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LIMITS ON PARALLELISM IN THE NUMERICAL SOLUTION OF LINEAR 
PDES 

Patrick H .  Worley 

Abstract 

We consider approximating the solution of a linear scalar partial differential 

equation (PDE) at  a single location in its problem domain. In previous work tvc: 

described a lower bound on the amount of data required to satisfy an error bound 

for the approximation. Using this bound, we derive a lower hound on the parallel 

complexity of algorithms that approximate the solution. The lower bound is a linear 

function of 1og2c-1, where t is an upper bound on the error. Thus, the parallel 

complexity increases as F decreases, independent of the number of processors, the 

interconnection topology, and the algorithm used. We also describe how the lower 

bound changes when the interconnection network or the number of processors is 

specified. 
Recent research has established that it is often possible to  use a large number 

of processors efficiently when calculating the numerical solution of a PDE if the 
problem is sufficiently large. We argue that increasing the size of such a problem 
will usually come at the cost of increasing the execution time. We describe two 
examples verifying this conclusion, an algorithm-independent analysis of an elliptic 
PDF, and an  analysis of a specific algorithm for the approximation of a hyperbolic 
PDE. 

V 





1. Introduction 

Multiprocessors with a moderate number of processors (4 100) have proven to  be cost effective 

computer architectures for solving many of the cornputationally intensive problems in scientific 

computing [lO,ll]. There has been some skepticism as to whether multiprocessors with sig- 

nificantly more processors will be as useful. There is a law of diminishing returns associated 

with using increasingly many processors to  solve a fixed size problem. For example, a simple 

model of such behavior for a fixed algorithm is described by Amdahl in [l] and [2]. The recent 

empirical results of Gustafson, Montry, and Benner [9] indicate that the efficient use of an 

increasing number of processors is possible if the size of the problem can be increased as well. 

They observed that, when the size of the problem increases, the amount of paraliel work in  

many algorithms grows faster than both the amount of serial work and the amount of overhead 

in exploiting parallelism. This is an important observation. Often the size of a problem that 

computational scientists want to solve is too large to be computed in a reasonable length of time 

on the current generation of computers. Instead, they solve the largest size problem that they 

can afford. Thus, given more processors, it is reasonable to  consider solving a larger problem 

if it can be calculated in a specified amount of time. We will prove that this is not always 

possible. 
We begin by describing information theoretic lower bounds on the execution time of an 

algorithm. From these results we prove that the execution time will often grow without bound as 

the size of the problem increases, independent of the number of processors and of the algorithm 

used. This implies that  increasing the problem size so as to make use of an increasing number 

of processors will eventually increase the execution time. These bounds are calculated for the 

problem of numerically approximating the solution of a linear scalar partial differential equation 

(PDE) that satisfies certain conditions, but the argument can be applied to other classes of 

problems as well. To prove the results we also require the assumption that the problem size is 

allowed to grow only if the solution to the problem is improved sufficiently by doing so We 

contend that this assumption is the only reasonable one to make. 

In Section 2 we describe the multiprocessor and algorithm models we use to establish the 

bounds. We then derive simple lower bounds on the execution time of an algorithm that 

are a function of how the data are used. In Section 3 we describe the problem assumptions. 

From these we derive algorithm-independent lower bounds on how the execution time grows 

as a function of the error in the approximation to the solution of the PDE. We then describe 

assumptions on how the size of the problem grows, and conclude that the execution time will 

usually grow as the problem grows. In Section 4 we calculate the lower bounds described in 

Section 3 for a model problem. An analysis of an example algorithm motivated by the work of 

Custafson et a1 [9] is also presented to  illustrate the practical implicat.ions of this work. 
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2. Information Theoretic Lower Bounds 

Our focus in this paper is on MIMD’ multiprocessors and on modelling parallelism at the level 

of concurrent execution of floating point operations. This bias is reflected in the following 

iriultiprocessor and algorithm models. Most of the assumptions are made merely to  provide a 

structure upon which to base the proofs. Other assumptions could serve just as well. 

2.1. Multiprocessor Assumptions 

2.1.1. Multiprocessor Model  

We model a multiprocessor as a directed graph ( V , E ) .  Each vertex vi E V represents a 

serial processor.2 Each edge e ,  E E represents a unidirectional corrimunication channel in the 

miultiprocessor. A vertex v 1  is connected to a vertex u 2  if there exists an edge for which u1 is 

the source and v 2  is the destination. We will denote the index of the source vertex of an edge 

e,  by s ( j )  and the index of the destination vertex by d ( j ) .  

Associated with each channel e j  is a positive number I j ,  the transrilission time, indicating 

the time required to send a single floating point number from v s ( j )  to v d ( j ) .  Associated with 

each processor vi is a positive number f;,(+) indicating the time required to add two floating 

point numbers. We assume that all floating point operations are computed by the composition 

of operators from some given set of binary and unary floating point operators, and that addition 

is the fastest binary floating point operator. We will refer to the minimum fi,(+) and t j  in a 

multiprocessor by f(+) and 1 respectively. 

2.1.2. Communication Capabilities 

Define a pa th  p to be a sequence of edges, { e j ,  11 = 1,. . . , p } ,  such that the destination vertex 

of edge e, ,  is the source vertex for edge e,,, ,  . Define 

sum of the transmission times along this path, 

the length of the path p,  L(p), to be the 

Thus, L(p) is the time required to send a single floating point number along the path. 

