

. - ~ ~ ~ ~

ORN L/TM- 10945

Engineering Physics and Mathematics Division

Mat hematical Sciences Section

LIMITS ON PARALLELISM IN THE N U M E R I C A L SOLUTION OF LINEAR
P D E S

Patrick B. Worley

Oak Ridge National Laboratory
Mathematical Sciences Section
P.O. Box 2009, Bldg. 9207-A
Oak Ridge, TN 37831-8083

Date Published: October 1988

Research was supported by the
Applied Mathematical Sciences &search Program

of the Office of Energy Research,
U.S. Department of Energy.

I

Prepared by the
Oak k d g e National Laboratory

Oak Ridge, Tennessee 37831
operated by

hiartin Marietta Energy Systerns, Inc.
for the

U.S. DEPAIL'I'MENT OF ENERGY
under Contract No. DE-AC-05-840R21400 MAR1 IN MARIE1 TA ENERGY SVS'FMS LCRAR$FS

3 4 4 5 6 0 2 8 3 1 3 6 3

Contents

1 Introduction 1

2 Information Theoretic Lower Bounds 2

2.1 Multiprocessor Assuniptions . 2

2.1.1 Multiprocessor Model . 2

2.1.2 Communication Capabilities . 2

2.1.3 Example Architectures . 3
2.2 Algorithm Model . 4

2.2.1 Serial Algorithm . 4
2.2.2 Parallel Algorithm . 4

2.3 Lower Rounds on Parallel Cost . 5

3 Bounds on Parallel Algorithms for Linear PDEs 7

3.1 PDE Assumptions . 8

3.2 Problem Assumptions . 9

3.3 Boutids on Execution Time . 9

3.4 Problem Scaling . 11

4 Examples 15

4.1 Lower Bound Calculation . 15

4.2 Algoritlirnic Example . 13

5 Conclusions 21

Acknowledgements 22

References 22

...
111

LIMITS ON PARALLELISM IN THE NUMERICAL SOLUTION OF LINEAR
PDES

Patrick H . Worley

Abstract

We consider approximating the solution of a linear scalar partial differential

equation (PDE) at a single location in its problem domain. In previous work tvc:

described a lower bound on the amount of data required to satisfy an error bound

for the approximation. Using this bound, we derive a lower hound on the parallel

complexity of algorithms that approximate the solution. The lower bound is a linear

function of 1og2c-1, where t is an upper bound on the error. Thus, the parallel

complexity increases as F decreases, independent of the number of processors, the

interconnection topology, and the algorithm used. We also describe how the lower

bound changes when the interconnection network or the number of processors is

specified.
Recent research has established that it is often possible to use a large number

of processors efficiently when calculating the numerical solution of a PDE if the
problem is sufficiently large. We argue that increasing the size of such a problem
will usually come at the cost of increasing the execution time. We describe two
examples verifying this conclusion, an algorithm-independent analysis of an elliptic
PDF, and an analysis of a specific algorithm for the approximation of a hyperbolic
PDE.

V

1. Introduction

Multiprocessors with a moderate number of processors (4 100) have proven to be cost effective

computer architectures for solving many of the cornputationally intensive problems in scientific

computing [lO,ll]. There has been some skepticism as to whether multiprocessors with sig-

nificantly more processors will be as useful. There is a law of diminishing returns associated

with using increasingly many processors to solve a fixed size problem. For example, a simple

model of such behavior for a fixed algorithm is described by Amdahl in [l] and [2]. The recent

empirical results of Gustafson, Montry, and Benner [9] indicate that the efficient use of an

increasing number of processors is possible if the size of the problem can be increased as well.

They observed that, when the size of the problem increases, the amount of paraliel work in

many algorithms grows faster than both the amount of serial work and the amount of overhead

in exploiting parallelism. This is an important observation. Often the size of a problem that

computational scientists want to solve is too large to be computed in a reasonable length of time

on the current generation of computers. Instead, they solve the largest size problem that they

can afford. Thus, given more processors, it is reasonable to consider solving a larger problem

if it can be calculated in a specified amount of time. We will prove that this is not always

possible.
We begin by describing information theoretic lower bounds on the execution time of an

algorithm. From these results we prove that the execution time will often grow without bound as

the size of the problem increases, independent of the number of processors and of the algorithm

used. This implies that increasing the problem size so as to make use of an increasing number

of processors will eventually increase the execution time. These bounds are calculated for the

problem of numerically approximating the solution of a linear scalar partial differential equation

(PDE) that satisfies certain conditions, but the argument can be applied to other classes of

problems as well. To prove the results we also require the assumption that the problem size is

allowed to grow only if the solution to the problem is improved sufficiently by doing so We

contend that this assumption is the only reasonable one to make.

In Section 2 we describe the multiprocessor and algorithm models we use to establish the

bounds. We then derive simple lower bounds on the execution time of an algorithm that

are a function of how the data are used. In Section 3 we describe the problem assumptions.

From these we derive algorithm-independent lower bounds on how the execution time grows

as a function of the error in the approximation to the solution of the PDE. We then describe

assumptions on how the size of the problem grows, and conclude that the execution time will

usually grow as the problem grows. In Section 4 we calculate the lower bounds described in

Section 3 for a model problem. An analysis of an example algorithm motivated by the work of

Custafson et a1 [9] is also presented to illustrate the practical implicat.ions of this work.

2

2. Information Theoretic Lower Bounds

Our focus in this paper is on MIMD’ multiprocessors and on modelling parallelism at the level

of concurrent execution of floating point operations. This bias is reflected in the following

iriultiprocessor and algorithm models. Most of the assumptions are made merely to provide a

structure upon which to base the proofs. Other assumptions could serve just as well.

2.1. Multiprocessor Assumptions

2.1.1. Multiprocessor Model

We model a multiprocessor as a directed graph (V , E) . Each vertex vi E V represents a

serial processor.2 Each edge e , E E represents a unidirectional corrimunication channel in the

miultiprocessor. A vertex v 1 is connected to a vertex u 2 if there exists an edge for which u1 is

the source and v 2 is the destination. We will denote the index of the source vertex of an edge

e, by s (j) and the index of the destination vertex by d (j) .

Associated with each channel e j is a positive number I j , the transrilission time, indicating

the time required to send a single floating point number from v s (j) to v d (j) . Associated with

each processor vi is a positive number f;,(+) indicating the time required to add two floating

point numbers. We assume that all floating point operations are computed by the composition

of operators from some given set of binary and unary floating point operators, and that addition

is the fastest binary floating point operator. We will refer to the minimum fi,(+) and t j in a

multiprocessor by f(+) and 1 respectively.

2.1.2. Communication Capabilities

Define a pa th p to be a sequence of edges, { e j , 11 = 1,. . . , p } , such that the destination vertex

of edge e, , is the source vertex for edge e,,, , . Define

sum of the transmission times along this path,

the length of the path p, L(p), to be the

Thus, L(p) is the time required to send a single floating point number along the path.

