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FIBER-REINFORCED CERAMIC TUBULAR COMPOSITES™

A. J. Caputo, R. A. Lowden, and H. H. Moellexr!
ABSTRACT

Ceramic fiber-ceramic matrix tubular composites have been
developed in a joint program of 0Oak Ridge National Laboratory
(ORNL) and the Babcock & Wilcox Company. This program was the
first collaborative agreement between a private industry and
ORNL. The ceramic tubular composites were fabricated using a
novel chemical vapor infiltration process developed at ORNL.
§ilicon carbide filament-wound preforms were infiltrated with
additional silicon carbide to form the matrix phase of the com-
posite. The tubular composites exhibited exceptional strength
and strain tolerances that were significantly higher than mono-

lithic (nonreinforced)} 8iC. C-ring strengths and fracture sur-

face evaluation of both room-temperature- and elevated-
temperature-tested specimens are presented.

INTRODUCTION

Ceramic fiber-ceramic matrix composites are receiving increased

interest in the materials development community because of their potential

high strength and toughness, especially at elevated temperatures.

Nonreinforced (monolithic) ceramics have excellent high-temperature

properties but suffer from brittle behavior. With continuing development,

ceramic fiber-reinforced composites should be candidate materials for use

in turbine and automobile engine components, heat exchangers, recuperators,

and other high-temperature applications.

*Research sponsored by the U.S. Department of Energy, AR&TD Fossil
Energy Materials Program [DCE/FE AA 15 10 10 0, Work Breakdown Structure

Element ORNL-2(A)] under contract DE-AC05-840R21400 with Martin
Marietta Energy Systems, Inc.

TBabcock & Wilcox, Lynchburg, VA.



The preparation of composites using various fibers and matrices has
been extensively reported.'-7 The use of chemical vapor infiltration
(CVI) processes to form the matrix of a fiber-reinforced composite also has

been reported.®-1*

Before this joint effort with Babcock & Wilcox Company
(B&W), the CVI process was being investigated at Oak Ridge Natiomal
Laboratory (ORNL) as a means of fabricating ceramic fiber-reinforced com-
posites in the shape of various size disks by infiltrating compressed
sultiple layers of woven Nicalon™ (SiC) cloth.'®-2° During this work, a
novel CVI process that combines thermal-gradient and forced-flow approaches
was developed. The technique results in significantly reduced infiltration
times compared with other systems that depend only on diffusion for entry
of coating gases and exit of gaseous products.

The potential uses for ceramic composites (engine components, heat
exchangers, recuperators, etc.) indicated a need for a means of producing
cylindrical shapes. Additionally, to find broad commercial applications
for this composite material, the technology needed to be transferred to the
industrial community; thus, a joint program was established between ORNIL
and B&W to collaborate in the infiltration of tubular shapes that would
exhibit improved mechanical properties. B&W, with expertise in forming
fibrous tubes, prepared the filament-wound preforms at their Lynchburg,
Virginia, facility. The wound preforms were infiltrated at ORNL by using
the novel infiltration process adapted for the tubular shape. The
infiltrated composites were evaluated at ORNL for the effect of process
conditions on uniformity of infiltration. C-ring strength testing at both
room and elevated temperature and evaluation of the resulting fracture

surfaces were done at B&W.
EXPERIMENTAI, PROCEDURE
PREFORM FABRICATION

Cylindrical preforms were prepared by filament winding and had an

~51-mm (2-in.) OD, a nominal 127-mm (5-in.) length, and 6-mm (0.25-in.)

*Nippon Carbon Co., Tokyo, Japan.



wall thickness. The tubes were wound using a continuous tow of Nicalon
fibers that contained ~500 fibers per tow with individual fibers having a
diameter of 10 to 15 um. Although Nippon Carbon markets a standard and a
ceramic grade of Nicalon fibers, only the ceramic grade was used in this
program.

All preforms were unidirectionally wound, initially in the hoop
direction [Fig. 1(&)]. A single spool was used to feed an automatic fiber-
winding apparatus. Teflon spools were used at first to guide the Nicalon
tows, but after difficulty with the teflon thread guides was experienced,
porcelain thread guides were substituted. The density of the fiber preform
was adjusted by controlling the tension on the fiber feed spool. Near
the end of the program, several preforms were fabricated with the fiber
direction 10° off the hoop direction to provide strength in both the
axial and radial directions. Two feed spools were used to fabricate these
specimens.

In addition to the fiber preforms fabricated at B&W, the Oak Ridge
Gaseous Diffusion Plant (ORGDP) fabricated two unidirectionally wound
preforms. The first preform was similar to the later B&W preforms with
the fiber wound 10° off the hoop direction. However, the winding
technique resulted in space between the tows and a multiple crossover
pattern of the tows [Fig. 1(b)], producing some alignment of large pores
and, thus, large flaws that adversely affected the strength of the
infiltrated tube. The second tube was prepared using a different fiber-
winding apparatus that made it possible to wind a preform not only with
adjacent tows essentially touching each other, but also with the crossover
points aligned at regular intervals along the axis of the tube [Fig. 1(c)].