Define the dis tance  from vertex u1 to vertex 212, O ( v l , v 2 ) ,  to  be the length of the path of 

minimum length starting at v 1  and ending at  0 2 .  Define D ( v , v )  to be zero. Thus, D(v1, v 2 )  is 

the minimum amount of time it takes to  send a single floating point number from v1 to v 2 .  

V ,  to be the maximum 

distance betweeu two vertices in the subset. 

Define the d i a m e t e r  of a subset of vertices of the graph, V’ 

diam(V’) = max, D ( v ,  w) 
U , W € V  

‘Multiple Instruction hfultiple Data is one category of Flynn’s multiprocessor taxonomy [7]. If a computer 
is an MIMD multiprocessor, then both the instruction a procasor is executing and the data it is using can be 
different from thase of other processors at any given moment. 

We ignore memory devices in the model since they do not affect the lower bounds we derive. 
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Define a center of this subset to  be a vertex that minimizes the maximum distance between 

itself and other vertices in the subset. That is, if c E V’ is a center of V’, then 

max D(c,  w )  = WEV’ min WuEV max, D ( v ,  w )  . 
W E V ’  

Define the radius of the subset to  be this distance, 

rad(V’) = min ma5 D(v,  w> 
V E V ’  wf v 

Note that the radius satisfies 

diam(V’)/2 5 rad(V’) 5 diani(V’) . 

Consider the subset of P processors with minimum radius in the multiprocessor. Define the 

function r ( P )  to  be the radius of this subset. In Section 2.3 we will use r ( P )  to describe lower 

bounds on t,he execution time of algorithms. 

2.1.3. Example Architectures 

Most multiprocessor architectures currently in use have fairly simple graphs, with essentially 

homogeneous processor and communication capabilities [6]. The following examples are com- 

mon designs, each of whose behavior is representative of a class of architectures. All of the 

examples can be described as undirected graphs. If an edge exists from vI to v, , then an edge 

with the same parameters also exists from u3 to w j .  Additionally, all processor and communi- 

cation channel capabilities are the same unless otherwise noted. Therefore, the values for the 

floating point addition time and the transmission time are denoted by f(+l and t respectively 

m Fully Connected. The graph of the architecture is a clique, and the diameter of any subset 

of the multiprocessor containing more than one processor is t .  

k Dzmenszonal Arruy. The graph of the architecture is a k dimensional array. Each pro-  

cessor is connected to  up to  2k other processors. Assume that the array has equal Iagt l i  

sides and P processors. Then the diameter of a subset of Q processors is no more titan 

kt  . (P1/‘ - l),  and no less than k t  . (Q1/’ - 1). The maximum is the diameter of the 

multiprocessor. The minimum is achieved by a subset of vertices and edgcs that is a 

k dimensional array with &‘Ik processors on a side. 

0 Hypercube. If the dimension of an array of P processors with equal length sides is log, P, 
then the graph is of a log, P dimensional binary hypercube. Each processor is connected 

to log, P other processors. 

log, P and t . log, Q. The lower bound is associated with a subset of vertices arid edges 

that approximates a logz Q dimensional hypercube, or whose complement approximates 

a logz ( P  - Q) dimensional hypercube. 

The diameter of a subset of Q processors is between t 

These examples are usually associated with distributed-memory multiprocessors, but com- 

For example, a well- mon shared-memory architectures can also be associated with them. 
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designed bus-based multiprocessor will behave like a fully connected architecture. Similarly, 

a shared-memory multiprocessor based on an Omega interconnection network [8] will have 

communication capabilities similar to a hypercube. 

2.2. Algori thm Model 

2.2.1. Serial Algori thm 

We model an algorithm as a partially ordered set of inslmclions of the form 

where plop is a floating point operation, y is a floating point variable, and ( ~ 1 , .  . . ,zn} are 

floating point constants and variables. If a floating point variable is used by two different 

instructions, and if one of the instructions changes the value of that variable, then the par- 

tial order specifies a precedence relationship between them. These are the only relationships 

established by the partial order.3 

We define the s e n d  complexilyof an algorithm, C,, to be the time spent executing the float- 

ing point operations on some standard serial processor. The standard processor is assumed to  

satisfy the assumptions made in the previous section about the processors in the multiproces- 

sor. All sequential orderings of the instructions of an algorithm that are consistent with the 

partial ordering will have the same serial complexity, and will produce the same results when 

executed on a serial processor. In consequence, we will also refer to the partially ordered set 

of instructions as a s e n d  algorithm. By the assumptions made on the processor, the serial 

complexity is a weighted sum of the numbers of the different floating point operations. The 

weights depend on the specifics of the standard processor. 

2.2.2. Paral le l  Algor i thm 

A parallel implementation of an algorithm on a multiprocessor specifies when and on which 

processor each iristruction is executed, and what communication takes place during the exe- 

cution of the algorithm. We will refer to  this information as the schedubng of the algorithm. 

Define a scheduling to  be well-defined if it is compatible with the partial order's precedence re- 

lationships, and if all demands made on the processors and communication channels are within 

their capabilities. We define a parallel  algorithm to be a triple consisting of a serial algorithm, a 

multiprocessor architecture, and a well-defined scheduling. Thus, we associate a deterministic 

serial algorithm with each parallel algorithm. In practice, the serial algorithm may be a func- 

tion of the data. This can make determining the serial algorithm dificult, especially for chaotic 

parallel algorithnis [5] [3]. But we can still analyze characteristics of the parallel algorithm by 

establishing necessary properties of the associated serial algorithm. 

We define the cost, TpI to be the time it takes to execute a parallel algorithm on a mul- 

tiprocessor. Unlike serial algorithms, the cost of a parallel algorithm is not necessarily well 

approximated by a weighted s u m  of the numbers of the different floating point operations. 

