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ABSTRACT

The linearized neoclassical magnetohydrodynamic equations, including
perturbed neoclassical flows and currents, have been solved for parameter regimes
where the neoclassical pressure-gradient-driven instability becomes important. This
instability is driven by the fluctuating bootsirap current term in Ohm’s law. It
begins to dominate the conventional resistive ballooning mode in the banana-
plateau collisionality regime [u./v. ~ +/€/(1 + v,.) > €*] and is characterized by
a larger radial mode width and higher growth rate. The neoclassical instability
persists in the absence of the usual magnetic field curvature drive and is not
significantly affected by compressibility. Scalings with respect to 8, n (toroidal
mode number), and p (neoclassical viscosity) are examined using a large-aspect-
ratio, three-dimensional initial-value code that solves linearized equations for the
magnetic flux, fluid vorticity, density, and parallel ion flow velocity in axisymmetric

toroidal geometry.






I. INTRODUCTION

The fluid moment equation approach developed for neoclassical equilibrium
processes’ has recently been extended to higher-frequency instability phenomena
in axisymmetric toroidal plasmas.?™® This is of importance for understanding exist-
ing and future tokamak plasmas, which operate well into the long mean-free-path
regime. These neoclassical magnetohydrodynamic (MHD) equations take into ac-
count modifications to pklasma flows and currents that result when particles com-
plete at least one toroidal transit before experiencing collisions, in contrast to the
usual reduced resistive MHD equations, which are valid only in the Pfirsch-Schliiter
regime (multiple collisions per toroidal transit).

The primary features of the new neoclassical MHD equations arise from inclu-
sion of viscous relaxation effects within magnetic flux surfaces. These lead to such
effects as (1) a fluctuating bootstrap current in Ohm’s law, resulting from the par-
allel electron viscous damping of the poloidal flow induced by the perturbed radial
pressure gradient; (2) a rapid (~v;) damping of the poloidal ion flow so that the
residual flow is primarily toroidal; and (3) an enhanced (by B?/B2) polarization
drift and a resulting enhancement of the perpendicular dielectric constant from par-
allel flow inertia (this causes the equations to depend ozily on the poloidal magnetic
field Bg). These effects can lead to both substantial modifications of the known re-
sistive MHD instabilities and new instabilities made possible through the additional
mechanisms for accessing the sources of free energy that are introduced through the
neoclassical terms.

2,6,7

One new instability is the neoclassical pressure-gradient-driven mode, which

arises from the expansion free energy through the fluctuating bootstrap current

6,7 and fluid moment?

term. This instability has been analyzed using both kinetic
approaches and has been predicted to have a growth rate comparable to that of
the conventional resistive ballooning mode. Turbulent transport models based on
medium-mode-number (n S 10) resistive ballooning modes have been shown to cor-
relate well with experimental data in the Impurity Study Experiment (ISX-B) as
the auxiliary heating power (or plasma stored energy) is increased.®? The similari-
ties of these instabilities to the new pressure-gradient-driven neoclassical instability
thus make the latter a strong candidate for anomalous transport models in higher-

temperature plasma regimes.



In this paper we extend the previous analytic treatments of the pressure-
gradient-driven neoclassical MHD instability by solving recently derived® ™ neoclas-
sical moment equations for the time evolution of the magnetic flux, fluid vorticity,
density, and parallel ion flow velocity. A three-dimensional (3-D), large-aspect-ratio,
initial-value code based on the FAR code has been developed.!® This code solves
the linearized moment equations starting from an axisymmetric toroidal equilib-
rium state. This approach has allowed the inclusion of a number of effects that
were either not included in the analytic calculations or not readily apparent in
them. First, the compressibility coupling from the density to the ion parallel flow
equation is retained. This eflect is of interest since it was found to be strongly sta-
bilizing in the case of the resistive ballooning mode? as higher-temperature regimes
were considered. Also, we do not assume strong ion poloidal flow damping, as was
the case in the simplest analytic models, but solve the ion parallel flow equation
consistently with the dynamical evolution of the other variables. Next, we have
included the radial and poloidal flows in greater detail than previously considered,
since these were necessary to obtain proper behavior of the solutions at the origin.
In the analytic calculations, this was not critical because a geometry local to the
resonant flux surfaces was employed. The effects of classical viscosity and density
diffusion are also considered.

