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ABSTRACT

The system of partial differential equations introduced in Reference 2 to model
combat in one spatial dimension has been extended to include two spatial dimensions
and has been numerically integrated to demonstrate its capability to describe
maneuver. The analysis of a turning maneuver is demonstrated.






1. INTRODUCTION

In 1914, F. W. Lanchester!) introduced the first successful mathematical model
for describing the military comabat. His model is a system of nonlinear ordinary
ditferential equaticns (ODE
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siving the time evolution of the total number of troops, # and v, during a combat. In
this model the mutual atirition is controlled by the negative coefficients ¢y, ¢p, dy, s
and for sources or sinks for the paniclp&tmg troops are represented by the free terins
£ and eg.

Lanchester’s equations and their direct generalizations have been used for more
than 70 years to study combat and guide mﬂltary vesearchers in the assessment
of concentration of troops in combat. Force concentration constituted the base
for the ‘Lamlwstvr square law” which states that the strength of a combat
foree s )p@f tional to the square of the number of the combatants entering the

However, the model proved to be too simple to describe the modern forms
of wa f are. A model for studying modern combat should take into account the
movement of the opposing forces on the battlefield, the nonhomogeneous character
of the modern army, the importance of the principle of coromand and control, and
the impact of logistic and intelligence.

Based on these considerations, a new and more comprehensive mathematical
model was introduced(?) recently to account for the dynamics of the modern tactical
situations. This new model is based on partial differential equations (PDE) and
contains the Lanchester model as one of its limiting cases but goes beyond any
zeneral

zation of Eq. (1) that has been tried over the years. It is a new and original
too! for military research. In Ref. 2, the model was introduced and analyzed for one
spatial dnm-'nsmn‘ the two-dimensional version has subsequently been developed.(®)

In the case of two forces engaged in combat, the PDE model in two spatial
dimension reads:(?)

Oyuy = 8;’(,@1(1;141) FOAC ) 4 ui(or Fbiuy + kg % up) + dyus + g 2
2)
Oy == Oy (])2(1”‘” ) A+ O Eaug) +uglag + brug + kay #uy) 4+ daug + €3

To be well posed, this problem for the two nonlinearly Couplad diffusion-convection

equations also includes initial conditions wilizo = uwio(z), 7 = 1,2; and boundary
conditions (B.C.)

—

(au; + 3,0015)
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For a detailed explanation of symbols and notation, see Ref. 3. The nonlinear
interaction in the £q.(2) is represented by the convolution term u;k; * u; given by

u,-ki *Uj; = u,-(f“’,t‘) /kij(F— F’,t)uj(F,,t)dF’ (4)

where 7,7 € {1,2}, 7 # j. The kernel &;; represents the attrition inflicted on force w;
by force u; during engagement. The coefficients d; and e; have the same meaning
as in Eq. (1), and the coefficients a; and b; model the natural birth and death
phenomena. The diffusion coeflicients D; account for the local loss of order during
the battle or only the displacement of troops and ¢; are the convection velocities
introducing in the model the effects of the command and control and the tactical
principles governing the movement of the troops on the battlefield.

The aim of the paper is to assess the capability of the two-dimensional model to
describe the tactical aspects in mid-intensity conflict. By using numerical methods,
the qualitative behavior of the model has been studied for different test cases. Here
we give explicit results for the turning movement.



2. COMBAT MODELING IN
W SPATLAL DIMBENSIONS

In the remainder of this paper, We¢ demonstrate the capability of the PDE
model to deal with » standard combat maneuver. Being the first study of the two
Jdirnensional case, the purpose was only to prove that the model correctly describes
the tactical process from a gualitative point of view. We did not try to provide &
quantitative and detailed description of mapeuver. For such an analysis, real data
regarding attritions, speeds, iffusions, ete. need o he taken into account. These
data are usually not readily available or easily derived from engagement histories.

The sntegrator chosen 0 solve this problem covers & large class of PDE systems
with different initial (1.C.) and boundary conditions (B.C.). Thus it was necessary
to jnvestigate and judge the reliability and precision of the software for the narrow
class of problems to be solved. Extensive testing of the program was carried out on
a large set of relevant cases celated to the problem. This preliminary work involved
different versions of the integrator code, as well as analytic work that produced
exact solutions for comparison with the pumerical results. The main purpose of
this testing was to determine numerical values for the coefficients in Eq.(2) to be
ased in the modeling of the important nonanalytically solvable cases.

