e

OAK m%ﬁ&z

: BP%RMﬁ} B -
MARTIN MARIETTA %?JERG? svsmﬁ mr.

FOR THE UNITED STATES

; ﬁi%ﬂ?ﬁé*ﬁy B %ﬁ?ﬁi%‘

ORKL/TH- 16835
(CESAR-88/55)

Object Recoanition for the
HERMIES Robot

K. W. Bowyer

Printed in the United States of America. Avallacle from
National Technical Information Service
U.S. Department of Commerce

This report was prepared as an account of work sponsored by an agency of the
Unitezd Gtates Governiment. Nesther the United States Gaovernment norany agency
theract, nor any of their erripioyees, makes any warranty, express or anglied, or
assumes any legal habdity or responsibility for the accuracy. completeness, or
usefulness of any information, apparatus, product. or process disclosed, or
represssts inat its use would notinfringe privately owned rights FHeierence herein
to any specific comimerciai product, process orservice by trade name, trademark

adae

mdnutacturer, or otherwise, dces not necessarily constitute or unpi ts
endorsement, recommendation, or favorng by the United States Governimeni or
any agency thereof The views and opinions of authors exoressed herein do not
necessarily state or reflect those ¢t the United States Governrigiil Or any aqgency
thereof

ORNL/TM-10935
CESAR-88/55

Engineering Physics and Mathematics Division

Object Recognition for the HERMIES Robot

Kevin W, BowyerT

i University of South Florida
Department of Computer Science and Engineering

Tampa, Florida 33620

Published: October 1988

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-840R 21400 ﬂ“"’Wm‘“ﬂ“ﬁ‘l{“i“ﬂ]SI‘W“"Eﬁ‘ﬂﬂsﬂ

ORNL/TM-10935

CONTENTS

Abstract .
1. Introduction
2. Background
2.1. The Pyramid Structure for Multi-Resolution Processing
2.2. Objects Standing on the Same Supporting Plane
2.3. Known Obstacle Dimensions
2.4. The Hough Transform forParameterized Shapes .
3. A Prototype Object Recognition System for HERMIES
3.1. Pre-Processing Steps
3.2. The Hough Transform for Rectangular Outlines . .
3.3. Constraints to Eliminate Outlines Not Arising from Obstacles
3.4. Creating a “Floor Map” of Obstacle Locations
3.5. Program Modules .
4. Discussion
5. Acknowledgements
References

Appendix

11

N R

O oo O

. 10
.11
.12
. 14
. 16
.17
. 19

Abstract

The HERMIES-IIB robot in the CESAR lab at CRNL is used in research related to vision,
multi-sensor integration, coordinated arm movement, path planning, parallel
algorithms, and learning. This report describes the development of a visual object
recognition system for HERMIES. This system is implemented on an NCube system, an
MIMD hypercube parallel computing system. In general, the input to the object
recognition system will be an image containing one or more instances of the known
different types of obstacles, and the output will be the location(s) of the obstacle(s)
relative to the camera. Based on assumptions about the known geometry of the obstacles,
the viewing conditions, the relevant range of viewing distances and the image resolution
needed, it is proposed that the obstacles can be recognized by the presence of roughly
rectangular outlines in the image. The object recognition system uses Hough transforms to
find rectangular outlines in the image, and then uses a sequence of constraints to eliminate

those outlines which could not be due to obstacies.

1. Introduction

The HERMIES-IIB robot in the CESAR lab at ORNL is used in research related to vision,
multi-sensor integration, coordinated arm movement, path planning, parallel
algorithms, and learning [1,2]. A typical demonstration task calls for HERMIES to begin
at a known location in the test environment, travel to the known location of a control
panel, "read" the control panel display and report the results. The environment of the lab
may be arranged so that the straight-line path from HERMIES' starting location to the
location of the control panel is obstructed by an unknown number of obstacles at unknown
locations. The obstacles consist of rectangular columns of several different sizes and
colors. In the current solution to this demonstration task, HERMIES uses sonar to sense
the environment before planning a path toward the goal. This report describes the
development of a visual object recognition system for HERMIES. This system is
implemented on an NCube system, an MIMD hypercube parallel computing system. In
general, the input to the object recognition system will be an image containing one or more
instances of the known different types of obstacles, and the output will be the location(s)

of the obstacle(s) relative to the camera.

2. Background

This section gives some general background to the techniques and assumptions used in

constructing a 3-D object recognition system for HERMIES.

2.1. The Pyramid Structure for Multi-Resolution Processing.

The motivation and use of a pyramid data structure for image processing is fairly simple.
Images typically contain a large amount of raw data (in the HERMIES case, currently, 256
by 256 8-bit pixels), much of which does not correspond to features of interest (such as
edges). In order to reduce the amount of data processed, a coarser-resolution version of
the image can be created, the features of interest located in the coaser-resolution image,
and then only a portion of the high resolution image processed, if necessary, to localize the
features more precisely. Going one level up a pyramid for the original 256 by 256
HERMIES image would result in a 128 by 128 image in which each pixel is derived from a
2 by 2 square of the original image. Going up a second level would result in a 64 by 64
image in which each pixel is derived from a 2 by 2 square of the lower level (or a 4 by 4

square of the original image), and so on. (See Figure 1.) Experience with the images

2 255
0
1
2
255
127
0
1
2
127
012 63
0
1
Z
63

Figure 1 - lliustration of Pyramid of Different Image Resolutions

acquired in the HERMIES test environment shows that they can generally be reduced to 64
by 64 (two levels up a pyramid) without significantly distorting the data as used for our
purposes here. Processing at this level of resolution is much faster (nominally 1/16 of
the time for processing the original image), and is also similar to operating cn a smoothed
version of the original image. Naturally, there is a tradeoff between speed of processing

and accuracy in the localization of the obstacles.

2.2. Objects Standing on the Same Supporting Plane.

if the camera and the objects to be recognized share a common supporting plane, then this
provides strong constraints which can be used to aid recognition. In the case of HERMIES,
we can assume that the camera is mounted at a known, fixed height above the supporting
plane (the floor), and that the optical axis of the camera is parallel to the supporting
plane. (Actually, the camera mount is under program control, so the angle between the
supporting plane and the optical axis can be adjusted to a range of known values. The
constraints described below are easily generalized to handle any known angle between the
optical axis and supporting plane.) We also assume that the obstacles to be recognized are

standing on the same supporting plane, with a bottom face in stable contact with the

supporting plane.

Since the optical axis is parallel to the supporting plane, the "horizon" occurs at the
middle of the image. That is, the supporting plane, even if it extends out to infinity, will
only‘appear in the bottom half of the image. This means that only edges which are found in
the bottom half of the image could possibly represent the bottom of an obstacle in contact
with the supporting plane. Further, the depth into the bottom half of the image at which
such an edge occurs reflects the distance of the object from the camera. (See Figure 2.)
If an edge representing the bottom of an obstacle in contact with the supporting plane is
found in the bottom row of the image, this must represent an obstacle which is standing
“very close to" the camera. If an edge between an obstacle and the supporting plane is
found halfway up the image, this must represent an object standing "very far away” from
the camera. The exact definitions of "very close to" and "very far away" are determined
by the camera parameters, the camera o supporting plane distance, the angle between the
optical axis and the supporting plane, and the image resolution. Regardless, the accuracy

"pinhole”
focusing

of light

obstacle

camera

support

Common Supporting Plane for Camera and Obstacles

Figure 2 - Constraint of Supporting Plane and Perspective Projection

in determining the camera to obstacle distance from the location of the bottom edge in the

image falls off quickly with increasing distance between the camera and obstacle.

In the particular case of a 64 by 64 image derived from the original 256 by 256 image
taken by the wide-angle camera currently mounted on MERMIES-IIB, an edge found at the
bottom of the image would represent an object face located approximately 3 feet away from
the camera. (This is distance as measured forward along the optical axis to the depth of
the obstacle face.) An edge found 32 rows up from the bottom of the image would

represent an object (theoretically) located infinitely far away.

2.3. Known Obstacle Dimensions.

The obstacles used in the HERMIES demonstration environment have fairly simple shapes.
One type of obstacle is 4 feet tall and has a square cross-section which is 2 feet on a side.
Instances of this obstacle are either red or blue. A second type of obstacle is also 4 feet
tall, but has a square cross-section which is only 1 foot on a side. Instances of this
obstacle are either red or green. A third type of obstacle is a cube which is 2 feet on an
edge (similar to the first obstacle, but only half as tall). All instances of this obstacle are

yellow.

