each node has 4 megabytes of main memory. expandable 1o 16 megabytes. Node O is
attached to the host processor. The host processor runs System V UNIX, and subcube

allocation is supported. A debugger is also provided. and a vector processor option is
available.

1y

Node communication is supported by direct-connect routing modules on each node.
Messages of 100 bytes or less travel as part of the route-acquisition protocol. The nede
operaling systera Supports u:mlti—tasking. asynchronous communication, and remote /0

Py

support to the hast sysie

2.3. Ncube.

I'he Neube hypercube consists of from 4 to 1024 nodes attached to an 30286/80287
bost. The node proczssor is & 32-bit chip that was designed by Neube and runs at 8 Mhaz.
The chip contains both floating point and message handling facilities. It is surrounded by

512 kilobyies of memory. The proceszor chip iz also used as the inter{sace procsssor
between the hypercube and the host. The hypercube may be divided into logical subcubes
for multi-user use [11].

The host operating sysiem is "UNIiX-like” but still Jacks many of the features of a
mature UNIX environment. Both C and Fortran compilers are provided along with a
node-lovel debugger. The node operating system supports message routing and asynchro-
nous communication. A four-node hoard is available for use on an IBM PC/AT.

3. Computation Benchmarks.

3.5 Arithmetic tests.

To compare our test results with ezrlier hypercube benchmarks performed at Caltech
[10], we implemented a series of tests 1o measurc the arithmetic speeds of the CPU for
integer and floating point arithmetic. The time to perform a binary arithmetic operation
and assignment in a loop was measured for both single and double precision scalars in C.
The time for the loop overhead was subiracted. and the resultmg time divided by the
number of iterztions to give a rough estimate of time-per-operation. Table 3 shows the
results of those tests, In the table, Fortran notation is used for clarity to describe the data
types; the tests were run in C.

Arithmetic Times
microscconds
Ametek | iPSC/1 | iPSC/2 | Ncube | VAX
INTEGER*2 + 2.5 2.5 1.1 4.5 3.3
INTEGER*4 + 5.2 5.0 0.6 4.9 1.8
INTEGER*2 * 3.9 4.0 1.3 6.0 5.1
INTEGER*4 * 194.9 35.5 1.5 6.3 2.4
REAL¥4 + 51.2 338.0 5.5 16.6 71
REALZE 32.4 41.5 6.6 11.5 4.5
REAL®4 ¢ 52.4 395 3.9 18.5 93
REAL®*8 * 33.9 43.0 7.0 13.5 6.5
REAT %4 #pkp% 39.8 23.1 3.4 10.6 56
REAT 8 #4505 \ 283 241 1R 7.8 4.4

Table 3. Arithmetic operation times (microseconds).

For purposes of comparison, times for a DEC VAX 11/780 wiih FPA and running
UNIX 4.3 bad are included. The times illusirate both CPU speed sl compiler differences,
The only anomaly is the large INTEGER*4 multiplication time for the Amestek, because it
nses 3 subroutine to perform the computation. Th* last two entries give the average cpera-
tion time for a sum of thies products. Such an expression permits the arithroetic units to
reizin intermediate results and get improved performance. Tt should also be noted that C

-5

requires that all floating point expressions be caloulated in double precision and that ail
integer expressions be calculated in the word size of the machine. The default integer
word size is 1& bits for the first generation Intel and Ametek machines and is 32 bits for
the VAX, iPSC/2, and Ncube. The degree to whick the compilers comply to the C reguire-
ment varies. For floating point computations. the Noube is roughly three times faster than
the Ametek and iPSC/1 hypercubes, operating at .12 megaflops 1o the 80287's 0.04
megnfiops. The 80387-based second gemeration Intel operates at 0.29 megafiops.

3.2. Symithetic testa.

The resulis from the arithmetic operstion tests are consisient with the mext level of
tests performed using a simple integer test of finding primes {sieve) and a seguence of
dependent floating point operations (foatmath), The times for 100 iterations of finding the
primes from 1 (o 8190 and for 236,000 repetitions of the double precision floating point
arithmetic operations are illustrated in Figure 1 and Table 4. In the sfeve, variables of
type register int are used, which means 186-bit arithmetic for the Ametek and PSC/1
machines and 32-bit arithmetic for the iBPSC/2. Noube and VA,

60 <
' g
N
Z
o 40 +
he
<
=]
o
b
20 +

wievs shirnysiones: flastmaih whetstones

Figure 1. Synthetic computation tests.