3Thus, the algorithm can be represented by a data flow graph. See Hwang  and Briggs [13, pages 740-7441. 
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Instead, there are at least two distinct costs associated with a parallel algorithm, parallel  com- 

plexity and communica t ion  cost. 

The parallel complexity is the amount of time during which at least one of the processors is 

busy executing the instructions of the serial algorithm. If P processors are used by the parallel 

algorithm to execute instructions, then the parallel complexity, Cp , is bounded from below by4 

where the serial complexity in this expression is based on using the “fastest” of the P processors 

as the standard serial processor. 

The communication cost, W,, is the amount of time during which at  least one of the com- 

munication channels is busy transmitting information used by the serial algorithm. While the 

achievable parallel complexity is constrained by the number of processors in the multiprocessor 

and by the serial algorithm, the communication cost is additionally constrained b,y the graph 

of the multiprocessor. 

A lower bound on Tp is5 

Tp 2 maxwp,  w-1 ‘ (2) 

If the schedule is efficient in  the sense that either communication or computation is taking place 

somewhere in the multiprocessor at all times, then an upper bound on T, is 

The standard measure of the efficiency of a parallel algorithm is the percentage of the total 

time that processors spend on tasks that are present in 

the algorithm. If we assume that the parallel algorithm 

parallel efficiency Ep is 
CS E - - .  

‘ - T P . P  

By inequalities 1 and 2, the efficiency is always less than 

a single processor implementation of 

uses F‘ identical processors, then the 

(4) 

or equal to one. 

2.3. Lower Bounds on Parallel Cost 

A serial algorithm describes a mapping from a set of data to a set of solution values specified 

by the problem. Denote the set of solution values of an algorithm a by 

u =  { “ j I j =  1,...,Na,u} , 
represents the smallest integer greater than or equal to  o. 

5We will use max(a1,. . . , a,} as an alternative notation for 

max n . 
a E ( a 1 ,  .,an} 

Similar notation will be used for the minimum element in a set. 
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where N,,u is the number of these solution values. Denote the data required to  produce these 

solution values by 

G = ( g k ( k - l , . . . , N a , g }  . 

That is, there is no g k  E G that can be arbitrarily changed without changing at least one of 

the solution values. N,,g is the number of these data. 

For u, E U ,  define N,(uj)  to be the amount of data required by a to compute uJ. Again, this 

means that no one of these N,(uj) data can be arbitrarily changed without changing the value 

of u,. If N,(u,) > 1, then each datum must be the operand of a binary floating point operation. 

This operation produces a result that is itself either the operand of another binary floating point 

operation or the operand of a unary floating point operation whose result is u j .  Continuing 

this argument and summing the indicated number of operations leads to the conclusion that 

the serial complexity of calculating u, is bounded from below by f(+) .(N,(uj)- 1). The next 

lemma is a direct consequence. 

Lemma 2.1. A lower bound on the serial complexity of an algorithm a is 

for any uj E U .  

A processor collaborates in the computation of a solution value u j  if changing the results of 

the floating point operations calculated by that processor can change the value of u,. Define 

Pa(.,) to  be the number of processors that collaborate in the calculation of u j  for a given 

parallel iriiplementation of a. As in Section 2.1.2, let r(P,(uj)) be the radius of the P,(uj) 
processor subset that has the minimum radius. 

Lemma 2.2. The communication cost of a parallel implementation of an algorithm a on a 

given multiprocessor is bountled from below by .(Pa(.,)) for any u, E U .  

Proaf The lemma is a consequence of the fact that information is needed from all Pa(uJ) 
processors in order to calculate u,. Denote the subset of processors that collaborate in the 

calculation of u, by V’. Assume that a processor u E V’ has been designated to  calculate the 

final unary or binary operation that produces uj. Each processor in V‘ produces a result that is 

crucid to the calculation. Therefore, whether a result travels directly to v or is used by another 

processor to  produce a new partial result that is then sent on, the time spent communicating 

is never less than the distance to u from the originating processor. Therefore, the maximum 

distance from the processors in V‘ to v is a lower bound on the execution time. Ry definition, 

this is bounded from below by r(Pa(uj)). 8 

The parallel complexity of calculating u j  on a multiprocessor can be no faster than the 

minimum parallel complexity of summing its required data. The data can be reduced only by 

a sequence of binary operations, and binary add is assumed to be the fastest binary floating 

point operation. Since addition is a binary operation, each time step of length f(+, at best 

replaces M existing summands by M / 2  results. These results are the summands for the next 

‘See Leinma 1 in Kuck [14, page 951. 
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step. Thus. one lower bound on the parallel complexity is f(+) flog, Na(uj)] .  
Lemma 2.1, and inequality 1 on page 5 prove the following lemma. 

Lemma 2.3. The parallel complexity ofa  parallel implementation of an algorithm a is hounded 

from below b v 

This result, 

for anyuj E U. 

Define Na,* to be the maximum amount of data required by an algorithm a to compute a 

single solution value, 

For some parallel implementation of a, define Pa,* to be the maximum number of processors 

that collaborate in the calculation of a single solution value, 

Theorem 2.4. The parallel cost of a parallel implementation of an algorithm a is bounded 

from below bv 

ProoE The total cost is bounded from below by max{C,, W,}. The result then follows from 

Lemmas 2.2 and 2.3. 1 

Corollary 2.5. For a P processor multiprocessor, a lower bound on the parallel cost of ;my 

parallei implementation of a serial algorithm a is 

Proof Pa,* is a member of the set { 1,. . . , P }  for any parallel implementation of an algorithm 

a on this multiprocessor. The proof then follows from Theorem 2.4. 

