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SIMDLA: A FORTRAN PROGRAM SIMULATING 

DFFEUSION-LIMITED AGGREGATION 

Lisa Anne Renker 

Baldwin-Wallace College 

D. G. Wilson 

Mathematical Sciences Section 
Engineering Physics and Mathematics Division 

Oak Ridge National Laboratory 

ABSTRACT 

This report documents a FORTRAN program dcsigned to simulate the diffusion-limited1 aggregation of 

particles. Particles are released one at a time from a growing internal boundary on a grid oI possible sites 

and allowed to walk randomly unul either they stick to the growing clusler or walk off the grid. The user 

may speciry the grid dimension, the number of particles to be added to he cluster, the location and size of 

the seed clusler, and the possible directions (up to eight) in which particles are allowed to move. The output 

is a list of the occupied cells aftcr all particles have been added to the cluster. A graphics post processor 

creates picturcs from this list. 

INTRODUCTION 

The FORTRAN program described in this paper simulates diffusion-limited aggregation (DLA). DLA 

is thought to form dendritic-like fractals with a fractal dimension of about 1.7. This program was originally 

designed to experiment with growing aggregates on a grid of hexagonal cells to observe what patterns of 

growth would form. It has b a n  modificd to allow other cell shapes. The user supplies thc size of the grid, 

the number of particles to be added to the cluster, the size of the seed, and the initially occupied seed cells. 

The program allows the particles to move in up  to eight directions that the user specifies (specifying a 

certain six will result in a grid of hexagonal cells). Particles are released one at a time at a growing internal 
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boundary of the grid and allowed to walk randomly until either they move to a cell next to an occupied cell 

or they walk off the grid, at which time a new particle is released. Here, “walk off the grid” means to 

move out a specified distance beyond the growing internal boundary around the cluster. The output file i s  a 

list of occupied cells. 

Section A is a summary of some articles on diffusion-limited aggregation and bow DLA relates to 

fractals. Section B deals with the program itself beginning with a subsection that includes a description of 

the differences between our model and the Witten and Sander model. The second subsection of section B 

includes sample input and output files. Subsection 3 is further divided into subsections that describe the 

details of the program. A flowchart is given for the main program, and pseeodocodes are given for the 

subroutine to choose a startirig place for a panicle and the subroutine to attach a particle to the cluster. The 

data structure used is explained and a diagram given. The method for taking a step is also described in 

subsection 3. The paper ends with some suggestions for variations or further development of the program. 

A. DI FFU S ION-LIMITED AGGREGATION 

‘This paper is concerned with diffusion-limited aggregation (DLA). DLA is thought to produce fractal 

patterns that resemble dendrites. The motivation for this computer program was the study of dendritic 

growth, but the aggregation of particles into clusters has many other applications. A detailed literature 

search on this and siiiiilar subjects relating to phase change processes and fractals can be found in Renker 

and Wilson [8]. 

The program i s  based or1 the DLA model proposed by Witten and Sander [ 13,141. Their model, in t m ,  

is bascrl on the Eden model [l]. The Eden model is a simple model for the growth of wispy-looking 

clusters of particles. It is a lattice model in which particles are added one at a time to random sites adjacent 

to occupied sites. The result of this aggregation process is a relatively compact cluster with density 

correlations that are independeni of distance as the riurnlxr of particles increases without bound. 

Here we give a brief description of the model proposed by Wittcn and Sander. Initially a seed particle i s  

located at the origin of a <quare lattice. Another particle is added at a random spot that is a large distance 

from the origin. This particle walks randomly on the grid. If chc particle walks to a site that is adjacent to 



the seed, then that particle is added LO the cluster and remains in that spot. The other possibility is that the 

particle could step off the boundary of the lattice. In either case, the process begins again with a new 

particle. The process is repeated as many times as specified by the number OC particles to be released. 