Figure 1 also shows the times for 50.000 iterations of the Dhrystons test, The test
exercises integer arithmetic, function calls. subscripting, pointers, character handling, and
various conditionals [13). There are no floating point calculations. The times are from
tests using the register storage class of C. The test uses the type in? which means 15-bit
arithmetic for the iPSC/1 and Ametek C compilers and 32-bit arithmetic for the iPSC/2,
Neube and VAX. The figure also compares times for one million Whetstone operations.
The Whetstone test measures double precision floating point performance, conditionals,
integer arithmetic, built-in arithmetic functions, subscripting. and function calls {2]. The

Simple Computation Tests
seconds
Ametek | iPSC/1 | iPSC/2 | Necube | VAX
Sieve 22.0 29.3 5.7 21.4 13.6
Dhrystone 359 55.9 6.2 43.7 30.0
Floatmath 58.5 66.3 11.6 15.2 10.3
Whetstons 5.3 5.6 0.8 2.5 2.2

D

Table 4. Execidion time in seconds for various test suites.

iirst gencration Intel C genecrates an additional move instruction for references to exiernal
variables, which sxplains the slower performance of the iPSC/1 compared to the Ametek.

3.3. Memory utilization.

The amount of memory available to an application on a node was measured using the
mallacl) function of C. The test program requested memory in kilobyte increments. Table
5 shows the amount of memory available to the application program compared to the total
amount of physical memory for the test configuration.

Memory Capacity Per Node
Kilobytes
| Ametek | iPSC/1 | iPSC/2 | Ncube
Total 1024 512 4096 512
Available 212 366 3717 453

Table 5. Node memory capacity and usage.

The difference between the total and available memory gives a rough measure of the
amount of memory required by the node for its operating system, message buffers (in the
case of Intel and Neube), and C run-time environment. For the 80286 architectures,
memory is managed in 64 kilobyte segments. so there may be additional small chunks of
free memory available. On the first generation Intel hypercube, the user also can specify
the amount of memory to use for message passing buffers; twenty buffers were specified
for the memory test. As was mentioned in section 2, the second generation Intel may have
up to 16 million bytes of memory per node,

For any computer system, the amount of main memory is a critical metric, and there
never sezms to be enough. For the hypercube, the amount of node memory can determine
the size of problem that might be solved. Shortage of memory is paid for in problem-
solution time (due to the I/O or message-passing delays) and in programmer time (due to
the additional coding required to multiplex the node memory).

4, Communication Benchmarksa.

4.1. Ring test.

As a first iest of node-to-nods communication speed, the time to pass a message 100
times around a 64-node Gray-code ring was measured. The Gray-code mapping ensures
that a distance of only one hop is required between each node and its successor in the ring.
Ths Ametek implementation used the pass message-passing primitive. Sendw/recvw were
used on the Intel iPSC/1, csend and crecy were used on the iPSC/2, and nwrite/nread were
used on the Ncube. Figure 2 shows the times for messages of size 8 bytes to 8192 bytes.
Table 6 lists the times as well as the node-to-node data rate in bytes-per-second.

200 a
& Ametek /
1 1PSCI ,
2 IPSC2 /
N Neubs /
150 + /

/
= /
£ 100 /
[&]

g /
50 +
log2 Bytes
Figure 2. Times for 100 revolutions of 64-node ring.
Ring Times
seconds (RKB/s), 64-node ring, 100 revolutions
Length Ametek iPSC/1 iPSC/2 Neube

3 4.0(13) 6.7(8) 2.6(20) 2.6(20)

16 4.5(23) 6.8(15) 2.6(29) 2.7(38)

32 5537 6.9(30) 2.6(78) 3.0(69)
64 7.4(55) 7.1(58) 2.6(153) .50
128 11.3(72) 7.5(109) 4.8(171) 4.6(179)
256 19.1(86) 8.4(195) 5.1(322) 6.7(245)
S12 34.7(94) 10.1(323) 5.6(579) 10.9(300)
1024 65.9(100) | 13.6(482) | 6.9(956) 19.4(339)
2048 128.2(102) 26.5(494) 92.2(1421) 36.3(361)
4096 || 252.8(104) | 52.3(501) | 13.9(1884) | 70.1(374)