3. Bounds on Parallel Algorithms for Linear PDEs 

By Corollary 2.5, if we know how many data are required to calculate a single solution value, 

then we can compute a lower bound on the execution time of a given parallel algorithm. The 
problem assumptions described in the following subsections allow us to  bound the amount of 

this data for all algorithms as a function of the error tolerance, and thus calculate an afgorathm- 

independent lower bound. 

7See  Lemma 1 in Kudc [14, page 9.51. 
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3.1. PDE Assumptions 

For any nonnegative integer k, let !I?' he the k dimensional Euclidean vector space and let I k  

be the k dimensional unit cube, 

I' = [0,1] x " .  x [O ,  I] c Sk . 

For some d 2 1, let R be a compact subset of Rd. 

1) We assirme that we are approximating the solution of a linear scalar partial differential 

equation defined on R whose solution operator can be represented by an expression of the 

form 

for all t E a. i is a positive integer, {d ;  I i E { 1,. . . , i}} is a set of nonnegative integers, 

{g ;  I i E { I , .  . . , I } }  is a set of functions representing the problem data, and u ( Z )  is the 

solution function. For each i E { I , .  . . ,f} and 2 E 0, !Fi(.i,*) is a Lebesgue integrable 

function in I d , .  

Thus, the solution function is the sum of i components of the form 

U i ( 5 )  = Q,(z,*)g,(2)d2 4. 
For the class of problem considered here, the kernels (9,) are linear functionals of the Green's 

function for the PDE. See Section 4 and Butkovskiy [4] for examples of this type of represen- 

tation of the solution operator. 

Define C m ( l d , )  to  be the set of all functions that have continuoils rnth order partial deriva- 

tives on the set I d , .  Let Viy 'g  be a vector whose elements are some ordering of the rnth order 

partial derivatives of g in Id,. 

2) For each i E { 1,. . . , r} ,  we assume that the data function gi is known to be some member 

of a set G, defined in the following way. G; is the set of all functions g satisfying the 

properties 

i) g(z)  E C"'(Id,) 

ii) l l $ ,~~)g(~) l l~ ; )  5 ~ ; ( i i t . )  for z E I d ,  

where mi is a positive integer, 1 1  . I l ( i )  is a vector norm, and Mi(?) is a nonnegative 

function. We also assume that any member of Gi is a permissible data function for the 

ith component, and that any combination of data functions from the sets {G;} generate 

a possible solution to the PDE, with one possible exception. The inclusion of a given 

data function g; in a set of data functions may force the data function for a different 

component, g,, to have given frinction and derivative values on the boundary of I d , .  We 

will refer to this as a compatibiIity condition. 
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Assumption 2 states that the data functions are known to  have a certain number of continuous 

derivatives, and that the magnitude of the largest partial derivatives is bounded by same known 

function. This is the only information we are assuming about the data functions. This type of 

assumption on the data is similar t o  the assumptions that are made on the data arid solution 

functions when specifying a priori bounds on the error introduced when using finite difference 

and finite element discretizations of the PDE to  approximate the solution. The particular form 

of these assumptions is similar to  that used by Traub and Woiniakowski [15]. 

3.2. Problem Assumptions 

Numerical approximations to  the solution of the PDE replace the possibly infinite dimensional 

problem with a finite dimensional problem. The dimensionality of the problem is reduced by 

introducing error in the following sense: 

Only a finite amount of information about the solution function is calculated. Any model 

of the solution based only on this information will merely approximate the true solution. 

0 Only a finite amount of information about the data functions is used to calculate the 

desired solution properties. We will refer t o  this as the d a t a  functzon s a n p f z n g .  TJnless 

this information completely characterizes the data functions, the solution values that are 

calculated are also approximate. 

The PDE is replaced by a relationship between the chosen information. 

approximation to the solution is also a function of this relationship. 

The error in the 

For the rest of this paper, we restrict ourselves to  problems where 

3) values o f t h e  d a t a  functions at  given locations in thew domazns are available l o  be used, 

4) values of the solution function a t  gtuen locattons tn its domain are nyproxzmated, and  

5) the error i n  approxirnaiing each solution value 1s bounded by s o m e  given valve 6 .  

We can use the follcwing notation for any serial algorithm a with finite complexity that solves 

a problem satlsfying the above assumptions. The algorithm calculates the value of the solution 

function u a t  some finite set of locations 2 = {Zj I j = 1,. . . , Na,u} in R. For each data function 

g i ,  the algorithm uses function values at some finite set of locations X, = { 2 i , k  I k = 1, .  . . , Na,,} 

in I d , .  And, for any particular solution value .(TI), the algorithm uses values of g, at some set 

of locations 

Xi , j  = { z : , j , k  I fi  = 1,. . Na,:(zj)} 5. dys 

in I d , .  Note the slight change in notation from Section 2 3 Instead of IV~,~(U(E~)), we use 

Na,, (51 ). 

3.3. Bounds on Execution Tinie 

Assumptions 1-5 describe the type of problems we are considering. Each problem is specified 

by the linear PDF,, the assumptions on the data functions, the locations of the desired solution 

values, the locations of the available data, and the error bound to  be satisfied. The following 
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theorem describes an algorit hm-independent bound on the amount of data needed to  satisfy an 

error bound when approximating one of the desired solution values. We will then use t,his to  

describe a lower bound on the parallel complexity of all algorithms for a given problem. 