Since the dimensions of the obstacles are known, and the range of depths at which they may
appear in the scene can be assumed known (say, between 5 and 25 feet), the edges in the
image which result from the obstacles must produce outlines within a certain range of
sizes. For example, consider a 64 by 64 image of a scene containing one of the 4-foot tall,
2-foot square cross-section obstacles. At a distace of approximately 5 feet away, the
edge outline will be approximately 42 pixels tall, and at a distance of approximately 25
feet the edge outline will be approximately 9 pixels tall. If the obstacle is seen face on, the
the width will be approximately 0.6 times the height and if the obstacle is seen edge on,

then the width will be approximately 0.75 times the height.

The assumption of known obstacle dimensions interacts with the assumption of a common
supporting plane to provide another strong constraint which can be used to aid recognition.
For any given candidate outline found in the image, there is only a relatively narrow range
of combinations of bottom edge location and outline height which would be valid if the

candidate outline truly arises from one of the obstacies.

2.4. The Hough Transform for Parameterized Shapes.

The Hough transform is a well-known tool in image processing, and is discussed in most
computer vision texts. For example, see (3, 4]. The basic idea is that every edge pixe!
found in an image can "vote" for the different parameterized features (e.g. lines, circles,
rectangles, etc.} which it could be a part of, and the features can then be detected as local
maxima in the Hough space. Because it is a computationally intensive tool, there is
natural motivation to use parallel processing. Rosenfeld et al. [5] have recently discussed
the computation of the Hough transform on an SIMD mesh-connected parallel computer,

and suggested that it might be more efficiently implemented on a hypercube architecture.

Note that obstacles which are seen "face on" will present a perfectly rectangular outline.
Obstacles which are seen "edge on" actually present a slightly different outline; two
strong outside vertical edges, a very weak middle vertical edge, an upward pointing
v-shape top edge and a downward pointing v-shape bottom edge. (The difference in the top
and bottom edge is due to the relative height of the camera and the obstacle.) However, the
middie vertical edge is so weak that it is almost impossible to detect and the top and bottom
edges are almost horizontal line segments for obstacles which are not close to the camera.

Given the constraints that 1) the obstacle is standing stably on the same supporting plane
as the camera, 2) the range of possible depths at which the obstacle can appear is roughly
five feet to twenty-five feet, 3) the actual dimensions of the obstacle are known, and 4)
sufficient accuracy can be obiained by processing a 64 by 64 image, then it seems
reasonable to attempt to detect the presence of obstacles in the image by performing a
Hough transform for rectangular outlines over a range of possible sizes. |If greater
accuracy is desired, or if recognition of "edge on" obstacles at close range is required, then
Hough transforms representing multiple views of the obstacle from different angles should

be performed.

For a given size of rectangular outline, say M pixels high by N pixels wide, the Hough
transform space is the same dimension as the image space. If an edge pixel is found at
location (row, col) in the image space, then it can vote for the presence of a maximum of
2*M + 2*(N-2) different possible rectangles centered at different locations. The outline
center locations voted for in Hough space for an edge pixel found at location (row, col) in

image space would be:

(i, col+N/2) for i = row-M/2 , ..., row+(M-1)/2,

(i, col-(N-1}/2) fori=row-M/2, ..., row+(M-1)/2,
(row+M, i) for j = col-N/2+1, ..., col+(N-1)/2-1, and
(row-(M-1)/2, }) for j = col-N/2+1, ..., col+(N-1)/2-1,

where "/" is taken as indicating “"integer division" (truncating the result). See Figure 3

for a simple example.

If it is desired to detect evidence for rectangular outlines which may lie partly outside the
image, then the size of the Hough space should be larger than the image space by an amount
determined by the size of the rectangle. If it is only necessary 10 detect evidence for
rectangular outlines which are entirely in the image, then the size of the Hough space can

be smaller than the image space by an amount determined by the size of the rectangle.

3. A Prototype Object Recognition System for HERMIES

The concepts outlined above were used as the basis for designing an object recognition
system for the HERMIES demonstration environment. The system initially uses the Hough
transform to locate the centers of rectangular outlines in the edge-detected version of an

image, on the supposition that these outlines will generally correspond to obstacles.

interested
in 5 by 3 parameterize the outline around its
center locations, so that . . .
rectangle
shapes
" image space” "Hough space”
votes for
o \ /
each pixel possible \\}/
in image rectangle N
pace — centers in N
P Hough space ," \\

Figure 3 - Hough Transform for Rectangular Outlines

However, for a variety of reasons, not every rectangular outline detected by the Hough
transform corresponds ic an obstacle; there are many “false positives." Thus the
recognition candidates generated by the Hough analysis are filtered by a series of
constraints designed to eliminate candidates which do not correspond to obstacles.
(Unfortunately, it is also true that not every obstacle in the environment will generate a
recognizable rectangular outline. This is a somewhat harder problem to solve; some
possible partial solutions are commented on later.) The Hough-generated candidates which
pass all the constraints. are transiated to a "floor map" location in terms of a distance in

front of the camera and a distance to the right or left of the optical axis.

A prototype version of the object recogniticn system has been implemented (in "C") and
tested on the Ncube system. This program is not written to depend on any particular
number of processors in order to execute. It has been run on as few as 4 and as many as
64 processors. With careful attention to- when image buffers are allocated and deallocated,
it should be possible to execute the program on fewer than four processors. However, the
Hough analysis is very compute-intensive and proceeds noticeably féster with a larger
number of processors. (Even with 64 processors, it does not operate in what could be
called real time). The program has been developed using a half dozen test images and
produces accurate results for these images (which c¢an bs found in
/usr/bowyer/images/pbox1, .., pbox4, pibox2, ptbox3).

The operation of this program is described in some detail below, with special attention to
all the subjectively determined parameters and how changing them might affect the

system.

3.1. Pre-Processing Steps.

Several pre-processing steps are applied to an image before the Hough analysis is
performed. The first preprocessing step is to create a version of the image corresponding
to two levels up the pyramid. The second step is to apply the Sobel edge detector to the
coarse-resolution image. The edge-detected image is then thresholded using a locally
adaptive threshold. The resulting edge map is used as input to the Hough transform

analysis.

Creating a coarse-resolution version of the image for further operations serves three
purposes. First, it decreases the processing time required. Second, it has something of an
averaging effect and so decreases the influence of noise. Third, obstacles which are very
close to the camera and/or are viewed fairly directly "edge on" do not actually present an
exactly rectangular outline, but the outline is more nearly rectangular at a lower
resclution. If processing time were not a problem and greater accuracy were needed, then
it would make sense to use a less coarse version of the image and perform additional

parameterized Hough transforms for obstacles which appear more "edge on" than "face on."

The Sobel edge operator is used because it parallelizes nicely and already has a general
implementation as a routine in the image processing library [6]. However, the Sobel is
one of the earlier and less sophisticated edge detectors. It is possible that better
performance could be oblained by using, for example, Canny's edge detector [7], but this
would probably not be a major gain since the obstacles generaily produce sirong, straight

edges anyway.

The thresholding routine takes the gradient image calculated by the Sobel routine and uses
a 7 by 7 window centered over each pixel to determine whether 10 mark the pixel as edge
(value 255) or non-edge (value 0). The pixel is marked as an edge pixe! if its value (the
gradient value from the Sobel routine) is greater than 0.5 times the maximum gradient

value in the 7 by 7 window. The result is a iocally adaptive threshold across the image.

Other things being equal, increasing either the size of the window or the percent of
maximum cutoff will decrease the number of pixels marked as edge pixels, and vice versa.
If the size of the window is decreased very much, say down to 5 by 5, then a large number
of noise pixels will be marked as edge pixels. If the size of the window is increased
greatly, then a strong edge can suppress another nearby edge.

3.2. The Hough Transform for Rectangular Qutlines.

The Hough transform is iteratively applied to the binary (0/255) edge image for a range
of rectangle sizes. For the 64 by 64 resolution image, the shortest outline searched for
is 8 pixels tall, and the tallest rectangular outline searched for is 45 pixels tall. For each
height of rectangular outline, a range of values for the width of the outline is used, from
approximately 0.6 times the height, corresponding to a face-on view of the obstacle, to
approximately 0.75 of the height, corresponding to an edge-on view. This range of
rectangle sizes corresponds tc one of the 4-foot tall, two-foot square cross-section
obstacles in the range of roughly 5 to 25 feet away from the camera. Searching for the
occurence of obstacles of this one type in this range of depths requires jUst over 200
Hough transforms. Each individual transform localizes the centers of rectangular
outlines of some specific dimensions within the 2-D image, while covering the range of

possible rectangle dimensions requires just over 200 individual 2-D transforms.