Define the dis tance from vertex u1 to vertex 212, O (v l , v 2) , to be the length of the path of

minimum length starting at v 1 and ending at 0 2 . Define D (v , v) to be zero. Thus, D(v1, v 2) is

the minimum amount of time it takes to send a single floating point number from v1 to v 2 .

V , to be the maximum

distance betweeu two vertices in the subset.

Define the d i a m e t e r of a subset of vertices of the graph, V’

diam(V’) = max, D (v , w)
U , W € V

‘Multiple Instruction hfultiple Data is one category of Flynn’s multiprocessor taxonomy [7]. If a computer
is an MIMD multiprocessor, then both the instruction a procasor is executing and the data it is using can be
different from thase of other processors at any given moment.

We ignore memory devices in the model since they do not affect the lower bounds we derive.

3

Define a center of this subset to be a vertex that minimizes the maximum distance between

itself and other vertices in the subset. That is, if c E V’ is a center of V’, then

max D(c, w) = WEV’ min WuEV max, D (v , w) .
W E V ’

Define the radius of the subset to be this distance,

rad(V’) = min ma5 D(v, w>
V E V ’ wf v

Note that the radius satisfies

diam(V’)/2 5 rad(V’) 5 diani(V’) .

Consider the subset of P processors with minimum radius in the multiprocessor. Define the

function r (P) to be the radius of this subset. In Section 2.3 we will use r (P) to describe lower

bounds on t,he execution time of algorithms.

2.1.3. Example Architectures

Most multiprocessor architectures currently in use have fairly simple graphs, with essentially

homogeneous processor and communication capabilities [6]. The following examples are com-

mon designs, each of whose behavior is representative of a class of architectures. All of the

examples can be described as undirected graphs. If an edge exists from vI to v, , then an edge

with the same parameters also exists from u3 to w j . Additionally, all processor and communi-

cation channel capabilities are the same unless otherwise noted. Therefore, the values for the

floating point addition time and the transmission time are denoted by f(+l and t respectively

m Fully Connected. The graph of the architecture is a clique, and the diameter of any subset

of the multiprocessor containing more than one processor is t .

k Dzmenszonal Arruy. The graph of the architecture is a k dimensional array. Each pro-

cessor is connected to up to 2k other processors. Assume that the array has equal Iagt l i

sides and P processors. Then the diameter of a subset of Q processors is no more titan

kt . (P1/‘ - l), and no less than k t . (Q1/’ - 1). The maximum is the diameter of the

multiprocessor. The minimum is achieved by a subset of vertices and edgcs that is a

k dimensional array with &‘Ik processors on a side.

0 Hypercube. If the dimension of an array of P processors with equal length sides is log, P,
then the graph is of a log, P dimensional binary hypercube. Each processor is connected

to log, P other processors.

log, P and t . log, Q. The lower bound is associated with a subset of vertices arid edges

that approximates a logz Q dimensional hypercube, or whose complement approximates

a logz (P - Q) dimensional hypercube.

The diameter of a subset of Q processors is between t

These examples are usually associated with distributed-memory multiprocessors, but com-

For example, a well- mon shared-memory architectures can also be associated with them.

4

designed bus-based multiprocessor will behave like a fully connected architecture. Similarly,

a shared-memory multiprocessor based on an Omega interconnection network [8] will have

communication capabilities similar to a hypercube.

2.2. Algori thm Model

2.2.1. Serial Algori thm

We model an algorithm as a partially ordered set of inslmclions of the form

where plop is a floating point operation, y is a floating point variable, and (~ 1 , . . . ,zn} are

floating point constants and variables. If a floating point variable is used by two different

instructions, and if one of the instructions changes the value of that variable, then the par-

tial order specifies a precedence relationship between them. These are the only relationships

established by the partial order.3

We define the s e n d complexilyof an algorithm, C,, to be the time spent executing the float-

ing point operations on some standard serial processor. The standard processor is assumed to

satisfy the assumptions made in the previous section about the processors in the multiproces-

sor. All sequential orderings of the instructions of an algorithm that are consistent with the

partial ordering will have the same serial complexity, and will produce the same results when

executed on a serial processor. In consequence, we will also refer to the partially ordered set

of instructions as a s e n d algorithm. By the assumptions made on the processor, the serial

complexity is a weighted sum of the numbers of the different floating point operations. The

weights depend on the specifics of the standard processor.

2.2.2. Paral le l Algor i thm

A parallel implementation of an algorithm on a multiprocessor specifies when and on which

processor each iristruction is executed, and what communication takes place during the exe-

cution of the algorithm. We will refer to this information as the schedubng of the algorithm.

Define a scheduling to be well-defined if it is compatible with the partial order's precedence re-

lationships, and if all demands made on the processors and communication channels are within

their capabilities. We define a parallel algorithm to be a triple consisting of a serial algorithm, a

multiprocessor architecture, and a well-defined scheduling. Thus, we associate a deterministic

serial algorithm with each parallel algorithm. In practice, the serial algorithm may be a func-

tion of the data. This can make determining the serial algorithm dificult, especially for chaotic

parallel algorithnis [5] [3]. But we can still analyze characteristics of the parallel algorithm by

establishing necessary properties of the associated serial algorithm.

We define the cost, TpI to be the time it takes to execute a parallel algorithm on a mul-

tiprocessor. Unlike serial algorithms, the cost of a parallel algorithm is not necessarily well

approximated by a weighted s u m of the numbers of the different floating point operations.

3Thus, the algorithm can be represented by a data flow graph. See Hwang and Briggs [13, pages 740-7441.

5

Instead, there are at least two distinct costs associated with a parallel algorithm, parallel com-

plexity and communica t ion cost.

The parallel complexity is the amount of time during which at least one of the processors is

busy executing the instructions of the serial algorithm. If P processors are used by the parallel

algorithm to execute instructions, then the parallel complexity, Cp , is bounded from below by4

where the serial complexity in this expression is based on using the “fastest” of the P processors

as the standard serial processor.

The communication cost, W,, is the amount of time during which at least one of the com-

munication channels is busy transmitting information used by the serial algorithm. While the

achievable parallel complexity is constrained by the number of processors in the multiprocessor

and by the serial algorithm, the communication cost is additionally constrained b,y the graph

of the multiprocessor.

A lower bound on Tp is5

Tp 2 maxwp, w-1 ‘ (2)

If the schedule is efficient in the sense that either communication or computation is taking place

somewhere in the multiprocessor at all times, then an upper bound on T, is

The standard measure of the efficiency of a parallel algorithm is the percentage of the total

time that processors spend on tasks that are present in

the algorithm. If we assume that the parallel algorithm

parallel efficiency Ep is
CS E - - .

‘ - T P . P

By inequalities 1 and 2, the efficiency is always less than

a single processor implementation of

uses F‘ identical processors, then the

(4)

or equal to one.

2.3. Lower Bounds on Parallel Cost

A serial algorithm describes a mapping from a set of data to a set of solution values specified

by the problem. Denote the set of solution values of an algorithm a by

u = { “ j I j = 1,...,Na,u} ,
represents the smallest integer greater than or equal to o.