This winding prevented the formation of large pores.
INFILTRATION OF PREFORMS

The matrix phase of the composites was formed by a CVI process
developed at ORNL that combines a thermal gradient and pressure gradient

to greatly reduce infiltration time.?’

The first major goal of this effort
was to adapt the ORNL infiltration system for use with the tubular con-
figuration. To accomplish this, the key items of the process, the water-
cooled gas distribution system and the fibrous preform, were designed

and fabricated. Two versions of the gas distribution systems were designed,
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one introducing the gases near the base (bottom) of the preform, and the
other with the gases entering near the top of the preform. After initial
testing the first model was chosen and a schematic of the system is shown
in Fig. 2. The water-cooled injector (Fig. 3) provided reactant gas-flow
passage into the infiltration furnace and the cooling-water flow required
to keep the metal injector cool. The cooled injector, in turn, cooled the
graphite gas distributor, which cooled both the inside diameter and base
surfaces of the preform. A Si;N,-BN thermal insulator at the bottom of the
preform aided in the control of the amount of cooling. Thus, the incoming
reactant gases passed through the cooled inner surfaces of the preform
without reacting. Deposition occurred as the reactant gases approached

the higher-temperature regions near the outer surfaces of the preform.

The ability to maintain relatively high gas flows, to control deposition in
the higher-temperature region of the part, and to avoid early deposition at
the inlet surfaces (which would blind the surfaces and terminate the
infiltration) resulted in much higher deposition rates than those obtained
with other processes.

Hydrogen and methyltrichlorosilane (MTS) reactant gases were
distributed by the multiple slots of the graphite gas distributor and the
multiple holes of the graphite mandrel (Fig. 4). Deposition of the SiC
matrix continued until most of the porosity of the preform was filled and
the resistance to the flow of the reactant gases increased to a back
pressure of 170 kPa abs. The infiltration process occurred in a 1473 K
furnace (as measured optically on the top cover of the tube), using flows
[standard temperature and pressure (STP)] of 75-cm®/min MTS and 750-cm®/min
hydrogen, except as noted in Table 1.

During the early phase of the project, the deposition temperature was
periodically determined during a run with an optical pyrometer, and power
adjustments were made manually. An automated system was installed during
the later stages of the program to provide continuous control of the
temperature. A single-color pyrometer* continuously monitored the tem-

perature, and control circuitry made the necessary power adjustments.

*IRCON, Inc., Modline 2000, Niles, IL.
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Table 1. ORNL-B&W tubular composites
Preform characteristics Infiltration conditions
Run . Gas flows
No. Type Slze, Fiber content Temp.
(BW) winding 0D x ID x length (vol. %) (X) MTS Hydrogen
(cm) (cm®/min) (cm®/min)
19 Angle 5.1 x 3.8 x12.3 47 .4 1473 75 750
18 Angle 5.1 x 3.8 x 11.1 41.2 1473 75 750
17 Angle 5.1 x 3.8 x11.1 43.1 1473 75 750
16 Circumferential 5.1 x 3.8 x 11.4 531.7 1473 75 750
15 Angle 5.1 x 3.8 x 11.0 37.3 1473 75 750
14 Angle 4.8 x 3.8 x 10.6 41.8 1473 75 750
13 Angle 4.8 x 3.8 x 12.7 48.0 1473 75 750
12 Circumferential 5.1 x 3.8 x 12.7 49.6 1473 75 750
11 Circumferential 4.8 x 3.8 x 12.4 45.7 1473 50 500
10 Circumferential 5.1 x 4.1 x 13.0 54.7 1473 100 1000
9 Circumferential 5.1 x 3.8 x 13.0 41.7 1473 150 1500
8 Circumferential 5.1 x 3.8 x 13.0 50.8 1473 150 1500
7 Circumferential 5.1 x 3.8 x 13.0 48.5 1473 150 1500
6 Circumferential 4.6 x 3.6 x 13.1 55.0 1473 50-150 500-1500
5 Circumferential 5.1 x 3.8 x 13.0 41.5 1473 150 1500
4 Circumferential 4.3 x 3.0 x 12.1 375 1473 50 500
3 Circumferential 4.6 x 3.3 x 13.0 36.3 1473 50 500
24 Circumferential 3.8 x 2.5 x 2.5 ~30 1473 50 500
1 Circumferential 3.8 x 2.5 x 2.5 30.2 1473 50 500

4Incomplete infiltration.
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Initially, the flow of MTS was controlled by the flow of the hydrogen
carrier (rotameter controlled) through the MTS evaporator at a given
temperature. The average MTS flow for a run was determined by the weight
loss of the evaporator but could not be continuously indicated or
controlled during the run. Later in the program, continuous control was
obtained with the installation of an automated flow system using mass flow
meters and flow controllers. The predetermined total hydrogen flow was
controlled by a mass flow controller® with a portion of this flow being
diverted through the MTS evaporator. The actual flow of MTS was con-
tinuously monitored by another mass flow controller! that varied the amount
of hydrogen flow diverted through the evaporator to maintain a constant
MTS flow. In this manner, the system maintained a constant MTS flow, a
constant total hydrogen flow, and, consequently, a constant ratio between
the two.

