

I his report was prspared as an account of work sponsor& hy an
Unite; States Govnrnnieiit Neither thz" nits< StatesGcrvernrnent nor any aqe.icy
thcrn,!. nor any of the:: eiiipioyees, ~ii-~.ike. y warranty. express
assuilles anv legal liability or responsibility for the accuracy ::omplc!eness or
t~sefulness 0 1 any inform.iilan. apparatus, product or p r o c s s disclose3 or

Id not infringe privately owrsc! rights r';e;erenre new?

1

__. -- . L.. ~~~~~ ~ ~~~

I

ORNL/’TM- 10935
CESAR-88/55

Engineering Physics and Matbematics Division

Object Recognition for the HERMIES Robot

Kevin W. Bowyert

f University of South Florida

Department of Corriputer Science and Engineering

Tampa, Florida 33620

Published: October 1988

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
operated by

MARTIN MARlETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY
under contract DE -AC05 -84OR21400 MARTIN MAKltTTA ENERGY SYSTEMS LIB9G’lES

3 4 4 5 b 0283367 3

CONTENTS

Abstract .
1 . Introduction .
2 . Background .

2.1. The Pyramid Structure for Multi-Resolution Processing . . .
2.2. Objects Standing 011 the Samc Supporting Plane
2.3. Known Obstacle Dimensions
2.4. The Hough Traiisfoxlri forParameterized Shapm

3 . A Prototypc Object Recognition System for HERMIES
3.1. Pre-Processing Steps
3.2. The Hoiigli Transform for Rectangular Outlines
3.3. Constraints to EliIriinate Outlines Not Arising from Obstacles

3.4. Creating a ‘iFloor Map” of Obstacle Locations
3.5. Program Modules .

5 . Acknowledgements .
References .
Appendix .

4 . Discussion .

. . v

. . 1

. . 1.

. . . 1

. . . 3

. . . 4

. . . 5

. . . 6

. . . 8

. . . 9

. . . 10

. . . 11

. . . 12

. . . 14

. . . 16

. . . 17

. . . 19

...
111

Abstract

The HERMlES-IIB robot in the CESAR lab at ORNL is used in research related to vision,

multi-sensor integration, coordinated arm movement, path planning, parallel

algorithms, and learning, This report describes the development of a visual object

recognition system for HERMIES. This system is implemented on an NCube system, an

MlMD hypercube parallel computing system. in general, the input to the object

recognition system will be an image containing one or more instances of the known

different types of obstades, and the output will be the location(s) of the obstacle(s)

relative to the camera. Based on assumptions about the known geometry of the obstacles,

the viewing conditions, the relevant range of viewing distances and the image resolution

needed, it is proposed that the obstacles can be recognized by flhe presenc:e of roughly

rectangular outlines in the image. The object recognition system uses Hough transforms to

find rectangular outlines in the image, and then uses a sequence of constraints to eliminate

those outlines which could not be due to obstacles.

V

1. lntroduction

c

The HERMIES-IIB robot in the CESAR tab at ORNL is used in research related to vision,

multi-sensor integration, coordinated arm movement, path planning, parallel

algorithms, and learning [1,2]. A typical demonstration task calls for HERMIES to begin

at a known location in the test environment, travel to the known location of a control
panel, "read" the control panel display and report the results. The environment of the lab

may be arranged so that the straight-line path from HERMIES' starting location to the

location of the control panel is obstructed by an unknown number of obstacles at unknown

locations. The obstacles consist of rectangular columns of several different sizes and

colors. In the current solution to this demonstration task, HERMIES uses sonar to sense

the environment before planning a path toward the goal. This report describes the

development of a visual object recognition system for HERMIES. This system is
implemented on an NCube system, an MlMD hypercube parallel computing system. In

general, the input to the object recognition system will be an image containing one or more

instances of the known different types of obstacles, and the output will be the location(s)

of the obstacle(s) relative to the camera.

2. Background

This section gives some general background to the techniques and assumptions used in

constructing a 3-D object recognition system for HERMIES.

2.1. The Pyramid Structure for Multi-Resolution Processing.

The motivation and use of a pyramid data structure for image processing is fairly simple.

Images typically contain a large amount of raw data (in the HERMIES case, currently, 256

by 256 &bit pixels), much of which does not correspond to features of interest (such as
edges). In order to reduce the amount of data processed, a coarser-resolution version of

the image can be created, the features of interest located in the coaser-resolution image,

and then only a portion of the high resolution image processed, if necessary, to localize the

features more precisely. Going one level up a pyramid for the original 256 by 256
HERMIES image would result in a 128 by 128 image in which each pixel is derived from a

2 by 2 square of the original image. Going up a second level would result in a 64 by 64
image in which each pixel is derived from a 2 by 2 square of the lower level (or a 4 by 4

square of the original image), and so on. (See Figure 1.) Experience with the images

1

2

O I

255

27

Figure 1 - Illustration sf Pyramid sf Different Image Resolutions

3

acquired in the HERMIES test environment shows that they can generally be reduced to 64

by 64 {two levels up a pyramid) without significantly distorting the data as used for our
purposes here. Processing at this level of resolution is much faster (nominally 1/16 of

the time for processing the original image), and is also similar to operating on a smoothed

version of the original image. Naturally, there is a tradeoff between speed of processing

and accuracy in the localization of the obstacles.

2.2. Objects Standing on the Same Supporting Plane.

If the camera and the objects to be recognized share a common supporting plane, then this

provides strong constraints which can be used to aid recognition. In the case of HERMIES,

we can assume that the camera is mounted at a known, fixed height above the supporting

plane (the floor), and that the optical axis of the camera is parallel to the supporting

plane. (Actually, the camera mount is under program control, so the angle between the

supporting plane and the optical axis can be adjusted to a range of known values. The
constraints described below are easily generalized to handle any known angle between the

optical axis and supporting plane.) We also assume that the obstacles to be recognized are

standing on the same supporting plane, with a bottom face in stable contact with the

supporting plane.

Since the optical axis is parallel to the supporting plane, the "horizon" occurs at the

middle of the image. That is, the supporting plane, even if it extends out to infinity, will

only appear in the bottom half of the image. This means that only edges which are found in

the bottom half of the image could possibly represent the bottom of an obstacle in contact

with the supporting plane. Further, the depth into the bottom half of the image at which

such an edge occurs reflects the distance of the object from the camera. (See Figure 2.)

I f an edge representing the bottom of an obstacle in contact with the supporting plane is

found in the bottom row of the image, this must represent an obstacle which is standing

"very close to" the camera. If an edge between an obstacle and the supporting plane is
found halfway up the image, this must represent an object standing "very far away" from

the camera. The exact definitions of "very close to" and "very far away" are determined

by the camera parameters, the camera to supporting plane distance, the angle between the

optical axis and the supporting plane, and the image resolution. Regardless, the accuracy

4

“pi 11 h o le”
focusing
of light

obstacle

image
plane

camera

support

Common Supporting Plane for Camera and Obstacles

Figure 2 - Constraint of Supporting Plane and Perspective Projection

in determining t h e camera to obstacle distance from t h e location of the bottom edge in the

image falls off quickly with increasing distance etween the camera and obstacle.

In the particular case of a 64 by 64 image derived from the original 256 by 256 image

taken by the wide-angle camera currently mounied on HERMIES-IIB, an edge found at the

bottom of the image would represent an object face located approxinrately 3 feet away from

t h e carnera. (This is distance as measured forward along the optical axis to the depth of

the obstacle face.) An edge found 32 rows up from ‘the bottom of the image would

represent an object (theoretically) located infinitely far away.

2.3. Known Obstacle Dimensions.

The obstacles used in the HERMlES demonstration environment have fairly simple shapes.

One type of obstacle is 4 feet tall and has a square cross-section which is 2 feet on a side.
Instances of this obstacle are either red or blue. A second type of obstacle is also 4 feet

tail, but has a square cross-section which is only 1 foot on a side. instances of this

obstacle are either red or green. A third type of obstacle is a cube which is 2 feet on an
edge (similar to the first obstacle, but only half as tall). All instances of this obstacle are

yellow,

Since the dimensions of the obstacles are known, and the range of depths at which they may

appear in the scene can be assumed known (say, between 5 and 25 feet), the edges in the

image which result from the obstacles must produce outlines within a certain range of

sizes. For example, consider a 64 by 64 image of a scene containing one of the 4-fOOt tall,

2-foot square cross-section obstacles. At a distace of approximately 5 feet away, the

edge outline will be approximately 42 pixels tall, and at a distance of approximately 25

feet the edge outline will be approximately 9 pixels tall. If the obstacle is seen face on, the

the width will be approximately 0.6 times the height and i f the obstacle is seen edge on,

then the width will be approximately 0.75 times the height.

