
K. '4. IJckan 





0RNwfh.I-10822 
Dist. Category UC-420 

Fusion Energy Division 

IGNITION AND STEADY-STATE CURRENT DRIVE 
CAPABILITY OF INTOR PLASMA 

N. A, Uckan 

Presented at the 8th Topical Meeting on the Technology of Fusion Energy, 
Salt Lake City, Utah, October 9-13, 1988 

Date Published: November 1988 

Prepmd by the 
OAK RIDGE NATIONAL LABORATORY 

Oak Ridge, Tmesset: 37831 
O P e M  by 

MARTIN M W A  E3EXGY SYSTEMS, INC. 
for the 

U.S. DEPARTMENT OF ENERGY 
under contract DE-AC05-840R21400 





CONTENTS 

................................................................................. ABSTRACT V 

1. INTRODUCTION 1 

2. IGNITION CAPABILITY 5 
3 .  S ~ Y - S T A ~ C U R R E N T D R I V E C A Y A B I L r r J  ........................... 10 
REFERENCES .............................................................................. 13 

..................................................................... 
............................................................ 

... 
lll 

3 4 4 5 b  0283935  b 





ABSTRACT 

The confinement capability of the INTOR plasma for achieving ignition and 

noninductively driven, Q > 5 steady-state operation has been assessed for various energy 

confinement scaling laws and current drive schemes by using a global power balance 

model. Plasma operation contours are used to illustrate the boundaries of the operating 

regimes in density-temperature (n-T)  space. Results of the analysis indicate a very 

restricted capability (if any) for ignition and a limited flexibility in driven modes of 

operation in the INTOR (8-MA) design. Nearly a factor of two increase in plasma current 

(through stronger plasma shaping) could improve the feasibility of ignition in INTOR. 

V 





1. INTROIXJCTION 

A global power balance model has been used to evaluate the Confinement capability of 

the INTORl plasma. The feasibility of achieving ignition and noninductively driven, Q > 
5 steady-state operation has been assessed for various confinement scaling laws and current 

drive schemes. Parameters used are given in Table I. Physics models and assumptions are 

summarized in Table 11. 

The confinement assumptions (Table 11) are similar to those developed for the 

Compact Ignition Tokamak (CIT)2 and the International Thermonuclear Experimental 

Reactor (ITER) studies.3 For noninductive current drive (CD), results from Fisch; Ehst,’ 

and the INTOR workshop6 are used. Details of the global model are given in Ref. 7. The 

various terms in the power balance are evaluated assuming representative density (a square- 

root parabolic, a,, = 0.5) and temperature (a parabolic, a~ = 1) profiles. The fuel mixture 

is taken as 50-50 deuterium-tritium (D-T) plasma with an effective charge Z,ff = 1.5 

[AZeff = 0.1 due to thermal alphas (na/n, = 5%) and Meff = 0.4 due to carbon and 

oxygen impurities (with nclno = 3)]. In addition to the usual conduction and convection 

losses, only the bremsstrahlung radiation is considered; line radiation and synchrotron 

radiation are neglected. Plasma operation contours are used to illustrate the boundaries of 

the operating regimes in density-temperature (n-T) space. The physics requirements and 

prime operating scenario for (inductively driven) ignited plasmas differ from those of the 

noninductively driven plasmas, as illustrated in Fig. 1. Figure 1 shows a typical plasma 

parameter operating space indicating ignition and specified Q = Q, contours, along with 

density and beta limits and a constraint imposed by a given current drive scheme. Subject 

to the limits (if applicable) and constraints imposed, the shaded regions in the figure 

correspond to operating windows either for ignition or for Q 2 Q,. For the INTOR (8- 

MA) plasma, results of our analysis presented in the following sections indicate a very 

restricted capability for ignition and a limited flexibility in driven modes of operation. 