8192 502.2(105) | 104.1(504) | 23.3(2248) | 137.8(381) |
Table 6. Graoy-code ring times in seconds.
4.2. Echo tests,

To further measure communication data rates. an echo test was constructed. A test
node sends a messege to an echo node. The echo node receives the message and sends it
back to the test node. The test node measures the time to send and receive the message N

-8 -

times. The nodes uiilized the same message-passing functions as in the ring test. Figure 3
shows the data rates for the four hypercubes over various message sizes, where the echoing
node is one hop away. The Ametek peuXs out just over 100 KB/s or about 28% of its max-
imum singlechannel bandwidth. The Ncube has a peak data rate of about 380 KB/s or
about 38% of its bandwidth. The first generation Intel has a peak data rate of about 505
KB/s or about 40% of its maximum bandwidih. and the sscond generation Intel has a peak
data rate of about 2247 KB/5 or about 81% of its bandwidth. The figure also shows the
cross-over points where one machine performs Letter then another. Alse evident in the
curve for the first generation Intel cube, iIPSC/1, is the distinet discontinuity at the 1024-
Lyie message size. Recall from section 2 that the iPSC/1 breaks messages larger than 1024
Lyies inte 1024-Lyte segmenis. Tables 8 9, 10 and 11 at the end of this section detsil the
dsiz exhibited in the figures. Table 10 illustrates the constant dats rates for messages of
100 byies or less for the second generation Intel cube.

2400 1
A Amatek
I FsCH |
N Mcubs
2000 + 2 1P5C2
j
1600
w
[ve]
o 1200
,'z/
800 | / g
W /
//
‘ // e —e—p———+ -4
400 - / N
/N/ -
ﬁ} K’/ & A A
e o — I R B
L. -—?/ f]]
(] a8 10 12
log2 Bytes

Figare 3. One-hop data rates.

The Intel and Ncube node operating systems support messsge routing so we can use
the echo test to messure dats rates for passing messages to nom-adjacent nodes. Figure 4
illusiratzzs the performance of the Intel and Ncube machines for passing messages of two
diffzrent sizes to nodes from one 10 six hops distant. (Tables 9, 10, and 11 give data rates

-9~

for additional message sizes.) The curves for the Neube and first generation Intel machine,
{PSC/ 1. are what would be expected from a store-and~forward network, with the datz rate
decaying in proportion (o the number of hops. The second generation Intel hypercube uses
a direct-connect module 1o do the message routing, relieving the node CPU of any routing
overhead and greatly reduciag the penalty for multi-hop messages. The delay in s multi-
hop message is at most 10% greater than ina single hop message. With the second genera-
tion routing hardware. the nodes can almost be treated as if they were directly connected.

1000 |-
|
! 2 B S """"‘w"'-?~-~~‘«—-~~»~~———--..»E....~W»..-—-—--..gx-.-_...%_.w,_»ﬁ
800
|
600 | 3
) IS0
Q H feuhe
= S
2 L\\ 1519 D
400)
Mo \
Ry L
_ﬁ T~
200 |- T
2 - - T e e 2
N . "“".‘:'::"'“':';‘-"—ﬁ
TR -l
b L TR e ey oy
) P R Sl Sttt L !
1 2 3 4 5 8§
hops

Figure 4. Multi-hop data rates.

Messuring the time it takes 2 node to send 3 message to itself can give s rough esti-
mate of the amount of software overhesd involved in message management. since ng
actual data transmission is required. Figure 5 shows the data rates for 3 node sending s
message to itself for different size messages. The overhead in passing 3 messsge from one
node to another is made up of several components, some fixed and some proportional to
the size of the message. Typical components are:

the application must gather the data into a contiguous area,
overhead in performing the call to the message-passing subroutine,
context switch to supervisor mode.

buffer allocation.

copying the user data to the buffer ares.

constructing routing and error checking enveiopes.

obtaining the communication channel,

- 10 ~

DMA transfer with memory cycle stealing,
interrupt processing on transmission completion.

The receiving node must
obtain buffers for message receipt, usually initiated by an interrupt request.
receive the data via DMA cycle stealing,

copy the data to the user area, or. if it is a message to be forwarded and if
routing is done with software, obtain a channel and initiate 2 DMA output
reguest.