The assumption of known obstacle dimensions interacts with the assumption of a common

supporting plane to provide another strong constraint which can be used to aid recognition.

For any given candidate outline found in the image, there is only a relatively narrow range

of combinations of bottom edge location and outline height which would be valid if the

candidate outline truly arises from one of the obstacies.

2.4. The Hough Transform for Parameterized Shapes.

The Hough transform is a well-known tool in image processing, and is discussed in most

computer vision texts. For example, see [3, 4J. The basic idea is that every edge pixel

found in an image can "vote" for the different parameterized features (e.9. lines, circles,

rectangles, etc.) which it could be a part of, and the features can then be detected as local

maxima in the Hough space. Because it is a computationally intensive tool, there is

natural motivation to use parallel processing. Rosenfeld et ai. [5] have recently discussed

the computation of the Hough transform on an SlMD mesh-connected parallel computer,

and suggested that it might be more efficiently implemented on a hypercube architecture.

Note that obstacles which are seen "face on" will present a perfectly rectangular outline.

Obstacles which are seen "edge on" actually present a slightly different outline; two

strong outside vertical edges, a very weak middle vertical edge, an upward pointing

v-shape top edge and a downward pointing v-shape bottom edge. (The difference in the top
and bottom edge is due to the relative height of the camera and the obstacle.) However, the

middle vertical edge is so weak that it is almost impossible to detect and the top and bottom

edges are almost horizontal line segments for obstacles which are not close to the camera.

6

Given the constraints that 1) the obstacle is standing stably on the same supporting plane

as the camera, 2) the range of possible depths at which the obstacle can appear is roughly

five feet to twenty-five feet, 3) the actual dimensions of the obstacle are known, and 4)

sufficient accuracy can be obtained by rocessing a 64 by 64 image, then it seems
reasonable to attempt to detect the presence of obstacles in the image by performing a

Hough transform for rectangular outlines over a range of possible sizes. If greater

accuracy is desired, or if recognition of "edge on" obstacles at close range is required, then

Hough transforms representing multiple views of the obstacle from different angles should

be performed.

For a given size of rectangular outline, say M pixels high by N pixels wide, the Hough

transform space is the same dimension as the image space. If an edge pixei is found at

location (raw, col) in the image space, then it can vote for the presence of a maximum of
2*M + 2*(N-2) different possible rectangles centered at different locations. The outline

center locations voted for in Houyh space for an edge pixel found at location (row, col) in

image space would be:
(i, col+N/ZZ)
(i, col-(N-1)/2)
(row+M, j)
(row- (M- 1)/2, j)

for i = row-M/2 , ..., row+(M-1)/2,
for i = raw-M/2 , ..., rowc(M-1)/2,
for j = ml-N/2+1, ..., esl+(N-1)/2-l, and
for j = ml-N/2+1, ..., cola(N-1)/2-1,

where "/" is taken as indicating "integer division" (truncating the result). See Figure 3

for a simple example.

If it is desired ta detect evidence for rectangular outlines which may lie partly outside the

image, then the size of the Hougk space should be larger than the image space by an amount

determined by the size of the rectangle. If it is only necessary to detect evidence for

rectangular outlines which are entirely in the image, then the size of the Hough space can
be smaller than the image space by an amount determined by the size of the rectangle.

3. A Protsty s

The concepts outlined above were used as the basis for designing an object recognition
system far the HERMIES demonstration environment. The system initially uses the Hough

transform to locate the centers of rectangular outlines in the edge-detected version of an
image, on the supposition that these outlines will generally correspond to obstacles.

7

interested

in 5 by 3

rectangle

shapes

parameterize the outline around its
center locations, so that . . .

each pixel
in image
space

" image space' "Hough space"

votes for

possible
rectangle
centers in

Hough space

Figure 3 - Hough Transform for Rectangular Outlines

However, for a variety of reasons, not every rectangular outline detected by the Hough

transform corresponds to an obstacle; there are many "false positives." Thus the

recognition candidates generated by the Hough analysis are filtered by a series of
constraints designed to eliminate candidates which do not correspond to obstacles.

(Unfortunately, it is also true that not every obstacle in the environment Mii l l generate a

recognizable rectangular outline. This is a somewhat harder problem to solve; some

possible partial solutions are commented on later.) The Hough-generated candidates which

pass all the constraints are translated to a "floor map" location in terms of a distance in

front of the camera and a distance to the right or left of the optical axis.

A prototype version of the object recognition system has been implemented (in "C") and

tested on the Ncube system. This program is not written to depend on any particular

number of processors in order to execute. It has been run on as few as 4 and as many as

64 processors. With careful attention to when image buffers are allocated arid deallocated,

it should be possible to execute the program on fewer than four processors. However, the
Hough analysis is very compute-intensive and proceeds noticeably faster with a larger
number of processors. (Even with 64 processors, it does not operate in what could be

called real time). The program has been developed using a half dozen test images and

produces accurate results for these images (which can be found in
/usr/bowyer/images/pboxl , .., pbox4, ptbox2, ptbox3).

8

The operation of this program is described in some detail belo , with special attention to

all the subjectively determined parameters and how changing them might affect the

system.

3.1. Pre-Processing Steps

Several pre-processing steps are applied to an image before the Hough analysis is

performed. The first preprocessing step is to create a version of the image corresponding

to two levels up the pyramid. The second step is to apply the Sobel edge detector to the

coarse-resolution image. The e e-detected image is then thresholded using a locally

adaptive threshold. The resulting edge map is used as input to the Hough transform

analysis.

Creating a coasse-resolution version of the image for further operations serves three

purposes. First, it decreases the processing time required. Second, it has something of an

averaging effect and so decreases the influence of noise. Third, obstacles which are very

close to the camera and/or are viewed fairly directly "edge on" do not actually present an
exactly rectangular outline, but the outline is more nearly rectangular at a lower

resolution. If processing time were not a problem and greater accuracy were needed, then

it would make sense to use a less coarse version of the image and perform additional

parameterized Hough transforms for obstacles which appear more "edge on" than "face on."

The Sobel edge operator is used because it parallelizes nicely and already has a general

implementation as a routine in the image processing library [GI. However, the Sobel is

one of the earlier and less sophisticated edge detectors. It is possible that better

ance could be obtained by using, for example, Canny's edge detector [7], but: this

would probably not be a major gain since the obstacles generally produce strong, straight

edges anyway.

The thresholding routine takes the gradient image calculated by ?he Sobel routine and uses

a 7 by 7 window centered over each pixel ?o determine whelher to mark the pixel as edge

(value 255) or non-edge (value 0). The pixel is marked as an edge pixel if its value (the

gradient value from the Sobel routine) is greater than 8.5 times the maximum gradieni

value in the 7 by 7 window. The result is a locally adaptive threshold across the image.

9

Other things being equal, increasing either the size of the window or the percent of
maximum cutoff will decrease the number of pixels marked as edge pixels, and vice versa.

If the size of the window is decreased very much, say down to 5 by 5, then EI large number

of noise pixels will be marked as edge pixels. If the size of the window is increased

greatly, then a strong edge can suppress another nearby edge.

3.2. The Hough Transform for Rectangular Outlines.

The Hough transform is iteratively applied to the binary (0/255) edge image for a range

of rectangle sizes. For the 64 by 64 resolution image, the shortest outline searched for

is 8 pixels tall, and the tallest rectangular outline searched for is 45 pixels tall. For each

height of rectangular outline, a range of values for the width of the outline is used, from

approximately 0.6 times the height, corresponding to a face-on view of the obstacle, to

approximately 0.75 of the height, corresponding to an edge-on view. This range of
rectangle sizes corresponds to one of the &foot tall, two-foot square cross-section

obstacles in the range of roughly 5 to 25 feet away from the camera. Searching for the

occurence of obstacles of this one type in this range of depths requires just over 200

Hough transforms. Each individual transform localizes the centers of rectangular

outlines of some specific dimensions within the 2-D image, while covering the range of

possible rectangle dimensions requires just over 200 individual 2-D transforms.

As each of the sequence of Hough transforms is performed, some of the pixels are selected

as candidate rectangle centers and used to update a running image of candidate centers. For

a given Hough transform, a pixel is selected as a candidate rectangle center if its value

(number of Hough "votes" accumulated) is greater than 0.8 of the maximum possible

value for that transform and it is the local maximum in a 5 by 5 pixel neighborhood. This

candidate rectangle center is entered into the running image of candidate recitangle centers

if its percentage of its maximum possible Hough value is greater than that of any previous

candidate center which occured at the same pixel location. With each entry in the running

image of candidate rectangle centers, the size of the rectangle outline and the number of

Hough votes received is recorded. This has the effect of keeping a running record of

candidate centers which represent local maximums in a multi-dimensional space (height
and width of the rectangle, and location of the rectangle in the image).