As each of the sequence of Hough transforms is performed, some of the pixels are selected
as candidate rectangle centers and used to update a running image of candidate centers. For
a given Hough transform, a pixel is selected as a candidate rectangle center if its value
(number of Hough "votes" accumulated) is greater than 0.8 of the maximum possible
value for that transform and it is the local maximum in a 5 by 5 pixel neighborhood. This
candidate rectangle center is entered into the running image of candidate rectangle centers
if its percentage of its maximum possible Hough value is greater than that of any previous
candidate center which occured at the same pixel location. With each entry in the running
image of candidate rectangle centers, the size of the rectangle outline and the number of
Hough votes received is recorded. This has the effect of keeping a running record of
candidate centers which represent local maximums in a multi-dimensional space (height

and width of the rectangle, and location of the rectangle in the image).

10

3.3. Constraints to Eliminate Outlines Not Arising from Obstacles.

After the sequence of Hough transforms is performed, the result is a map of locations of
candidate rectangle centers, along with the rectangle dimensions and number of Hough
votes for each candidate rectangle. However, many things other than true obstacles (such
as lights, doors, floor tiles, ...} may have given rise to some of the candidate rectangies.
Thus a sequence of constraints is applied to filter out entries which could not correspond to

obstacles.

The first constraints relate to the size of the outline and the level in the image at which the
bottorn of the outline occurs. First, if the bottom of a candidate outline occurs in the top
half of the image, then, as explained earlier, it could not be due to an obstacle sharing the
same supporting plane as the camera, and so it is rejected. Second, even if the bottom of
the outline does fall in the bottom half of the image, the height of the outline must still lie
within a range which depends on the level at which the bottom of the outline occurs. If the
outling is either too tall or too short given the level of its bottom edge, then the candidate
outline is rejected. These constrainis generally eliminate nearly all of the candidates

which are wholiy unrelated to the obstacles.

The next constraint applied is that at least a certain percentage of the pixels inside the

candidate outline must lie in a specified gray level range. For the red, four-foot tall,

two-foot square cross-section obstacle, at least 80 percent of the pixels inside the outline
must have a gray level in the original image between the values of 50 and 140. (These
values were empirically determined, and aliow for the shrink-wrap around the box,
which explains the wide range.) This constraint will eliminate candidate outlines formed
by edges which accidentally frame a piece of the background wall which happens to be of
approximately the right size to be an obstacle.

The next consiraint applied is that the candidate rectangle center must be the local
maximum, in terms of percent of possible Hough votes, in a 8 by 9 neighborhood of the
candidate rectangle centers. Obstacles sometimes generate a cluster of candidate rectangle
centers near the true center; this constraint should have the effect of isolating a single

cenier for a given obstacle.

11

3.4. Creating a "Floor Map" of Obstacle Locations.

The rectangle centers which are not eliminated by the constraints are assumed to
represent true obstacles, and their size and location in the image is used to map to a floor
location in front of the camera. The location of the obstacle relative to the camera is
determined in terms of a forward distance out along the optical axis, and a side-to-side
distance along a line perpindicular to the optical axis. This is currently displayed in a
very rudimentary “"floor map" at the end of the program.

There are two available parameters which reflect the forward distance of the obstacle
from the camera. One is the level at which the bottom edge of the outline occurs in the
image. As mentioned earlier, a bottom edge falling near the bottom of the image indicates
an object "very close to" the camera, and a bottom edge falling across the middle of the
image indicates an obstacle "very far away" from the camera. However, this relationship
is naturally highly nonlinear; the range of depths corresponding to a given row in the
image increases greatly from the bottom row up to the middle row. Thus this relationship
is not likely 1o give good depth localization. The second cue to the depth of an obstacle
relative to the camera is the height of the outline. Assuming the standard perspective
projection model, this relationship should be linear; the height of the outline which
appears in the image should be inversely linearly related to the distance of the obstacle
from the camera. However, the wide angle iens currently used on HERMIES shows some
substantial distortions as obstacles are located more toward the periphery of the image.
While the observed relationship between outline height and distance appears roughiy
linear over the range of heights for which the outline lies mostly in the center of the
image, as the obstacle occurs closer to the camera, its outline moves closer to the bottom
of the image and so is subject to more distortion. (See Figure 4). Using a set of sample
images taken with obstacles at known distances from the camera, a piece-wise linear

translation function can be constructed.

The side-to-side distance of the object is currently calculated using an approximation to
the perspective projection model, though it would be more accurate to use an approach
similar to that used for the depth. (A calibration study should really be done to come up
with an accurate camera model.)

12

camera 5.
to
obstacle
10 -
distance
.
(in feet) D
| ! l |
10 20 30 40
height of rectangle outline (pixels in a 64 by 64 imags)

Figure 4 - Observed Relation of Camera-to-Obstacle Distance to
Height of Object Outline in the Image.
(Exact values cannot be read from this graph. However, it is clear that
the relation is not linear, as it should be if the camera was reasonably
approximated by the standard perspective projection model.)

The location of the obstacle relative to the camera is displayed in a simple "floor map" at
the end of the program. To make the display more visually identifiable, the program
currently marks off an approximate floor area occupied by the obstacle, though it would be
a more accurate reflection of the program's state of knowledge to also mark off a "shadow

area” behind the obstacle as unseen.

3.5. Program Modules.

The C source code of the current implementation of this prototype object recognition

system is contained in nine files:
node.c pyramid.c thresh.c hough_rect.c select.c
floor_n_size.c in_range.c draw_boxes.c floor_map.c

13

Listings of the source code in these files appears at the end of this report. A brief
explanation of what the routines in each file do is given now. The file node.c contains the
main routine, which calls routines in the other files. The main routine reads an image,
then calls the pyramid routine in pyramid.c, then calls the Sobel edge detection routine
from the library, then calls the thresholding routine in thresh.c, then enters a loop which
makes repeated calls to the routines in hough_rect.c and select.c, then calls the routine in
floor_n_size.c to apply some constraints to the candidate rectangles selected from the
Hough transform results, then calls the routine in in_range.c to apply the gray scale
constraint, then calls the routine in draw_boxes.c to prepare some visual feedback of the
results, and finally calls the routine in floor_map.c to prepare and display a simple floor

map showing locations of the obstacles.

The file pyramid.c contains two simple routines, "up_pyramid" and "down_pyramid."
These routines take one version of an image and a number of pyramid levels as input, and
produce the version of the image which is that number of levels up or down the pyramid,

respectively, as output.

The file thresh.c contains one routine, called "thresh,” which implements a very simple

form of locally adaptive threshold.

The file hough_rect.c contains two routings, "hough_rect” and "update,” which implement

the hough transform for rectangular outlines.

The file select.c contains two routines, "select" and "local _max,” which implement the

selection of candidate rectangle centers from an individual 2-D Hough transform.

The file floor_n_size.c contains the routine "floor_n_size,” which implements the
constraints that a candidate rectangle have its bottom edge in the bottom half of the image
and that the size be appropriate for the level of the bottom edge.

The file in_range.c contains two routines, "in_range" and "area," which implement the
constraint that a candidate rectangle have a certain percentage of the pixels in its area in a

specified gray level range.

14

The file draw_boxes.c contains two routines, "draw_boxes" and "draw," which draw the
rectangles representing (hopefully) the recognized obstacles on a copy of the original
image. This doesn't have any functional use in the obstacle detection per se, but is good for
visual feedback as to how the recognition process has performed.

The file floor_map.c contains the routine "floor_map," which implements the calculation

of obstacle location relative to the camera and draws a simple floor map.

4. Discussion

This work really should be viewed as a "demonstration of concept” and not as a polished
implementation of a finished system. There are a number of possible ways in which it

could be improved and/or extended.

One area for extending this work is to broaden the collection of obstacles that the program
"knows about." As currently written, the program really only looks for instances of the
4-foot tall, 2-foot square cross-section obstacle which are painted red. This is reflected
in the range of sizes of Hough transform that it performs and in the range of gray levels
checked in the constrainis after the Hough transforms are performed. It should be
relatively easy to add additional ranges for the Hough transform and additional gray level

ranges to represent instances of the other obstacles.