In several of the later runs, the fibers in the preform were precoated
with a thin layer of carbon to protect the fibers and to weaken the bond
between the fibers and the matrix. Compared with the brittle fracture
normally associated with nonreinforced ceramics, the carbon layer enhanced
the desired fiber pullout and promoted nonbrittle fracture. The carbon was
deposited using flows (STP) of 100 cm®/min of propylene and 500 cm®/min of
argon at 1373 K at ~13 kPa (~100 torr) for periods ranging from 4 to 7 h.

CHARACTERIZATION

Matrix Distribution

An axial section was removed from the infiltrated tube by cutting with
a diamond saw, which left the remaining tube in the C-ring configuration
(Fig. 5) required for strength testing. The removed section was cut into
three pieces, representing the top, middle, and bottom portions of the
infiltrated tube. Each piece was vacuum-mounted in epoxy, cut in half
axially, and the cut surfaces ground and polished for optical viewing.

The polished surfaces were examined at low magnification (5x) to

assess the overall uniformity of the wound fibers and the infiltrated

*MKS Instruments, Inc., Type 1259A, Burlington, MA.
TTylan, Source V, Carson, CA.
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Fig. 5. Composite tube with section
removed. (C-rings were cut from this tube
for strength measurements.)

matrix and at higher magnification (200 to 500x) to reveal details and to
examine the fiber-matrix interface. When the fibers were precoated with
pyrolytic carbon, oil-immersion viewing at 3000x with polarized light

revealed both the distribution and thickness of the pyrolytic carbon.

Density

Two methods, geometrical and immersion, were used to determine
density. Geometrical density was used to describe the fiber loading in
the preform and the properties of the C-rings. The immersion-density
method was used to determine more accurately the density of the entire
infiltrated tube.

The geometrical density was determined from the weight and the
calculated volume of the tube. The values used for the outside diameter
and the length of the tube in the volume calculation were averages of three
individual measurements. The value used for the inside diameter was the

outside diameter of the machined mandrel.
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To determine the immersion density, the tube was first dried in air at
343 K overnight and weighed to determine the dry weight. The tube was then
placed in a beaker of water, and the temperature was increased to boiling
for 1 h to eliminate trapped air bubbles. The tube and water were then
allowed to return to room temperature before the tube was weighed (while
suspended in water) to determine the suspended weight. Finally, the tube
was removed from the water, the excess water removed from the surface with
wet towels, and the tube weighed to determine the wet weight. The density

B, was then determined from the relationship

B, =D/V ,
where
D = dry weight,
V = volume = W-S/density of water (1 g/cm®),
W = wet weight,
S = suspended weight.

Relative Permeability

Following infiltration, an estimate of the completeness of infil-
tration was made by determining the resistance to gas flow through the
tube wall. Using the apparatus shown in Fig. 6, argon was introduced into
the center of the tube and forced to flow through the tube wall. The argon
flow rate required to maintain a given pressure inside the tube was used as
a measure of relative permeability. The tests were performed at room tem-

perature and atmospheric pressure.

Strength Testing

Mechanical strength of the composite was determined using a C-ring
diametral compression test.?2-2% An advantage of this technique (in
addition to ease of specimen machining) is that fracture is initiated along
the outside surface of the C-ring where the tensile stresses are highest.
The C-ring test also has been used at ORNL as a means of evaluating tubular
specimens exposed to coal ash.?“-2% The fracture stress o was calculated

from the expression

o= (rg — rjw 2 ry r—R /°’
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Fig. 6. Relative permeability of
infiltrated composites determined with
simplified gas-flow apparatus.

where

P = breaking load (negative for compressive loading),
ro = 0D/2
ID/2
= (xro + ry)/2,

radius of neutral axis = (rgy — ri)/ln (ro/ry),

outer radius,

ri inner radius,

€ = HI
[}

specimen width.

The equation used to calculate the strain was derived by T. S. Brown of
Baw:26-27

2A 6R

Strain = nmrwt + Fo t
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where Fo = + — + —
wt?®  wt  wt
r = average radius of specimen,

specimen width,

specimen thickness,

B> o =
L}

deflection or displacement,

E/G = ratio of Young's modulus to the shear modulus.

The terms 1/wt + (E/G)/wt represent the membrane and shear deformation in a
C-ring. These values are normally small compared with the bending
deformation represented by 12r?/wt®. Therefore, in this study, the
membrane and shear deformation contribution to the strain was neglected.

C-ring testing was conducted using a computer-controlled MTS* testing
machine (Fig. 7). Tests were performed at room temperature, 1273 K, and
1473 K in air. For elevated-temperature testing, a furnace with a tem—
perature capability of 1873 K in air was used.