Witten and Sander [13,141 examined the density correlation function to obtain more information about 

the particle distribution in their model. The density p(r) is defined to be 1 for occupied sites and 0 for 

unoccupied sites. The density correlation function for an aggregate of N-particles in two dimensions is: 

C(r)=N-'C p(r')p(r' + r) where the sum on r' is over all occupied sites and r is the step distance separating 

two sites averaged over all possible directions (r must be greater than a few lattice spacings, but much less 

than the size of the aggregate). Suppose, for example, we wanted the density correlation function at a 

distance of 4. Then for every particle of the aggregate, we would determine how many occupied particles 

were exactly 4 steps away from that particle in each possible direction. We average the totals obtained over 

all possible directions and divide by the total number of particles in the aggregate. The result would be 

I-, 

(34). 

The density correlation function conforms to a power-law relationship: C(r) - r*. This power-law form 

i s  consistent with a fractal dimension D that characterizes the object by D = d - a (d is the Euclidean 

dimensionality of the cluster). The radius of gyration (R,) can also be used to determine the fractal 

dimcnsion. R, has a power-law dependence on the number of particles for large N, i.e., R, I Np. The fractal 

dimension is then D = l/p 1131. 

The objects produced by this DLA model were thought to be fractal when the correlations between two 

particle positions were examined closely by Witten and Sander [14], and Meakin [4,5]. The correlations 

were found to be typical of a scale-invariant object, Le., the patterns grown had no natud length scale. 

The DLA growth formations are tenuous and wispy and do not fi l l  a finite fraction of space. They have 

large holes owing to the screening effect because the fingers formed make it  difficult for particles to walk 

into the gap between the fingers, so the particles are more likely to stick lo the tips of the fingers. 

According to Sander [91, these holes must be on thc order of the si72 of the object itself. 
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B. TIBPROGRAM 

1. COMPARISON WITH THE WITTEN-SANDER MODEL 

This program implements a variation of the model proposed by Witten and Sander. One difference is 

that the program was originally designed with grid cells shaped like hexagons. This allowed six possible 

directions in which to go at each step of the random walk. The program was later modified in order to 

incorporate other grid cell shapes and structures so that now there are eight possible directions in which 

moves can be rnade. Figure 1 denionstrates the numbering scheme for two different grids. 'fie grid cell 

shape i s  determined by directions specified in the input file. 

I I I I l 

a.) A square close packed grid 

Figure 1. 

b.) A hexagonally close packed grid 

Anothcr difference is that we have incorporated Meakin's [4] idea of having m internal boundary that 

grows as the cluster size grows. This is done because as the grid size increa$es, the probability that a 
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particle released at the edge will make it to the cluster near the center of the grid decreases greatly. A large 

number of particles must be used to ensure that several of them stick. This results in much time wasted 

because most of the particles walk off the grid. This tendency is reduced by setting up a second boundary a 

few lattice spaces larger than the current cluster size. The particle then begins at that internal boundary and 

is considered finished i l  it oversteps a somewhat larger boundary. The radius of the internal boundary is 

incrcased as the size of the cluster increases, until the internal boundary reaches the edge of the grid. This 

process could be thought of as an accelerated version of the original model because it is equivalent to 

assuming that some number of particles would have reached that internally bounded section or the grid 

after a certain number of particles were released. 

In this program, a particle is started at a random spot on the edge of the internal boundary and allowed 

to perform a random walk on the grid until eithcr i t  visits a cell adjacent to one that is already occupicd or it 

walks off a boundary with a radius that is ten units larger than the boundary it started on. When onc of 

those two possibilities occurs, a new particle is started at the internal boundary. The size of the internal 

boundary increases as the radius of the cluster increases. The program is terminated when the specified 

number of particlcs has been added to the cluster. 

2. INPUT AND OUTPUT FILES 

2.1 Input File 

The input file contains the desired size of thc grid, the number of particles to be added to the cluster, 

how many cells will initially be occupied, the locations of these initially occupied cells, and a random 

number to be used as a seed for the random number generator. The desired size of the grid is the 

dimension of one edge of the grid. The program is set up so that a particle may move in any of up to eight 

directions. The input file specifies in how many directions the particle may move and allows the user to 

choose hose dircctions. An example of an input file follows. This example is the data uscd to simulate a 

grid of hexagonally close packed locations with a seed of five cells. All the entries are left justified and are 

explained on thc right. 
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2500 
750 
5 
1250 1250 
1251 1250 
1250 1251 
1249 1249 
1251 1251 
33 174039 1 
6 
'r 
F 
T 
T 
T 
F 
T 
'r 

size of the grid 
number of particles to be added to the cluster 
number of seed particles 
seed locations 

random number generator seed 
number of directions to be checked 
h-tip, S-UP 

h-x, s -up~gh t  
h-upjight, s-right 
h-downjight, s-downjight 
h-down, s-down 
h-x, s-downJeft 
h-downJeft, s-left 
h-up,left, s-up,left 