Another area for extending this work is to reduce the ways in which "false negatives"
(obstacles whose presence the program does not detect) can occur. As the program is
currently written, a major way that obstacles can be missed is for part of the obstacle to
be occluded, either by appearing at the boundary of the image or by appearing partly
behind another obstacle. Obstacles which are partly out of the image can likely be handled
by writing some fairly simple special case extensions to existing routines so that the
boundary portions of the image are handled differently. This will primarily involve
extending the size of the Hough space and taking into account that the occluded object has a
reduced number of maximum possible Hough votes from the image. Obstacles that appear
partly hidden behind other obstacles can possibly be detected by lowering the percent of
Hough votes needed to consider a candidate rectangle. However, this approach may greatly

15

increase processing time and still not recognize all obstacles. It may be better to have
HERMIES plan to acqgire multiple images from different angles and integrate the results.
Obstacles can also be missed when their color causes them to fade into the background. One
way to attack this is to develop a smarter locaily adaptive edge thresholding, using, for
example, variable size regions and histogram analysis to determine the threshold cutof.

However, this approach may also greatly increase processing time without providing
substantially better results. It may be better to use vision in conjunction with some more

direct range sensor in a form of muiti-sensor integration.

Another area for extending the work is involved with improving the accuracy of locating
obstacles relative to the camera. At the moment, the program uses a some very empirical
notions of how to find the location of the obstacle relative to the camera. The distance
forward along the optical axis is estimated using a piece-wise linear interpolation whose
parameters were determined from the sample images with the known camera-to-obstacle
distances. The objects in these images varied only in depth from the camera, and so the
program has to make an even cruder estimate of the sde-to-side displacement. It uses a
standard perspective projection camera model with parameters empirically estimated
from the test images. The wide-angle lens camera used on HERMIES actually shows
noticeable distortion, particularly away from the center of the image. Perhaps the major
way to improve accuracy would be to calibrate the camera and incorporate a more
sophisticated camera model. Another way to improve accuracy of obstacle location would
be to use higher resolution images than the 64 by 64 resolution which the program
currently uses, so that obstacle placement on the floor would be known to greater
accuracy. The could be done, pyramid style, by using the results of processing the 64 by
64 resolution image to guide the processing of the 256 by 256 image. A third way to
increase accuracy in the floor map would be to use Hough transforms representing views
of the obstacle from multiple angles, so that the orientation of the obstacle relative to the
camera would be more accurately known. This would require somewhat more complex
programming for the Hough transform and would increase processing time.

Another area for extending this work involves making use of the output of the program in
different applcations. One possibility is that this program could be used in multi-sensor
integration with the sonar sensor currently installed on HERMIES. The sonar sensor can

easily provide a coarse resolution depth-map of the space around the robot. Using the

16

initial depth estimate provided by sonar, it should be possible to perform many fewer
Hough transforms in order to recognize and localize the obstacles. Another possibility, not
mutually exclusive, is that the output of the program could be used for path planning. In
this application, it will probably be necessary to enhance the program so that it can

accumulaie floor map knowledge from the results of processing a succession of images.

5. Acknowledgements

I would like to thank the Department of Energy, Oak Ridge Associated Universities and Oak
Ridge National Laboratory for creating, administering and providing a program which
allows university faculty members to visit ORNL and make use in the unique research
facilities here. | would also like to thank Chuck Weisbin, Reinhold Mann and Judd Jones
for making my participation in this program possible and for providing the atmosphere in

the CESAR lab which made this summer a successful research experience for me.

17

References

. J. P. Jones and R. C. Mann, “Concurrent Algorithms for a Mobile Robot Vision
System,” SPIE, Vol. 937, Applications of Artificial Intelligence VI, 497-504 (1988).

. B. L. Burks, G. de Saussure, C. R. Weisbin, J. P. Jones, and W. R. Hamel, “Au-
tonomous Navigation, Exploration and Recognition Using the Hermies-IIB Robot,

IEEE Ezpert 2, 18-27 (1987).

. M. D. Levine, “Vision in Man and Machine,” McGraw-Hill, New York (see pp.
518-526 on Hough transform). '

. R. B. Boyle and R. C. Thomas, “Computer Vision: A First Course,” Blackwell
Scientific Publications, Oxford (see pages 64-68 on Hough transform) (1988).

. A. Rosenfeld, J. Ornelas, and Y. Hung, Hough Transform Algorithms for Mesh-
Connected SIMD Parallel Processors, Computer Vision, Graphics and Image Pro-
cessing 41, 293-305 (1988).

. J. P. Jones, R. C. Mann, and E. M. Simpson, “A Computer Vision Systems for a
Hypercube Concurrent Ensemble,” ORNL/TM-10679.

. J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. on Pai-
tern Analysis and Machine Intelligence 8, 6, 679-698 (November 1986).

19

Appendix
node.c

/% driver routine for prototype obstacle recognition systen. “/
/% currently aet up for lots of display of intermediate reaults, =/
/% rather than for fast end-to~end processing "/
/# kevin bowyer, B8/22/88. */
#1include <math.h>
#include <atdio.h>
#include “implib.h*
#define true 1
#define falae Q
maind()
{
int ctrl (N_CTRL]; /% muat be there »/

IMAGE image, amall, centers, box_high, box_wide, templ, temp2;
char command;
int iradelta, cx, cy, dx, dy, level, aize, 1, 3j, high,

row, col, m, n, wide, nrowa, ncola, floor, max, distancs;
float percent, percent2:;

/# init globals and read control #/
iminit (ctrld; /% must be there */
iradelta = ctrll(0); cxsctrliil;cy=ctrll2]);dx=ctrl(3];:dy=ctrli4]l;

/% input and display an image #/

image = imalloc (256,256,1);

imagein (image); imageout (image);

nprintf0 (“original 256x256 image: presa <space bar> to continuein');
do (command=ttyfly(); } while(commandt=* “);

/# "level"™ indicates # of levels to go up pyramid #/
level = 2; size = 256 / ipow (2,level);

/% go up pyramid, apply aobel, diaplay, threshold, dizplay #/

amall = imalloc (size, size, 3);

up_pyramid (1image, 2%6, 256, amall, size, aize, level);

down_pyramid (2mall, atze, aize, 1mage, 256, 256, lavel);

imageout (image);

nprintfO("reduced resolution image: preas <apace bar> to continue\n”);
do { command=ttyfly(); } while(command!=’ “);

genex (small, 3);

templ = imalloc (size, size, 4);

sobel (amall, templ);

down_pyramid (templ, aize, size, image, 256, 256, level);

imageout (image);

nprintfO(*“results of sobel operator: press <space bar> to continue\n');
do (command=ttyfly(); } whilel{commandt=" ’);

temp2 = imalloc (size, size, 3);

thresh (templ, tempZ, 0.5});

down_pyramid (temp2, size, size, image, 256, 256, level);

imageout (image);

nprintfO(“resulta of threahold: press <apace bar> for Hough tranaforms...\n");

do (command=ttyfly(); 1 while(command!=" ’);

20

/% set up image buffers for Hough analysis %/

centera = 1malloc (aize, size, 4);

box_high = imalloc (mize, size, 4);

box_wide = imalloc (aize, asize, 4);

izero (centerad; 1zero (box_high?; izero(bhox_swide);

/% perform Hough tranaforms over apace of pomssible box sizea/shapea %/
for (high=8; high<=45; ++high)

/* height range in pixels for 4-foot tall box in €64x€E4 reduced resolution
/# image over diastance range of approxmately 3 feet to 25 feet

{ nprintfO0 (“trying rectangles %d pixels high ...\n", highJ;

for (wide=0.6%high; wide<=0.75%high; ++wide)
/% width range for “face on® to “edge on" view #/

{ hough_rect (temp2, templ, high, wide);
aelect (centera, box _high, box_wide, templ, high, wide, 0.8);

/# report locations of possible box centers #/
nrows = centers->nrows; ncola = centers->wide;
icopy (small, templ); /# temporary copy of image %/
for (row=Q; row<nrows; ++row)
for (col=0; col<ncols; ++col)
if (centers->plrowl (coll = O)
{ templ-2?plrowl [coll = 255;
percent = (float) centexra->plrowl icoll / (float)