5We will use max(a1,. . . , a,} as an alternative notation for

max n .
a E (a 1 , .,an}

Similar notation will be used for the minimum element in a set.

6

where N,,u is the number of these solution values. Denote the data required to produce these

solution values by

G = (g k (k - l , . . . , N a , g } .

That is, there is no g k E G that can be arbitrarily changed without changing at least one of

the solution values. N,,g is the number of these data.

For u, E U , define N,(uj) to be the amount of data required by a to compute uJ. Again, this

means that no one of these N,(uj) data can be arbitrarily changed without changing the value

of u,. If N,(u,) > 1, then each datum must be the operand of a binary floating point operation.

This operation produces a result that is itself either the operand of another binary floating point

operation or the operand of a unary floating point operation whose result is u j . Continuing

this argument and summing the indicated number of operations leads to the conclusion that

the serial complexity of calculating u, is bounded from below by f(+) .(N,(uj)- 1). The next

lemma is a direct consequence.

Lemma 2.1. A lower bound on the serial complexity of an algorithm a is

for any uj E U .

A processor collaborates in the computation of a solution value u j if changing the results of

the floating point operations calculated by that processor can change the value of u,. Define

Pa(.,) to be the number of processors that collaborate in the calculation of u j for a given

parallel iriiplementation of a. As in Section 2.1.2, let r(P,(uj)) be the radius of the P,(uj)
processor subset that has the minimum radius.

Lemma 2.2. The communication cost of a parallel implementation of an algorithm a on a

given multiprocessor is bountled from below by .(Pa(.,)) for any u, E U .

Proaf The lemma is a consequence of the fact that information is needed from all Pa(uJ)
processors in order to calculate u,. Denote the subset of processors that collaborate in the

calculation of u, by V’. Assume that a processor u E V’ has been designated to calculate the

final unary or binary operation that produces uj. Each processor in V‘ produces a result that is

crucid to the calculation. Therefore, whether a result travels directly to v or is used by another

processor to produce a new partial result that is then sent on, the time spent communicating

is never less than the distance to u from the originating processor. Therefore, the maximum

distance from the processors in V‘ to v is a lower bound on the execution time. Ry definition,

this is bounded from below by r(Pa(uj)). 8

The parallel complexity of calculating u j on a multiprocessor can be no faster than the

minimum parallel complexity of summing its required data. The data can be reduced only by

a sequence of binary operations, and binary add is assumed to be the fastest binary floating

point operation. Since addition is a binary operation, each time step of length f(+, at best

replaces M existing summands by M / 2 results. These results are the summands for the next

‘See Leinma 1 in Kuck [14, page 951.

7

step. Thus. one lower bound on the parallel complexity is f(+) flog, Na(uj)] .
Lemma 2.1, and inequality 1 on page 5 prove the following lemma.

Lemma 2.3. The parallel complexity ofa parallel implementation of an algorithm a is hounded

from below b v

This result,

for anyuj E U.

Define Na,* to be the maximum amount of data required by an algorithm a to compute a

single solution value,

For some parallel implementation of a, define Pa,* to be the maximum number of processors

that collaborate in the calculation of a single solution value,

Theorem 2.4. The parallel cost of a parallel implementation of an algorithm a is bounded

from below bv

ProoE The total cost is bounded from below by max{C,, W,}. The result then follows from

Lemmas 2.2 and 2.3. 1

Corollary 2.5. For a P processor multiprocessor, a lower bound on the parallel cost of ;my

parallei implementation of a serial algorithm a is

Proof Pa,* is a member of the set { 1,. . . , P } for any parallel implementation of an algorithm

a on this multiprocessor. The proof then follows from Theorem 2.4.

3. Bounds on Parallel Algorithms for Linear PDEs

By Corollary 2.5, if we know how many data are required to calculate a single solution value,

then we can compute a lower bound on the execution time of a given parallel algorithm. The
problem assumptions described in the following subsections allow us to bound the amount of

this data for all algorithms as a function of the error tolerance, and thus calculate an afgorathm-

independent lower bound.

7See Lemma 1 in Kudc [14, page 9.51.

8

3.1. PDE Assumptions

For any nonnegative integer k, let !I?' he the k dimensional Euclidean vector space and let I k

be the k dimensional unit cube,

I' = [0,1] x " . x [O , I] c Sk .

For some d 2 1, let R be a compact subset of Rd.

1) We assirme that we are approximating the solution of a linear scalar partial differential

equation defined on R whose solution operator can be represented by an expression of the

form

for all t E a. i is a positive integer, {d ; I i E { 1,. . . , i}} is a set of nonnegative integers,

{g ; I i E { I , . . . , I } } is a set of functions representing the problem data, and u (Z) is the

solution function. For each i E { I , . . . ,f} and 2 E 0, !Fi(.i,*) is a Lebesgue integrable

function in I d , .

Thus, the solution function is the sum of i components of the form

U i (5) = Q,(z,*)g,(2)d2 4.
For the class of problem considered here, the kernels (9,) are linear functionals of the Green's

function for the PDE. See Section 4 and Butkovskiy [4] for examples of this type of represen-

tation of the solution operator.

Define C m (l d ,) to be the set of all functions that have continuoils rnth order partial deriva-

tives on the set I d , . Let Viy 'g be a vector whose elements are some ordering of the rnth order

partial derivatives of g in Id,.

2) For each i E { 1,. . . , r} , we assume that the data function gi is known to be some member

of a set G, defined in the following way. G; is the set of all functions g satisfying the

properties

i) g(z) E C"'(Id,)

ii) l l $,~~)g(~) l l~ ;) 5 ~ ; (i i t .) for z E I d ,

where mi is a positive integer, 1 1 . I l (i) is a vector norm, and Mi(?) is a nonnegative

function. We also assume that any member of Gi is a permissible data function for the

ith component, and that any combination of data functions from the sets {G;} generate

a possible solution to the PDE, with one possible exception. The inclusion of a given

data function g; in a set of data functions may force the data function for a different

component, g,, to have given frinction and derivative values on the boundary of I d , . We

will refer to this as a compatibiIity condition.

9

Assumption 2 states that the data functions are known to have a certain number of continuous

derivatives, and that the magnitude of the largest partial derivatives is bounded by same known

function. This is the only information we are assuming about the data functions. This type of

assumption on the data is similar t o the assumptions that are made on the data arid solution

functions when specifying a priori bounds on the error introduced when using finite difference

and finite element discretizations of the PDE to approximate the solution. The particular form

of these assumptions is similar to that used by Traub and Woiniakowski [15].

3.2. Problem Assumptions

Numerical approximations to the solution of the PDE replace the possibly infinite dimensional

problem with a finite dimensional problem. The dimensionality of the problem is reduced by

introducing error in the following sense:

Only a finite amount of information about the solution function is calculated. Any model

of the solution based only on this information will merely approximate the true solution.

0 Only a finite amount of information about the data functions is used to calculate the

desired solution properties. We will refer t o this as the d a t a functzon s a n p f z n g . TJnless

this information completely characterizes the data functions, the solution values that are

calculated are also approximate.