In preparation for C-ring strength testing, C-ring specimens that had
a nominal outside diameter of 51 mm (2 in.) and thickness of 6.4 mm
(0.15 in.) were cut from the tube. All specimens were dried overnight in
an oven set at 373 K. For elevated-temperature testing, specimens were
soaked for 1 h at test temperature to ensure uniform temperature
distribution in the test specimen.

Each specimen was preloaded to 1.0 kg (2.2 1b) and tested in compression
at a displacement rate of 0.51 mm/min (0.02 in./min). After testing, the
specimens were removed and examined visually and with scanning electron

microscopy.
RESULTS

This was a development program in which 19 tubular specimens were
fabricated (Tables 1, 2, and 3). Early in the program (run no. 3), one

hoop-wound preform was infiltrated and resulted in a tubular specimen

*MTS Systems Corp., Minneapolis, MN.
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Table 2. Properties of infiltrated tubes
Carbon interlayer Relative®

thickness permeability
Run Time No. of Weight Density® % of (pm) (L/min)
No. (h) infiltrationms gatn (g/cm®) e

density?
(g) y 0D 1D (34.5 kPa) (69 kPa)

19 53.0 6 181 2.60 89.7 1.54 3.07
18 47.0 6 135 2.29 81.2 0.5-2.6 0.2-1.0 2.04 4.25
17 37.0 5 93 2.25 81.7 0.4-3.2 0.2-3.5 1.91 4.15
16 33.0 6 72 1.89 68.5 ~0.5-2.5 ~0.2-1.0
15 47.5 8 189 2.47 83.4
14 24.5 4 105 2.37 80.9
13 47.5 8 125 2.32 80.2
12 65.0 8 142 2.30 80.0
11 70.0 10 94 2.16 74.3
10 37.0 5 90 2.10 13.7
9 42.0 6 161 2.46 83.9
8 23.0 3 118 2.30 80.0
i 11.0 3 73 1.87 64.6
6 3350 5 72 1.98 69.3
5 38.0 6 135 2.44 83.0
4 7.0 1 18 1.19 40.2
3 62.0 11 117 2.13 71.8
2 19.0 3 16
1 22.0 4 25 2.24 74 .4

4For runs 1 through 9 density obtained
obtained from immersion technique.

bTheoretical density is defined as the
of the components of the composite (fibers,

from dimensional measurements; for runs 10 through 19 density

sum of the products of volume fraction and reported density
precoat, and matrix).

CArgon flow at pressure differential of 34.5 or 69 kPa (5 or 10 psi) across tube wall.

91



Table 3. C-Ring strength of tubular composites

Room temperature (air) 1273 K (air)
Strength 2 of Strength X of ¢ % Commnts
Run Na.  Lacation theor. m;;:‘ Lopation S—————e— theor. b‘hl::o:
(kei) (MPa) density (ksi) (MPa) density
19 Top 87.9 606 77.8 No Top 35.2 243 79.4 Yes Repeat of #13; no PyC; reversed tube during run; used
Bottom 88.5 610 73.6 No Bottom 15.0 103 71.3 Yes S1,Ny-BN insulator; “tested at 1473 K in air.
Top 2.5 169 Yes*
18 Top 80.7 557 71.9 Partial Top 51.5 355 .7 Yes Special winding at ORGDP; PyC thickness: OD = 0.5-2.6 um,
Middle 79.4 548 69.3 ID = 0.2-1.0 um; started using automatic tewperature
Bottom 117.5 810 70.7 Bottom 71,1 490 71.0 Yes controller oo this run; used Si,N,-BN insulstor.
17 Top 55.7 384 63.8 Yes Top 11.7 81 Yes PyC thickness; OD = 0.4-3.2 ym; ID = 0.2-3.5 ym; started
Middle 66.5 459 69.0 using automatic MTS flow controller on this run; used
Bottom 97.7 674 72.0 Partial Bottom 44.3 306 Yes §1,N,-BN insulator.
16 Top 14,1 97 2.1 No Circumferential-wound tube to get dats on axial
Bottom 30.0 207 64.2 Yes strength; fibers precoated with pyrolytic carbon;
used Si;N,-BN insulator.
15 Top. 62.2 428 74.3 No ORGDP angle-wound preform with multiple tow crossover
Bottom 86.9 599 B4.5 No points; used Si;N,-BN insulator.
14 Top 100.9 696 81.3 No Top 60.2 415 82.8 Partial Started using 5i,N,-BN insulator.
Bottom 65.3 450 80.3 No Bottom 41.8 288 80.4 Yes
13 Top 96.4 665 81.9 Yes Top 26.4 182 72.9 Yes First angle-wound preform with multiple tow crossover
Middle 88.9 280 80.2 No points; reversed tube position during run.
Bottom 40.6 613 83.0 Yes
12 Top 15.2 105 73.7 Yes Multiple-hole graphite mandrel; multiple-slot graphite
Middle 59.2 408 79.6 No distributor; increased flows to l.5x normal.
Bottom 59.4 410 82.2 Partial
I Top 25.8 178 12.8 Yes Used a graphocell mandrel; Nicalon fibers overcoated
Middle 25.6 177 70.2 Partial with BN by vendor? but could not be detected in
Bottom 32.0 221 68.6 Yes infiltrated tube.
10 Top 19.3 133 67.5 Used a graphocell mandrel; used 2x flows.
Middle 24.1 166 73.3
Bottom 30.4 210 69.5
9 Top 24.1 166 72.5 Yes Used 3x flows; self-supporting preform (no mandrel);
Middle 54.7 377 75.7 No used 10.2-cm-high (4-in.) gas deflector; matrix
deposition not uniform.
4 Top 24.9 172 68.3 Yes Used 3x flows; self-supporting preform (no mandrel);
Bottom 9.6 66 71.4 No used 5.1-cm-high (2-in.) gas deflector; thick coating
on OD surface.
b Top 26.3 181 65.0 Yes Used 3x flows; self-supporting preform (no mandrel);
Bottom 7.8 54 57.0 Yes matrix deposition not uniform (thick coating on ID
surface).
6 Top 40.7 281 62.0 Yes Top 7.2 50 71.5 Yes Flows varied from 1x to 3x; 1X of fibers were Silar
Middle 56.9 392 65.0 Yes Middle 22.0 152 65.0 Yes whiskers; used graphite mandrel and gas distributor
Bottom 31.0 214 60.0 No with slots.
5 Top 50.7 350 75.0 Yes Top 12.5 86 80.0 Yes Increased flows Lo 3*; used graphite mandrel and
Middie Sb.4 389 78.0 No gas distributor with slots.
Bottom 49.4 34 74.0 Yes
4 Used injector type 2: run not completed; tube not
tested.
1 Top 3.9 220 74.0 Yes Top 6.2 43 63.0 Yes First infiltration of 12,7-cm~long (5-in.) tube;
Middle 76.6 528 75.0 Middle 40.5 219 73.0 Yes injector type 1; used graphite mandrel with a few
Bottom 64.6 44t 72.0 Yes Bottom 20.8 143 61.0 Yes holes.
2 Used modified disk setup; incomplete densification.
1 Top 49.6 342 Yes Used modified disk setup.
Middle 22.7 157 No
Bottom 31.9 220 No