10

3.3. Constraints to Eliminate Outlinss Not Arising from Obstacles.

After the sequence of Hough transforms is performed, the result is a map of locations of

ate rectangle centers, along with the rectangle dimensions and number of Mough

votes for each candidate rectangle. However, many things other than true obstacles (such

as lights, doors, floor tiles, ...) may have given rise to some of the candidate rectangles.

Thus a sequence of constraints is applied to filter out entries which could not correspond to

obstacles.

The first constraints relate to the size of the outline and the level in the image at which the

bottom of the outline occurs. First, if the bottom of a candidate outline occurs in the top

half of the image, then, as explained earlier, it could not be due to an obstacle sharing the

same supporting plane as the camera, and so it is rejected. Sewnd, even if the bottom of

the outline does fall in the bottom half of the image, the height of the outline must still lie

within a range which depends on the level at which the bottom of the outline occurs. If the

outline is either too tall or too short given the level of its bottom edge, then the candidate

outline is rejected. These constraints generally eliminate nearly all of the candidates

which are wholiy unrelated lo the obstacles.

The next constraint applied is that at: least a certain percentage of the pixels inside the
candidate outline must lie in a specified gray level range. For the red, four-foot tall,

two-foot square cross-section obstacle, at least 80 percent of the pixe!s inside the outline

must have a gray level in the original image between the values of 50 and 140. (These
values were empirically determined, and d iow for the shrink-wrap around the box,

which explains the wide range.) This constraint will eliminate candidate outlines formed

by edges which accidentally frame a piece of the background wall which happens to be of

approximately the right size to be an obstacle.

The next constraint applied is that the candidate rectangle center must be the local

maximum, in terms of percent of possible Hough votes, in a 9 by 9 neighborhood of the

candidate rectangle centers. Obstacles sometimes generate a cluster of candidate rectangle
centers near the true center; this constraint should have the effect of isolating a single
center for a given obstacle.

11

3.4. Creating a "Floor Map" of Obstacle Locations.

,

The rectangle centers which are not eliminated by the constraints are assumed to

represent true obstacles, and their size and location in the image is used to map to a floor

location in front of the camera. The location of the obstacle relative to the camera is
determined in terms of a forward distance out along the optical axis, and a side-to-side

distance along a line perpindicular to the optical axis. This is currently displayed in a

very rudimentary "floor map" at the end of the program.

There are two available parameters which reflect the forward distance of the obstacle

from the camera. One is the level at which the bottom edge of the outline occurs in the

image. As mentioned earlier, a bottom edge falling near the bottom of the image indicates

an object "very close to" the camera, and a bottom edge falling across the middle of the

image indicates an obstacle "very far away" from the camera. However, this relationship

is naturally highly nonlinear; the range of depths corresponding to a given row in the

image increases greatly from the bottom row up to the middle row. Thus this relationship

is not likely to give good depth localization. The second cue to the depth of an obstacle

relative to the camera is the height of the outline. Assuming the standard perspective

projection model, this relationship should be linear; the height of the outline which

appears in the image should be inversely linearly related to the distance of the obstacle

from the camera. However, the wide angle lens currently used on HERMIES shows some

substantial distortions as obstacles are located more toward the periphery of the image.
While the observed relationship between outline height and distance appears roughly

linear over the range of heights for which the outline lies mostly in the center of the

image, as the obstacle occurs closer to the camera, its outline moves closer to the bottom

of the image and so is subject to more distortion. {See Figure 4). Using a set of sample
images taken with obstacles at known distances from the camera, a piece-wise linear

translation function can be constructed.

The side-to-side distance of the object is currently calculated using an approximation to

the perspective projection model, though it would be more accurate to use an approach

similar to that used for t he depth. (A calibration study should really be done to come up
with an accurate camera model.)

12

2o -I camera 0

6

0

Q

1 0 20 30 4 0

height of rectangle outline (pixels in a 64 by 64 image)

Figure 4 -

(Exact values cannot be read from this graph.

Observed Relation of Camera-to-Obstacle Distance to
Height of Object Outline in the Image.

However, it is clear that
the relation is not linear, as it should be if the camera was reasonably

approximated by the standard perspective projection model.)

The location of the obstacle relative to the camera is displayed in a simple "floor map" at

the end of the program. To make the display more visually identifiable, the program

currently marks off an approximate floor area occupied by the obstacle, though it would be

a more accurate reflection of the program's state of knowledge to also mark off a "shadow

area" behind the obstacle as unseen.

3.5. Program Modules.

The C source code of the current implementation of this prototype object recognition

system is contained in nine files:
node.c ~ ~ r a ~ i ~ " ~ thresh .e hough-rect.c select.^
flaor-n-sine.c in-range.c draw-baxes.~ floor-mapx

13

Listings of the source code in these files appears at the end of this report. A brief

explanation of what the routines in each file do is given now. The file n0de.c contains the

main routine, which calls routines in the other files. The main routine reads an image,

then calls the pyramid routine in pyramid.c, then calls the Sobel edge detection routine

from the library, then calls the thresholding routine in threshx, then enters a loop which

makes repeated calls to the routines in hough-rect.c and select.c, then calls the routine in

floor-n-si2e.c to apply some constraints to the candidate rectangles selected from the

Hough transform results, then calls the routine in in-range.c to apply the gray scale

constraint, then calls the routine in draw-b0xes.c to prepare some visual feedback of the

results, and finally calls the routine in floor-map.c to prepare and display a simple floor

map showing locations of the obstacles.

The file pyramid.c contains two simple routines, "up-pyramid" and "down-pyramid."

These routines take one version of an image and a number of pyramid levels as input, and

produce the version of the image which is that number of levels up or down the pyramid,

respectively, as output.

The file thresh.c contains one routine, called "thresh," which implements a very simple

form of locally adaptive threshold.

The file hough-rectx contains two routines, "hough-rect" and "update," whtch implement
the hough transform for rectangular outlines.

The file se1ect.c contains two routines, "select" and "local-max," which implement the

selection of candidate rectangle centers from an individual 2-D Hough transform.

The file floor-n.-size.c contains the routine "floor-n-size," which implements the

constraints that a candidate rectangle have its bottom edge in the bottom half of the image
and that the size be appropriate for the level of the bottom edge.

The file in-range.c contains two routines, "in-range" and "area," which implement the

constraint that a candidate rectangle have a certain percentage of the pixels in its area in a

specified gray level range.

1 4

The file draw-b0xes.c contains two routines, "draw-boxes" and "draw," which draw the

rectangles representing (hopefully) the recognized obstacles on a copy of the original

image. This doesn't have any functional use in the obstacle detection per se, but is good for

visual feedback as to how the recognition process has performed.

The file floor-map.c contains the routine "floor-map," which implements the calculation

af obstacle location relative to the camera and draws a simple floor map.

This work really should be viewed as a "demonstration of concept" and not as a polished

implementation of a finished system. There are a number of possible ways in which it

could be improved and/or extended.

One area for extending this wark is to broaden the collection of obstacles that the program

"knows about." As currently written, the program really only looks for instances of the

4-foot tall, 2-foot square cross-section obstacle which are painted red. This is reflected
in the range of sizes of I-lough transform that it performs and in the range of gray levels

checked in the constraints after the Wough transforms are performed. It should be

relatively easy to add additional ranges for the Holagh transform and additional gray level

ranges to represent instances of the other obstacles.

Another area for extending this work is to reduce the ways in which "false negatives"

(obstacles whose presence the program does not detect) can occur. As the program is

currently written, a major way that obstacies can be missed is for part of the obstacle to

be occluded, either by appearing at the boundary of the image or by appearing partly

behind analher obstacle. Obstacles which are partly out of the image can likely be handled
by writing some fairly simple special case extensions to existing routines so that the
boundary portions of the image are handled differently. This will primarily involve
extending the size of the Wough space and taking into account that the occluded object has a

reduced number of maximum possible Hough votes from the image. Obstacles that appear
partly hidden behind other obstacles can possibly be detected by lowering the percent of

Hough votes needed to consider a candidate rectangle. However, this approach may greatly

15

increase processing time and still

HERMIES plan to acquire multiple

Obstacles can also be missed when

not recognize all obstacles. It may be better to have
images from different angles and integrate the results.

their color causes them to fade into the background. One

way to attack this is to develop a smarter locally adaptive edge thresholding, using, for

example, variable size regions and histogram analysis to determine the threshold cutoff.

However, this approach may also greatly increase processing time without providing

substantially better results. It may be better to use vision in conjunction with some more

direct range sensor in a form of multi-sensor integration.