*The direction descriptions are 
*given for both the hexagonal 
*and the square grid. 

* h-lhexagon, s=square, x=does not apply 

2.2 Output File 

The output file contains as its first entry, the dimension of one side of the grid. This is written to the 

output file as part of the initialization process. After that, the output consisn of a list of the occupied cells 

in order of their addition to the aggregate beginning with the seed cells. Each cell is written to the file as it 

is attached to the cluster by the stick subroutine. The end of file is signalled to the graphics program by a 

pair of negative numbers that are written by the last executablc statement of the program. A series of 

pictures obtained using the graphics program during two simulations are shown in Figures 2 and 3. The 

pictures in Figure 2 show the growth of a small aggregate on a grid of hexagonally close packed locations 

of dimension 40 x 40. The pictiircs in Figure 3 show the growth of an aggregate on a square grid of 

dimension 3000 x 3000. A small sample output file obtained from another simulation follows. 
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Figure 2. The growth of an aggregate on a hexagonally close packed grid with 
a.) 50 particles stuck, b.) 70 particles stuck, and c.) 100 particles stuck. 
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Figure 3 .  The growth of an aggregate on a square close packed grid with 
a.) IO00 particles stuck, b.) 3000 particles stuck, c.) 5000 
particles stuck, d.) SO00 particles stuck, and e.) loo00 particles stuck. 
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2500 
1250 1250 
1251 1250 
1250 1251 
1249 I249 
1251 1251 
1248 1248 
1252 1250 
1253 1258 
1249 1251 
1249 1252 
-1 -1 

3. IMPLEMENTATION DETAILS 

3.1 Data Structure 

The data structure used is a set of four one-dimensional arrays that form a set of linked lists, one for 

each row of the grid. This data structure is used to avoid having to store a great many zeroes 

corresponding to unoccupied cells. The dimension of the amy, irow, is the size of one edge of the grid 

itself. It has an entry of zero or an integer for each row on the grid. The zero signifies that none of the 

cells in that row are occupied. The integer signifies that there is at least one cell occupied and identifies 

which entry it is in array ientry. 

The dimension of the arrays ientry and jentry (and iptr) is the number of particles to be added to the 

cluster. [entry andjentry are the first and second index of an occupied cell and ip~r is the index of the enuy 

in ientry (andjentry) where the coordinates of the next occupicd ccll in that row are stored (in ascending 

order). A particle is added to the end of these arrays when it has stuck to the cluster. Next is the pointer to 

the next available position where an occupied cell can be added to the list. 

This data structure saves on storage, but trades that savings for more computation time. Suppose the 

dimension of a grid is 3000 x 3000 and the numbcr of particles to be added to the cluster is 40,000. Then 

having an array the size of the grid itself would result in a storage of 9,0 ,0oO cells, and only a small 

percentage (less than 1 %/.> of those cells would be occupied. 9,000,000 exceeds the available storage on our 

computer. Using the data structure just described, only 40,ooO cells of storage are needed. Locating a 

specific cell in the list of occupied cells requires one cornputation in the first case. Howcver, locating a 
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cell in the second caye could require at most 3000 (the grid size) computations. This worst case occurs 

only when every cell in a row is occupied and we are trying to locate the last cell in that row, Even though 

thcre may be a large increase in the computation time required, the linked list data structure is better 

because it allows for a larger grid s k .  