1 



2 

Table I, 
INTOR Machine and Plasma Parameters 

Design ~arameters3 

Major radius, R (m) 
Minor radius, a (m) 
Elongation, K = b/a (at 95% flux) 

Triangularity, 6 (at 95% flux) 
Toroidal field on axis, B (T) 
Plasma current, (MA) 

Calculated Parameta-s 

5 .O 
1.2 
1.6 
0.25 
5.5 
8 .O 

Aspect ratio, A = R/a 
Plasma volume (1x13) 
Plasma surface area (m2) 

Wall (chamber) area (m2) 
Cylindrical q, 4* (at 95%) 

Troyon beta limit (9%) 
nilKD 4, Q\y (at 95%) 

pc& = 31/aB 

(p,& = 4UaB 
Density limit (1020 m-3) 

Murakami-Nugill, <n,,> = 1 .SB/Rq* 
Greenwald, <ng,> = 0.65Z/m2 
< a( at ptotd = &fit, T = 10 keV)> 
(Murakami-like, a,,> = 1 SB/R 

4.2 
227 
328 
352 
1.9 
2.2 

3.64 
4.830 

0.87 
1.15 
1.28 
1.65)a 

a INTOR assumption (see Ref. 3j. 
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Table a. 
Physics Models and A s s ~ r n p t i o n s ~ - ~ ~  

ASDEX-H9 

Goldstonlo 

T-101’ 

Rebut-Lallial2 

JAERI13 

Kaye-All14 

Kaye-Big14 

a r r e n t  drive:M 

Wnits/sYrnbol~:~-~~~ m k s ,  MA, MW, keV, with K, 6 at 95% flux and 
nm (1020 m-3) 
Tlo (10 keV) 

4* 
4,,, (at 95% flux) = A~ZHD (I = q * f ( ~ )  = 4*[( 1.77 - 0.65~)/( 1 - ~ 2 f 9 ;  E = a/R 
f 
Ai 

zeff 

p (Mw 

[JIPI, 
ICD (MA) 

Ibsl I 
PCD (m) 

= < n, >/lo20 rn-3 = volume-averaged electron density in 1020 m-3 
= c ;1’>/10 keV = density-weighted average temperature in 10 keV 
(Te = Ti = T )  

= cylindrical equivalent q =: (5a2B/~2)[ 1 + K ~ ( I  -t 262 - 1.263)1/2 

= L-mode enhancement factor (typically, L mode f = 1; H mode f = 2)  
= average atomic mass = 2.5 for a 5050 D-T plasma 

= effective charge = 1.5 (assumed for this study) 

= W/TE = P,, + POH + Pa - Pmd = net “heating” power 
= [external (heating + CD) -8- ohmic + alpha - radiation] power 
= dimensionless current drive efficiency 
= driven current (CD = LH, NB, . . .) = I - Ibs 

= neoclassicd bootstrap currentltotal plasma current = (E~DP,) 
= absorbed current drive power (CD = LH, NB, . . .) 
n,T - (1 - 2/a2)cL“*T with 0% = 0.5 and CXT = 1.0 

cj((I*, Ze,) =Z,fp*4[(15 -Zef$X)Jo.6[3q*(q* + 5)/(q* + 2)(q* + 7)J*m6 

Profiles:29397 
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Fig. 1.  Typical plasma parameter operating space for (a) an ignited (inductive) and 

(b) a driven (noninductive) system. 
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2. IGNITION CAPABILITY 

The confmement assessments were made for a variety of ~ c a l i n g s , ~ - ~ ~  although 

detailed results are presented only for two empirical scaling expressions that were widely 

used during the INTOR studies. The fmt is the combined (in a quadratic mean, see Table 

11) Kaye-Goldston + neo-Alcator (KG+NA) scaling,s in which all heating (including 

fusion alpha) power is included in the degradation of confinement. The second is the 

combined ASDEX-H9 + neo-Alcator (AXH+NA) scaling. In both cases the NA 

component (i.e., ohmic scaling) sets an upper limit on confinement at low plasma densities. 

Figure 2 shows the ignition contours for both of these scalings. Contours for the KG+NA 

scaling are for various KG L-mode enhancement factors (ranging from 1.75L to 2L = H). 

Also plotted are constant beta contours for the Troyon factor C = CP (%)>l(l/aB,) = 3 

and 4 and the density limits according to the Murakami-Hugill <n,,7 and the Greenwald 

<nF> scalings (see Table 11 for corresponding expressions). As a reference, the ignition 

contour in the limit of NA scaling only is also indicated. Typically, the NA component 

does not significantly influence the KG scaling (except for very large L-mode enhancement 

factors). However, the pure ASDEX-W mode scaling is so favorable that it could allow 

ignition at very low densities, and in such cases the NA limit becomes operative. 