Another area for extending the work is involved with improving the accuracy of locating

obstacles relative to the camera. At the moment, the program uses a some very empirical
notions of how to find the location of the obstacle relative to the camera. The distance

forward along the optical axis is estimated using a piece-wise linear interpolation whose

parameters were determined from the sample images with the known camera-to-obstacle

distances. The objects in these images varied only in depth from the camera, and so the

program has to make an even cruder estimate of the sde-to-side displacement. It uses a

standard perspective projection camera model with parameters empirically estimated

from the test images. The wide-angle lens camera used on HERMIES actually shows

noticeable distortion, particularly away from the center of the image. Perhaps the major

way to improve accuracy would be to calibrate the camera and incorporate a more

sophisticated camera model. Another way to improve accuracy of obstacle location would

be to use higher resolution images than the 64 by 64 resolution which the program

currently uses, so that obstacle placement on the floor would be known to greater

accuracy. The could be done, pyramid style, by using the results of processing the 64 by
64 resolution image to guide the processing of the 256 by 256 image. A third way to

increase accuracy in the floor map would be to use Hough transforms representing views
of the obstacle from multiple angles, so that the orientation of the obstacle relative to the

camera would be more accurately known. This would require somewhat more complex
programming for the Hough transform and would increase processing time.

-.
Another area for extending this work involves making use of the output of the program in

different applcations. One possibility is that this program could be used in multi-sensor

integration with the sonar sensor currently installed on HERMIES. The sonar sensor can

easily provide a coarse resolution depth-map of the space around the robot. Using the

16

initial depth estimate provided by sonar, it should be possible to perform many fewer

Hough transforms in order to recognize and localize the obstacles. Another possibility, not

mutually exclusive, is that the output of the program could be used for path planning. In

this application, it will probably be necessary to enhance the program so that it can

accumulate floor map knowledge from the results of processing a succession of images.

I would like to thank the Department of Energy, Oak Ridge Associated Universities and Oak

Ridge National Laboratory for creating, administering and providing a program which

allows university faculty members to visit BRNL and make use in the unique research

facilities here. I would also like to thank Chuck Weisbin, Reinhold Mann and Judd Jones

for making my participation in this program possible and for providing the atmosphere in

the CESAR lab which made this summer a successful research experience for me.

17

References

1. J . P. Jones and R. C. Mann, “Concurrent Algorithiiis for a Mobile Robot Vision
System,” SPIE, Vol. 937, Applicat ior~s of Artificial Intelligence VI, 497-504 (1988).

2. B. L. Biirks, G. de Saussure, C. R. Weisbin, J. P. Jones, and W. R. Hamel, “Ail-
tonomous Navigation, Exploration and Recognition Using the Hermies-IIB Robot,
IEEE Expert 2, 18-27 (1987).

3. M. D. Levine, “Vision in Man and Machine,” McGraw-Hill, New York (see pp.
518-526 on Hough transform).

4. R. B. Boyle and R. C. Thomas, “Computer Vision: A First Course,” Blacktvcll
Scientific Publications, Oxford (see pages 64-68 on Hough transform) (1988).

5. A. Rosenfeld, J . Ornelas, and Y . Hung, Hough Transform Algorithms for Mesh-
Connected SIMD Parallel Processors, Computer Vision, Graphics and Image Pro-
cessing 41, 293-305 (1988).

6. J. P. Jones, R. C. Mann, and E. M. Simpson, “A Coniputer Vision Systems for a

7. J . Canny, “A ComputatioIial Approach to Edge Detection,” IEEE Trans. on Pat-

Hypercube Concurrent Ensemble,” ORNL/TM-10679.

tern Analysis and Machine Intelligence 8, 6, 679-698 (November 1986).

19

Appendix

nodex

/* driver routine for prototype obstacle recognition system. */
/ * rather than for faat end-to-end proceasing * /
/* kevin bouyer, 8/22/88. */
/* currently set up for lots of diaplay of intermediate results, *I

#include <math. h>
If include < a t d i o . h >
#include "inp1ib.h"

#define true 1
#define f a l a e Q

main0
i
int ctr 1 CN-CTRLI ; /+ must be there * /
IMAGE image, small, centera, box-high. box-wide. templ. temp2;
char command;
int iradelta, cx, cy, dx, d y , level, eaze, i, J , high,

float percent, percent2;

/* init slobals and read control * /
rminit (ctrl); / * must be there */
i r e d e l t a = ctrl[QI : cx=ctrltlI ;cy=ctrl123 ;dx=ctrl C31 ;dy=ctrl141 ;

/* input and display an image +/
image = imalloc (256,256,l):
imagein (image): imageout (image);
nprintfO ("original 256x256 image: preaa <apace bar? to continue\n");
do f command=ttyflyO; I whilc(comnand!=' ') ;

/+ "level" indicates # of levela to go up pyramid */
level = 2; size = 256 / lpou (2,level);

/* go up p y z a m i d , a p p l y aobel, display, t h r e a h o l d , display */
small = imalloc (size. size, 3) ;
up-pyramid (image. 256, 256, small. size, slze. level);
down-pyxamid (amall, size, size, lmage, 256, 256, level):
imageout (image.);
nprintfO("reduced resolutian image: preas <space bar> to continue\n"');

genex (small, 3) ;
templ = imalloc (s i z e , aize, 4);
sobel (small, templ);
down-pyramid (templ, a i z e . aize. ~mage, 256, 256. level);
imageout (image):
nprintfO("result5 of sobel operator: press <apace bar> to continue\n");
do (comnand=ttyflyO; > while(command!=' ' ';
temp2 = imalloc (size, size, 3) :
t h r e s h (templ, temp2, 0.5);
down-pyramid (temp2, mize, sire, image, 256, 256, level):
inageout (image);
nprintfO("resu1ts of threshold: press <space bar> for Hough transforms ... \n");
do (cummand=ttyflyO; 1 whLle(command!=' ' 1 ;

r o w , col, m, n, w i d e , nrowa, ncale, f l u o r , max, di f i tancrr

do { command=ttyflyO; 1 uhile(command!=' ') ;

20

/ * sat up image buffers for Hough analyeis */
centera = imalloc (aize, size, 4) ;
box-high = imalloc (aize, size, 4) ;
box-wide = imalloc (size, size, 4) ;
lzero (centera); lzero (Lox-high); ieero(box-wide);

/ + perform Hough tranaforms over apace of poaslble box sizes/shapea * /
for (high=8; high<=4S; ++high)
/ + height range In prxrla fo r '%-foot tall Lux in € 4 ~ 6 4 reduced reaolution + /

f nprintfO ("trying rectangles Xd pixela high ... \n", high); / * image over distance range of approxmately 3 feet to 25 feet * /

for (wide=Q.S*high; wide<=0.75*high: + + w i d e)
/ * width range for "face on" to "edge on'' view + /

(hough-rect (temp2, tenpl, high, wide);

1
aelect (eentera, box-high. box-wide, templ, high. wide, 0.8);

1

/ * report locations of possible box centers +/
nrowa = centera->nrows; n c o l ~ = centers-?wide;
icopy (s m ~ 1 1 , tempi): / + temporary copy of image * /
for trow-0; row<nrows; ++row)

for (col=O; col<ncols: ++col)
if (centers->ptrowI Ccoll != 0)
(ternpl--?pCrowl [coll = 255:

percent = (float) cent-ers->plrowl Cc011 / (float)
(2*Lox_high->p l r o w l Ic011 + 2+box-wide->p row1 Ccol - 4) ;

nprintf("%d by %d b o x (%ti votea, %f percent) found at %d,%d\n",
box. high->pCroul Ccoll , box-wide->pCruwl Ccall , centers->pCrow: [coll,
percent, nphya(node)*nrows + r o w , col);

1
/ * at this point, the non-zero entries in "centers" indicate the * /
/* candidate centers of rectangles found by the Hough transform. + /
nprintf0 ("box centers suggested by Hoiigh transforin are highlighted . . .\n*');
down-pyidnid (templ. size. size, image, 256. 256, level);
imageout (image);

nprintfn ("presir <space bar> to continue analysis .,.\n'*);
do (command=ttyflyO;) while(command!=' ') ;

nprintfO ["constraining for floor support and size ... \n ' *) ;
floor-n-aize (centera. box-high, box-uide, ternpl, nrow.~, n c o l s) ;
down-pyramid (ternpl, size, sire, image, 256, 256, level):
imageout (image);

nprintfo ("press (apace bar> to continue ... \n"):
do (command=ttyflyO: 1 while(camnand?-' ') :

nprintfO("constraining for percent of pixels in gray level range ... \n");
/ * then zero out entz-iea which dn not have specified a; of pixels */
/ * in the nupposed "box" in specified gray level range * /
icopy [s n i a l : . templ): g e n r x <temp:. 2) ;
in-range (templ, centess, box-high, box-wide, 50, 140. 0.8);
down-pyramid (ternpl. size. nize, image, 256, 256, level):
imageoutcimagr):