#Synterials Inc., Herndon, VA.

LT
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with a C-ring strength of 528 MPa (76 ksi) at room temperature and 279 MPa
(40 ksi) at 1273 K in air. At both temperatures, good composite behavior
(strength retention following attainment of a maximum strength load)

was observed.

In the remaining runs, several parameters were changed to establish
conditions required for greater density, strength, and toughness and for
simplified processing. The fiber loading of the preforms varied from
23 to 56% of theoretical, and the fiber angle was 10° off the hoop
direction. The density of the composite tubes was typically in the range
of 65 to 85% of theoretical (Table 2), and the strengths varied from
20 to 690 MPa (3 to 100 ksi) (Table 3). The ability of tubes to exhibit
composite behavior during failure also varied during this period (Table 3).
Generally, composites with 15 to 20% porosity exhibited excellent mechan-
ical strength and composite behavior during failure. Near the conclusion
of the program, several tubes were fabricated using the optimized parame-
ters for both preforms and infiltration.

In an attempt to obtain more-consistent strength and composite-type
behavior, the fibers of three of the last four preforms were coated with
pyrolytic carbon before deposition of the SiC matrix. As a result,
tubular specimens that had both good strength and good composite behavior
were fabricated.

In the results, emphasis is placed on the hoop-wound tubes fabricated
at the beginning of the program and the final 4 of the 19 tubes fabricated.
These had densities ranging from 70 to 85% of theoretical; the last tube
fabricated had an average density of 90% of theoretical.

Figures 8 and 9 show two of the finished tubes fabricated in this
program that have a nominal dimension of 51-mm (2-in.) OD X 127 mm (5 in.)
long. The tube shown in Fig. 8 was fabricated from a preform that was
wound in the hoop direction; the tube shown in Fig. 9 was fabricated from a

preform with the fiber direction 10° off the hoop direction.

INFILTRATION

The design of the gas distributor and preform mandrel are critical to
the process because these two items transfer the cooling from the injector

to the preform and uniformly distribute the reactant gas flows across the
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Fig. 8. Infiltrated tube — circumferentially
(hoop) wound.
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ORNL-PHOTO 3758-87

Fig. 9. Infiltrated tube — angle wound with adjacent
tows and aligned-tow crossover.
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inner preform surfaces. In initial runs, preforms infiltrated using either
a graphite mandrel containing only a few holes or slots, a porous carbon
mandrel, or no mandrel at all resulted in nonuniform matrix deposition.
The best combination of an optimum temperature gradient across the preform
wall and uniform-gas flow distribution was obtained with the use of a thin-
wall graphite mandrel containing ~200 6-mm-diam (0.25-in.) holes. The
multiple axial and radial slots of the distributor are shown in Fig. 4.
Less matrix was deposited at the bottom of the preform because of its lower
temperature resulting from contact with the base of the cooled graphite gas
distributor. To increase the temperature of this area, a ceramic insulator
(Si3N4-BN) was placed between the bottom of the preform and the cooled
distributor base. Ceramographic examination of the longitudinal sections
revealed that more-uniform infiltration was obtained with this arrangement.
Additional temperature control of the inner and bottom surfaces of the
preform was attempted by varying the temperature of the cooling water.