The PDE is replaced by a relationship between the chosen information.

approximation to the solution is also a function of this relationship.

The error in the

For the rest of this paper, we restrict ourselves to problems where

3) values o f t h e d a t a functions at given locations in thew domazns are available l o be used,

4) values of the solution function a t gtuen locattons tn its domain are nyproxzmated, and

5) the error i n approxirnaiing each solution value 1s bounded by s o m e given valve 6 .

We can use the follcwing notation for any serial algorithm a with finite complexity that solves

a problem satlsfying the above assumptions. The algorithm calculates the value of the solution

function u a t some finite set of locations 2 = {Zj I j = 1,. . . , Na,u} in R. For each data function

g i , the algorithm uses function values at some finite set of locations X, = { 2 i , k I k = 1, . . . , Na,,}

in I d , . And, for any particular solution value .(TI), the algorithm uses values of g, at some set

of locations

Xi , j = { z : , j , k I fi = 1,. . Na,:(zj)} 5. dys

in I d , . Note the slight change in notation from Section 2 3 Instead of IV~,~(U(E~)), we use

Na,, (51).

3.3. Bounds on Execution Tinie

Assumptions 1-5 describe the type of problems we are considering. Each problem is specified

by the linear PDF,, the assumptions on the data functions, the locations of the desired solution

values, the locations of the available data, and the error bound to be satisfied. The following

10

theorem describes an algorit hm-independent bound on the amount of data needed to satisfy an

error bound when approximating one of the desired solution values. We will then use t,his to

describe a lower bound on the parallel complexity of all algorithms for a given problem.

Let 2j E Z be one of the desired solution value locations. Let E be the upper bound on the

allowable error when approximating u(5 j) . Let &(Z; 6) denote a closed ball in 9IdL centered on

2t with a radius of 6. If d; = 0, then we define 6 to be zero.

Theorem 3.1. Let i be the index of a component, i E (1,. . . , f}. If there exists a closed ball

f3i(f; 6) C I d , on which q;(.Zj , 2) is either strictly positive or strictly negative, then there exist

positive constants Ci and Ci dependent only on mi, d; , and 11 . /I(;) with the following property.

If

then data are required at at least

locations in &(e; 6) in order to satisfy the error bound.

Proof: This theorem is a variant of Theorem 2.2 on page 45 in Worley [16]. The same proof

establishes this result, and the details of the proof can be found there. The proof is based on

the following argument. Given a set of locations where the i th data function is sampled in the

ball, we construct a new function that has the same values at those locations, is also in G;,
and is compatible with all of the other data functions. This new function is indistinguishable

from the true data function when given only the sampled values, and yet it generates a different

solution value. This perturbation represents an intrinsic error that is not controllable by this

set of data sampling locations. From this construction a lower bound on the intrinsic error is

calculated for all sets of sampling locations of a given size. This lower bound is then used to

calculate a minimum number of sampling locations that is required to satisfy the error bound.

If inequality 5 is not satisfied, then no sampling locations are required in the ball by this

argument. Note that the theorem is trivially true if di = 0 since then b = 0 and inequality 5 is

never satisfied.

Define N,, , (Tj) t o be the minimum number of data sampling locations required in I d , in

order to ensure that the error in approximating ~ (2 ,) is less than e. Using this notation, an

immediate corollary of Theorem 3.1 is the following:

Corollary 3.2. Let i be the index of a component, i E (1,. . . , r}. If there exists a closed

ball & (% ; b) c I d , of positive radius 6 on which q,(Zj ,Z) is either strictly positive or strictly

11

negative and on which both \k,(Zj,Z) and Mi(E) are bounded away from zero, then'

as a function of I /€ .

Proof: Since 6 > 0 we know that d, > 0. Therefore, since both l\ki(.Zj,r)l and M,(z) are

bounded away from zero, the left hand side of inequality 5 in Theorem 3.1 is always positive.

Therefore, as E goes to zero (and 1 / ~ --+ m), the inequality will eventually be satisfied and

~ , , i (~ j) must grow a t least as fast as cc-+ for some positive constant c. 1

The implication of this corollary is that the amount of data required to approximate u (i J) will

increase without bound as E -+ 0 if the assumptions of the corollary hold for some component

i. This condition holds for most of the linear PDEs arising in mathematical physics. By
Lemma 2.3, this implies that the parallel complexity of solving the problem must also increase

without bound as E -+ 0. We formally state this result in the next theorem.

Define CP,E(P, f(+), F,) to be the minimum parallel complexity over all algorithms (for a

problem satisfying Assumptions 1-5) that approximate ti(.,) to within an error tolerance of E

on a multiprocessor with P processors and a given minimum execution time for floating point

addition, .ti+).

Theorem 3.3. Assume that, for some i E (1,. . . , r) , there exists a closed ball B,(z; 6) c I d , of

positive radius 6 on which \ IT;(Z3 , 2) is either strictly positive or strictly negative and on which

both q, (z j ,?) and M,(i) are bounded away from zero. Then there exist pashive constants N

and E, , that are independent of E , PI and f(+) such that

when 5 E , .

Proof: The total amount of data required to approximate the solution value "(2,) to within an

error tolerance of 6 is at least as great as NE,j(Zj). Therefore, by Corollary 2.5,

The result then foIlows from Corollary 3.2. I
6For two real valued functions f and g, j (z) = n(g(x)) if and only if there exist positive constants c and 20

such that

for all I: > $0 [12].
If(.)l 2 cIg(t) l

12

‘This result can be shown to be essentially tight if each of the components either satisfies

the assumptions of Theorem 3.3 or satisfies d; = 0, and if each M;(z’) is a bounded function.

Theorem 3.4. For each i E { 1,. . . , r } , assume that the ith component satisfies the following

conditions.

i) M i (2) is a bounded, nonnegative function in I d , .

ii) Either d; = 0 or there exists a closed bail Bi(2 ; 6) C I d ; of positive radius b on which

Qi(i , , 5) is either strictly positive or strictly negative and on which both * i (T j , 2) and

M;(z’) are bounded away from zero.

I f f (+) > 0, then there exist positive constants a, /?, and E* that are independent of E , P , and

f(+, and have the following property. C,,,(P, f(+), 2 ,) is contained in the interval

when E < E . .

Proof: This theorem follows from Theorem 2.3 on page 51 and Lemma 3.5 on page 77 in

Worley [16]. The details can be found there. The theorem is proved by the construction of

an algorithm a that approximates the value ~ (2 ,) to within the desired error tolerance in the

following way. Each data function g; is modelled by a piecewise polynomial j; that interpolates

gi at a uniform distribution of sampling locations in I d , . u (2 j) is then approximated by the

expression

The resulting algorithm can be represented by an expression of the form

where is the number of sampling locations in I d , used by the algorithm and n,,a 0: F-di/ml.