21

nprintfO ("press <space bar> to continue . . .\n");
do (coamand=ttyflyO; 1 whiletcommand!=' ') ;

nprintfO("constraining for local max in percent of Hough votes ... \ne');
icopy (small templ) ;
genex (centers, 4): genex (box-high, 4): genex (box-wide, 4);
for (row=O: raw<nrowe; ++row)

for (col=4; col<ncola-Q; ++toll
if (centers->pCrowl Icoll != 0)
(templ->pCrowl Icoll = 255; max = true;

percent = (float) centera->pIrowI Ccoll / (float)

for (n=row-4: m<=row+4; ++m)
(Z*box_h~gh->pCrowl Ccoll + 2*box-wide->pCrowl [COLI - 2) ;

for (n=col-4: n<=col+4: ++n)
(percent2 = (float) centers->plnl In3 / (float)

(2+box-high->pLml [nl + 2*box-wide->pCml lnl - 2);
if (percent < percent2)

raax = false;
1

(templ->pCrowl Ccoll = 0; centera->pCrowI Cco13 = 0; 1

nprintf("%d by %d box at %d,%d La local a a x in Hough spaee\n",
box-high->pCrowl Ccoll , box-wide->pIrowl [coil,
nphya(node>*nrowa + row, col):

if (max == false)

if (trmpl->plroul lcoll == 2 5 5)

I

/* draw in rectangle outlinea before display */
draw-boxen (tenpl, centers, box-high, box-wide):

down-pyramid (tenpl, s i z e , s i z e . image. 256, 256, level);
imageout(1mage):

nprFntfO ("press Capace bar> to continue ... \n");
do f command=ttyflyO; 1 while(command!=' ') ;

/ * disp:ay a "floor map" image of the space hermies has analyzed * /
floor-map (temp?, centers, box-high. box-wide);
down-pyramid (trmp2, 5 i z e . size. image, 256. 256, level);
imageout(image):

nprintfO ("preas <space bar> to terminate\n") ;
do f command=ttyflyO; I while(conmand!=' ') ;

terminate(): / + kill and exit */
1

pyramid.c

IY I ncl ude ""imp 1 i b . h"
/ + routines for pyramid reduction/expanaion of image data. c /
/ * aaeumes square images, averages pixels for reduction. */
/* kevin bowyer, 6/14/88. */
up-pyramid(image-in, m, n, / * input: original m by n image * /

image-out, / * output: image derived from image-rn * /
P. q. /* Input: s ize of derived image + /
level / * input: number of levele up pyramid n/

)

I U A G E irerge- in , image-out;
int n, n. p , q , level;

(

int'i, 12. 3 , j2, Bum, size, linea;

22

if ((m I = n) I t (p != q))
(nprintfO("image not square."): terminate(); I

s i z e = ipow(2. level);

if (preize > m)
t nprintfQ("error in up pyramid terminate(): I

/ * reduce " i m a g e - i n ' a to pyramid "level" to get "image-out'* * /

for (i=O: i<iaage-uut->nrows: I++)

for (j=O; j<image-out->wide: I++) [
Burn = 0;
for (12=r*size; iZ<((i+1)*size): i2++)

for (j Z = j * s i z e : ~2<((j+l)*aize): j2++)
eum = aum + image_in->p[i21 1121 :

image-out->pCil C J I = sum / (aizr * aize):
1

I

down-pyranid(image-in, m. n, /* input: original m by n image */
image-out, / * output: inage derived from image-in * I
P. q v / + input: aize of derived image */
level / * input: number of levela down pyramid */

)

IUAGE image-in, image-out;
int A , n, p, q, level;

(
int i, 12, J , j2, sum, size. lines:

if ((In ! = n) I I (p i = q))
(nprrntfO("'inaye not square.'"); terminate(); 1

size = ipow(2,level);

if (a*size != p)
(nprintfO("error in down pyramid level."); terminate(): I

/ * expand "image- in 'e to pyramid "level" to get "image-out" * /
12 = 0:
for (i=O; i<inage-out->nrows; it+)

J2 = 0;
for ()=O:)<image-out->uide; J + +) [

image-out->plil C j I = image_in->pli21 Cj21;

1
If (((]+I) % 8lZe) == 0) ++J2:

if (((i+l) x aize) == 0) ++i2;
I

1

23

t hresh.c

i nc 1 ude '* i m p 1 i b . h '"
/ * 7x7 local area threshold of gradient image. */
/* kevln bowyer, 8/11/88. +/

threeh (gradients, /+ input: edge detected image */
edgea /* output: binary (0 / 2 5 5) edge map */
cutoff / * input: threahold percent +/

)

IMAGE gradients. edges;
float cutoff;

(
int nrows. ncola, row, col. r. c. right. left.

top, bottom, l a x , aba-row, limit;

nrous = gradients->nroua: nCOl8 = gradients->wide:

genrx (gradients, 3);
/+ alloua 7 x 7 local areaa. aaaumea "imalloc (gradienta. 3)" was done */
for (rou=O; row<nrow~; ++row)

for (col=O; coltncola; ++col) (

/ * set top, bottom. l e f t and right for the local area * /
aba-row = nphys(node)+nroua + rou:
bottom = abs-row < 3 ? row - abs-rou : row - 3 :
limit = n-nodeaunroue - 1;
top = abs-row + 3 > limit ? row + limit - abs-row : row i 3 ;
left = coi - 3 < a a : C O ~ - 3:
right = col + 3 > ncols - 1 ? ncole - 1 : col + 3 ;

/ + find the maximum qradient value for the local area */
man = 0 ;
fo r (r-bottom; r<= top ; ++r)

f o r (c=left: c<=right; ++c)
i f (gradients->pCrl Ccl > m a %) rnax = gradientf~->pfrl tcl ;

/* threshold pixel a t Crow3 Ccoll */
i f (gradients->pCrowl [call > cutoff * a a x)

else
edges->p[roul Ccoll = 255:

edgea->ptroul [call = 0:
1

24

i nc 1 ud e '' imp 1 i b . h "
/ * hough transform for "high x vide"" rectangular outlines, +/

/ * (10 v i 1 1 miss outlinre whoae center ia aut of the image) * /
/ + aasumea both edges and hough are ring-napped the aame. */
/ * kevin towyer, 7 / 1 4 / R 8 . * /
houyh-rect(edges, / * input: image of edge pixela (01255) */

hough, /a output: accumulator array for hough apace +/
high, wide / * input: size of outllnea looked for + /

1

I M A G E edges, hough:
int high, wide;

(
struct coorda (unsigned char r o w l coli I ; /* coords of 81 pixel * /
struct coorda pixelsC300Ql:
/ * t h i s implies no innre than 3000 edge p i x e l s in the whole image */
int row. col, m , nl, n, i. n-th, nrows, ncols, source, type,

n-bytes, cflag, aize, old, newl d , daat:

s i z e = sizeof (atruct coorde):

/ * set nrowa, ncols f o r s i z e of local image and local hough +/
if (e d g e s - . > n r o w s == hough->nrows) nrowm = edgea->nrous;
else nprnntf("edge and hough arrays not aIlocated the aame.\n");
if (edgea->wide == hough->vide) ncala = edgea->wide;
elae nprlntf("edge and hoiigh avraya not allocated the ~sme.\n"):

/ + initialize hough array to all zeroes */
izero (hough);

n-th = nphyscnode): / * node contains n-th chunk of image */

/ + initialize number of pixels to send to other node + /
1 = 0 :

/ * scan local portion of edge image f o r edge pixels a/
fo r (row=O: row<nrows; ++row)

fo r (col=O: col<ncols: ++col)
if (edgen->p[rowl Ccol.1 == 255) (

/+ keep edge coorda to 5end to other nodes a /
pixelsCi1 .row = n-th*nrows f r o w ; pixclsli++l .col = col:
if (i == 3000) (/a pixelsC0..29993 fllled ... * /

nprintf ("%d found too many edge pixele\n", n..-th);
--i :

1
/ * and update local hough space * /
update (n-thrnrown + row. col, high. wide, n-th, ,bough);