The code has been used to check scalings of the neoclassical instability with
toroidal mode number, plasma beta, and neoclassical electron viscosity. By gradu-
ally increasing the neoclassical electron viscosity, the transition from a resistive bal-
looning instability to the neoclassical instability can be followed in detail. Finally,
by removing terms, the code has been used to check some of the predictions and
assumptions of the analytic treatments, such as the validity of rapid ion poloidal
flow damping, the cancellation of the lowest-order geodesic curvature effects by
Pfirsch-Schliter currents, and the lack of explicit dependence of the growth rate on
resistivity.

This paper is organized as follows. First, the time evolution equations appropri-
ate for reduced neoclassical MHD are discussed. Next, the numerical initial-value
code is described. We then present results demonstrating the transition from a
resistive ballooning mode to a neoclassical pressure-gradient-driven mode as the
collisional mean free path is increased. Next, the scaling of the neoclassical mode
with respect to various quantities is examined. Finally, the effects of removing and
adding compressibility, resistivity, curvature (b V?p x k) drive, and classical viscosity

are examined.



II. TIME-EVOLUTION EQUATIONS AND
NUMERICAL METHODS

The calculations discussed here are based on the neoclassical moment equations

for n, Ay, ¢, and V);. These equations,>™ which result from using the electron
density continuity equation, Ohm’s law coupled with Faraday’s induction law, and

the perpendicular and parallel ion momentum equations (in mks units), are
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where 7. is the electron density, ¥ is the poloidal magnetic flux, V|j; is the parallel

ion flow velocity, ¢ is the electric potential,
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Here we have made a number of minor approximations and simplifications of the
complete equations.®* In the electron continuity equation, we have neglected the
electron polarization drift, the classical and neoclassical diffusion terms, and the

motion of the flux surfaces (9v/0t # 0). All of these effects are second order

in a gyroradius expansion and much smaller than the terms retained in Eq. (1)
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for kyipe < 1. In Eqgs. (3) and (4), we have neglected the electron viscous stress
effects because they are of order (m./m;)'/? < 1 compared to the ion viscous stress
effects that are retained. Finally, we have approximated the toroidal current J¢ by
the parallel current J);, which is correct to second order in the small-aspect-ratio
expansion € = r/ Ry < 1.

The viscous stress terms in Eqgs. (1)-(4) may be related to the neoclassically

driven pressure anisotropy, given by the Chew-Goldberger-Low form (b = B/B)
I = (py — po)(bb — 1/3) , (5)

where py — p. may be expressed? for species s in terms of the viscous damping
frequency p,, the magnetic field B, the mass density n,m,, and the flow velocity

V, as

- - = (Y, . VInB) 6
Py —PL (- 9B ( ) (6)
with -
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N
and

The divergence of I} is then

<i

Vol = (py - pu)l(b- V)b b(b- V) In B] 4 b(b-V)(py — p1) -~ Vipy - p1)/3 . (7)

From this the parallel viscous stress is

B9 Ty = 3BV e BP0 wn ®

The B x V - ﬁl! viscous stress term of Eq. (3) is then

BxV- ii|| 2; Y7(1’” ~pL) (PII ~pL) Jj (PH —PL); o
B2 = gb X B — 32 ;; - B2 b X VB . (g)

If we assume [see Eq. (6)] that B - 3, ~ B(p/l) < 1, then the cross-viscous stress
may be approximated as

[ B-z—-——— ~ ﬁf*vaz—b X V;B . (10)



We then evaluate the divergence of (B x V- 11}/ B?) assuming low 3 and retaining
terms only to first order in the inverse aspect ratio (e = r/ Ry < 1):

5. [@ﬂ:ff&)g PRY B} -5 [@L:Pﬁgc < ﬁBg] (11)
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where /g = Vr-V8x VC is the Jacobian of the transformation to r, 8, { coordinates
with r» being a flux variable.