A thermal gradient was not required for the deposition of the
pyrolytic carbon precoat. Thus, modifications that removed the cooling of

the inside-diameter and bottom surface of the preform were made.

MATRIX DISTRIBUTION

With the use of the multiple-slot graphite gas distributor, the
multiple-hole graphite mandrel, and the ceramic insulating spacer at the
bottom of the tube, the SiC matrix was deposited rather uniformly across
the length and wall thickness of the tube (Fig. 10). A typical, higher-
magnification view of the fibers and matrix (Fig. 11) shows that the matrix
completely surrounds each fiber. The dark areas in Fig. 11 are pores,
which constitute ~15 vol % of this specimen.

Polarized light microscopy was used to distinguish the pyrolytic
carbon precoat from the silicon carbide matrix. The carbon thickness
varied across both the tube length and wall thickness. The carbon coating
thickness from the top to the bottom of the tube at the outer surface
varied from 3.5 to 0.5 um, which was considerably more than the desired 0.1
to 0.2 ym. Figure 12 shows the deposited carbon thicknesses at the outer

(2.5-uym) and inner (0.7-pm) tube diameter surfaces.
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MIDDLE

Fig. 10. Matrix was distributed rather uniformly along tube length
(run no. 13).
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Fig. 11. Typical section of infiltrated silicon carbide fiber-
reinforced silicon carbide (run no. 13).
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ORNL-PHOTO 3752-87

Fig. 12. Pyrolytic carbon coating
deposited on SiC fibers before deposition of
SiC matrix. (&) Middle of tube, OD surface;
(b) middle of tube, ID surface.
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RELATIVE PERMEABILITY

An estimate of the tube room-temperature relative permeability was
made before infiltrated tubes 17, 18, and 19 were sectioned (Fig. 13).
This was used as an indication of the degree of infiltration. Note that
the relative permeability of tubes with a density of ~80% T.D. was nearly
identical. A tube with a higher density of ~90% T.D. had a somewhat lower
permeability (Fig. 13). Thus, this simple flow test can be used as a first
approximation of the relative permeability of the tubes and, for tubes with
similar geometry and fabrication history, the degree of infiltration, assum-

ing a uniform matrix distribution.

ROOM-TEMPERATURE TESTING

High-strength, tubular specimens were required to satisfy the goals
of this program, however, the load-carrying capability of the composite
following initial fracture was also of interest. Therefore, the following

were considered in evaluating the specimen:

1. maximum stress at failure,
2. strain to failure, and

3. shape of the stress-strain diagram.

The C-ring specimens, which were loaded in compression, had common
failure characteristics. In general, a macrocrack appeared to originate on
the outside diameter of the specimen (the tensile surface) and propagate
toward the inside diameter. When the crack tip propagated through
approximately one-third to one-half of the wall thickness, the crack turned
and propagated circumferentially around the tube, causing delamination
parallel to the direction of the fiber winding. Although the specimens were
cracked after the testing was completed, they remained whole. The segments
of the specimens were later separated to examine the fracture surfaces.

The difficulty in interpreting the results of the C-ring test for a
delaminating composite is recognized; thus the strengths are reported for
comparison rather than as actual tensile strength values. The maximum
stress in specimens that were prepared from tubes with fibers wound at 0°
in the hoop direction was ~450 MPa (65 ksi). When the reinforcing fiber

direction was changed to 10° off the hoop direction, the maximum strength
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Fig. 13. Room-temperature permeability of infiltrated tubes
varied with tube density.
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increased to 665 MPa (96 ksi). When pyrolytic carbon was used to precoat
the latter preforms, the maximum stress obtained was 810 MPa (118 ksi).
These values are substantially higher than the values of 264 to 305 MPa
(38 to 44 ksi) for C-rings of monolithic alpha silicon carbide.?*72%°

A prolonged load-carrying capability was observed during the failure
of specimens that had densities in the range of 65 to 85% of theoretical,
as evidenced in the stress-strain curves produced during testing (Fig. 14).
To contrast the difference in the strain to failure of the composite to a
monolithic silicon carbide, the failure curve of a monolithic alpha
silicon carbide C-ring is also shown. The failure strain of the composite
is substantially higher, and the area under the curve is much greater,
showing that the toughness of the composite is also greater than that of
the unreinforced material (Fig. 14).