As seen from Fig. 2, access for ignition relies on the attainment of some form of an 

“H-mode.” For densities below the Murakami limit (a,,> - 0.9 x 1020 m-3), ignition 

appears possible only with the ASDEX-H mode. At higher densities (>1.2 x 1020 m-3), a 

small ignition window becomes accessible with the KG H-mode (where W 2 2L). The size 

of the operating window depends very sensitively on the assumed Troyon beta coefficient 

and density limit. The INTOR assumption of Troyon factor C = 4 (with a low edge safety 

factor of q,,, = 2.2) is very optimistic (if not unrealistic) from the NIIHD stability 

standpoint, and operation with more realistic CIT-like2 (C 5 3 )  or ITER-like3 (C = 2.5 to 

3 )  assumptions severely restricts (or eliminates) the ignition window. For the assumed 

density and temperature profiles, ignition in INTOR with a small  margin could be possible 

only at higher density levels with C > 3 and very favorable ASDEX-H-like scalings. 

Along the beta contour (3.65%), the average neutron wall load is -0.7 MW/m2. 
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INTOR ignition contours (solid curves) for various L-mode enhancement 

factors (f - 1.75 to 2) of the Kaye-Goldston L-mode scaling, combined 

(in inverse quadrature) with the neo- Alcator scaling (KG+NA). Also 

shown are the ignition capability with a combined ASDEX-H + neo- 

Alcator (shon-dash c w e )  and the limiting neo-Alcator scaling (long-and- 

short-dash curve). Beta limits corresponding to the 'Tjioyon coefficients 

C = 3 and 4 are indicated by long-dash curves. Lines marked by a,,> 
and <agr> correspond to the Murakami-Hugill and Greenwald density 

limits. Typical operating windows are indicated by shaded regions. 



If the achievable confinement time is below the H-mode enhancement factor of 2, 

only subignition operation is possible in INTOR. Results for an enhancement factor of 1.5 

of the KG L-mode are given in Fig. 3, showing contours of Q = 5 and 10 and steady-state 

auxiliary power required (Paux) to sustain the plasma at a given <pa> and <T>. A small 

Q = 5 driven operating window is accessible for n < nmu and C 2 3 over a temperature 

range of 8 to 15 keV (see Fig, 3). The required heating power ranges from 20 to 50 MW, 

producing a fusion power ranging from 100 to 250 M W  with an average neutron wall load 

of 0.3 to 0.7 MW/m2. Increase in beta (e.g., Troyon C factor) does not substantially 

extend the Q = 5 operating window for densities n e nmu. For n = ngr, Q = 7 around 

T - 10 keV. If no density limit is imposed (except the beta limit), a small Q - 10 
operating window becomes accessible around n 2 1.5 x 1020 m-3 and T - 7 to 9 keV 

with Paw - 30 MW. 

The recent assessment of the experimental data base14 indicates that both the KG and 

the AXH scalings are too optimistic. Table In summarizes the INTOR ignition 

requirements for these and other widely used scaling expressions&14 (see Table 11). Given 

in the table are the minimum L-mode enhancement factors needed for ignition, evaluated at 

various operational (n, p) limits. In nearly all cases (except for ASDEX H-mode), 

required enhancement factors over L-mode vary from as low as f 2 2 to as high as f >> 3 

(typically, 4 to 6) ,  all of which are well above the enhancement factors observed in the 

present H-mode experiments (even at low power levels). Nearly a factor of two increase in 

plasma current (through stronger plasma shaping) could improve the feasibility of ignition 

in INTOR. 
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Table XII. 

INTQR Ignition Capability: 

L-mode Enhancement Factor cf) Needed for Ignition 

for various Confinement ~calings*-14 

(Evaluated at Several Operational Limits) 

f (evaluated at T = 10 keV) 

Confinement Scaling n = firnu n = n D  B = P,& 

Neo-Alcator (NA) 

ASDEX-H (M) 

AXH+NA 

min[AXH, NA] 

Kaye-Goldston (KG) 

KG+NA 

min[KG; NA] 

Goldston (G) 

G+NA 

min[G; NA] 

T-10 (T-10) 

min[T-10; NA] 

Rebut-Lallka (RL) 

JAERI (J) 

Kaye-all (KA) 

Kaye-big (KE3) 

min[RL; NA] 

minL3; NA] 

min[KA; NAJ 

min[KB; NA] 

- Ignited 

Not ignited 

- Ignited 

>> 3 

2 2  

).) 3 
2 2.4 

2 2.2 

2 2.3 

2 3.5 

2 3.7 

z 3.8 

Ignited 

Ignited 

Ignited 

2 2  
2 1.9 

2 2.6 

> 2.4 

2 2.1 

2 2.2 

2 3.4 

2 3.6 

2 3.7 

Ignited 

Ignited 

Ignited 

2 1.9 

2 1.9 

2 2.5 
> 2.4 

2 2.1 

2 2.1 

2 3.4 

2 3.6 

2 3.7 
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2. STEADY-STATE CURRENT DRIVE CAPABILITY 