Equations (8) and (9) for the viscous stresses complete the closure of the moment
equations (1)-(4). We express cach of the dynamical quantities in Eqs. (1)-(4) as
an equilibrium component, fy, plus a perturbation, f, and linearize about fo. The
equilibrium is obtained using the axisymmetric noncircular toroidal code RSTEQ
(ref. 11), which solves the Grad-Shafranov equation with v .4 = Vieg = Peq = 0.
The evolution equations for ¢ (= —~RAy), U (= V- [pg‘ﬁi(f)]), p, and V); are then

given in nondimensional form as
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The D, term in Eq. (15) is an artificial diffusion term inserted to assist numerical

convergence. It can represent classical diffusion if D, ~ 8 and neoclassical diffusion

if Dy ~ B(pe/ve)q? /€~ /eBy.

The electron and ion neoclassical viscosities!?

are given by

2.3\/ev, (17)
l’l’e — T Y
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where v, = ve 3/2Ryq/v and € = r/ Ry is the local aspect ratio.

Here all times are normalized to the resistive diffusion time Tp = pga? /1, a is
a generalized minor radius, I is the major radius divided by Ry (the major radius
of the magnetic axis), and V| is normalized by Ry, V is normalized by a, the
resistivity is normalized to 7o (its value at the magnetic axis), the magnetic fields
to Beo (the vacuum field at Hy), v1 to a/7r, Jj to Beo/pollo, ¢ to a®Beo /TR,
to a’ B, and the curvature £ normalized to Ry. These equations are solved on
a generalized nonorthogonal coordinate system (r,8,() (ref. 13) determined by the
equilibrium code. The generalized radial variable r is an equilibrium flux surface
label, 0 < r < 1, # is a generalized poloidal angle variable, and ( is the usual

geometric toroidal angle.

III. NUMERICAL RESULTS

The goals in solving Egs. (13)-(16) numerically were (a) to examine the tran-
sition from a resistive ballooning mode to a neoclassical pressure-gradient-driven
instability by gradually increasing the neoclassical viscosity, (b) to check the scal-
ing of the neoclassical instability with respect to the relevant physical parameters

and compare it with analytic predictions, and (c) to test the effects of the presence
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and absence of various terms, such as the sound wave coupling (parallel compress-
ibility), parallel ion flow evolution, resistivity, and classical viscosity.

The code used in solving Eqgs. (13)-(16) is an extension of the FAR code.!®
This code employs a finite difference representation in the radial coordinate » and a
Fourier series expansion in the poloidal and toroidal angles 8 and (. The resulting
matrix equations are then evolved in time using a fully implicit technique. Per-
turbed quantities are represented in the following form, which allows for general

symmetries:

f(r,8,() = Zfl cos(mé + n¢) + L fi-(r)sin(m8 + n() . (19)

This form is necessary because the neoclassical terms included in Eqs. (13)-(16) do
not conserve the normal symmetries present in the reduced resistive MHD equations
i.e., ¢ and V}; would normally involve only sin(m8 + n{) components, while ¢ and
p would involve only cos(m8 + n({) components]. This fact also implies that the
eigenvalue will have a real frequency as well as a growth rate. Normally, 11 poloidal
modes at a fixed toroidal mode number are included in each summation with the
spectrum centered on m = 6--9, depending on the parameter regime being studied.

The numerical results presented here are based upon a slightly simplified version
of Eqs. (13)~(16). First, the V||A. ; terms in Eqgs. (13) and (16) have been neglected.
The remaining neoclassical term in Eq. (13) has then been flux surface averaged.
Preliminary calculations carried out without invoking these approximations indicate
no significant qualitative changes from the results presented here. Also, we do
not retain the w,. terms here, except as they enter into ¢.., and, as mentioned
previously, w,; is neglected.