To this is added the delay due to the actual transmission on the hardware medium, delays
due to contention for the media. and delays due to synchronization and error checking ack-~
nowledgements. For segmented address spaces, like the 80286, additional overhead may
be incurred for segment crossings. One or both of the DMA's may directly access the user
data area, eliminating a data copy operation.

3600
210
1800 +-

o /%/ |
T o

-M{ : L .

4 8 8 10 12
log2 Bytes

i

T

KB/s

Figure 8. Node-to-self data rates.

Empirically, for all four hypercubes. the communication time for a one-hop message
is a linear function of the size of the message. That is, the time T to transmit a one-hop
message of length N is '

Twa+fN

where o represents a fixed startup overhead and B is the incremental transmission time per
byte. Table 7 shows the startup and transmission time coefficients that were calculated

from 2 lsast-squares At of the echo date for single-hop messages. The cosflicients are in
close agreement with data reported by by Crunwald and Reed [8] and show the improve-
mants made in the first generation Intel message-passing software over earlier resulis
reported by Kolawa and Otto [10]. As we have seen, actual transmission times are affected
by msssage segmentation, buffer macagement, and acknowledgement policy. The fixed
message-passing times for small messages on the first generation Intel system suggest that
megsages are being padded up to somes minimum packet size of 32 or §4 byvtes. The sscond
generation Intel system bas a fixed mesyage transmission time for messages of 100 bytes or
less (startup of 350 microseconds). For messages larger than 100 bytes, transmission time
is linear with message size.

Coeflicients of Communication
microseconds
Ametek | iPSC/1 iPSC/2 Meube
Startup (a) 563.5 862.2 697(390; 383.6
Byte transfer (8) 2.5 1.8 0.4 1.6

Table 7. Least-squares estimaie of communication coefficients.
j

We also used the echo test to measure the performance of host-te-node communica-
tions. The test was performed with the corner node (node 0) for the Ametek, iPSC/2. and
Neube machines. Node 0 was used for the iPSC/1, though all iPSC/1 nodes are attached to
a global communication channel with the host. The Ametek host program utilized rdanlif
and wenlH and the node program used pass. Figure & shows data rates for various mes-
sage sizes. Since the Ncube uses a node CPU as its host interface to the hypercube. it is not
surprigsing that data rates are comparable to its node-to-node performance. The Ametek
16-bit parallel interface is somewhat slower than MNoube, but is 2 little faster than the
Ametek node-to-node speeds. The first generation Intél is nearly six times slower than
Ncube and is nearly ten times slower than Intel’s first generation node-to-node speeds for
large messages. The second generation Intel reaches host-io-node speeds of nearly one mil-
lion bytes per second. One can also see the effect of the 1024-byte segments on the first
generation Intel curve. The relative performance of a vendor's node-to-node and host-to-
node communications clearly should affect the extent to which the host participaies in a
problem solution.

Ametek Communication Speeds
KB/s

Length Host i bhop |
8 2.0 12.5
16 38 22.4
32 7.5 36.9
64 14.6 54.8
128 27.4 71.8
256 49.1 835.3
312 80.3 94.1
1024 114.4 99.2
2048 1322 102.0
4096 © 1795 103.4
8192 196.9 104.2

Table 8. Ametek host-to-node and node-to-node data rates.

10085
; A Ameotek /,2 i
1 psci I
“ N Mosbe /
800 | 2 pse
| /
530 -
@ /
4
460
/ s N
AT
\3/ ” /,'/
200 | /
Figure & Host-to-node data rates.
Imtel PEC/1 Commusication Sponds
K&/
Length || Host | Self lhep { 2bops , 3hops | 4 hops | Shors | 6 ho
8 0.7 75 7.1 5.0 K 2.9 2.4 2.
16 1.3 15.3 142 10.0 7.4 5.5 4.9 L
32 2.7 30.5 28 .4 19.7 143 11.5 9.6 8.
64 53 0.0 55.6 371 284 22.3 1R.4 15.48
128 10.4 1164 | 1689 70.1 51.7 41.3 34.4 23.3
252 19.8 2226 | 196.9 | 1249 91.4 72.1 59.9 50.2
312 36.6 453.6 | 3200 | 202.8 147.3 1157 93.2 £80.9
A81.9 | 2976 2111 165.1 1356 114.7%
4942 313.7 263.4 2181 199.5
5061.0 4211 369.0 321.9 2358
5041 501.4 45672 R 424 .4 401.1

able . Intel iF3C/] single channel data rates.