The software used to sumerically integrate the system (2) 1s based on the
method of lines. The infegrator codes are due to Sincovec, ot 2131 Driver
programs for thege integrators were written to include the tactical information

needed to simulate the specific maneuvers.

The method of lines on which the integrator is based consists of fwo parts. The
first one is the discretization of the spatial differentiation terms in the system (2);
generates an extended ODE system for the time evolution of the troop densities.
e second part consists of the integration of tiis ODE system using the powerful
mmerical techmiques that have been independently developed to solve ghis kind of
problem. The number of ODE's generated by the method, nopg, 18 usually very
large. 1t is the product of the following three: WpDE = the number of PDE’s in the
system, ng = the munber of points ‘1 the x-divection of the spatial grid, and ny =
the number of points in the y-direction of the grid.

— ke

The study of the temporal stability of the cme-dimensional stationary solution
for the pure diffusion- convection equation was one of the first things we perforred.
This was done to clarly the implications of diffevent specific choices of B.C. s on the
accuracy of the software. When taken as the initial condition for integrating one
uncoupled equation from system (2) with all the roefficients except d and ¢ taken
equal to zero, this solution s conserved in the exac analytic sense if convenient
mixed B.C.s are considerad. Computationally, Lowever, the situation is very
different. The sumerical solution varies slowly in time, but the rate of change can be
decreased if the spatial grid 1s made finer. Nevertheless, that aumerical imprecision
cannot be totally avoided and the set of parameters for which the stationary, and,
implicitly, the total number of treops, ig congerved 1n an acceptable proporion for

3
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intervals of time comparable to those intended to follow the evolution in the relevant
two-dimensional cases was sought.

From the point of view of numerical computation, there is a fundamental time 7
associated with each combat situation. This is the time needed by the troops moving
with their average or normal speed to travel across the battlefield. The battlefield
was chosen to be a square with each side taken as the fundamental unit of length.
The value of 7 is numerically equal to the inverse of the average speed of the moving
troops. For intervals of time At that are of the same order of magnitude as 7, the
conservation of the total number of troops must be satisfied as well as possible in
the absence of attrition.

The theoretical device to insure perfect conservations is to impose mixed B.C.’s
that would cancel the individual diffusion-convection currents at the boundary.

sz_ﬁk8;z¢k+é'kuk k=1,2... (5)

The cancellation of ;k on 99, the Dy boundary of the domain 2, is equivalent to the
choice 7 = 0, &x = —&k, Bx = Dx in the corresponding B.C.’s. The consequences
of this choice for the BC’s in the case n = 1 was studied because this situation was
not previously investigated despite its importance for the confinement of combating
armies to the battlefield during the engagement and the results of such a test are
relevant for the two-dimensional modeling.

The parameter controlling the numerical stability and the accuracy of the
c

solution for the simulations where the attrition was turned off is the ratio p = 3.
If one decides that “quantitatively good results” mean, in fact, boundary generated
losses smaller than 2-3% in the total number of troops for intervals of time
At ~ O(7), the conclusion of these tests is that “good results” can be obtained
only if n, ~ Q(100). For the cases where n = 2 case this means nopg ~ O(10%)
which is too large to allow a reasonable numerical treatment of the problem.

However, the correct qualitative behavior is visible in our modeling based on
the £q. (2), even with such a small number of points per direction as 32. Although
the losses due from boundary crossings would be larger in this case, parallel runs
of the code with the attrition turned on and off can distinguish between the losses
due to engagement and those due to numerical imprecision. For this rough grid,
and n = 2 1t follows that a nopg = 2048 for a two-forces combat, and nopg = 3072
for the cases when three forces are involved (in this last case there might be
in fact two forces fighting but one is made up of two more or less independent
parts). For these calculations, a good value for p was found to be 2.5 x 102
This value for p insures sufficient stability during evolution for a Gaussian shaped
initial distribution of forces. It should be pointed out, however, that for “square”
type initial distributions, the combination between the small number of points
per direction in the spatial grid and the value of p given above proved to be
unsatisfactory. During the evolution, the distribution of troops developed oscillating
tails which are unacceptable in combat modeling because the density of troops
cannot take local negative values.
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A detailed and more complex combat situation can be modeled only if the
spatial g*id is made fine enough to account for the local situation on the battlefield.
This has 2s a consequence the increase of the number of ODE’s to be solved, and
thus generates an increase of the computational time. At the same time there are
indications that for the same problem, the increase in nope through the increase of
1, and ny tends to transform the ODE system into a stiff one making its integration
a difficult task and increasing the computational time even more.