1

/* nprintf("%d finished local =can of %d edge pixels\n'*, n-th, i): * /

25

old = 0: new = 1;
for (d=n-nodea>>l; d>O; d>>=l)

deat = (node & d) == 0 ? node I d : node 6 ("d%(n-nodea-1));
nwrite (pixele. newweize, deat, 10, Cfflag);
source = deet; type = 10;
while C (n-bytee=ntecst(&aource, &type, &cflag)) == -1) ;
nread (&pixelaCnewl, n-bytes, &eource. &type, &cflag):
old = new; new old + n-bytee / size;
if (new > 2999)
{ nprintf("node %d: Xd edge pixels exceeda limit\n", node, new);

1
for (i=old; i<new; ++i)

new -5: 3000:

update (pixelaLi3 . r o w , pixela~il .col. high, wide, n-th, hough);
1

/ * nprintf ("%d finished hough apace\n", n-th); +/
1

/ + + /
/ * routine to update local hough apace for a given edge pixel. */
/* * /

update (r o w , col. /+ input: pixel location, row in absolute coords * /
high, wide, / * input: aizr Gf rectangle& being looked for * /
n-th I / * input: node containa n-th chunk of lowe in image */
houyh / W output: hough space array */

)

int r o w , col, high, wide, n-th;
IMAGE hough;

(
int top, bottom, left, right, n, nl, n2, m, ul, m2, nrowa, ncole;

/* set nrowa and ncole * /
nrows = hough->nrows; ncola = hough->wide;

/ * compute corners of (high, wide) rectangle centered at (row,col) * /
top = row - high/2: left = col - wide/2;
bottom = row + (high/2): right = col + (wide/2);
/* but if high or w i d e ia not even ... */
if ((high%2) == 0) --bottom;
if ((widr%2) == 0) --right;

/* if it liee in local hough apace, update top row o f rectangle * /
if ((top >= n-th*nrowa) && (top < (n-th+l)*nroua))

(nl = left < 0 ? 0 : left;
n 2 = right > ncole-1 7 ncols-l : right;
m = top 'x nrowa:
for (n=nl; n<=n2; ++n)

if Chough->pCml En1 < 255)

+-though->p Cml tnl ;
1

/ * update whatever middle portion of rectangle lies in local hough space * /
if ((top+l < (n-th+l)+nrows) && (bottom-1 > = n-th*nrowa))

f x f (top+l > n-th*nrowa) ml (topfl) ?i nrowa;
else m l = 0;
if (bottom-1 < (n-th+l)*nrows) in2 -j- (bottom-1) X nrous;
else m 2 = nrowa - 1:
for (m=ml; mi=m2; i i m)
(if ((left >= 0) && Chough->pCmlCleftl < 255))

++hough->p Cml Cleft1 ;

++hough->pCmI [right] ;
if ((right(= ncola-1) 66 (houyh->pCmlCrightl < 255))

1
1

26

/ * If it liee i n local hnugh apace, update bottom r o w of rectangle * /
If ((bottom >= n-th*nrows) 66 (bottom < (n-th-tl)*nrous))

(n l = left < 0 ? 0 : left:
n2 = right > ncols-1 ? ncols-1 : right;
m = b o t t o m Y nrowa;
for (n=nl: n<=n2; + + n)

if (hough->p[m! Cnl < 255)
++houah->p Cml Cnl ;

I
1

i ri c 1 ud c '' i m p 1 i b I h "

#define true 1
#define falee 0

/a- look for centers of rectangular outlineas by some hauriatica. a /
/ * aaeumea image, edgee and hough are ring-napped the a m e . */
/ * kevln bowyer, 8/15/88. * /
select (centera, / * inlout: non-zero entries indicate candidates */

box-high, /* output: high for rectangle at Crow3 Ccoll */
box-wide, / * output: wide for rectangle at Crow3 Ccoll * /
hough I /+ input: hough apace of image */
high, wide, /* inputt dimensions of rectangle to aearch f o r */
percent / * input: cutoff far possihle rectangle centers +/

)

IMAGE hough, centers, box-high, bax-wide;

int high, wide;
float percent;

(
int row, col, nrowa, ncola. 1, 3 , max;
float old;

nrows = hough->nrow-s; ncola = hough->wide; /* size of local image */

max = 2*high + 2*(wide-2): /+a' max poesible hough '"votee" for a pixel */
/* eynchronize and exchange image rowa for neighborhood proceaaing u /
cube-sync0; genex (hough, 2); genex(center5, 2);
/ * aasumen that hough and centers were at l e a s t "imalloc(---, 2) " * /

for (row=O: row<nrowa; ++row>
for (co1-3; col<ncole-3; ++col)

if (hough->pCi-owl [coll > percentitrnax)

/ * first must p a s s cutoff for X of max possible hough votes a/

(old = centers->pCrowl [coll == 0 ? 0.0 :
(float) centers->p[rowl Ccoll /
((float) box-high->p[ruwl Ccoll *box-wide->p[rowl [coll) ;

if (((float) hough->pCrowl [coll / (float, max > old)

/ * alao must have greater % than any previous rectangle at * /
/ * same location. and m u a t be local max in current hough space a/

(centers->p Crow1 Ccoll = hough-->p Cro*wl [coil ;

S S loeal-nax(row, co?, hough))

box-high->plrowl Lcoll = high;
box-wide->plrowl Ccoll = wide;
/* L f It rneeta conditions. record # of votes, high and uide * /

1
1

)

27

local-max<row. col. /* input: candidate for center of box */
array /* input: image array */

)

/ * returne true if arrayCrowlCcol1 ie the center max Value */
/* of a 5x5 area, or returns falae otherwiae. * /
int row, col;
IMAGE array;

(

int i, J:

for (ierow-2; i<=row+2; +ti)
for O=c01-2; j<=col+Z; + +) I

if (array->pCil C j l > array->pCrowl Ccoll)
return falee:

return true:
1

floor-n-si2e.c

Iy i nc 1 ude i in p 1 i b . h "'
/ *
/*
/*
/*
/*
/*
/*
/ *

routine to impoae conetrainta on candidate rectangle centera. */
floor conatraint: the bottom edge of the rectangle nuat fall * /
in the bottom half of the image. */
size constraint: the eire of the image must be compatible with */
the row in which the bottom edge falla. * /
"centere'* entries uhich do not paaa conatrainta are deleted. * /
r e e u l t a of applying conatrainta are aleo marked in "templ." * /
kevin bowyer. 8/22/88. */

floor-n-size centers, /* in/out: candidate rectangle centers */
box-high, / * input: height of candidate rectangles * /
box-wide, / * input: width of candidate rectangles */
templ. /* output: copy of original image * /
nrowa, ncole /* input: eize of image- * /

)

IMAGE centera, box-high, box-wide, templ;
int nrows, ncols:

r
int row, col, floor;

/ * examine candidatea indicated by nonzero entries in "centers" * /
for (r o w = O ; row<nrowa; ++row)

for (col=O; col<ncols; ++col)
if (centers->ptrowl Ccoll != 0)
(templ->pCrowlCcoll = 255: / * indicate candidate on image * /

/ * delete ones uhich could not be standing on floor * /
f l o o r - = nphya(nodr)*nrowa + box-high->pCrowl Ccoll / 2 ;
if (floor < (n_nodes*nrowa/2))

[templ->pCrowl Ccoll = 0 ; centers->pCrowl Croll = 0; I

/ * delete if too tall for where it is standing */
/ * cutoffs determined f r o m a set of known sample images * /
else if ((floor < 5 5) && (box-high->pCrowl Ccoll > 42))

else i f ((floor < 47) 66 (box-high->pCrowlCcoll > 30))

else if < (floor < 39) 66 (box~high->pCrowllcoll > 19))

else if ((floor < 38) &6 (box-high->pCroulCcoll > 14))

else if ((floor < 37) E & (box-high->ptrowl Ccl-11 > 13))

else if ((floor < 35) && (box-high->plrowlCcoll > 11))

e lae if ((floor < 331 6& (bax-high->pCrowltcoll > 9))

(templ->pCrowl Ccoll = 0; centers->pCrowl Ccoll = 0 : 1

[templ->plrowl Ccoll = 0; centers->plrowl Ccoll = 0; I

[templ->pCrowI tcoll = 0; centers->pCrowl Ccoll = 0; 1

(templ->plrowl Ccoll = 0 : centers->plrowl Ccoll = 0;)

[templ->pCrowl Ccoll = 0; centera->pCrowl Ccoll = 0; 1

(templ->pCr~ul Ccoll = 0; centera->pCrowl Ccol! = 0: I

(templ->pCroul Ccoll = 0 : centers->pCrowl Ccoll = 0; I

I* delete if too ahort for whore it la standing * /
/* cutoffs determined from a set of known sample images * /
else If ((floor > 57) & & (box-high->p[row.l Li.011 < 4 2))

else if ((floor > 49) 66. ~ b o x ~ h f g h - > p ~ r o w ~ ~ c o l l < 30))

ela@ if ((floor > 41) SE (hox-high->pCrowJ [col'l < 19))

elae if ((floor > 40) S& (box.-high->pCrowl Kc011 < 1 4))

else if ((floor > 39) 6.6 (bou-high->pCrowl Cc011 < 13))

elae if ((floor > 37) &(i (box-high->pCrowl Ccoll < 11) >

elae if ((floor > 36) && (box-high->p[row3Cco11 < 9)