Two tesis were constiucted to meazure the interaction of computation with commurni-
il ntel apd Neoube hypercubes. In the fiest tesi, an echo test was run betwesn
2t were two hops apert. The routing node betweon the two nodes was run-
tion level program ibat was szecuting an infinite loop. In fact, for both

-13 -

ntel iPSC/2 Communication Speeds

KB/s
Length || Host Self 1bhop | 2hops { 3hops | 4 hops | S hops | & bops
g 1.9 262 20.5 20.0 19.5 18.8 i8.6 182
is 3.3 42.1 40.5 40.0 39.0 37.6 36.8 356.3
32 7.9 84.2 80.0 79.0 78.0 74.4 73.5 1.9
64 158 168.4 160.0 156.1 152.4 147.1 145.4 143.8
i23 21.7 232.8 172.9 166.2 166.0 153.3 148.8 1433

256 43.4 441.4 324.1 316.0 306.5 2893 282.8 275.3
312 56.0 812.7 581.8 568.9 5476 5278 | 3146 499.5
1024 139.2 | 1402.8 961.5 | 939.5 9223 886.6 867.8 849.8
2048 301.1 | 21334 | 1427.2 | 13979 | 12791 | 13386 | 1317.0 1 1296.2
4096 546.1 | 2989.8 | 1BR7.6 | 18703 | 18450 | 181z.4 | 1788.7 | 17732
8192 910.2 | 36088 | 2247.5 | 2238.3 | 2220,0 1 2193.3 | 21816 | 21643

Tahle 10. Intel iPSC/2 single channel data rates.

Meuwbe Communication Speeds

EB/s
fength i Host Self lhop | 2hops | 3hops | 4hops | S heps | 6 hops
8 7.4 30.9 19.8 13.5 10.2 3.2 6.9 5.9

16 14.3 58.9 37.8 257 19.53 15.7 13.1 11.3
32 28.1 1 1078 68.3 46.9 3i8.7 28.8 24.1 0.7
64 51.7 | 1852 1163 80.0 61.1 49.4 41.4 357
128 31.1 | 2890 | 179.1 ; 1240 95.0 76.9 64.5 357
256 147.2 | 401.8 | 2455 | 1713 131.4 106.6 85.9 77.5
512 207.3 | 498.4 | 3002 | 2113 162.5 132.3 111.5 96.3
1024 2655 | 565.8 | 3382 | 2388 134.5 150.3 126.8 109.7
2048 303.3 | 607.1 | 361.5 | 2557 157.8 161.3 136.2 117.9
4096 3345 | 630.5 | 3738 | 2649 2052 167.5 141.4 i22.4
8192 3497 | 642.6 | 38306 | 26946 2092 170.7 144.2 124.8

Table 11. Ncube single channel data rates.

Intel and Neube, the routing algorithm is such that the return path of the echo message is
different from the initial message path, thus two routing nodes participate. With both
routing nodes running the infinite loop, data rates for the two-hop scho were calculated
for various message sizes. The data rates were the same as measured when the routing
nodes were idle. Thus the computing an application might be doing on a node will have no
effect on the communication throughput of the node. This is due to the high priority given
to communication interrupts on the first generation hypercubes. Un the second generation
machine, iPSC/2. routing is handled by a dedicated communications processor on each
node.

A second test was constructed to measure the effect that routing messages had on
node computing speed. First, the time for a node program to spin a loop N times was
measured with no communications. The node program was then run on the routing nodes
of the two-hop echo test. The execution times for the loop were measured for various
message sizes of the echo test. Figure 7 shows the degradation in computing speed due to
routing for various message sizes for both the Ncube and Intel hypercubes. The vertical
axis is the percentage the loop program slowed down from its speed with no

- 14 -~

communication. For small messages, the iPSC/1 and Ncube hypercubes exhibit about a
30% loss in “application” computation speed. As the message size increases, the interrupt
rate from incoming messages decreases and the slowdown diminishes.

40 +

30 N ”\ \'\\

20 | Mcube »\

10

% siowdown

log2 Bytes
Figure 7. Application slowdown due to routing.