(2#box_high->plirowl [coll + 2#box_wide->plrowl (coll - 43;

nprintf("xd by %d box (%d voteam, %f percent) found at %d,x%d\n",

®/
*/

box _high-»>»plrowl (coll, box_wide->plrowl [coll, centers->plrowl (coll,

percent, nphys(node)*nrows + row, col);
)
/% at this point, the non—-zero entries in "centersa"” i1ndicate the #/
/# candidate centers of rectanglea found by the Hough tranaform. #/

nprintf0 ("box centers suggested by Hough tranaform are highlighted ...\n");

down_pyramid (templ, size, aize, image, 256, 2%6, level);
imageout (image)

nprintfQ ("press <apace bar> to continue analysis ...\n");
do { command=ttyfly();)} whilel{command!=" ’);

nprintf0O (“constraining for floor support and size ...\n");
floor _n_size (centera, box_high, box_wide, templ, nrowa, ncola);
down_pyramid (templ, size, size, image, 256, 256, level);
imageocut (image);

nprintf0 (“presa <apace bard> to continue ...\n"):
do { command=ttyfly():; } while(command?!=" ‘);

nprintfO0(”congtraining for percent of pixels in gray level range ...\n");
/% then zerc out entries which do not have apecified % of pixela #/

/* in the auppoaed "box"™ in specified gray level range */

icopy (amall, templ); genex (templ, 2);

in_range (templ, centers, box_high, box_wide, 50, 140, 0.8);

down_pyramid (templ, si1ze, size, image, 256, 256, level);
imagecut(image);

21

nprintf0 (“press <space bar> to cantinue ...\n");:
do (command=ttyfly<); } while(command!=" ‘);

nprintfO(“constraining for local max in percent of Hough votes ..

icopy f(small, templ):
genex (centers, 4); genex {(box_high, 42: genex (box wide,
for (row=0; rowdnrows; ++row)
for (col=4; col<ncola~4; ++cold
if (centers->plrowl [coll != O)
{ templ->pirowl {coll = 255; max = true;
percent = (float) centers->plrowl! {coll / (float)

4);

An*)

(2#box_high->plrowl (coll + 2#box_wide-?»plrowl {coll -

for (m=row-4; md<=row+d; ++m)
for (n=col-4; n<=col+4; ++nd
(percent?2 = (float) centers->piml]in] / (£float)

(2#pbox_high->plml (n]l + 2#box_wide->pimlinl -

1f (percent < percent2)

max = false;
)
if (max == false)
{ templ->plrowl] [col) = 0; centera->plrowl {col) =
1f (templ->plrowl fcoll == 255)

O;)

2):

2);

nprintf(”xd by Xd box at %d,%d ia local max in Hough space\n",

box_high->plrowlfcoll, box_wide->plrowllcoll,
nphya(node) ¥nrows + row, col);
) d

/% draw 1n rectangle outlines before display #/
draw_boxes (templ, centers, box_high, box_wide);

down_pyramid (templ, aize, mize, image, 266, 256, level);
imageout(image);

nprintf0 ("preas <apace bar> to wontinue ...\n");
do { command=ttyfly(>; } while(commandt!=’ ‘);

/% display a "floor map" image of the space hermies has analyzed %/

floor_map (temp2, centers, box_high, box_wide);
down_pyramid (temp2, aize, aize, image, 256, 256, level);
imageout (1mage?};

nprintf0 ("press <space bar> to terminate\n");
do { command=ttyfly();] while(commandt=* ‘);
terminate () /% kill and exit %/

}

pyramid.c

#include “implib.h"

/% routinea for pyramid reduction/expansion of image data.
/# asgumes aquare images, averagea pixels for reduction.
/% kevin bowyer, 6/14/88. */

*/
*/

up_pyramid(image_in, m, n, /% input: original m by n image #/

image_out, /% output: image derived from image_in #/
Pe Q. /# input:! size of derived image %/
level /# input: number of levela up pyramid #/

)

IMAGE image_in, image_out;
int », n, p, q, level;

(
int 4, 12, 3, 312, sum, size, lines;

1f ((m t= n) 1t (p t= g))

{ nprintfO("’image not aquare.™);

aize = ipow(2, level);

if (p*asize > m)

22

terminate();)

(nprintfO("error in up pyramid level.™); terminate();)

/% reduce "image_in" to pyramid "level" to get “image_out” #/

for (i=0; 1<image_ocut—>nrows;
for (3=0; j<image_out->wide;
aum = O;
for (i2=i#aize;

for (j)2=j%*size;

aum =
image_out->pf{il (3] =
}
}
down_pyramid(image_in, m, n,
image_out,
pl q’
level
)
IMAGE image_in, image_out:
int m, n, p, g, level;
(
int i, 12, 3, 32, sum, size,
if ((m != n) 1l (p = g))

i++)

J++) {

12<((i+l)naize);
12<(¢+l nsize);

12++)

J2++)

aum + image_in->pl{i1211(32]);
aum /

(aize % aize);

/®
/7%
/®
/%

lines;

input:
output:
input:
input:

original m by n image #/

image derived from image_in %/
aize of derived image #/
number of levela down pyramid #=/

{ nprintf0(”image not square.”); terminate();)

size = ipow(2,level);

1f (m*aize = p)

(nprintfO(“error in down pyramid level.");

terminate(); 1}

/% expand "image_in" to pyramid “level" to get "image_out" */

12 = 0;
for (1=0; i<image_out->nrows; i++)> (
12 = 0;
for (3=0; j<image_out->wide; j)++) (
image_out->pl1l (3] = image_in->p(i1(32];

1f <«

}
if «
}

((J+1) % aize?

((i+1) % ajize)

++12;

== 0) ++i2;

23

thresh.c

#include “implib.h"™

/% 7x7 local ares threshold of gradient image. #/

/% kevin bowyer, 8/11/88. »*/

thresh (gradients, /% input: edge detected image */
edgea, /% output: binary (0/255) edge map %/
cutoff /# input: threshold percent #/

IMAGE gradients, edgesa;
float cutoff;

{
int nrows, ncols, row, col, r, c, right, left,
top, bottom, max, abs_row, limit;

nrows = gradients->nrowa; ncols = gradients->vide:

genex (gradients, 3);
/% allows 7x7 local areas, assumea "imalloc (gradienta, 3" waa done

for (row=0; rowi{nrows; ++row)
for (col=0; colincola; ++col) {

/% set top, bottom, left and right for the local area %/

aba_row = nphya(node)#*nrowa + row;

bottom = abas _row < 3 ? row ~ abs_row : row - 3;

limit = n_nodea#nrowa — 1;

top = aba_row + 3 > limit ? row + limit ~ abs_row : row + 3;
left = col - 3 < O 7 0 : col -~ 3;

right = coel + 3 » ncola - 1 7 ncols -~ 1 : col + 3;

/#* find the maximum gradient value for the local area #/
max = 0O
for (r=bottom; r<=top; ++r)
for (c=left; cK=right; ++c)
if (gradienta->pirl{cl > max) max = gradienta->plrllcl;

/% threshold pixel at [rowl{coll #/

if (gradients->plrowl [coll >» cutoff * max)
edgea->plrowl) [coll = 255;

elae
edges->plrowl lcoll = 0;

®/

24

hough_rect.c

#include "implib.h"™

/% hough transform for “high x wide" rectangular outlines. #*/

/* asaumes both edges and hough are ring-mapped the same. %/

/% (a0 wi1ll miaa outlines whose center ia out of the image) %/

/% kevin bowyer, 7/714/88. ®/

hough_rect(edges, /% input: image of edge pixelas (0/255) =/
hough, /% output: accumulator array for hough aspace #/
high, wide /% input: size of outlinea looked for #/

IMAGE edges, hough;
int high, wide;

(

atruct coords { unsigned char row, col; J); /% coords of a pixel =/

atruct coords pixels{3000]1;

/% this implies no more than 3000 edge pixels in the whole image %/

int row, col, m, ml, n, i, n_th, nrowas, ncola, source, type,
n_bytea, cflag, asize, old, new, d, dast;

aize = aizeof (satruct coorda);

/% aet nrows, ncols for size of local image and local hough %/

if (edges—>nrows == hough->nrows) nrowsa = edges—>nrows;
elae nprintf(”edge and hough arrays not allocated the same.\n");
1f (edgea->wide == hough->wide} ncols = edgea—->wide;

elae nprintf(“edge and hough arrays not allocated the amsme.\n');

/% initialize hough array to all zeroes %/
izero <¢hough);

n_th = nphys{(node): /% node contains n_th chunk of image #/

/% 1nitialize number of pixels to send to other node #/
i = 03

/# scan local portion of edge image for edge pixels #/
for (row=0; rowinrowsa; ++row)
for (col=0; col<ncolas; ++col)