The load-carrying capability (composite behavior) after the first
indication of cracking can be attributed to fiber pullout during failure.
Figures 15 and 16 show fracture surfaces of C-ring specimens tested at room
temperature. While delamination of the composites did occur during
testing, it is obvious from these photographs that fiber pullout was

experienced during fracture.
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Fig. 14. Stress-strain curve of a specimen
fractured at room temperature.
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Fig. 15. Fractured C-ring tested at room
temperature shows fiber pullout (run no. 17).

ORNL-PHOTO 3756-87

Fig. 16. Fracture surface of a
specimen tested at room temperature
shows fiber pullout (run no. 17).
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Figure 17 shows the fiber-matrix interface of a fracture surface of a
composite tube with a pyrolytic carbon precciting. Note the thin layer
separating the fiber from the matrix. This layer is believed to contribute
to composite behavior by protecting the fibers during processing and
weakening the fiber-matrix interfacial bond, although more research will be

required to fully delineate its contribution.

ORNL- PHOTO 3754-87

SiC MATRIX

Fig. 17. Fiber-matrix interface of carbon-coated fiber
composite following room-temperature tests (run no. 17).

Specimens from run 19 had an average density of 76+4% of theoretical
but were not carbon precoated. These specimens did not exhibit composite
behavior at room temperature. Figure 18 shows a stress-strain curve of one

of the C-ring specimens tested. This curve is more typical of monolithic
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ceramic material exhibiting catastrophic failure. The fracture surfaces

are irregular, however, which would indicate that some toughening occurred
(Fig. 19). Because of the irregular surface and the lack of fiber pullout,
it appears that other toughening mechanisms — such as crack deflection and

delamination — rather than fiber pullout were present.
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Fig. 18. Stress—strain curve of a 74%-dense specimen
tested at room temperature (run no. 19).

ELEVATED- TEMPERATURE TESTING

All tested specimens showed good composite behavior at elevated
temperatures. Figure 20 shows a fracture surface of a C-ring specimen

tested at 1273 K in air with extensive fiber pullout.
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ORNL-PHOTO 3755-87

Fig. 19. Fracture surface of a
74%-dense specimen tested at room
temperature (run no. 19).

ORNL-PHOTO 3757-87

Fig. 20. Fracture surface of a
specimen tested at 1273 K in air shows
fiber pullout (run no. 19).



32

In the specimens that were prepared from tubes with fibers wound
in the hoop direction, the maximum stress achieved was ~280 MPa (40 ksi).
When the reinforcing fiber direction was changed to 10° off the hoop direc-
tion, the maximum strength observed was ~415 MPa (60 ksi). When carbon was
used to coat the later angle-wound preforms, the maximum stress obtained
was 490 MPa (71 ksi) (Table 3).

Figure 21 shows fracture surfaces of specimens that had a carbon
precoat and were tested at 1273K. It was assumed that the carbon coating
would be vulnerable in an oxidizing environment, particularly following
cracking of the matrix. Figure 21(a) shows an area of the fracture
surface in which the carbon coating remained. However, Fig. 21(b) shows
an area of the same fractured surface in which no carbon coating remained,
and Fig. 21(c) shows an area where fibers were partly coated with carbon.
These results indicate that the matrix protected the carbon coating
interface for a limited time at 1273 K.

The specimens cut from the composite tube that had an average infil-
trated density of 90% of theoretical also exhibited composite behavior at
elevated temperature, as evidenced by the stress-strain curves shown in
Figs. 22 and 23. Figure 22 was generated during a specimen test at 1273 K,
and Fig. 23 was generated during a specimen test at 1473 K. At 1473 K the
specimens exhibited strengths of ~172 MPa (25 ksi) and good composite

behavior.

DISCUSSION

Ceramic tubular composites fabricated utilizing CVI techniques have
been examined for applications as high-temperature heat exchanger com-
ponents in industrial processes.?® Braided fiber tubing has been infil-
trated with silicon carbide to produce thermal shock resistant composites
which offer great potential as heat pipes, nozzles, and other combustion
system components. Siconex, a trademark of 3M, are composites composed
of Nextel alumino-borosilicate fibers densified with a CVI SiC matrix.

The investigation of these materials has been limited to thin wall

(single layer) structures and the products possess very low strength,
typically <70 MPa compressive. These strengths are adequate for nonstruc-
tural heat exchanger components; however, improved properties are required

for the more demanding applications.



ORNL-PHOTO 3753-87

Fig. 21. Fiber-matrix interface of carbon-coated fiber composite tested at
1000°C. (&) Area showing fibers with carbon coating, (b) area showing fibers with
no carbon coating, (c) area showing fibers partly coated with carbon (run no. 18).
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Fig. 22. Stress-strain curve of a 79%-dense
specimen tested at 1273 K in air (run no. 19).
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High strength composites with improved toughness have been produced
utilizing the forced-flow, thermal-gradient CVI process developed at ORNL.
In contrast to the braided single-layer preforms densified in the aforemen-
tioned programs, relatively thick, filament-wound structures have been
infiltrated with a SiC matrix. The process utilizes both the thermal-
gradient and forced-flow approaches to significantly reduce processing
times. Composite tubes containing a nominal 50 vol. % fiber have been
infiltrated to 90% of theoretical density in <65 h.