Parameters that remain fixed through most of the following results are § = 10°,
Weyi = 3 X 108, € = 0.25, central plasma beta 3y = 0.087 (except where G, scaling is
examined), and toroidal mode number n = 6 (except where n scaling is examined).
This value of n is expected to be large enough for the parameters considered here
to reasonably allow comparison with the asymptotic (n — oo) ballooning mode
analytic theory of neoclassical MHD pressure-gradient-driven instabilities.>457

We first study the transition from a resistive ballooning instability to a neo-
classical MHD instability. In Fig. 1 the growth rate is plotted as a function of the
neoclassical electron viscosity parameter p./v.. Here we have left out the V((RV);)
term in the density evolution equation (15). This term introduces parallel com-

pressibility and would strongly stabilize the resistive ballooning mode (the effect



of this is discussed later). As indicated, the expected breakpoint between the re-
sistive Pfirsch-Schliiter and neoclassical plateau regimes occurs around /v, = €.
The growth rate in the resistive regime (p./ve < €?) drops slightly with increasing
fte/ve but remains close to its pure resistive (ge/ve = 0) value. In the vicinity of
Le/Ve = € the growth rate begins to take on a different scaling with respect to

e/ Ve, the slope of which approaches that of the analytic prediction 287

n2/3q2/3 L 1/3 8o 2/3
YT s <“> (_) ’ (20)

where 8¢ = 87p/ B}, r;l =7|dlnp/dr|, Sp = Tr/T A, Tae == (47pn ) /2 Roq/ Be. The
dotted line of Fig. 1 shows Eq. (20) evaluated locally in radius near the peaking of the
mode structure of the numerical results. The two results are about a factor of two
different in magnitude, but the slopes are very similar. This difference in magnitude
can largely be accounted for by the fact that the analytic theory does not include
the I;-@px £ term in the vorticity equation {14) that drives the conventional resistive
ballooning instability. In the numerical results, we retained this term because we
wanted to carefully follow the transition from resistive ballooning to the neoclassical
pressure-gradient-driven instability, and the termm was needed for the existence of
the resistive mode.

Figure 2 indicates that closer agreement in magnitude is obtained with the
analytic prediction when the pressure gradient curvature term in Eq. (14) is absent
(dashed line). The small remaining discrepancy between the dashed and dotted lines
(analytic prediction) can be attributed to several differences between the analytic
and numerical models. First, the analytic theory is local to a flux surface, while the
eigenfunctions in the numerical results have a distributed radial mode structure.
Also, the numerical results are based upon a relatively finite value of toroidal mode
number (n = 6), while the analysis is asymptotic in n (n — o0). A final difference
is that the radial flow terms (o V;.) in Iq. (6) had to be included in the code to
maintain regularity at the origin, whereas these terms were neglected in the analysis.
The other significant aspect of Fig. 2 is its demonstration of the fact that the drive
for the neoclassical pressure-gradient-driven instability comes from a source (the
fluctuating bootstrap current) other than the usual pressure gradient curvature
term that drives resistive ballooning instabilities.

Besides the altered growth rate, a further distinguishing characteristic of the
neoclassical pressure-gradient-driven instability is a modification in the mode struc-

ture. As g, /v, is increased, the mode is expectied to broaden radially from the highly

8



peaked structure of the resistive ballooning instability.>**® This feature is demon-
strated in Fig. 3, which displays contour plots of the perturbed potential function
and the radial mode structure of the dominant poloidal mode of the potential for
several of the cases of Fig. 1. As p./v. is increased into the neoclassical regime
(ite/ve > € = 0.0625), the radial mode structure broadens and assumes a roughly
Gaussian shape, in contrast to the highly peaked resistive ballooning mode limit
(e /ve == 0). Also, the dominant poloidal mode number shifts upward slightly, and
the peak in the potential moves outward in radius with increasing p./v,. This effect
is probably caused by the radial dependence (o r?) of the neoclassical viscosities
used in the code. Analytic predictions of the radial width scaling of the neoclassical