For the iPSC/1 hypercube, however, the interrupi rate increases again for messages larger
than 1024 bLytes, since the iPSC/1 breaks messages in to 1024-byte packets. We have
already shown that Ncube can transmit about iwice as many 8-bytle messages per second
as the first generation Intel. thus the overhead for routing would appear even less for
Ncube if we were to plot slowdown versus messages-per-second. However, the second
generation Intel hypercube, iPSC/2, shows no loss in computation speed, since routing is
handled by the direct-connect modules.

6. Conclusions.

We have shown that, despite differences in hardware and software, the three first
generation hypercubes have very similar performance characteristics. On the other hand,
even with identical computing hardware, computation speeds will differ due to compiler
and operating system differences. The second generstion machine provides an increase in
both communication and computation speeds and provides increased memory capacity and
high-gspeed routing. Table 12 summarizes the performance characteristics of the four
hypercubes. The data rates represent the 8192-byte transfer speeds, and the kilofiops rate
iz calculated from compound expression results of the Caltech suite. The 8-byte transfer
time is based on the 8-byte, one-hop, echo times. The structure of a hypercube algorithm
will be dictated by the amount of memory available on a node, the host-to-node commun-
ication speed. and the ratic of communication speed to computation speed. As can be seen
from the table, the hypercubes have roughly egquivalent communication-to-computation

Figures of Merit
Ametek | iPSC/1 | iPSC/2 | Ncoube
Data rate (KB/s) 104 504 2717 331
Kiloflops 40 40 290 140
&-byie transfer time (us) 640 1120 3%0 401
B-byte multiply time (us) 33.9 43.0 £.6 13.5
Comm./Comp. ‘ 19 26 39 30

Table 12, Summary performance figures.

ratics. The ratic was calculated conservatively using the 8-byte transfer and multiply
timuee,

As » supplement to the compornent performance results presented so far, Figure 8
illustrates the aggregate performance in megaflops of the four hypercube systems in per-
forming s Cholesky factorization of an nXn matrix [7]. The Ncube system was a 7 Mhz
system with only 128 kilobytes per node, and the test was run on only 16 processors {the
largest Ametek available to us at the time of this test). The performance figures for this
application are consistent with component timings in the preceding sections.

1.5 .
//’/,/
1.2
8.2
2 /
°
=
0.5 .
///—_(-/ T
/ e R
0.3 T
’//,/«" g
4 . ! o !
=0 400 609 800 1000

n
Pigure 8. Cholesky factorization times for nxn marrix.

The second generation Intel machine answers many of cur wishes for 2 better hyper-
cube [4], providing a communication coprocessor with fast multi-hop message times and s
32~bit node processor with cache. The need for several levels of node-to-node communica-
tion support still seems evident. It would be desirable to have a very high speed. smasil
communication system as well as a more robust, instrumented option. The robust

-16 ~

communication scheme could be used for debugging, performance analysis and application
tuning. The high speed option could be used for time-critical applications.

In the future. we plan on expanding the test suite in order to test the message-passing
systems unser heavy load and to measure the total message-handling capacity of a node
using multiple channels simultansously. We also plan on measuring performance on the
second generation Ametek system.

~17 -

Acknowledgements

The author is gratefully indebled to the Amstek Computer Research Division of
Arcadia, California for answering many questions and providing access to one of their Sys-~
tem 14 hvpercubes and to Neube for providing access to their 8 MHz/512K hypercubs.

(8]

[9]
[10]

(11]
[12]
[13]

- 18 -

References

Ametek Computer Research Division. Ametek System I4 User's Guide, Ametek
V12970, Arcadia, CA, May, 1986.

H. J. Curnow and B. A. Wichman, A synthetic benchmark, Computer Journal. 19
(1976), pp. 87-93.

T. H. Dunigan, Hypercube Performance, Hypercube Multiprocessors 1987, ed. M. T.
Heath, SIAM. Philadelphia, 1987, pp. 178-192.

T. H. Dunigan, Performance of Three Hypercubes, Tech. Rept. ORNL/TM-10400, Oak
Ridge National Laboratory, Cak Ridge. TN (1987).

T. H. Dunigan, A Message-passing Multiprocessor Simulator, Tech. Rept. ORNL/TM-
9966, Oak Ridge National Laboratory, Qak Ridge, TN (1986).