We have considered for our numerical study the following version of Eq. (2):

Byu; = B D 0pui + Fiug) A+ ; Cajusuy; t= 1,23, (6)
3#@
in which diffusion, convection, and attrition terms are accounted for, as a basic

model of tactical maneuvers. This system of equations have been supplemented
with the initial condition

”iiiixio = N,@(\F) 7 == 1., 27 37 (7)
nd the mixed B.Cs
(—&res + D8 Nrean =0 i=1,2,3. (8)

Tere, uy and uy are two force densities representing the same combatant. For this
reason in the mairix of the attrition coefficients, we have ay; = a3 = 0. The

diffusion tensor is diagonal I, ;i = I2;6;; and the magnitude of I?; has been chosen

0.01. T hie convection velocities ¢; have been variable with ¢, their magnitude taking
values wawm 0 and 2.5. The choice of a local attrition term in Eq.(6) was made

to sm‘r.vpbfv the numerical computation. This choice is not so restrictive as it may
seem if only a qualitative study of the problem is made.

The best cholee for the initial troop distributions u,y proved to be the Gaussians
in tv*o—-rhmensmno Flat rectangular functions have been tried as well but, as already
mpntl(nu:n, the oscillations nrpc;nnt in the tail of the density during the evolution
indicated this choice was not consistent with the value of p used in the runs (p =
2.5 x IU ).

The use of the mentioned software to integrate the PDE system required
the writing of a driver program which would define the specific equations to
be iategrated, the initial condition and the boundary conditions attached to the
problem. Detailed description of the driver programs can be found in the papers
presenting the integrator(1(%), We point out that the essential subroutine of the
driver which has built in it all the features allowing for the modeling of a specific
combat situation is the subroutine defining the convection field. This subroutine
returns upon its call all the values of the couvection velocities ¢; for any values of
the independent variables ¢ and 2. It works in conjunction with the main program.

Testing the computer code by using different point dependent convection fields
has shown that sensible logses through the boundary cannot be avoided. A simple
uniform convection field with a time dependent direction proved to be the best
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choice as it ensured an acceptable conservation of the total number of troops in
case the attrition was turned off. The boundary conditions have been modeled
according to the instantaneous convection velocity which is entered as a coeflicient
within the B.C.’s. This approach proved to be at the same time the simplest and
the most cfficient for allowing a reasonably simple version of the numerical code,
besides the realization of a good numerical conservation of the number of troops
during the runs.

The combat situation that was successfully modeled was a turning maneuver
which required the presence of only two equations in the system (6). The classical
schematic way this maneuver is described in the military literature is presented in
Fig. 1. The numerical simulation did clearly demonstrate the movement of troops
on the field, the active phase of the battle when the direct contact is realized and
the mutual attrition decreases the number of troops engaged in combat, and the
retreat of the defeated force (not shown in Figure 1). If the defeated force is the one
that made the attack, this last phase of the battle takes place on the same track
as the one used for engagement but in reversed direction. If the entrenched force is
the defeated one its retreat is made on some new track conveniently chosen. The
loss of the total number of troops of one combatant that triggered the retreat was
arbitrarily set at 15%. The specific results obtained through numerical simulation
arc well illustrated in a companion paper.(®)
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Figure 1. Turning Maneuver.



3. CONCLUSIONS

The numerical study of the PDE combat model has proved its value in dealing
with some of the complex aspects of the modern warfare. The results presented here
clearly show that the tactical aspects of certain forms of maneuver are accurately
described by the two-dimensional version of the model. Finally, a good knowledge
of the software that can be used for the integration of this type of equations
has resulted. This has generated a more realistic point of view regarding the
expectations of a researcher working in the combat modeling field.
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