2,4,6

pressure-gradient-driven instability result in

) 1/6
§, = r (“) (@> . (21)
# (,‘quq)l/znl/‘*S;/s Ve 27,

Local evaluations of §, near the peak in the numerical radial mode structure are

shown in Fig. 4, along with the measured width at half-maximum of the dominant
poloidal potential mode in the numerical results. These evaluations are for cases
shown in Fig. 1. Again, the slopes with respect to u./v, are similar, but the mag-
nitudes differ for reasons similar to those given for the discrepancies in magnitude
of the growth rates in Fig. 1.

It is also of interest to check the scaling with respect to two other parameters,
B and n (toroidal mode number), that occur in Eq. (20). The numerical results and
local evaluations of Eq. (20) are compared in Figs. 5 and 6. The slopes indicate

good agreement with the 32/3 and n?/3

scalings. The analytic predictions deviate
from straight lines here as a result of the radial and poloidal moede number shifts
that occur in the dominant mode in the numerical results as #y and n are varied.
Parallel compressibility has been found to be a strongly stabilizing mechanism
for resistive ballooning instabilities.” As mentioned earlier, the results presented so
far have neglected parallel compressibility, which can be included in our equations
through the V;(RV);) term in the density evolution equation (15). Figure 7 presents
a comparison of the results given in Fig. 1 with (dashed line) and without (solid
line) compressibility. As expected, parallel compressibility is strongly stabilizing
in the resistive regime (p./v, < 0.06). In the neoclassical regime (p./v. > 0.06),
compressibility is still stabilizing, but to a much lesser extent than for the resistive

ballooning mode.



The neoclassical MHD evolution equations presented here incorporate the
proper damping of the poloidal ion flow velocity. This damping is caused by
collisions between trapped and untrapped particles in the plateau and banana
regimes and by magnetic compression/expansion from the 6 dependence of the
magnetic field in the Pfirsch-Schliiter regime. An approximation commonly used

in the analysis?*®

is that the ion parallel flow is rapidly daraped so that the
neoclassical term in the V); equation (16) can be set equal to zero, resulting in
Vii > (q/reF)(0¢/0r). This approximation is checked in Fig. 8, where the growth
rate vs /v is plotted both with the full Vj; equation time evolved (solid line) and
with the rapid damping limit (dasbed line) and compressibility absent. This indi-
cates that, for the parameters considered here, this is a fairly good approximation,
as would be expected since the parallel ion flow damping time is fast compared to
the growth of the instability.

One further effect of interest for the neoclassical pressure-gradient-driven insta-
bility is that of resistivity. In Fig. 9, growth rates both with (solid line) and without
(dashed line) resistivity are plotted vs p./v. with compressibility present. In the
neoclassical regime, resistivity seems to have only a very weak influence because of
the dominant effect of the dissipation from the neoclassical viscous damping.

Another form of classical dissipation that could influence the neoclassical
pressure-gradient-driven instability is the classical viscous damping term in the
vorticity equation (14) (i.e., the R;;' V2 U term). This term has not been present in
the results given so far. Its effect is considered in Fig. 10 for one of the ideal cases
shown in Fig. 9. The classical viscosity may be expressed in terms of other physical
parameters as Ri}lfer = §710;rr(pi/a)?, where Q; is the ion cyclotron frequency
and p; is the ion gyroradius; a typical value of Ral'THp for the parameters used here
is 8 x 1073, These results indicate only a slight degree of stabilization at this
level. Examination of the radial mode structure indicates some radial broadening
as R(}l is increased, thus yielding a smaller value of V2 U in the vorticity equation

than would be expected with a fixed radial mode structure,

IV. CONCLUSIONS AND SUMMARY

A new form of pressure-gradient-driven instability, which is an extension of
the resistive ballooning mode into high-temperature regimes, has been analyzed
numerically. This instability arises from including the appropriate modifications to

the plasma flows and currents caused by neoclassical MHD effects. The instability
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examined here is driven primarily through the fluctuating bootstrap current in
Ohm’s law. It has higher growth rates than the resistive ballooning instability and
a broadened radial mode structure in the neoclassical regime.