G. C. Fox and 8. W. Otto, Algorithms for concurrent processors, Physics Today, May
1984, pp. 50-59.

G. A. Geist and M. T. Heath, Matrix factorization on a hypercube mudtiprocessor,
Hypercube Multiprocessors 1986, ed. M. T. Heath, STAM, Philadelphia. 1986, pp.
161-180.

Dirk C. Grunwald and Daniel A. Reed, Benchmarking hypercube hardware and
software, Hypercube Multiprocessors 1987, ed. M. T. Heath, SIAM, Philadelphia,
1987, pp. 169-177.

Intel, iPSC tiser’s Gride, Iniel 17455-03, Portland, Oregon, October, 19835,

A. Kolawa and 8. Otto, Performance of the Mark Il and Intel Hypercubes, Hypercube
Multiprocessors 1986, ed. M. T. Heath, SIAM, Philadelphia, 198¢, pp. 272-275.

Ncube, Ncube Handbook, Neube V1.1, Beaverton, OR, 1986.
C. L. Seitz, The cosmic cube, Comm. ACM, 28 (1985), pp. 22-33.

R. Weicker, Dhrystone: a synthetic systems programming benchmark, Comm. ACM, 27
(1984), pp. 1013-1030.

13,

ié"

1 ”".«:L

39.

49,

41,

42,

43,

44,

5. D, Tomald ML Austin, Ofice of Sclentific Computd

ORNL/TM-10881
INTERNAL DISTRIBUTION
T. H. unigan 22, C. Weisbin
R. ¥. Harbizon/ 23, 1 Wooten
Mathematical Sciences Library 24, P.H Worley
G. A, Geist 235, A Zucker
B T. Heath 26, Central Research Library
I. K. Ingersoll 27. K-35 Plant Library
5. B, Jansen 8. ORNL Patent Office
M. R. Leuze 29, Y-12 Techniczl Library/
F. . Maienschein Pocument Reference Section
E. 3. Ng 30. laboratory Records—RC
B. W. Peyton 31-32. Lahammry Rexords Depariment
. H. Romine 33 L L Doming (Consuliant)
R. £ Ward 34, h. W, H@.miwk {Consultant)

EXTERMAL DISTRIBUTION

BR-7. Germantown Buildine, 115, B&»mtmﬁm

20343

. D, Jesse L. Barlow, Departmenty of Coraputer Science. Pennsvivania Stals

Umiversizyf, University Park, PA 16802

D, Bl L. Busbee, O-3, Applications Support & Regesrch, Los Alamos National
La‘mmior“, PO Box 1663, Los Alamos. WM &7

Dr. Donatd 4. Calahan, Department of Electrical and
University of Michigan, Ann Arbor, MI 48109

545

o

~

~omputer Englnesring,

Dir. Jobn Cavallini, ER-7, GTN, Office of Scientific Computing. Department of
Energy. Washington, D 20545

Dr. Jagdish Chandra. Army Research Office, P.O. Box 12211, Research Triangle
Park, NC 27709

Dr. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washing-
ton, DC 20350

Dr. George Cybenko, Departwent of Mathematics, Tufts University, Madford,
RMA 02155

Dr. George J. Davis, Department of Mathematics, Georgila State University,
Atlanta, £3A 30303

Dr. Jack J. Dongarra, Mathematics and Computer Science Division. Argonne
National Laboratory, 9700 South Cass Avenue. Argounne, IL 60439

45,

46,

47.

48,

49,

50.

59.

60,

61.

62.

63.

64.

-20 -

Dr. Geoffrey C. Fox, Physics Department, California Institute of Technology,
Pasadena, CA 91125

Dr. Pavl Q. Frederickson, Computing Division, Los Alamos National Laboratory,
Los Alemos, NM 97545

Dr. Dennis B. Gannon, Computer Science Department, Purdue University, West
Lafayette, IN 47907

Dr. David M. Gay. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research
Courcil. Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A ORS8

Dr. Jung Hong. Los Alamos National Laboratory, P.O. Box 1663, MS K488, Los
Alamos, NM 87545