A parallel implementation of a on a P processor multiprocessor is then described whose parallel

complexity is bounded from above by an expression of the form

where the constants are all positive and independent of E . f(.) and f(+, are the times it takes the

“fastest” processors t o execute binary floating point multiplication and addition respectively.

LzJ is the largest integer less than or equal to r.

13

Since i is a constant, this expression is bounded from above by an expression of the form

for some finite constant T. This expression also represents an upper bound on Cp,,(P, #(+I, z j) ,
and the result follows immediately from Theorem 3.3. a

The parallel complexity represents only part of the parallel cost. Using Lemma 2.2 and

Theorem 3.3, we can describe a lower bound on the parallel cost that is independent of the

algorithm and the number of processors in the multiprocessor, but takes into account the

graph of the multiprocessor. Define Tp,E(P,f(+),t,21) to be Ihe minimum parallel cost over

all algorithms (for a problem satisfying Assumptions 1-5) that approximate ~(5,) to within an

error tolerance of E on a multiprocessor with P processors, a given minimum floating point

addition execution time, ti+), and a given minimum transrmssion time, t .

Theorem 3.5. Assume that, for some i E { 1 , . . . , f } , there exists a clased ball &(F; 6) c I d , of

positive radius 6 on which \E,(z,, Z) is either strictly positive or strictly negative and on which

both \ k , (Z J ,*) and M,(i) are bounded away from zero. Also assume that both f(+, and t are

positive .

a) If the multiprocessor is a Hypercube or Fully Connected Architecture, then there exist

constants (r and c+ that are independent oft, P , f(+,, and t such that

T,,E(P, f(+)J, 2,) L a . log, (d)

when E 5 E * .

b) If the milltiprocessor is a k Dimensional Array Architecture, then there exist constants 13
and c** that are independent of c , P , f(+), and t such that

Proof: Statement (a) is just a weakened form of Theorem 3.3. By the definition of a k dimen-

sional array, Corollary 2.5, and Corollary 3.2, if E is sufficiently small, then

14

for positive constants 9, Y , and T. For small E the minimum in inequality 6 is achieved with

Therefore,
A - T , P C (P , f (+) , t ,E j) > q* 'Tk+' . € (k + L * - ?- ,

and statement (b) follows immediately. a
By this theorem the lower bound on the parallel cost can grow significantly faster than the

lower bound on the parallel complexity if the underlying architecture is a k dimensional a m y .

3.4. Problem Scaling

In Section 1 we introduced the idea of increasing the problem size (or scaling the problem) in

order to increase the amount of easily exploitable parallelism. A formal definition of problem

size can be made [16, page 641, but it is sufficient to treat it as a measure of the serial complexity

of the algorithms used to solve a problem. Thus, increasing the size of the problem implies

changing the parameters of the problem so that the amount of work to be done in solving it

increases. Scaling the problem defines a family of similar problems all approximating the solu-

tion to the PDE. We will refer to a given set of parameters as a problem instance. The problem

parameters that are normally free to be varied are the solution values to be approximated, the

error bound to he satisfied, and the available data. Commonly, increasing the size of the prob-

lem indicates that the number of solution values and the amount of data used increase, and that

the error bound decreases. For some applications the solution is desired at only a fixed set of

locations, and only the other two parameters will vary. Rut in both cases, increasing the size of

the problem results in a better approximation to the solution function. It is simple to increase

the size of a problem without suffering an increased parallel cost if only the number of solution

value5 is increased and if enough idle processors are available. But continually increasing the

number of approximate solution values will not lead to a better solution unless the error in

these approximate values also decreases. We do not consider it reasonable to increase the size

of the problem unless there is some advantage gained by doing so. This motivates the following

assumption on how the size of problem is increased.

6) For a given problem instance, denote the set of locations where the solution is to be

approximated b y Z , and denote the error bound on these approximations by c . If the size

of the problem grows and Z' and E' are the corresponding parameters of the new instance,

then we assume that %: C Z' and

for some positive y independent of the scaling. Here 121 represents the number of locations

in the set.

Note that, this assumption is not on the problem, but rather on how we permit the problem

to grow. By this assumption the problem size is allowed to grow only if the error bound also

15

decreases. Moreover, if the problem size grows without bound, then the error bound goes to

zero. Assumption 6 is unnecessarily restrictive", but it is sufficient to establish the following

theorem. In particular, the assumption that Z 5 Z' is made merely to simplify the proof.

Theorem 3.6. Assume that, for some i E { 1, . . . , f} and a given problem instance, there exists

a rj E Z with the following property. There exists a closed ball si(%; 6) c I d , ofpositive radius

6 on which @,(Z,,Z) is either strictly positive or strictly negative and on which both @ i (? , , i t)

and Mi(5) are bounded away from zero. Also assume that f(+, is positive and bounded away

from zero for all permissible multiprocessor architectures. Then, if the size of the problem

increases without bound, so will the parallel cost, independent of the algorithm and of the

number of processors used.

Proof: This theorem follows directly from the assumption on how the problem scales, from

Theorem 3.3, and from inequality 2. If the size of the problem increases without bound, then E

decreases to zero, And once 2, is introduced as a location where the solution is approximated,

the solution is approximated there for all larger instances. Therefore, Theorem 3.3 implies

that the parallel complexity must grow a t least as fast as -clog2c for some positive constant

c, independent of the number of processors in the multiprocessor. Since this lower bound

becomes infinite when E --+ 0, and since the parallel complexity is a lower bound on the parallel

cost, the theorem is proved. Note that the lower bound grows even faster if we know that the

multiprocessor is a R dimensional grid, for then we can use Theorem 3.5 to bound the parallel

cost. II

4. Examples

Tn this section we describe two examples. In the first we calculate the lower bounds described in

Section 3 for a linear PDE that satisfies the assumptions of Section 3. The second is the analysis

of a numerical algorithm that demonstrates that the predicted behavior affects practical parallel

algorithms much sooner than predicted by the theoretical analysis.

4.1. Lower Bound Calculation

Consider the one dimensional elliptic problem

40) = 9 2 , 4 1) = 93

on the interval [0, 11, for some constants g2 and 93. The integral representation of the solution

is

'Osee Worley [16, pages 65-66] for a more general assumption.

16

X

where

Figure 1: *1(.5,x) for -tizz = f given Dirichlet boundary conditions.

There are three components,

4 2) = g2 . (1 - %)

and
213(z) = g3 . % .

Thus, dl = 1 and dz = d3 = 0.
Assume that 91 i s some member of a set G1 that is characterized by the condition that

if g E GI.
approximating u(.5). The graph of \k1(.5,x) as a function of z is displayed in Figure 1.