Let 2j E Z be one of the desired solution value locations. Let E be the upper bound on the 

allowable error when approximating u(5 j ) .  Let &(Z; 6) denote a closed ball in 9IdL centered on 

2t with a radius of 6. If d; = 0, then we define 6 to  be zero. 

Theorem 3.1. Let i be the index of a component, i E (1,. . . , f}. If there exists a closed ball 

f3i(f; 6) C I d ,  on which q;( .Zj ,  2) is either strictly positive or strictly negative, then there exist 

positive constants Ci and Ci dependent only on mi, d; ,  and 11 . /I(;) with the following property. 

If 

then data are required at at least 

locations in &(e; 6)  in order to satisfy the error bound. 

Proof: This theorem is a variant of Theorem 2.2 on page 45 in Worley [16]. The same proof 

establishes this result, and the details of the proof can be found there. The proof is based on 

the following argument. Given a set of locations where the i th data function is sampled in the 

ball, we construct a new function that has the same values at  those locations, is also in G;, 
and is compatible with all of the other data functions. This new function is indistinguishable 

from the true data function when given only the sampled values, and yet it generates a different 

solution value. This perturbation represents an intrinsic error that is not controllable by this 

set of data sampling locations. From this construction a lower bound on the intrinsic error is 

calculated for all sets of sampling locations of a given size. This lower bound is then used to 

calculate a minimum number of sampling locations that is required to satisfy the error bound. 

If inequality 5 is not satisfied, then no sampling locations are required in the ball by this 

argument. Note that the theorem is trivially true if di = 0 since then b = 0 and inequality 5 is 

never satisfied. 

Define N,, , (Tj)  t o  be the minimum number of data sampling locations required in I d ,  in 

order to ensure that the error in approximating ~ ( 2 , )  is less than e. Using this notation, an 

immediate corollary of Theorem 3.1 is the following: 

Corollary 3.2. Let i be the index of a component, i E (1,. . . , r}. If there exists a closed 

ball & ( % ; b )  c I d ,  of positive radius 6 on which q,(Zj ,Z) is either strictly positive or strictly 
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negative and on which both \k,(Zj,Z) and Mi(E) are bounded away from zero, then' 

as a function of I /€ .  

Proof: Since 6 > 0 we know that d, > 0. Therefore, since both l\ki(.Zj,r)l and M,(z)  are 

bounded away from zero, the left hand side of inequality 5 in Theorem 3.1 is always positive. 

Therefore, as E goes to zero (and 1 / ~  --+ m), the inequality will eventually be satisfied and 

~ , , i ( ~ j )  must grow a t  least as fast as cc-+ for some positive constant c. 1 

The implication of this corollary is that the amount of data  required to  approximate u ( i J )  will 

increase without bound as E -+ 0 if the assumptions of the corollary hold for some component 

i. This condition holds for most of the linear PDEs arising in mathematical physics. By 
Lemma 2.3, this implies that the parallel complexity of solving the problem must also increase 

without bound as E -+ 0.  We formally state this result in the next theorem. 

Define CP,E(P, f(+), F,) to be the minimum parallel complexity over all algorithms (for a 

problem satisfying Assumptions 1-5) that approximate ti(.,) to  within an error tolerance of E 

on a multiprocessor with P processors and a given minimum execution time for floating point 

addition, .ti+). 

Theorem 3.3. Assume that, for some i E (1,. . . , r ) ,  there exists a closed ball B,(z;  6) c I d ,  of 

positive radius 6 on which \ IT;(Z3 , 2) is either strictly positive or strictly negative and on which 

both q, (z j ,? )  and M,(i) are bounded away from zero. Then there exist pashive constants N 

and E, ,  that are independent of E ,  PI and f(+) such that 

when 5 E , .  

Proof: The total amount of data required to approximate the solution value "(2,) to within an 

error tolerance of 6 is at  least as great as NE,j(Zj). Therefore, by Corollary 2.5, 

The result then foIlows from Corollary 3.2. I 
6For two real valued functions f and g,  j ( z )  = n(g(x)) if and only if there exist positive constants c and 20 

such that 

for all I: > $0 [12]. 
If(.)l 2 cIg(t) l  
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‘This result can be shown to be essentially tight if each of the components either satisfies 

the assumptions of Theorem 3.3 or satisfies d; = 0, and if each M;(z’) is a bounded function. 

Theorem 3.4. For each i E { 1,.  . . , r } ,  assume that the ith component satisfies the following 

conditions. 

i) M i ( 2 )  is a bounded, nonnegative function in I d , .  

ii) Either d; = 0 or there exists a closed bail Bi(2 ;  6 )  C I d ;  of positive radius b on which 

Qi(i , ,  5) is either strictly positive or strictly negative and on which both * i ( T j ,  2 )  and 

M;(z’) are bounded away from zero. 

I f f (+)  > 0, then there exist positive constants a, /?, and E* that are independent of E ,  P ,  and 

f(+, and have the following property. C,,,(P, f(+), 2 , )  is contained in the interval 

when E < E . .  

Proof: This theorem follows from Theorem 2.3 on page 51 and Lemma 3.5 on page 77 in 

Worley [16]. The details can be found there. The theorem is proved by the construction of 

an algorithm a that approximates the value ~ ( 2 , )  to  within the desired error tolerance in the 

following way. Each data function g; is modelled by a piecewise polynomial j; that interpolates 

gi at a uniform distribution of sampling locations in I d , .  u ( 2 j )  is then approximated by the 

expression 

The resulting algorithm can be represented by an expression of the form 

where is the number of sampling locations in I d ,  used by the algorithm and n,,a 0: F-di/ml. 