1f (edgea->plrowl {coll == 285 > (
/% keep edge coords to send to other nodes #/
pixelalil.row = n_th#nrows + row; pixelasli++]l.col = col:
1f (i == 3000) (/% pixels(0..2999] filled ... %/
nprintf ("%d found too many edge pixels\n", n_thd;
-—1

}

/% and update local hough space %/

update (n_th#*nrows + row, col, high, wide, n_th, hough);
}

/# nprintf("xd finiahed local acan of %d edge pixels\n", n_th, 1); %/

old O; new i

for (d=n_nodea>>1l; d»>0; d>>»=1)

{ deat = (node & 4d) == 0 ? node | d : node & (Vd&{n_nodesa-1));
nwrite {(pixela, newraize, dest, 10, cflaq);
source = dest; type = 10;
while ((n_bytea=nteat(&aource, &type, &cflag)) == -1) ;
nread (&pixelalnewl, n_bytes, &eource, &type, &cflag);
old = new; new = old + n_bytes / size;
if (new > 2999
{ nprintf(“node %d: %d edge pixels exceeds limit\n", node, new);
new = 3000;
)
for (i=old; i<new; ++i)
update (pixelsflil.row, pixels(i).col, high, wide, n_th, hough);
}
/% nprintf(”"xd finished hough apace\n™,; n_th); =/
}
/% */
/# routine to update local hough apace for a given edge pixel. #/
I »*/
update (row, col, /% input: pixel location, row in absolute coords %/
high, wide, /% input: size of rectangles being loocked for %/
n_th, /# input: node containa n_th chunk of rowa in image %/
hough /# output: hough apace arxay #»*/
)
int row, col, high, wide, n_th;
IMAGE hough;
(
int top, bottom, left, right, n, nl, n2, m, nl, m2, nrowsa, ncols;
/% set nrowa and ncols #/
nrows = hough~>nrows; ncols = hough~>wide;
/% compute cornerse of (high, wide) rectangle centered at (row,col) #/
top = row - high/2; left = col - wide/2;
bottom = row + (highrs2): right = col + (wide/2);
/# but if high or wide ia not even ... #*/
if ¢ ¢(high%2) == 0) --bottom;
1f ((wide%X2) == 0) -~--right;
/% if it lies in local hough space, update top row of rectangle %/
1if ((top >= n_th#nrowa) E&& (top < (n_th+l)%*nrows))
{ nl = left < 0 2 O : left;
n2 = right > ncole-1 ? ncola-1 : right;
m = top X nrows;
for (n=nl; n<=n2; ++n)
1f (hough—>piml (nl < 255)
++hough->pml (nl;
}
/% update whatever middle portion of rectangle lies in local hough space #/

&&

if
{

¢ (top+1l <
1f (top+l > n_thrnrowa)
else ml O:
if (bottom-1 <«
elae m2 nrowsa 1

for (m=ml; m<=m2; ++m)

{ 1f ((left »= 0) && (hough~
++hough-?>plnl (left];

¢ (right<= ncole-1> &&
++hough=->pIm] [rightl;

(n_th+l)#nrows)
ml

(n_th+l)¥nrows)

if (

25

(bottom~1 >= n_th#nrows))

(top+l) % nrows;

m2 (bottom—1) %X nrows;

>piml {leftl < 255) >

hough-2pinl (rightl < 255))

26

/7% 1f it liem in local hough epace, update bottom row of rectangle »/

if ¢ (bottom >= n_th#nrows) && (bottom < (n_th+1l)*nrows))
{ nl = left < 0 7 O : left;

n2 = right > ncole-1 ? ncole-1 : right;

m = bottom %X nrowa;

for (n=nl; n<=n2; ++n)

if (hough->p(ml (nl < 255)
++hough->p(ml (nl;

select.c

#include "implib.h"

#define true 1
#define falae O

/% look for centers of rectanguler outlines by some heuristica., #/

/% assumee 1mage, edgea and hough are ring-mapped the aame,. ®/

/% kevin howyer, 8/15/88. */

aelect (centers, /* 1in/out: non-zerc entries indicate candidates #/
hox_high, /% output: high for rectangle at (rowl (coll »/
box_wide, /% output: wide for rectangle at [rowl [coll #/
hough, /# input: hough apace cof image =»/
high, wide, /% input: dimensions of rectangle to aearch for =/
percent /% input: cutoff for possible rectangle centers %/

IHAGE hough, centers, box_high, box_wide;

int high, wide;
float percent;

{
int row, col, nrowsa, ncola, i, 3, max;
float old;

nrows = hough—->nrowa; ncols = hough—>wide; /# size of local image #/
max = 2%high + 2#(wide-2); /% max poassible hough "votea"™ for a pixel #/

/* aynchronize and exchange image rowa for neighborhood proceasing %/
cube_aync(); genex C(hough, 2); genex(centera, 2);
/% asaumes that hough and centera were at least “imalloc{(~---, 2)" =/

for (row=0; row<dnrowa: ++row)
for (col=3; coldncols~-3; ++col)
1f ¢ hough—->plrowl] [col) > percent#max)
/* firat must pass cutoff for % of max possible hough votes #/

(old = centers—-2>plrowl] {coll] == 0 2 0,0 :
(float) centers->plrow) [(coll /
((float) box_high->plrow] (col)#box_wide->plirowl [coll);
if ¢ ((float) hough->plrowl (col) / (float}) max > oldd
&6& local_max(row, col, hough))
/% alao muat have greater % than any previoua rectangle at #/
/% same location, and muest be local mex in current hough space »/

{ centers->plrowl[coll = hough—->plrowl] (coll;
box_high->plrowl [coll = high;
box_wide~>plrowl [coll = wide;

/% 1f 1t meete ronditiliona, record # of voted, high and wide */

27

local_max{(row, col, /# input! candidate for center of box #/
array /# input: image array */
3 !
/% returns true if arraylrowl(col) is the center max value »/
/% of a Sx5 area, or returns false otherwiase. ®/

int row, col;
IMAGE array;

{
int i, 3;

for (i=row-2; 1<=row+l; ++1i)
for (3=col-2; j<=col+2; ++3)
1f (array->plil (3] > array->p(rowl [coll)
return falae;
return true;
}

tioor_n_size.c

#include “implib.h"

/% routine to impoae constrainta on candidate rectangle centeras. */

/% floor conatraint: the bottom edge of the rectangle muat fall */

/% in the bottom half of the image. */

/% size conatraint: the size of the image must be compatible with =/

/* the row in which the bottom edge falla. */

/% “centere” entriea which do not pass constraints are deleted. */

/% veaulte of epplying constreints sre alao marked in “templ.*® */

/* kevin bowyer, 8/22/88. */

floor _n_size (centers, /# in/out: candidate rectangle centers #*/
box_high, /% input: height of candidate rectangles «/
box _wide, /% input: width of candidate rectangles %/
templ, /% cutput: copy of original image #/
nrowa, ncols /% input: aize of images %/

)

IMAGE centers, box_high, box_wide, templ;
int nrows, ncols;

(
int row, col, floor;

/% examine candidatea indicated by nonzero entriea in “centera"™ #/
for (row=0; row<nrowa; ++row)
for (col=0; coldncols; ++col)
1f (centera-rplrowl {coll t= 0)
{ templ~->plrowllcoll = 255; /% indicate candidate on image »/

/% delete ones which could not be standing on floor */

floor = nphya(node)#nrowas + box_high->plrowl lcoll 7 2;
1f (floor < (n_nodes#nrows/2))
{ templ-»plrowl lcoll = 0; centera->plrowliccll = 0;)

/# delete 1f too tall for where it is standing #/
/% cutoffs determined from 3 set of known sample imagea %/
else 1f ((floor < 595) && (box_high->pirowl {colld > 42>)

{ templ->plrowl [coll = 0; centers~->plrowl (coll = 0; }
elase 1f ((floor < 47) && (box_high~>plrowl! (coll > 30))
(templ->plrowllecoll = 0; centers->plrowllcoll = 0;)
else if ((floor < 39) && (box_high->plrowl {coll > 19) D
{ templ->plrowl [coll = O; centers->plrowl{coll = 0:)
else if ((floor < 38) &b& (box_high->plrowllcoll > 14) >
(templ->plrowl {coll = O; centers->plrowllcol}l = 0; }
elae 1f ((floor ¢ 37) && (box_high->pirowllcol) » 13))
(templ->plrowl {coll = 0; centere->plrowllcoll = O0; 3

else if ((floor < 35) && (box_high->plrowl [coll > 113)
(templ~>plrowl(coll = &; centera->pirowl{ecoll = G;)
else 1f ((floor < 33) E& (bowx_high->plirow) lcoll > 9y
{ templ->plrowlicoll = 0: centers~>plrowl)lcoll = 0;)}