(ternpl->pCrowl [coll = 0; centere->p[rowl Ecoll = 0; 1

[tenpl->pCrowI [coll = 0; eentera->pCrowl [coll = 0: 1

(templ->pCrowl [coll = 0; centere->pLrowl Icoll = 0; I

(templ->pCrowl Iroll = 0; centera->pCrowl Ccoll = 0: I

[templ->p[roul lcoll = 0: centera->pCrowl Ccoll = 0: I

(templ->pCrowl [coll = 0; centers-->pErowl Ccoll = 0; 1

(ternpl->pCrowl Ecoll = 0; centera->pCrowl Ccoll = 0: 1

if (tenpl->pCrowl [cnll == 2551 / * output candidates paafilng teat + /
nprintf("Yd by Y d box at %d,%d paaaes floor/alze conetraint\n"',
box-high->p Crow1 Ecoll ,
nphyntnode)*nrows + r o w , col):

box-wide->p[rawl Ic011 ,

1
1

#include "implib. h "

/ * count up the numher of image pixels in the range Clo..hil * /
/* for each candidate rectangle. * /
/* kevin bowyer. 7/20/88. * /

in-ranye(inaye. / * ~npirt-: yray level image * /
value. / u in/out: map of candidate centers * /
box..high. box-wide, / * input: high x wide of rectangles * /
lo, hi, / * input: 10 and hi of gray level range * /
cutoff / * input . : percent for cutoff */

)

IMAGE imaye, value, box-high, box-wide:
int lo, hi;
float cutoff;

struct. center { unsigned char row, col, high. wide: rnt count; 1 ;
struct center centers [lo01 ;
int row, col, 1 , 3 . n, d, n-th, nrows, n c o l s . source. type,

float perccnti, percent2:
n-bytes, cflag. s i z e . dest, new;

nrows = i m a g e - - > n r o w s : ncols = image->widc: / * local image size * /

n-th nphys(node): / + local node contains n-th chunk of image * /

size = sizeof (struct center): / * size of data for center * /

n = 0: / * initialize # of centers to send to other node * /
/* scan local "value" image fur possible rectangle centers * /
for (r o w = O : row<nrows; + + r o w)

for (col=O: col<ncois; ++col)
if (value->p[rowlCcoll ! = 0) I / a a candidate center * /
centers [nl . r o w -= n -th*nrovs + r o w :
centersCn1 .col 2 C C J ~ :

centers I n 1 . hiyh = box-high->p [row] Ccoll ;
centers [nl .wide = box-wide->p [row] Ecoll ;
centera[nii I .count = 0;

1

29

/* accumulate centers from other nodes */
new = n;
for (d=n-nodes>>l: d>O; d>?=l)
(dest = (node 6. d) == 0 ? node I d : node 6 (vd&.(n-nodes-l)):

nwrite (centers, new+size. dest, 10, c f l a g) ;
source = dest; type = 10:
while (tn-bytes-nteattiLsource, &type. &cflag)) == -15 :
nread (GcentersCnewl. n-bytes, &source. &type. Gcflag);
new += (n-bytes/size);

1

/* update range count for each center for local image area * /
f o r (i=0; i<new; ++I)

area (centerall7 .row, centereril .col,
centerslil .high. centersCi1 .wide,
GcenteraCil.count, n-th. lo, hi. image):

/ * accumulate range counts f r o m other nodea .IC/

for (d=n-nodea>>l: d>O: d??=l)
t deat = (node fi d) == 0 ? node I d : node 6 (*d&fn-nodes-l));

nwrite (centers. new*aize, dest, 10, cflag):
aource = dest; type = 10;
while ((n-bytea=ntestt&source, ktype, 6cflag)) == -1) ;
nread (&eenteraCnewl, n-bytes. &source, &type, 6cflag):
if (new != (n-bytea/size)) nprintf ("measaye site incorrect\n");
for (i=O; iCnew; ++i)

for (j=new; j<Z*new; ++J)

If ((centersCi1 .row == centerstjl .row) 66

centerslil .count += centeraljl .count:
(centereti1 .col == centereCj1 .col) >

1

/* find centers where >= "cutoff" "percent" are in range ,

for (i=O: i<neu: ++i)
and which represent local max in percent of in range pixels. */
if
(

I
1

((centeratil.row>sn-th*nrows) && (ccnterslil.rowC(n_th+l)*nrow~))
row = centerati1 .row X nrows; col = centereCi1 .col;
percentl = (float) centerati1.count

if (percent1 C cutoff)
t value->pCrowl Ceoll = 0; image->pCrowl Ccoll = 0; 1
else
(irage->pCrowl Ccoll = 255;

/ (float) (centerslil .high+centere[il .wide);

nprintf("Xd by %d box at Xd,xd passes gray level constraint <%f)\n",
box-high->pCrowl Cco17, box-wide->p Crow1 [coil,
n-thunrowe + row, col. percent:):

1

/ * * /
/ * update area count far a rectangle with given center c o o r d e . */
/* * /
area (row. col. /* center of rectangle */

high, wide, /* ~ i z e of rectangle * /
count, /* count of pixels i n range */
n-th. / * n-th chunk of image is local */
lo, hi, /* bounds of range to count plxels * /
image /* image to count pixela from */

)

unsigned char row, col, high, wide;
int *count. n-th, lo, hi;
IUACE image:

30

(

int top, bottom, left, right, m , n, nrowsI ncola;

/ * aet nrowa and ncols * /
nrowa = image->nrows; ncola = inage->vide;

/ * compute cornere of (high, w a d e) rectangle centered at (row,col> * /
top = row - high/2; left = col - wide/2;
bottom = row + (high/2); right = col + (w1de/2):
/ * ... adjuat if high or wlda ie not even ... * /
if ((highx2) == 0) ++top:
if ((wideX2) == 0) ++left;
/ * ... and truncate to portion stored in local node * /
left = left < 0 ? 0 : left;
right = right > ncola-1 ? ncols-1 : right;
if ((top>=(n_th+l)ffnrows) I I (botton<n-th*nrows))

t o p = top < n-th*nrows ? 0 : top X nrows:
bottom = bottom > - (n-th+l)anrows ? nrows-1 : bottom % nruws;

for (m=top; n<=bottom; t + m)

return ;

for (n=left; n<=right; ++n)
if ((image->pCml Cnl>=ln) 66 (image->pCnl Cnl<=hi))

++*count ;
1

W i n c l ude " imp 1 i b . h"
/ * routine to draw rectangle outline8 around given center locetiona. * /
/* not vital to recognition; used for v i a u s l feetack on diaplay. * /
/ * k e v i n bowyer, 8/11/88. */
draw-boxen (image, / * output: image to draw rectangles on * /

value, / * input: 1ocat.rone of rectangle centers * /
box-high, box-wide / * input: size of rectangles * /

)

IMAGE image, value, box-high, box-wide;

(

struct center (unaigned char r o w , col, high, wide; 1 ;
atruct center centeraC1001 ;
/ * w i l l not handle more than 100 center candidates * /
int row, col, 1, 3, n, d, n-th, nrowa, ncola?