A parallel implementation of a on a P processor multiprocessor is then described whose parallel 

complexity is bounded from above by an expression of the form 

where the constants are all positive and independent of E .  f(.) and f(+, are the times it takes the 

“fastest” processors t o  execute binary floating point multiplication and addition respectively. 

LzJ is the largest integer less than or equal to r. 
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Since i is a constant, this expression is bounded from above by an expression of the form 

for some finite constant T. This expression also represents an upper bound on Cp,,(P, #(+I,  z j ) ,  
and the result follows immediately from Theorem 3.3. a 

The parallel complexity represents only part of the parallel cost. Using Lemma 2.2 and 

Theorem 3.3, we can describe a lower bound on the parallel cost that is independent of the 

algorithm and the number of processors in the multiprocessor, but takes into account the 

graph of the multiprocessor. Define Tp,E(P,f(+),t,21) to be Ihe minimum parallel cost over 

all algorithms (for a problem satisfying Assumptions 1-5) that approximate ~(5,) to  within an 

error tolerance of E on a multiprocessor with P processors, a given minimum floating point 

addition execution time, ti+), and a given minimum transrmssion time, t .  

Theorem 3.5. Assume that, for some i E { 1 , .  . . , f } ,  there exists a clased ball &(F; 6) c I d ,  of 

positive radius 6 on which \E,(z,, Z) is either strictly positive or strictly negative and on which 

both \ k , ( Z J  ,*) and M,(i) are bounded away from zero. Also assume that both f(+, and t are 

positive . 

a) If the multiprocessor is a Hypercube or Fully Connected Architecture, then there exist 

constants (r and c+ that are independent oft,  P ,  f(+,, and t such that 

T,,E(P, f(+)J, 2,) L a . log, (d) 

when E 5 E * .  

b) If the milltiprocessor is a k Dimensional Array Architecture, then there exist constants 13 
and c**  that are independent of c ,  P ,  f(+), and t such that 

Proof: Statement (a) is just a weakened form of Theorem 3.3. By the definition of a k dimen- 

sional array, Corollary 2.5, and Corollary 3.2, if E is sufficiently small, then 
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for positive constants 9, Y ,  and T. For small E the minimum in inequality 6 is achieved with 

Therefore, 
A -  T ,  P C  (P , f (+) , t ,E j )  > q* 'Tk+' . €  ( k + L *  - ?- , 

and statement (b) follows immediately. a 
By this theorem the lower bound on the parallel cost can grow significantly faster than the 

lower bound on the parallel complexity if the underlying architecture is a k dimensional a m y .  

3.4. Problem Scaling 

In Section 1 we introduced the idea of increasing the problem size (or scaling the problem) in 

order to increase the amount of easily exploitable parallelism. A formal definition of problem 

size can be made [16, page 641, but it is sufficient to treat it as a measure of the serial complexity 

of the algorithms used to solve a problem. Thus, increasing the size of the problem implies 

changing the parameters of the problem so that the amount of work to  be done in solving it 

increases. Scaling the problem defines a family of similar problems all approximating the solu- 

tion to the PDE. We will refer to a given set of parameters as a problem instance. The problem 

parameters that are normally free to be varied are the solution values to be approximated, the 

error bound to he satisfied, and the available data. Commonly, increasing the size of the prob- 

lem indicates that the number of solution values and the amount of data used increase, and that 

the error bound decreases. For some applications the solution is desired at only a fixed set of 

locations, and only the other two parameters will vary. Rut in both cases, increasing the size of 

the problem results in a better approximation to  the solution function. It is simple to  increase 

the size of a problem without suffering an increased parallel cost if only the number of solution 

value5 is increased and if enough idle processors are available. But continually increasing the 

number of approximate solution values will not lead to a better solution unless the error in 

these approximate values also decreases. We do not consider it reasonable to increase the size 

of the problem unless there is some advantage gained by doing so. This motivates the following 

assumption on how the size of problem is increased. 

6 )  For a given problem instance, denote the set of locations where the solution is to be 

approximated b y  Z ,  and denote the error bound on  these approximations by c .  If the size 

of the problem grows and Z' and E' are the corresponding parameters of the new instance, 

then we assume that %: C Z' and 

for  some positive y independent of the scaling. Here 121 represents the number of locations 

in the set. 

Note that, this assumption is not on the problem, but rather on how we permit the problem 

to grow. By this assumption the problem size is allowed to grow only if the error bound also 
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decreases. Moreover, if the problem size grows without bound, then the error bound goes to 

zero. Assumption 6 is unnecessarily restrictive", but it is sufficient to establish the following 

theorem. In particular, the assumption that Z 5 Z' is made merely to  simplify the proof. 

Theorem 3.6. Assume that, for some i E { 1, . . . , f} and a given problem instance, there exists 

a rj E Z with the following property. There exists a closed ball si(%; 6 )  c I d ,  ofpositive radius 

6 on which @,(Z,,Z) is either strictly positive or strictly negative and on which both @ i ( ? , , i t )  

and Mi(5)  are bounded away from zero. Also assume that f(+, is positive and bounded away 

from zero for all permissible multiprocessor architectures. Then, if the size of the problem 

increases without bound, so will the parallel cost, independent of the algorithm and of the 

number of processors used. 