(0,.5). Let

For example, E’ E GI. Assume that .5 E Z . That is, we are interested in

The function \k1(.5,.r) is strictly positive in any interval of the form [a, 1 .- a] when cy E

3 = c1 . a . (. 5 - a) ,

17

where C1 is the constant from Theorem 3.1. By Theorem 3.1, if 6 < ~ (0) ~ then

On page 89 in Worley [I61 we show that Ci = C1 = 1/3 for this problem. Therefore, inequality 7

becomes

This bound is maximized when a = 1/8. The resulting lower bound

when c < c(1/8) = 9/4096. Since it is clear that NE,1(.5) 2 1 for

on Nc,1(.5) is

(8)

all c > 0, it follows that

inequality 8 holds for all 6 > 0. We will refer to this bound by N$t) (.5) . Figure 2 contains

the graph of this lower bound as a function of C. The constant multiplying the c-: term in

inequality 8 is relatively small, but NC,1(.5) is still guaranteed to be larger than 1000 when c is

less than 2.19 x If the functions in GI are instead characterized by the condition

then the lower bound on NL,1(.5) is scaled by a factor of 10. Under this condition N6,1(.5) is

guaranteed to be greater than 1000 if E < 2.19 x lo-'.

By Lemma 2.3,

is a lower bound on the parallel complexity of any algorithm that satisfies an error tolerance of

E when approximating the solution value 4 . 5) . Figure 3 is a graph of this lower bound. Thus,

the parallel complexity is guaranteed to be greater than 10 . f(+) when c 5 lo-'. This bound

on the optimal parallel complexity in expression 9 is very small unless c is very small, but even

an optimal parallel algorithm requires at least

2

processors in order t o achieve this complexity. If fewer processors collaborate in the approx-

imation of u(.5), then the bound on the parallel complexity described in Lemma 2.3 will be

dominated by the term f(+) (N!f;)(.5) - 1) /PI where P is the number of processors. hddi-

tionally, a parallel implementation on a multiprocessor will involve communication costs. By

18

lozo

10l6

10l2

lod
N

104

loo
10-16 10-12 10-8 10-4 loo

€

Figure 2: Lower bound on N c , ~ (. 5) as a function of E for exariiple 1-D elliptic problem.

€

Figure 3: Lower bound on parallel complexity as a function of E for example 1-D elliptic problem.

19

€

Hypercube (---), 1-D (. .), 2-D (...), 3-D (- - -)

Figure 4: Lower bound on parallel cost as a function of 6 for example 1-D elliptic problem.

corollary 2.5,

is a lower bound 011 the parallel cost. Assume that the minimum transmission time, t , is equal to

the minimum time to execute a floating point addition, f(+,, for all multiprocessor architectures

under consideration. Then Figure 4 is a graph of this lower bound for a variety of architectures.

It is clear from the Figure that the lower bound on the parallel cost is significantly larger than

the lower bound on the parallel complexity when the multiprocessor is a k dimensional grid

and 6 is small, as was proven in Theorem 3.5.

4.2. Algorithmic Example

The example in Section 4.1 illustrated the type of bounds that can be derived by the analysis

of Section 3.1. These algorithm-independent bounds are quite small for this problem, but

Theorem 3.4 indicates that they cannot be significantly improved. This conclusion is verified

in Worley [16,pages 93-98], where the parallel complexity of a particular parallel algorithni is

calculated for the same example and shown to be very close to the lower bound. In this section

we show that, by fixing the algorithm, the growth in the execution time as a function of the

problem size can be much more dramatic.

Consider the wave equation in one space dimension,

20

a
at

u (z , 0) = 0 = --u(z, 0) for x E [O , l]

u(0 , t) = 0 = u(1 , t) for t E [a, 11

Assume that we want the solution on a uniform mesh at time 1,

where Ax is the distance between consecutive locations arid N, is the number of locations,

N, + 1 = l /Ax , Assume that values of the data function are available on a mesh that is

iiniform in the spatial direction with a separation of Axl and uniform in the time direction

with a separation of At,

Here N, is as before and N t = l /At .
We will appproximate u (z , t) on the mesh at time 1 by time-stepping using the following

finite difference formula,

V j c { l l . . . l N z , } V k E (1 , . - . , Nt} ,

where iif is an approximation to u at the location (jAx, k a t) and gf = g(jAx, kAt) . Thus,

the solution is approximated at all of the locations where the data function is sampled. This

scheme requires approximations to the solution at times kat and (k - 1)At in order to calculate

an approximation to the solution at time (k + 1)At. To start the process, we define GI-' to be

zero for all j. The serial complexity of this calculation is approximately

(4 . f(+) 4- 3 . f(*)) ' N, ' N t ,

where f(*) is the time required to calculate a floating point multiplication and f(+) is the time

required to calculate a floating point addition.

The computation of the approximation at time (k + 1) . At from the approximation at

times k . At and (k - 1) . A is highly parallel. If P identical processors are available for the

computation and N,/P is an integer, then partition the interval [011] into P equal subintervals

and assign the calculation of the solution locations in each subinterval to a common processor.

If we assume that the processors are interconiiected as a linear array, then we can map the

subintervals and data onto the processors in such a way that each processor needs to receive

only two floating point numbers from its immediate neighbors in order to finish its calculation

of the next time step. If we assume that computation and communication are not overlapped,

then the parallel cost of computing a single time step is

N,
(4 . f(+) + 3 . f(*)) . p + 2 ' t ,

2 1

where t is the t,ime required to send one floating point number to a neighboring processor

and receive back another. This definition o f t is equivalent t80 the transmission time on many

multiprocessor architectures. The overall parallel cost for the computation is

3 + 2 4) . N ,
P

This synchronous parallel implementation of the serial algorithm is optimal when N,/P is

an integer. If N,/P is not an integer, then expression 10 is still a lower bound on the parallel

cost, independent of the interconnection network. Even if we allow multiple processors to

collaborate in the calculation of a single irf" , no more than 3 . N , processors can be effectively

used to decrease the parallel complexity.'' Thus, a lower bound on the parallel cost of any

parallel implementation of this algorithm is

If Nz grows, then additional processors can be used. Hut increasing X, will not significantly

improve the approximation to the solution unless Nt also increases. In particular, both for

stability and to ensure a balanced contribution to the error from the discretizations in time

and space, it is reasonable to require that At/Ax be constant as the size of the problem grows.

Therefore, N, will be a fixed proportion of Nt for any size problem. If the serial complexity

of the algorithm increases by a factor of K , then both N , and the lower bound on the parallel

cost in expression 11 increase by a factor of a, independent of the number of processors and

of the multiprocessor architecture.

The work of Gustafson et a1 [9] pointed out that increasing the size of the problem often

permits the efficient use of a large number of processors. This fact is also clear from this

example. To use the processors efficiently when N,/P is an integer, we simply need to ensure

that
N,

2 . i! -K (4 . f(+) + 3 . .f(*)) . p 1

for then Ep 1.0. This is easily achieved by making N , >> P . If tnore processors become

available, then the high efficiency can be maintained by keeping N,/P constant. But, a s was

noted above, N, 0: N,, and the parallel cost is proportional to N, . N t / P . Thus, maintaining

the high efficiency for an increasing number of processors requires that the parallel cost increase

at least as fast as the number of processors. This example algorithm is very close to one of the

examples in [9] , and a similar analysis applies to it. Their other examples have similiar behavior

as well.