~ G U Z C ~ , type, n-tytre, cflag, B I Z @ , deat;

nrowp. - inage->nrows; ncols = inage->wide; / * local image size * /
n-th = nphyn(node): / * local node contains n-th chunk of image * /

size = oizeof (struct center); / * size of data for center * /
n = 0; / f initialize 4 of centers to send to other node * /

/ a scan local "value" image for p o a s i b l e rectangle centers * /
for (row=O; row<nrowa: + + r o w)

for (cal=0; col(nco1s; ++col)
if (value->pCiowl Ccoll != 0) (/ * a candidate center a /

centera[nl.row = n-th*nrowa + row;
center-alnl .eo1 = col;
centeralnl . h l g h = box $~igh->plrow! lcoll;
centsre Ln t + 1 .wide - box-wide->p [row1 [call ;

1

31

/* accumulate centers from other nodes */
for (d=n-nodea>>l; d>O; d>>=I)
(deat = (node 6 d) == 0 ? node I d : node 6 (“d&tn-nodea-1));

nurite (centera, nwaize, dear, 10, c f l a g) ;
eource = deet: type = IO;
while ((n~bytes=nte~t(&source, &type, &cflag)) == -1) ;
nread (¢eraCnl, n-iiytee, &aource, &type, 6cflag);
n += (n-bytea/aize);

)

/ * update range count for each center for local image area */
for (1 4 : i c n ; ++i)

draw (centeraCi3 .row, centerscil .col. centereti1 .high,
centersCil.wide, image, n-th, nrows, ncols);

/* draw portions of rectangle outline0 which lie in local area. */
/ * kevin bowyer, 8/11/88. * /
draw (row, colt / * input: location o f rectangle center * /

high, wide, /* input: high x wide of rectangle */
image, /* output: image to draw rectangle on * /
n-th P / * input: local area ia n-th chunk of image * /
nrowa, ncola / * input: aize of local chunk of image */

)

unaigned char row, col, high. wide;
int n-th, nr~ua, ncola;
IMAGE image;

r
int top, bottom, left, right;

/ * compute corners of (high, wide) rectangle centered at (row,col) u /
top = row - high/2; left = co l - wide/2;
bottom = row + (hlgh/2); right = col + (wSde/2);
/ * ... adjust if high or wide Sa not even ... */
if ((high’x2) == 0 > ++top;
if ((widex2) == 0) ++left;

/* note that adjuetment for odd aize height/uidth la different when */
/ * drawing the rectangel around given center than it 15 when voting */
/* for possible center locations from edge pixel in hough routine. */
/* if none of rectangle is in the local image chunk, then return * /

if ((top>=(n-th+l)*nrowa) I I (bottom<n-th*nrowa))

return :

/ * if top and/or bottom lie in local area, draw them in * /
if ((top>=n-th*nruws) E.& <top<in-th+l)*nrowa))

for (col=left; col<=right; ++col)
image->pltop%nrowsl Ccoll = 255;

if ((bottom>=n-thwnrows) && (bottom<(n-th+l)*nrows))
for (col=left: col<=right; ++col)

image->p CbottomXnrousl Ccoll = 255;

/ * truncate top and bottom to local image chunk * /
top = top < n-thwnrows ? 0 : top t y nrowa;
bottom = bottom >= (n-th+l)*nrows ? nrows-1 : bottom 1 nrows;

/ * draw in aides of rectangle * /
for (row=top; ruw<=hotton; ++row)
(image->p~rowl Cleft1 = 255; image->pCrowl [right] + 255; I

I

32

PY 1 nc 1 u d r " 1 m p I i b . h "

/ + routine to draw crude "floor map" of locationa of obstacles. * /

/ * keviu boiryer, 8/22/68. */
/ * ahould be improved with equation5 f r o m proper camera calibration. + /

floor-napr. image, / + output: floor m a p image e /
value $ /a Input: image of rectangle centers * /
box-high, box-uide / * input: h i g h x wide of rectanglen * /

)

IMAGE i m a g e , value, box-high, box-wlde;

(
struct box (unsigned char row, col, high,
atruct box boxea C l O l ;
/+ aaaumee no more than 10 obstacles to be
int row, col, 1, d , n, n-th. nrowa, neala,

n-bytes, cflag, size, dest, n e w , wide,
float forward, side:

wide, type; 1 ;

drawn on "floor map"' */
emurce, type, high,
bottom, distance;

nrtswp = image->nrowa; ncola = irnage->wide; /+ local image size * /
n-th = nphye(node); / * 1 o c d node conta inn n-t-h chunk of inage * /

size = aizeof (atruct box); / * size o f data f o r center * /
n = 0; /* initialize U of canters to send to other node */
/ * acian local portion of "value"' a r r a y for recognized candidates a/
f o r (row=O; rawtnrows; ++row)

for (col=O: col<ncilln; ++col)
if (value->pCrowl Ccoll != 0 > (

houeaCnl.raw = nphye(node)*nrowe 4 PGW;
boxeslnl .cOl Col:
boxesCn1 .high = box-high->pCrowI [coll ;
boxes Cnl .wide = box-wide->p Crow3 [call ;
boxesCn+tl .type 2 0;

)

/ * accumulate boxes from other nodes * /
new = n :

for (d-n-nodes>>l: d > O ; d > > = l)
(dest = (node 6 d) == 0 ? node I d : node & ("db(n-nodes-1));

nwrite (boxes, newffnlze, deat, 10, cflag);
Roiirce = deat; type = 10;
while d (n_bytee=nte~ttsaou~~ce, &type, &cflag)) == -1) ;
nread (&boxes I n e u l , n..bytea, Gnource. &type, Bcflag) ;
new +- (n_bytes/aize);

1

12ero (image); / + initialize floor nap to all unknown +/

33

/ * draw in an "H" to represent location of hermiee */
if ((6)=nphya(nude)*nrowa~ &b i6<(nphye(node)+l)*nrowe)~

if ((7>=nphye(node)*nrowa) && (7 < t n p h y e (n o d e) + l) * n r o w a))

i f ((8>=nphya<node)*nrowr) 66 (B<(nphya(node)+l)*nrowe))

(image->pC6%nrowaI C301 = 128; imege->pC6%nrawal 1331 = 128:

f irnage->pC7%nrowal C301 = 128; image->p17%nrowel C331 = 128: 1

for (col=30; col<=33; ++col)
imsge->p18%nrowal Ccoll = 128;

if C(9>=nphys(node)*nrous) && i9<(nphya(node)+l)*nrou8))

if ((10>~nphys(node)+nrow8) 6.6. (lO<(nphya(node)+l>+nroua)~
(Lmage-7pC9xnrowal 1301 = 128: imsge->pl9%nrowel f331 = 128; I

f image->pClO%nrowel C301 = 128; inage->pClO%nrowaJ C331 = 128; I

/+ draw field of v i e w in front 05 herniea */
for (row=ll; rowCn-nodea*nraua-1: ++row)

if ((row>5nphye(node)*nrouf, E& (raw<(nphya<node)+l)*nrowa>)
f diatance = row - 10;

wide = /* 0.57?*/ 0.7 * diatance?:
for (col=ncola/2-wide; col<ncole/2+wide: +tcol)

image->pCrow%nrowsl Icoll = 255;
1

/* draw locations of obatacles */
f o x (i = C) ; i<new; +ti)
(rou = boxeaCil.rau; col = boxeaC1l.col;

h i g h = baxesCil . h i g h ; wide = boxaaCi1 .uide;

/+ "forward" is distance along floor to bottom edge of box, in feet */
/+ tranalation data determined from a set of known araple irnagea + /
r f (high >30)

else If (h i g h > 19)

else i f (h i g h z 15)

else / p high <= 15 * /

forward = 6.5 - ((float) h i g h - 30.) / 6.;

forward = 10.5 - ((float) high - 19.) / (lla/4.):

forward = 14.5 - ((float) h i g h - 15.);
forward = 14.5 + (15 - (float) high) * 1.5;

/ * "side" is side-to-side distance perpindicular to forward line */
/* translation ie eatimate of perapective model baaed on set of */
side = (float) col - 31.5; / * col location relative t o image center */
aide = s ide * forward / 34.0; /* solve perepective equation */
aide = side / 1.2; / + fudge factor for aspect ratio of image * /

n p r i n t f O ("box bottom c e n t e r le %f feet forward, %f feet to alde\n",

/ * known aarnple ~magea. (better eatimate id needed) +/

forward, aide);

forward = forward + 10;
for (row=furward--l; row<=forward+l; ++row)

if ((row>=nphys(node)*nrows) 66 (row<(nphystnode)+l)*nrows))
for (col=ncols/2-aide-l; col<=ncola/2-aide+l; ++col)

imege->p Crow%nrouel [cell = 128;

35

0 RNL / T M- 1 0935

INTERNAL DISTRIBUTION

1. M. Beckerman
2. 6. C. Culioli
3. J. Han
4. J . P. Jones
5. C. W. Glover
6. R. 6. Mann
7. E. M. Oblow
8. F. G. Pin
9. E. Wacholder

10. C. R,. Weisbin
11. B. A. Worley
12. J. J. Dornin (consultant)
13. R. Haralick ?consultant)
14. EPMD Reports Office
15. Central Research Library
16. OR,NL Technical Library

17- 18. Laboratory Records
19. ORNL Patent Office
20. Laboratory Records-RC

EXTERNAL DISTRIBUTION

21-25. K. W. Bowyer, Departnient of Computer Science and Engineering, IJni-
versity of South Florida, Tampa, Florida 33620-5399

26. Office of Assistant Manager, Energy Research and Development, Oak
Ridge Operations Office, US/DOE, P.O. Box 2001, Oak Ridge, T N
37831

27-36. Office of Scientific and Technical Information, US/DOE, Oak Ridge,
T N 37831