28

/# delete if too ahort for where it is atanding #/
/% cutoffs determined from a set of known sample images #/
elaz 1£ ((floor >» S7) && (box_high-»plrowl) fcall < 42))

(templ->plrowl [coll = 0; centers->plrowl [col]l = 0O;)
elae 1f ((floor > 49) && (box_high->plrowl {coll < 30))

{ templ~>p(rowllcoll] = 0; centers->plrowllcoll = 0;)
elae 1f ((floor > 41) && (box_high->plrowl (coll < 19)

(templ->plrowl{coll = 0; centera->plrowlicol) = 0; 1}
else 1if ((floor > 40> && (box_high->plrowl {coll < 14))

(templ-—2>plirowl [coll = 0; centera->plrowl(coll = 0; }
elae 1f ((floor > 39) && (box_high->plrowl (ccll < 13>)

(templ->plrowl (coll = O: centera—>»plrowl {coll = O; 1
elae 1f ((floor > 37) && (box_high-*plrowlfcoll < 11))

{ templ->plrowl [coll = O; centers->plrowl {coll = 0;)
elae if ((floor > 36) && (box_high~>plrowl (coll < 9))

{ templ->plrowl [coll = 0; centera~>plrowl (coll = 0;

1f (templ->plrowl {coll == 255> /% output candidatea pasaing teat #/
nprintf(“Xd by Xd box at %d,%d passes floor/aize constraintin”,

box_high->plrowl [coll, box_wide->plirowl (colld,
nphya(node) #nrowa + row, col);

in_range.c

#include "implib.h®

/# count up the number of image pixels 1n the range {(lo..hi] */

/% for each candidate rectangle. */
/% kevin bowyer, 7/20/88. ®/
in_range(image, /% input: gray level image */
value, /# in/out: map of candidate centers #/
box _high, box_wide, /#* input: high x wide of rectangles #/
lo, hi, /# input: lo and hi of gray level range #/
cutoff /% input: percent for cutoff =»/

IMAGE image, value, box _high, box_wide:
int lo, hi;
float cutoff;

{
atruct center { unsigned char row, <ol, high, wide; int count; };

atruct center centers(100];

int row, ¢el, 1, 3, n, d, n_th, nrows, ncols. source, type,
n_bytes, cflaa, size, dest, new;

float percentl, percent2;

nrows = 1Mage->Nrows; ncols = image->wide; /% local image size #/
n_th = nphysf{node): /# local node contains n_th chunk of image #/
size = sizeof (gstruct center)d; /% size of data for center %/

n = 0; /% initialize # of centers to send to other node #/

/% scan local “value'” image for possible rectangle centers %/
for (row=0; row<d<nrows; ++row)
for (col=0; coldncols; ++col)

1f value->plrowl {coll = 0) (/% a candidate center =/
centers(nl).row = n_th®*nrows + row;
centersinl) .col = col;
centers{n) .high = box_high->plrowl {coll;
centers(nl.wide = box _wide->plrow] [coll;

centersln++) .count = 0;

29

/% accumulate centers from other nodes #/

new = n;

for (d=n_nodes?>>1; 4d>0; d>»>=1)

{ dest = (node & d) == 0 ? node | d ! node & (7d&(n_nodes-1));
nwrite (centers, new#size, dest, 10, cflag};
source = dest; type = 10;

while ((n_bytes=ntest(&source, &type, &cflag)) == -1} ;
nread (¢ersinewl, n_bytes, &source, &type, &cflag):
new += (n_bytes/size)};

/% update range count for each center for local image area */
for (i=0; idnew; ++i)
area (centerslil.row, centersl(il.col,
centersl(il.high, centers(il].wide,
¢eral(i).count, n_th, lo, hi, image)

/% accumulate range countas from other nodea */
for (d=n_nodea>>1; d4>0: d>>=1)

{ deast = (node & d) == 0 7 node | d : node & (~d&(n_nodes-1));
nwrite (centers, new#*size, dest, 10, cflag);
source = dest; type = 10;
while ((n_byteas=ntest (&source, &type, &cflag)) == -1) ;

nread (¢ersi{newl, n_bytes, &source, &type, &cflag);
if (new != (n_bytes/size)) nprintf ("message size incorrect\n');
for (i=0; i<new; ++1)
for (jJ=new; <2%new; ++3)
if ((centers(il.row == centers()l.row) &&
(centerslil] .col == centersljl.col))
centers (il .count += centers{jl.count;
3

/# find centers where »>= “cutoff™ “percent” are in range,
and which represent local max in percent of in range pixels. #/
for (i=0; i<new: ++i)
if ¢ (centerslil.row>=n_th#nrows) && (centeralil.row<(n_th+l)#nrows)
(row = centerslil.row %X nrows; col = centerafil.col;
percentl = (float) centeralil.count
/ (float) (centeralil.high#centeraslil.wide);
if (percentl < cutoff)
(value->plrowl [coll = O image->plrowl [col) = ©
else
{ image->plrowl (col) = 255;

]

v
’

nprintf (“%d by Xd box at %d,Xd pasaes gray level constraint (Xf>\n",

box_high~»pirowl [coll, box_wide->plirowl [coll,
n_th#nrows + row, col, percentl):

/% */
/% update area count for a rectasngle with given center coords. */
/* */
area (row, col, /% center of rectangle #/

high, wide, /% size of rectangle #/

count, /% count of pixels in range #/

n_th, /% n_th chunk of image is local #/

lo, hi, /# bounds of range to count pixels */

image /% image to count pixels from %*/

unsigned char row, col, high, wide;
int #count, n_th, lo, hi;
IMAGE image;

)

30

(
int top, bottom, left, right, m, n, nrows, ncols;

/#* set nrows and ncols #/
nrows = image—>nrows; ncole = image->wide;

/% compute corners of (high, wide) rectangle centered at (row,col) =/
top = row - high/2; left = col - wide/2;
bottom = row + (high/2); right = col + (wide/2);
/# ... adjust if high or wide is not even ... #/
1f ¢ (highx2) == 0) ++top:;
if ((widex2) == 0) ++left;
/# ... and truncate to portion stored in local node #*/
left = left < 0 2 O : left;
right = right > ncole~1 ? ncols-1 : right;

if ((top>=(n_th+l)#nrows) !l (bottom<n_th#¥nrows))
return;
top = top < n_th#nrows ? O : top X nrows;
hbottom = bottom >= (n_th+l)xnrows ? nrows—1 : bottom % nrows;

for (m=top; m<=bottom; ++m>
for (n=left; n<=right; ++n)
if ((image->p(m![n)>=lo> && (image->plml(nl<=hi)
++#count;

draw_boxes.c

#include “implib.h"

/% routine to draw rectangle outlines around given center locationa. =/

/% not vital to recognition; uased for viaual feeback on display. */

/% kevin bowyer, 8/11/88. ®/

draw_boxea (image, /% output: image to draw rectangles on »/
value, /# input: locationa of rectangle centera #/
box_high, box_wide /% input: size of rectangles =/

IMAGE image, value, box_high, box_wide;

(
atrxuct center (unsigned char row, col, high, wide; };
atruct center centerall00];
/* will not handle more than 100 center candidatea #/
int row, col;, t, 3, n, d, n_th, nrowsa, ncola,

acurce, type, n_hyteas, cflag, aize, dest;

Nnrows = 1mage->nrows; ncols = image—->wide; /% local i1mage aize #*/
n_thb= nphys(node); /% local node contains n_th chunk of image ®/
aize = sizeof (atruct center); /# ajze of data for center %/

n = 0; /% initialize # of centers to esend to other rnode =/

/% acan local "value™ image for posaible rectangle centers #/
for (row=0; row<nrowa; ++row)
for (col=0C; col<ncols; ++col)

1f (value—>plrowl lcoll t= 0 > (/% a candidate center «/
centeralnl.row = n_th#*nrows + row;
centeralinl.col = col:
centeralnl.high = box_high->plrowl! (coll;

centeralnt+].wide = box_wide->plrow] (coll;

31

/* accumulate centers from other nodea #/

for (d=n_nodea>>1; d>0; d>>=1)