Proof: This theorem follows directly from the assumption on how the problem scales, from 

Theorem 3.3, and from inequality 2. If the size of the problem increases without bound, then E 

decreases to  zero, And once 2, is introduced as a location where the solution is approximated, 

the solution is approximated there for all larger instances. Therefore, Theorem 3.3 implies 

that the parallel complexity must grow a t  least as fast as -clog2c for some positive constant 

c, independent of the number of processors in the multiprocessor. Since this lower bound 

becomes infinite when E --+ 0, and since the parallel complexity is a lower bound on the parallel 

cost, the theorem is proved. Note that the lower bound grows even faster if we know that the 

multiprocessor is a R dimensional grid, for then we can use Theorem 3.5 to bound the parallel 

cost. II 

4. Examples 

Tn this section we describe two examples. In the  first we calculate the lower bounds described in 

Section 3 for a linear PDE that satisfies the assumptions of Section 3. The second is the analysis 

of a numerical algorithm that demonstrates that the predicted behavior affects practical parallel 

algorithms much sooner than predicted by the theoretical analysis. 

4.1. Lower Bound Calculation 

Consider the one dimensional elliptic problem 

40) = 9 2 ,  4 1 )  = 93 

on the interval [0, 11, for some constants g2 and 93. The integral representation of the solution 

is 

'Osee Worley [16, pages 65-66] for a more general assumption. 
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X 

where 

Figure 1: *1(.5,x) for -tizz = f given Dirichlet boundary conditions. 

There are three components, 

4 2 )  = g2 . (1 - %) 

and 
213(z) = g3 . %  . 

Thus, dl = 1 and dz = d3 = 0. 
Assume that 91 i s  some member of a set G1 that is characterized by the condition that 

if g E GI.  
approximating u(.5). The graph of \k1(.5,x) as a function of z is displayed in Figure 1. 

(0,.5). Let 

For example, E’ E GI. Assume that .5 E Z .  That  is, we are interested in 

The function \k1(.5,.r) is strictly positive in any interval of the form [a,  1 .- a] when cy E 

3 = c1 . a . ( . 5 - a )  , 
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where C1 is the constant from Theorem 3.1. By Theorem 3.1, if 6 < ~ ( 0 ) ~  then 

On page 89 in Worley [I61 we show that Ci = C1 = 1/3 for this problem. Therefore, inequality 7 

becomes 

This bound is maximized when a = 1/8. The resulting lower bound 

when c < c(1/8) = 9/4096. Since it is clear that NE,1(.5) 2 1 for 

on Nc,1( .5)  is 

(8) 

all c > 0, it follows that 

inequality 8 holds for all 6 > 0. We will refer to  this bound by N$t ) ( .5 ) .  Figure 2 contains 

the graph of this lower bound as a function of C. The constant multiplying the c-: term in 

inequality 8 is relatively small, but NC,1(.5) is still guaranteed to  be larger than 1000 when c is 

less than 2.19 x If the functions in GI are instead characterized by the condition 

then the lower bound on NL,1(.5) is scaled by a factor of 10. Under this condition N6,1(.5) is 

guaranteed to  be greater than 1000 if E < 2.19 x lo-'. 

By Lemma 2.3, 

is a lower bound on the parallel complexity of any algorithm that satisfies an error tolerance of 

E when approximating the solution value 4 . 5 ) .  Figure 3 is a graph of this lower bound. Thus, 

the parallel complexity is guaranteed to  be greater than 10 . f(+) when c 5 lo-'. This bound 

on the optimal parallel complexity in expression 9 is very small unless c is very small, but even 

an optimal parallel algorithm requires at  least 

2 

processors in order t o  achieve this complexity. If fewer processors collaborate in the approx- 

imation of u(.5), then the bound on the parallel complexity described in Lemma 2.3 will be 

dominated by the term f(+) (N!f;)( .5) - 1) /PI where P is the number of processors. hddi- 

tionally, a parallel implementation on a multiprocessor will involve communication costs. By 
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Figure 2: Lower bound on N c , ~ ( . 5 )  as a function of E for exariiple 1-D elliptic problem. 

€ 

Figure 3: Lower bound on parallel complexity as a function of E for example 1-D elliptic problem. 
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Hypercube (---), 1-D (. .), 2-D (...), 3-D (- - -) 

Figure 4: Lower bound on parallel cost as a function of 6 for example 1-D elliptic problem. 

corollary 2.5, 

is a lower bound 011 the parallel cost. Assume that the minimum transmission time, t ,  is equal to 

the minimum time to  execute a floating point addition, f(+,, for all multiprocessor architectures 

under consideration. Then Figure 4 is a graph of this lower bound for a variety of architectures. 

It is clear from the Figure that the lower bound on the parallel cost is significantly larger than 

the lower bound on the parallel complexity when the multiprocessor is a k dimensional grid 

and 6 is small, as was proven in Theorem 3.5. 

4.2. Algorithmic Example 

The example in Section 4.1 illustrated the type of bounds that can be derived by the analysis 

of Section 3.1. These algorithm-independent bounds are quite small for this problem, but 

Theorem 3.4 indicates that they cannot be significantly improved. This conclusion is verified 

in Worley [16,pages 93-98], where the parallel complexity of a particular parallel algorithni is 

calculated for the same example and shown to be very close to the lower bound. In this section 

we show that,  by fixing the algorithm, the growth in the execution time as a function of the 

problem size can be much more dramatic. 