5. Conclusions

The cost of calculating a numerical approxiniation to the solution of a partial differential equa-

tion is constrained by the amount of data that must be used in order to calculate an accurate

'lUsing multiple processors to calculate a single 6:'' will increase the communication beyond that indicated

in this expression.

22

enough approximation. For the simple assumptions about the data functions and the partial

differential equation described in Assumptions 1-5 and Theorem 3.3 of Section 3, these con-

straints limit how quickly the approximation can be calculated. As e , the bound on the error

in the approximation, decreases, there exists an algorithm-independent lower bound on the

parallel complexity that must increase at least as fast as -c log2(~) for some positive constant

c. When the additional assumptions of Theorem 3.4 also hold, this bound is tight in the sense

that there exist parallel algorithms whose parallel complexity grow no faster than this. When

the interconnection network or the number of processors in the multiprocessor is taken into

account , the lower bound 011 the execution time may increase much more rapidly.

These theoretical results imply that increasingly large instances of a problem cannot be

solved in a fixed amount of time no matter how many processors are available. Thus, enabling

the use of an increasing number of processors by increasing the size of the problem will conflict

with a requirement that the parallel cost remain below a given threshold. This conclusion be-

comes obvious if any given algorithm is considered, but these results are algorithm-independent.

If algorithms are additionally required to be efficient on a multiprocessor as the number of pro-

cessors increases, then it is clear that problem size must grow even larger, resulting in an even

greater increase in the parallel cost.

The results of this paper are easily extended to classes of problems that do not satisfy the

assumptions of Section 3. We must simply show that the error in the individual solution values

must go to zero in order for the error in the approximation to go to zero, and that at least

one solution value cannot be calculated exactly without an infinite amount of data. This is a

common situation when numerically approximating the solution of differential equations.

Acknowledgements

We thank John Drake, Michael Heath, and Esmond Ng for their helpful suggestions on the

presentation of the material in this paper.

References

111 G. AMDAWL, The validily of the single processor approach t o achieving large scale com-

puting capabilities, AFIPS Conference Proceedings, 30 (1967), pp. 483-485.

PI - , Limits of ezpectation, International Journal of Supercomputer Applications, 2
(19881, pp. 88-97.

[3] G . M . UAUDET, Asynchronous ileruizve methods for rnultzprocessors, Journal. of the ACM,
25 (1978), pp. 226-244.

[4] -4. G . BUTKOVSKIY, Green’s Functions and Rans fer Functions Handbook, Ellis Horwood

Limited, Chichester, West Sussex, United Kingdom, 1982.

[5] D. CHAZAN AND W. MIRANKER, Chaotic re/azatioa, Linear Algebra and its Applications,

2 (1969), pp. 199-222.

23

[e] T. FENG, A s w v e y of interconnection networks, IEEE Computer, 14 (19811, pp. 12-27.

[7] M. J . FLYNN, Some computer organizations and their effectzveness, IEEE Transactions on

Computers, (3-21 (19721, pp. 948-960.

[8] A. GOTTLIEB, R. GRISHEIAN, C . P. KRUSKAL, K. P. MCAULIFFE, L. RUDOLF, A N D

M. SNIR, The N Y U Ultracomputer - designing an MIMD shared memory parallel corn-

puter, IEEE Transactions on Computers, C-32 (1983), pp. 175-189.

[9] J . L. GUSTAFSON, G. R. MONTRY, AND R. E. BENNER, Development ofparallel methods

for a 1024-yrocessor hyperevbe, SIAM Journal on Scientific and Statistical Computing, 9
(1988), pp. 609-638.

[IO] M. T. HEATH, ed., IIypercube Multiprocessors 1986, Society for Industrial and Applied

Mathematics, Philadelphia, 1986.

ill] -, ed., Hypercube Multiprocessors 198'7, Society for Industrial and Applied Mathemat-

ics, Philadelphia, 1987.

[12] E. HOROWITZ AND S . SAHNI, Fundamentals of Computer Algorithms, Computer Science

Press, Inc., Rockville, Maryland, 1978.

[13] K . HWANG A N D F. A. BRIGGS, Computer Architecture and Parallel Processing, McGraw-

Hill Series in Computer Organization and Architecture, McGraw-Hill, Inc., New York,

1984.

[14] D. J . KUCK, The Slructure o f Computers and Computations, vol. 1, John Wiley and Sons,

Inc., New York, 1978.

[15] J . F. TRAUB AND H . W O ~ N I A K O W S K I , A General Theory of Optimal Algorzihrns, ,4CM
Monograph Series, Academic Press, Inc., New York, 1980.

[16] P. H. WORLEY, Informatron Requirements and the Implications for Parallel Computation,

Ph.D. dissertation, Stanford University, J u n e 1988.

25

ORNL/TM-10945

INTERNAL DISTRIBUTION

1.
2.
3.
4.
5.
6.

7-8.
9.

10-14.
15.

16-20.
21.
22.

A. Aleldades
B. R. Appleton

J . B. Drake
R. E. Flanery

G. A. Geist
L. Gray

R. F. Harbison
M. T. Heath
J . K. Ingersoll
M. R. Leuze
F. C. Maienschein
E. G. Ng

C. 8. Romine

23-27.
28.

29-33.
34.
35.
36.
37.
38.
39.
40.

41.
42-43.

R. C. Ward
D. G. WiIson

P. H . Worley
A. Zucker

J. J . Dorning (Consultant)
R. M. Haralick (Consultant)

Central Research Library
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library
/Document bference Station
T,aboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

44. Dr. Loyce M. Adams, Department of Applied Mathematics, University of Washington,

Seattle, WA 98195

45. Dr. Christopher R. Anderson, Department of Mathematics, University of California, Los

Angeles, CA 90024

46. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research, ER-7,
Germantown Building, US. Department of Energy, Washington, DC 20545

47. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Graduate

Center, 19600 N . W . Walker Road, Beaverton, OR 97006

48. Dr. Jesse L. Rarlow, Department of Computer Science, Pennsylvania State University,

University Park, PA 16802

49. Dr. Dov S. Bai, Department of Mathematics, Utah State University, Logan, UT 84322-

4125

50. Dr. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,

New York, NY 10012

51. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping 55183,
Sweden

52. DP. John H . Bolstad, L-16, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

53. Dr. James C. Browne, Department of Computer Sciences, University of Texas, Austin,

T X 78712

26

54. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric Re-
search, P. 0. Box 3000, Boulder, CO 80307

55. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, University

of Michigan, Ann Arbor, MI 48109

56. Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles, 405

Hilgard Avenue, Los Angeles, CA 90024

57. Dr. Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,

North Carolina 27709

58. Dr. Melvyn Ciment, National Science Foundation, 1800 G Street, NW, Washington, DC

205.50

59. Prof. Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca, NY

14853

60. Dr. Jane K. Culluni, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown

Heights, NY 10598

61. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley,

CA 94720

62. Dr. George Cybenko, Computer Science Department, University of Illinois, Urbana, Illi-

nois 61801

63. Dr. Jack J . Dongarra, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South Cass Avenue, Argonne, 11, 60439

64. Dr. Iain Duff, CSS Division, Ilarwell Laboratory, Didcot, Oxon OX11 ORA, England

65. Prof. Pat Eberlein, Department of Computer Science, SUNY/Buffalo, Buffalo, NY 14260

66. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P. 0. Box 2158

Yale Station, New Haven, C T 06520

67. Dr. Howard C. Elman, Computer Science Department, University of Maryland, College

Park, MD 20742

68. Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Claremont, CA
91711

69. Dr. Geoffrey 6 . Fox, Booth Computing Center 158-79, California Institute of Technology,

Pasadena, CA 91125

70. Dr. Chris F'raley, c/o Dr. J . P. Vialde, Universite de Geneve, Dept SES-COMIN, 2 rue de

Candolle, Geneva, Switzerland

71. Dr. Paul 0. Elederickson, Computing Division, Los Alamos National Laboratory, Los

Alamos, N M 87545

27

72. Dr. Fred N . Fritsch, L-300, Mathematics and Statistics Division, Lawrence Livermore

National Laboratory, P. 0. Box 808, Livermore, CA 94550

73. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State Univer-

sity, Raleigh, NC 27650

74. Dr. Dennis R . Cannon, Computer Science Department, Indiana University, Bloomington,

IN 47405

75. Dr. C. William Gear, Computer Science Department, University of Illinois, lirbana, Illi-

nois 61801

76. Dr. W . Morven Gentleman, Division of Electrical Engineering, National Research Council,

Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada K LA OR8

77. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, IJniversity of

Waterloo, Waterloo, Ontario, Canada N2L 3G 1

78. Dr. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

79. Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, C h 94550

80. Dr. William D. Gropp, Department of Computer Science, Yale University, P. 0. Box 2158

Yale Station, New Haven, CT 06520

81. Dr. Per Christian Hansen, Copenhagen University Observatory, 0ster Voldgade 3, DK-

1350 Copenhagen K, Denmark

82. Dr. Gerald W. Hedstrom, L-71, Lawrence Livermore National Laboratory, P. 0. Box 808,

Livermore, CA 94550

83. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development Co.,
P. 0. Box 481, Houston, T X 77001

$4. Dr. John L. Bennessy, CIS 208, Stanford University, Stanford, CA 94305

85. Dr. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling Air

Force Base, Washington, DC 20332

86. Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National Lab-

oratory, P. 0. Box 808, Livermore, CA 94550

87. Dr. Tlse Ipsen, Department of Computer Science, Yale University, P. 0. Box 21.58 Yale

Station, New Haven, CT 06520

88. Dr. Lennart S. Johnsson, Department of Computer Science, Yale University, P. 0. Box

2158 Yale Station, New Haven, CT 06520

89. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of

Colorado, Boulder, CO 80309

28

90. Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87

Umea, Sweden

91. Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab&

ratory, 9700 South C a s Avenue, Argonne, IL 60439

92. Dr. Alan 11. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

93, Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray IIill, NJ 07974

94. Dr. Robert J . Keel Applied Mathematics Division 8331, Sandia National Laboratories,

Livermore, C h 94550

95. Dr. Joseph R . Keller, Department of Mathematics, Stanford University, Stanford, CA
94305

96. Dr. Richard I m , Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

97. Dr. Robert L. Launer, Army Research Office, P. 0. Box 12211, Research Triangle Park.

North Carolina 27709

98. Dr. Charles Lawson, Applied Mathematics Group, Jet Propulsion Laboratory, California

Institute of Technology, M/S 506-232, 4800 Oak Grove Drive, Pasadena, CA 91103

99. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York

University, 251 Mercer Street, New York, NY 10012

100. Dr. Randall J . LeVeque, Department of Mathematics, University of Washington, Seattle,

WA 98195

101. Dr. John G. Lewis, Boeing Computer Services, P. 0. Box 24346, M/S 7L-21, Seattle, WA

98 124-0346

102. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department of Com-

puter Science and Statistics, Queen Mary College, University of London, Mile End Road,

London E l 4NS, England

103. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,

Downsview, Ontario, Canada M3J 1P3

104. Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

105. Dr. Thomas A. Manteuffel, Computing Division, Los Alamos National Laboratory, Los

Alamos, NM 87545

106. Dr. Anita Mayo, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown Heights,

NY 10598

107. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena, CA
91125

29

108. Dr. Willard L. Miranker, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown

Heights, NY 10598

109. Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086

110. Dr. Gary R. Montry, Parallel Processing Division, 1413, Sandia National Laboratories,

Albuquerque, NM 87185

111. Dr. William A. Mulder, Department of Mathematics, University of California, Los Ange-

les, CA 90024-1555

112. Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland, College

Park, MD 20742

113. Dr. Joseph Oliger, Computer Science Department , Stanford University, Stanford, CA

94305

114. Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory, Kirtland

Air Force Base, Albuquerque, NM 87115

115. Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia, Char-

lottesville, VA 22903

116. Prof. Beresford N . Parlett, Department of Mathematics, University of California, Berke-

ley, CA 94720

117. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC

27706

118. Dr. Linda R. Petzold, G316, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

119. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, Nortli

Carolina State University, Raleigh, NC 27650

120. Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon, England

8 x 1 1 ORA

121. Dr. John R. nice, Computer Science Department, Purdue University, West Lafayette, IN

47907

122. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Lab-

oratory, Livermore, CA 94550

123. Dr. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

124. Dr. Ahmed 8. Sameh, Computer Science Department, University of Illinois, Urbana, IL

61801

30

125. Dr. Robert Schreiber, Department of Computer Science, RensselaRr Polytechnic Institute,

Tkoy, NY 12180

126. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P. 0. Box 2158
Yale Station, New Haven, CT 06520

127. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-

ton, OR 97006

128. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,

Dallas, 'TX 75275

129. Dr. William C. Skamarock, 3973 Escuela Court, Boulder, 60 80301

130. Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

131. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College

Park, MD 20742

132. Mr. Steven Suhr, Computer Science Department, Stanford {Jniversity, Stanford, CA 94305

133. Dr. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada N21 3G1

134. Dr. Joseph F. Traub, Department of Computer Science, Columbia University, New York,

NY 10027

135. Dr. Lloyd N. Trefethen, Department of Mathematics, Massachusetts Institute of Technol-

ogy, Cambridge, MA 02139

136. Mr. Raymond S. Turninaro, Computer Science Department, Stanford University, Stan-

ford, CA 94305

137. Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,

NY 14853

138. Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Wampton, VA

23665

139. Dr. Andrew U. White, Computing Division, Lm Alamos National J,aboratory, LOS Alamos,

NM 87545

140. Dr. Arthur Wouk, Army Research Office, P. 0. Box 12211, Research Triangle Park, North

Carolina 27709

141. Office of Assistant Manager for Energy Research and Development, U.S. Department of

Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Itidge, T N 37831-8600

142-151. Ofice of Scientific & Technical Information, E'. 0. Box 62, Oak Ridge, T N 37831