{ dest = (node & d) == 0 ? node | d : node & (“d&(n_nodea-1))>:
nwrite (centers, n¥aize, deat, 10, cflag);
aource = deat; type = 10;
while ((n_bytes=ntest(&source, &type, &cflag)) == ~1)
nread (¢eralnl], n_hytes, &aocurce, &type, &cflag);
n += (n_bytea/aize);

/* update range count for each center for local image area =/
for (i=0; i<dn; ++i) .
draw (centera(il.row, centers(il.col, centeralil.high,
centers(il.wide, image, n_th, nrows, ncols);

/% draw portions of rectangle outlines which lie in local area. w/
/% Revin bowyer, 8/11/88. %/

draw (row, col, /# input: location of rectangle center #/
high, wide, /#* input: high x wide of rectangle #/
image, /% output: image to draw rectangle on %/
n_th, /# input: local area is n_th chunk of image %/
nrowa, ncola /% input: alze of local chunk of image */

3

unaigned char row, col, high, wide;
int n_th, nrowas, ncola;
IMAGE image;

{
int top, bottom, left, right;

/% compute corners of (high, wide) rectangle centered at (row,col) #/
top = row — high/2; left = col - wide/2;
bottom = row + (high/2); right = col + (wides2);

/% ... adjust if high or wide is not even ... #/
1f ((high%2) == 0) ++top;
1f ((wideX2) == 0) ++left;

/* note that adjuatment for odd aize height/width 1ia different when %/
/% drawing the rectangel around given center than i1t ia when voting %/
/% for poaaible center locations from edge pixel in hough routine. */

/% i1f none of rectangle is in the local image chunk, then return =/
1f ((top>={(n_th+l)¥nrowe) !! (bottom<n_th#nrowsa))
returng

/% if top and/or bottom lie in local area, draw them in =/
if ((topr»=n_th*nrows) && {(top<{n_th+l)*nrowa)l)
for (col=left; col<l=right; ++col)d
image-»>»pltopxnrowsl [coll = 2585;
1f ((bottom>»=n_th#nrows) && (bottomd<(n_th+1l)%*nrows))
for (col=left; col<=right; ++col>
image->plbottomXnrowsal (coll = 255;

/* truncate top and bottom to local image chunk #/
top = top < n_th¥nrowa 7 O I top % nrowa;
bottom = bottom »>= (n_th+l)#nrows ? nrowas-1 : bottom %X nrows;

/% draw in aidea of rectangle »/
for (row=top; rowl=bottom; ++row?}
(image~>plrowl {left] = 255; image~>plrowl {right] = 255

.
’

32

floor_map.c
#include "implib.h”
/* routine to draw crude *“floor map® of locations of obatacles. */
/% ahould be improved with equationa from proper camera calibration. #/
/% kevin bowyer, 8/22/88. */
floor_map{(image, /% output: floor map image #/
value, /% input: image of rectangle centers #*/

box_high, box_wide /% input: high x wide of rectanglea #/

IHAGE image, value, box_high, box_wide;

{

atruct box (unsigned char row, col, high, wide, type; };

atruct box boxesa([10];

/% assumes no more than 10 obatsascles to be drawn on "floor map”™ #/

int row, col, 4, d, n, n_th, nrows, ncola, source, type, high,
n_bytes, cflag, size, dest, new, wide, bottom, distance;

float forward, side;

nrowa = lmage—>nrows; ncola = image->wide; /% local image aize */
n_th = nphysa(node); /#* local node containa n_th chunk of image %/
aize = sizeof (atruct box); /% size of data for center »*/
n = 0; /% initialize # of centers to send to other node */

/% scan local portion of “value™ array for recognized candidates #/
for (row=0; row<dnrows; ++row)
for (col=0; col<ncola; ++col)
1f (value->»plrowl {coll t= 0) (

hoxea(n] .row = nphye(node)#nrows + row;
boxes(nl.col = col;

boxes(nl.high = bax_high->plrowl {coll;
boxealnl .wide = box_wide->pl(rowl [coll;

boxealnt++].type = 0;

/% accumulate boxea from other nodes #/

new = n;
for (d=n_nodes>>1; d>0; d>>=1)
{ dest = (node & d> == 0 2 node ! d : node & (“d&(n_nodes—-1));
nwyite (boxes, newtaire, deat, 10, aflag);
acurce = deat; type = 10;

while ((n_bytea=nteat (&source, &type, &cflag)) == -1) ;
nread (&boxeslnew)], n_bytea, &aource, &type, &cfleg);
new += (n_byteas/atze);

i1zero {(image); /% initialize floor map to all unknown #*/

33

/% draw in an “H" to represent location of hermies #/
i€ ((6r=nphyasinode)®nrowas) && (6<(nphya(node)+i)#nrowa)’)

(image->pl6Xnrowal (301 = 128; image—r»pl(6Xnrowal [33] = 128;)}
1f ((7>=nphya{node)*nrows) && (7<(nphya(node)+1)#*nrowa)l)
{ image->p{7%nrowal (30] = 128; image->p{7%nrowal {331 = 128;)

if ((&>=nphya(nodel#nrowa’ && (8<{(nphyaslnode)+ldsnrowad)
for (col=30; col<=33; ++col)
image~>pl8xnrowsl [(coll = 128;
1f (9>=nphya(node)#nrows) && (9<{(nphya(node)+l)*nrows))
{ image~>p(39x%xnrowal (0] = 128; image->pi{9%knrowal {331 = 128;)}
if ((10>=nphyg(node)#nrows) && (10<(nphyal(node)+1)#nrows)?
{ image—>pllOxnrowel (301 = 128; image->pllOXnrowsal (331 = 128;)

/% draw field of view in front of hermiea =/
for (rowsll; row{n_nodea#nrowg-l; ++row)
if ((row>=nphyainode)*nrows? && (row<{nphya{(nodel+l)#nrowa))
{ diatance = row - 10;
wide = /7% Q,577«¢ 0.7 * diatance;
for (col=ncolas2-wide; col<ncolas2twide; ++col)
image->plrowXnrowsl (coll = 255;
)

/% draw locations of obstacles #/

for (i=0; 1<new; ++1i)

(row = boxealil.row; col = boxeal(il.col;
high = boxealil.high; wide = boxeaf{il] .wide;

/% “forward"” is diatance along floor to bottom edge of box, in feet #»#/
/# translation data determined from a aset of known aample 1magea »/
1£ (high »30)
forward = €.5% — ((float) high - 30.) 7/ 6.;
elase i1f Chigh » 19
forward = 10.5 - ((fleat) high ~ 138.) 7/ (11./4.);
elae 1€ C(high » 1%)
forward = 14.5 = ((float) high - 15.);
elae /* high <= 15 =/
forward = 14.8 + (15 ~ (float)> high) » 1.5;

/% "side” ia atde-to—-side distance perpindicular to forward line #/
/% tranalation ila eatimate of perspective model based on szet of »/

/% known sample images. (better eatimate ia needed) »/
aide = (float) col - 31.5; /% col location relative to image center »/
aide = aide # forward / 34.0; /% aolve perapective eguation #/

aide = aide / 1.2; /% fudge factor for aspect ratio of image #*/

nprintf0 ("box hottom centexr 1la %f feet forward, %£f feet to side\n"™,
forward, aide);

forward = forward + 10;
for (row=forward-l; row<=forward+l; ++row)
if ((row>=nphys(node)snrows) && (row<(nphys{node)+1l)#nrows))
for (col=ncola/2~aide~l; cold=ncola/2-aide+l; ++col)d
image—»plrowXnrowal [coll = 128;

35
ORNL/TM-16935

INTERNAL DISTRIBUTION

1. M. Beckerman 10. C. R. Weisbin

2. J. C. Culioli 11. B. A. Worley

3. J. Han 12. J. J. Dorning (consultant)
4. J. P. Jones 13. R. Haralick %consu]ltant)
5. C. W. Glover 14. EPMD Reports Office

6. R. C. Mann 15. Central Research Library
7. E. M. Oblow 16. ORNL Technical Library
8. F. G. Pin 17-18. Laboratory Records

9. E. Wacholder 19. ORNL Patent Office

20. Laboratory Records-RC

EXTERNAL DISTRIBUTION

21-25. K. W. Bowyer, Department of Computer Science and Engineering, Uni-
versity of South Florida, Tampa, Florida 33620-5399

26. Office of Assistant Manager, Energy Research and Development, Qak
Ridge Operations Office, US/DOE, P.O. Box 2001, Oak Ridge, TN
37831

27-36. Office of Scientific and Technical Information, US/DOE, Oak Ridge,
TN 37831