Consider the wave equation in one space dimension, 
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a 
at 

u (z ,  0) = 0 = --u(z, 0) for x E [ O , l ]  

u(0 , t )  = 0 = u(1 , t )  for t E [a, 11 

Assume that we want  the solution on a uniform mesh at  time 1, 

where Ax is the distance between consecutive locations arid N, is the number of locations, 

N, + 1 = l /Ax ,  Assume that values of the data function are available on a mesh that is 

iiniform in the spatial direction with a separation of Axl  and uniform in the time direction 

with a separation of At, 

Here N, is as before and N t  = l /At .  
We will appproximate u ( z , t )  on the mesh at time 1 by time-stepping using the following 

finite difference formula, 

V j c { l l . . . l N z , }  V k E ( 1 ,  . - . ,  Nt} , 

where iif is an approximation to u at the location ( jAx, k a t )  and gf = g(jAx,  kAt ) .  Thus, 

the solution is approximated at all of the locations where the data function is sampled. This 

scheme requires approximations to the solution at  times kat and (k - 1)At in order to calculate 

an approximation to the solution at time (k + 1)At. To start the process, we define GI-' to be 

zero for all j. The serial complexity of this calculation is approximately 

(4 . f(+) 4- 3 . f(*)) ' N, ' N t  , 

where f(*) is the time required to calculate a floating point multiplication and f(+) is the time 

required to calculate a floating point addition. 

The computation of the approximation at time (k + 1)  . At from the approximation at  

times k . At and (k - 1) . A is highly parallel. If P identical processors are available for the 

computation and N,/P is an integer, then partition the interval [011] into P equal subintervals 

and assign the calculation of the solution locations in each subinterval to a common processor. 

If we assume that the processors are interconiiected as a linear array, then we can map the 

subintervals and data onto the processors in such a way that each processor needs to receive 

only two floating point numbers from its immediate neighbors in order to finish its calculation 

of the next time step. If we assume that computation and communication are not overlapped, 

then the parallel cost of computing a single time step is 

N, 
( 4 .  f(+) + 3 .  f(*)) . p + 2 ' t , 
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where t is the t,ime required to send one floating point number to a neighboring processor 

and receive back another. This definition o f t  is equivalent t80 the transmission time on many 

multiprocessor architectures. The overall parallel cost for the computation is 

3 + 2 4 )  . N ,  
P 

This synchronous parallel implementation of the serial algorithm is optimal when N,/P is 

an integer. If N,/P is not an integer, then expression 10 is still a lower bound on the parallel 

cost, independent of the interconnection network. Even if we allow multiple processors to 

collaborate in the calculation of a single irf" , no more than 3 .  N ,  processors can be effectively 

used to decrease the parallel complexity.'' Thus, a lower bound on the parallel cost of any 

parallel implementation of this algorithm is 

If Nz grows, then additional processors can be used. Hut increasing X, will not significantly 

improve the approximation to the solution unless Nt also increases. In particular, both for 

stability and to ensure a balanced contribution to the error from the discretizations in time 

and space, it is reasonable to require that At/Ax be constant as the size of the problem grows. 

Therefore, N, will be a fixed proportion of Nt for any size problem. If the serial complexity 

of the algorithm increases by a factor of K ,  then both N ,  and the lower bound on the parallel 

cost in expression 11 increase by a factor of a, independent of the number of processors and 

of the multiprocessor architecture. 

The work of Gustafson et  a1 [9] pointed out that increasing the size of the problem often 

permits the efficient use of a large number of processors. This fact is also clear from this 

example. To use the processors efficiently when N,/P is an integer, we simply need to  ensure 

that 
N,  

2 . i! -K (4 . f(+) + 3 . .f(*)) . p 1 

for then Ep 1.0. This is easily achieved by making N ,  >> P .  If tnore processors become 

available, then the high efficiency can be maintained by keeping N,/P constant. But, a s  was 

noted above, N,  0: N,, and the parallel cost is proportional to N, . N t / P .  Thus, maintaining 

the high efficiency for an increasing number of processors requires that the parallel cost increase 

at  least as fast as  the number of processors. This example algorithm is very close to  one of the 

examples in [9] , and a similar analysis applies to it. Their other examples have similiar behavior 

as well. 

5. Conclusions 

The cost of calculating a numerical approxiniation to the solution of a partial differential equa- 

tion is constrained by the amount of data that must be used in order to  calculate an accurate 

'lUsing multiple processors to  calculate a single 6:'' will increase the communication beyond that indicated 

in this expression. 
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enough approximation. For the simple assumptions about the data functions and the partial 

differential equation described in Assumptions 1-5 and Theorem 3.3 of Section 3,  these con- 

straints limit how quickly the approximation can be calculated. As e ,  the bound on the error 

in the approximation, decreases, there exists an algorithm-independent lower bound on the 

parallel complexity that must increase at least as fast as -c log2(~)  for some positive constant 

c. When the additional assumptions of Theorem 3.4 also hold, this bound is tight in the sense 

that there exist parallel algorithms whose parallel complexity grow no faster than this. When 

the interconnection network or the number of processors in the multiprocessor is taken into 

account , the lower bound 011 the execution time may increase much more rapidly. 

These theoretical results imply that increasingly large instances of a problem cannot be 

solved in a fixed amount of time no matter how many processors are available. Thus, enabling 

the use of an increasing number of processors by increasing the size of the problem will conflict 

with a requirement that the parallel cost remain below a given threshold. This conclusion be- 

comes obvious if any given algorithm is considered, but these results are algorithm-independent. 

If algorithms are additionally required to be efficient on a multiprocessor as the number of pro- 

cessors increases, then it is clear that problem size must grow even larger, resulting in an even 

greater increase in the parallel cost. 

The results of this paper are easily extended to  classes of problems that do not satisfy the 

assumptions of Section 3. We must simply show that the error in the individual solution values 

must go to zero in order for the error in the approximation to go to zero, and that at  least 

one solution value cannot be calculated exactly without an infinite amount of data. This is a 

common situation when numerically approximating the solution of differential equations. 
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