. Dr. Don E. Heller, Physics and Computer Science Department, Shell Develop-

ment Co., P.O. Box 481, Houston, TX 77001

. Prof. Roger W. Hockney, Department of Computer Science, University of Read-
g Y 1% P Yy

ing., Whiteknights. Bersk., England RG6 2AX

. Dr. Robert E. Huddleston, Computation Department. Lawrence Livermore

National Laboratory P.O. Box 808, Livermore, CA 94550

. Dr. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158

Yale Station, New Haven, CT 06520

. Dr. Harry Jordan, Depariment of Electrical and Computer Enginecering, Univer-

sity of Colorado, Boulder, CO 80309

. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Labora-

tories, Livermore, CA 94550

. Ms. Virginia Klema. Statistics Center, E40-131, MIT, Cambridge. MA 02139
. Dx. Richard Lau, Cffice of Naval Research, 1030 E. Green Street, Pasadena, CA

91101

Dr. Alan J. Laub, Department of Electrical and Computer Engineering, Univer-
sity of California. Santa Barber. CA 93106

Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle
Park. NC 27709

Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele
Street, Downsview, Ontario, Canada M3J 1P3

Dr. Olaf Lubek, C-3, Computer Research and Applications, Los Alamos Nationat
Laberatory P.o. Box 1663 Los Alamos, NM 87545

Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca,
NY 14853

Dr. Paul C. Messina, Applied Mathematics Division, Argonne National Labora-
tory, Argonne, IL 60439

63.

&6,

67.

68,

69.

70.

74.

75.

75.

77.

78.
79.

80.

81.

82.

&3.

84.

Mz, Bob Miccl, Seguent Computer Systems, Inc., 400 Ambherst 5t., Nashua, NH
03063

Dr. George Michael. Computation Department, Lawrence Livermore National
Laboratory. P.0O. Box 808, Livermore, {CA 943350

Dr. Dianne P. G'Leary, Computer Science Department, University of Maryland.
College Park, MD 20742

Dr. James M. Ortega, Department of Applied Mathematics, University of Vie-
ginia, Charlottesville, VA 22903

Dr. Neil Ostlund. Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N3L 3G1

Dr. Edward W. Page, Dept. of Campumr Science, 405 College of Nursing Bldg.,
Clemson, SC 29634-1906

. Dr. John F. Palmer, NCUBE Corporation, 215 E. LaVieve Lane, Tempe, AZ

85284

Prof. Merrell Patrick, Department of Computer Science. Duke University, Dur-
ham, NC 27706 .

. Dr. Robert J. Plemmons, Department of Mathematics and Computer Science,

MNorth Carolina State University, Raleigh, NC 27650

Dr. John R. Rice. Computer Science Department, Purdue University, West
Lafayetie, IN 47907

Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore
Laboratory, Livermore, CA 94550

Dr. Donald J. Rose, Department of Computer Science, Duke University, Durbam,
NC 27706

Dr. Abmed H. Sameh. Computer Science Department, Unlversity of [llinois,
Urbana, 1L 61801

D, Joel Saltz, ICASE, MS 132-C, NASA, Langley, Hampton, VA 23665

Dir. Robert Schreiber, Dept. of Mathematical Sciences. Rensselaer Polytechnic
Institute, Troy, NY 12180

Dr. Martin H. Schultz, Department of Computer Science. Yale University, P.O.
Box 2158 Yale Station, New Haven, UT 06520

Dr. David 8. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Beaverton, QR 97006

Dr. Deanny . Sorensen. Mathematics and Computer Science Div., Argonne
National Laboratory. 9700 South Cass Avenue, Argonne, IL 60439

Prof. G. W. Stewart, Computer Science Department, University of Maryland,
College Park, MD 20742

Capt. John P. Thomas, Air Force Office of Scientific Research, Building 410, Bol~
ling Air Force Base, Washington, DC 20332

-23 -

85. Prof. Charles Van Loan, Department of Computer Science, Cornell University,
Ithaca, NY 14853

86. Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hamp-
ton, VA 23665

87. Dr. Andrew B. White, Computing Division. Los Alamos National Laboratory,
Los Alamos, NM 87545

8%. Dr. Arthur Wouk, Army Research Office, P.0O. Box 12211 Research Triangle
Park, NC 27709

89. Dr. Margaret Wright, Systems Optimization Laboratory, Operations Research
Department, Stanford University, Stanford, CA 94305

90. Office of Assistant Manager for Energy Research and Development, Department
of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830

91-100. Office of Scientific & Technical Information, P. O. Box 62, Oak Ridge, TN 37831