Numerous factors influence the infiltration process. An adequate
temperature gradient must be retained and the reactant gases must be evenly
distributed to produce a composite with uniform density and properties.

The water-cooled injector and the graphite distributor and mandrel played
key roles in the infiltration of the fibrous tubes. While adjustment of
the water temperature from 290 to 350 K flowing through the metal injector
appeared to have little effect on the thermal gradient, the configuration
of the mandrel and graphite gas distributor had a significant influence on
the temperature distribution throughout the preform.

If the inside surface of the preform was too hot, deposition occurred
on this surface sealing it, thus the reactant could not penetrate the
remainder of the preform. Too much cooling to the inner diameter, and sub-
sequently the bottom of the preform, did not allow for complete infiltration
of the inner and bottom volumes. Reactant gases would simply flow out the
cooled bottom edge of the preform that was in contact with the base of the
graphite gas distributor. It was found that a ceramic spacer, placed
between the gas distibutor and preform, was needed to create the proper
temperature gradient for satisfactory infiltration.

The distribution of reactant gases within the preform greatly
influenced densification uniformity. A variety of porous mandrels placed
between the fibrous preform and the gas distributor were examined. These
controlled not only the gas flow but the nature of the thermal gradient.

A graphite mandrel with a series of 6-mm holes was found to be the most
efficient. The structure of the preform had the most significant effect
on matrix distribution. The filaments in the preforms wound at 0° to the

hoop align next to and above one another and thus they create a tortuous
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and restrictive path for the reactants. Angular winding of the fiber tows
produced preforms with porosity and open passages that permitted the gases
to flow more easily from the inner surface to the heated outer areas. This
improved infiltration uniformity and thus composite mechanical properties
were improved.

The problems associated with the mechanical property testing of
composite specimens is recognized and the reported strengths are used for
intercomparison rather than true values of tensile strength. The composite
specimens delaminated during C-ring testing. Cracks propagating from the
outer diameter were quickly diverted around the circumference of the test
specimen. The lower density areas at the inner surface of the C-~ring
may have also influenced results. However, high strengths were measured at
room and elevated temperatures. Typical flexure strengths for Nicalon/SiC
composites have been reported to be 400-450 MPa from room temperature to
1573 K.® Room temperature strengths of ~640 MPa and 1273 K strengths of
>300 MPa are respectible. 1In addition, gradual failure and fiber pull-out
were observed in the majority of the specimens.

The winding angle appeared to influence the ultimate strength of the
composites. Higher C-ring stengths were measured for the samples fabri-
cated from preforms wound at 10° off the hoop direction than for the 0°
windings. In general, the strength of a composite decreases as the angle
between the loading direction and filament direction increases. In this
case however, the angular winding allowed for more complete and uniform
infiltration, and thus an improvement in composite quality.

It was recognized that an intermediate coating applied to the fibers
prior to infiltration was necessary to increase strength and improve repro-
ducibility. Carbon has successfully been used an interlayer in SiC/Nicalon
composites in the past, and thus a thin layer of carbon was used to protect
the fibers from damage during processing and to alter the characteristics
of the fiber-matrix interface. Composites fabricated from carbon-coated
preforms exhibited improved strength and increased strain-to-failure accom-
panied by extensive fiber pull-out.

Boron nitride has also been successfully used as a modifying inter-

30

layer in composite materials. Continuous fibers with a thin layer of
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boron nitride deposited at a low temperature was purchased and wound
to form a tube. The tube was densified with SiC and the infiltrated
composite specimens exhibited composite failure, but low strengths
(run no. 11). The BN interlayer could not be detected in the finished
composites suggesting possible chemical interaction with the fiber or

the matrix during densification.

CONCLUSIONS

This project demonstrated that the forced-flow, thermal-gradient
chemical vapor infiltration process can be used to fabricate tubular
composites. Net-shape fibrous structures were prepared by the filament
winding of continuous tows. The preforms were densified with a silicon
carbide matrix and the properties of the composites were measured.

Tubes with ~6-mm-wall thicknesses were produced in <65 h with densi-
ties approaching 90% thecretical. The highest density composites were
fabricated from preforms with fibers wound 10° off the hoop direction.

The angular winding provided more readily accessible gas passages than
did preforms wound at 0° to the hoop direction. The improvements in
product density and matrix distribution resulted in an increase in the
C-ring strength of the composites. The maximum strength obtained in the
tested composites was 810 MPa at room temperature, 490 MPa at 1273 K, and
172 MPa at 1473 X. 1In general, the composite specimens failed gradually
with evidence of fiber pull-out at the fracture surfaces.

A carbon coating applied to the preforms prior to infiltration
improved the mechanical behavior of the composites. The carbon alters the
bonding characteristics at the fiber-matrix interface and helps to protect
the fibers from damage during processing. A BN coating deposited on the
fibers before filament winding appeared to have a deleterious effect on

the properties of the composite.
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