To determine the extent of the operating window in a norninductively driven case, it is 

necessary to introduce some specific schemes for driving the current. Possible options for 

noninductive current drive include high-energy neutral beams ( M ) ,  lower hybrid (I Jl) 

slow waves, electron cyclotroti @C) waves, and ion cyclotron (IC) fast waves.3-6 The 

neoclassical bootstrap (bs) contribution to the total plasma current could also be substantial 

(IbJIC“ E * l 2 p p  - 30%). Some of these current drke  techniques (NB, EC, IC) are 

capable of driving the current in the central portion of the plasma, whereas LH waves drive 

the current in the outer portioii of the plasma. Therefore, a combiiiation of techniques 

(NB+LH+bs, EC+LH+bs, IC+LH+bs, etc.) may be needed to obtain desired current 

profiles and current drive efficiencies. In all cases, the current drive figure of merit (global 

efficiency) is defined as 

where (see Table 11) 9220 = <n,>/l020 m-3 is the volume-averaged electron density, T ~ o  

= <T>/lO keV is the density-weighted average temperature, ICD is the: driven current 

(MA), P C D  is the (absorbed) current drive power (MW), and [ J I P J 0  is the 

dimensionless current drive efficiency. In general, [JIP], is not constant; it depends on 

temperature and other physical quantities (such as beam energy and aiming, LH refractive 

index and accessibility, T,, Z e f f ,  etc.). Typically$4 CD efficiencies (for a range of 

parameters representative of NB, LEI, EC, IC, etc.) are [ J / P ] o  = const - 10-40 or 

T~Q[JIP], = const - 10-40, which yields 

~ C D  - (0.24.6) with x - 0-1. 

Here the range represents “nominal” and “optimisticyy levels of the current drive efficiency, 

which will be used to determine the envelope of the noninductively driven operating 

regimes in INTOR. 

Results of our analyses for a range of cumnt drive schemes with various efficiencies 

indicate that a full, 8-MA noninductive current drive capability with a reasonable wall 

loading is not likely to exist in INTOR. However, it may be possible to assist the ohmic- 



1 1  

inductive capability by using, for example, an LH wave or an NB to drive some fraction of 

the plasma current (Zc~/r>. For example, with an L-mode enhancement factor of 2 

(KG+NA scaling), a Q 2 5 window with 0.3 to 0.7 M W / r n Z  of wall loading appears to be 

accessible for 25-50% fractional current drive by LH or NB. A possible bootstrap 

contribution (up to 30%) may improve these fractional limits. 

A specific example for KG+NA scaling with an L-mode enhancement factor of 1.5 is 

given in Fig. 4, which shows a Q = 5 contour and the boundaries of current drive for 

various schemes with efficiencies ycD ranging from nominal levels, ~ C D  = 0.3 or 0.3T10, 

to very optimistic levels with substantial bootstrap contribution, ~ C D  = 0.8 or O.8Tio. 

With nominal current drive efficiencies, only Q < 5 operation is possible when <T> is 

above 16 to 20 keV, cn> is around 0.5 to 0.8 x 1020 rn-3, and beta is near that with C 
around 3 to 4, requiring a current drive power of 50 to 100 M W .  Steady-state operation 

with Q 2 5 is accessible only if the optimistic levels of current drive efficiencies with 

substantial bootstrap contribution are assumed. In this case, current drive power levels 

remain below 50 MW with a small operating window (shaded region in Fig. 4) around 

<T> - 12-15 keV, <n> - 0.8-1 x 1020 m-3. 
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Fig. 4. Boundaries of INTOR steady-state operating space with noninductive 

current drive. Confinement model: Kaye-Coldston f neo-Alcator with an 

L-mode enhancement factor f = 1.5. Curves representing current drive 

boundaries are for nominal levels with y = 0.3 and 0.3Tlo and optimistic 

levels with yeff = 0.8 and 0.8T10, which include substantial bootstrap 

current. These current drive boundaries are the lwus of paints where the 

current drive power required to drive a specified current (8 MA) equals the 

auxiliary power needed to satisfy the power bdmce. Accessible operating 

regimes (in n-T space) are those on and below the current drive 

boundaries represented by y or y/T contours. 
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