We have used a 3-D toroidal initial-value code that includes the relevant neo-
classical MHD corrections to resistive MHD. In the appropriate limits, this code has
reproduced the analytically expected scalings for the growth rate of the instability
with respect to the neoclassical viscosity parameter y./v,, the toroidal mode num-
ber n, and the plasma beta. Since the code includes the driving terms for both the
new neoclassical instability and the resistive ballooning mode, it provides a means
of carefully examining the transition from one type of instability to the other. In
addition, the influence of several new effects such as compressibility stabilization,
classical viscosity, resistivity, and self-consistent ion parallel flow evolution can be
easily checked. The main conclusion is that the neoclassical pressure-gradient-driven
instability seems to be resilient against many of the mechanisms, such as parallel
compressibility, that tend to be strongly stabilizing for the resistive ballooning mode.
This could be of importance in understanding confinement in higher-temperature

plasmas operating in the long mean-free-path regime.

11



REFERENCES

1S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 1079 (1981).
2J. D. Callen and K. C. Shaing, Phys. Fluids 28, 1845 (1985).
3J. D. Callen and K. C. Shaing, see National Technical Information Service Doc-
ument No. DE-86009463/XAB University of Wisconsin Technical Report UWPR
85-8). Copies may be ordered from the National Technical Information Service,
Springfield, Virginia 22161. The price is $11.95 plus a $3.00 handling fec. All
orders must be prepaid.

*J. D. Callen, W. X. Qu, K. D. Siebert, B. A. Carreras, K. C. Shaing, and D. A.
Spong, in Proceedings of the 11th International Conference on Plasma Physics
and Controlled Nuclear Fusion Research (Kyoto, Japan, November 13-20, 1986)
(International Atomic Fnergy Agency, Vienna, 1987), Vol. 2, p. 157.

SM. Kotschenreuther, A. Aydemir, R. Carrera, R. D. Hazeltine, J. D. Meiss, and
P. J. Morrison, in Proceedings of the 11th International Conference on Plasma
Physics and Controlled Nuclear Fusion Research (Kyoto, Japan, November 13-
20, 1986) (International Atomic Energy Agency, Vienna, 1987), Vol. 2, p. 149.

SK. C. Shaing and J. D. Callen, Phys. Fluids 28, 1859 (1985).

7J. W. Connor and L. Chen, Phys. Fluids 28, 2201 (1985).

88. A. Carreras, P. H. Diamond, M. Murakami, J. L. Dunlap, J. D. Bell, H. R.
Hicks, J. A. Holmes, C. E. Thomas, and R. M. Wieland, Phys. Rev. Lett. 50, 503
(1983).

°T. C. Hender, B. A. Carreras, W. A. Cooper, J. A. Holmes, P. H. Diamond, and
P. L. Similon, Phys. Fluids 27, 1439 (1984).

197, A. Charlton, J. A. Holmes, H. R. Hicks, V. E. Lynch, and B. A. Carreras,

J. Comput. Phys. 63, 107, (1986).

113, A. Holmes, Y-K. M. Peng, and S. J. Lynch, J. Comput. Phys. 36, 35 (1980).
12F, L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
138, A. Carreras, H. R. Hicks, and D. K. Lee, Phys. Fluids 24, 66 (1981).

12



ORNL-DWG 88M-3415 FED

H
RESISTIVE 1 NEOCLASSICAL
REGIME : REGIME
107 :
[~ lle /Vs = 82
P
2 e
>
102 |-
i ——s—  NUMERICAL RESULTS
| ANALYT]C( Ko /vs )1/3 SCAUNG
1 L [ S S B o | L L [T N S |
107 10 10°

Ko Vg
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