A pictorial represetitation of the data structure is shown in Figure 4. This diagram represents one stage 

in a simulation with a grid size of 10 x 10 with 20 particles to be added to the cluster. Eleven particles 

have alrcady stuck to the cluster. In this diagram, ( 5 3 )  is the seed particle and therefore the first cell add& 

to the list of occupied cells, To determine whether a certain cell was occupied in row 6, for example, first 

look at the sixth entry in irow. This has a value of 7. This 7 tells us to look in the seventh entries of thc 

other three arrays for the first cell in row 6 that is occupied. In this case, i t s  coordinates are (6,3). Iprr(7) is 

five. This is the pointer to the next set of entries in the linked list. This five means that the next entry in 

row 6 of the grid is located in the fifth entries of the arrays. The coordinates of this enuy are (6,4). The 

index of the next occupied cell in row 6 is in iptr(5). Therefore, the next occupied cell in row 6 is (6,5). 

The 0 in iptr(3) signifies that the end of the list for row 6 has k e n  reached. 

3.2 Program Organization 

The main processing of the program is done in a subroutine named controller. A flow c h w  for this 

subroutine is shown in Figure 5. A starting point for the random wak is chosen. If the starting point is 

already occupied, a new particle is introduced and the process of choosing a starting point begins again. If 

the starting point is not occupied, then the neighbors are checked for occupation. (The only neighbors 

checked are hosc that are in the user spccified allowable directions list.) Subroutine checknghbrs returns a 

value of true or false in the form of the variablefound LO the controller subroutine, If a neighbor was found 

to be occupied then the stick routine i s  called and the new cell is added to the list of occupied cells. If none 

of the neighbors were occupied, then the rnkmove subroutine is called. 
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Figure 4. The data structure is a set of arrays that form a linked list. 
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Figurc 5. 'Ihe flow chart for die main loop of the program. 

-12- 



3.3 Choosing a Starting Point 

A starting position on the edge of the grid is chosen as follows. Three random numbem in (0,l) are 

generated. Using the square grid as a simple example, the first random number decides which set of sides 

the particle will start on, the top and bottom rows or the two sides. This choice determines which index 

will be set, the row index or the column index. The second random number determines which row or 

which side out of the two that the starting position will be on. Once the starting edge has k e n  picked, the 

exact cell must be chosen. The remaining index is equal to thc integer portion of two times the product of 

the third random number and the current radius of the cluster, plus a constant to ensure that the result is in 

the desired range. This method ensures that all starting locations on the internal boundary are equally 

likely. The logic of this method is shown in the following pseudocode. This has been simplified by 

assuming that the particle starts on the edge of the grid rather than on an internal boundary within the grid. 

choose three random numbers 
hold=int(3rd number * size of the grid) -t- 1 
if 1st number < .S 

j index=hold 
if 2nd number i .5 

i index=l 
else 

i index=size of the grid 
else 

i index=hold 
if 2nd number < .5 

j index=l 
else 

j index= size of thc grid 

The method used for determining the boundary on a grid of hexagonally close packed locations is similar 

to the above method, but slightly more complicated. 
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3.4 Taking a Step 

The array nmed prob contains the values of the intervals used in moving the particle. Using the input 

file given earlier, the intervals of probabilities would be divided into sixths. For example, yrob(1)=1/6, 

prob(3)=2/6, prob(4)=3/6, prob(5)=4/6, prob(7)=5/6, and prob(8)=6/6 because the respective enhes in the 

input file had the value of true. The other two prob entries (2 and 6), corresponding to false values in the 

input file, would be set equal to the value of the prcvious prob entry, so prob(2)=1/6 and prob(6)=4/6. The 

reason for th is  will be seen in the explanation of the mkmove subroutine. 

The mkrnove subroutine chooses a random number between zero and one. Then the eight intervals 

(0 + prob (1), prob ( 1 )  -+ prob (2), etc.) are checked. The particle moves in the appropriate direction 

depending on which interval the random number falls in. The reason for setting the prob enties that 

correspond to a valuc of false in the input file equal to the preceding prob entry is that the random number 

cannot fall in that half closed, half open interval, thus, the particle cannot move in that direction. If, for 

example, the random number fell between 1/6 and 2/6, the particle should move in the second allowable 

direction. Setting prob(2) equal to prob(1) ensures that the directiori associated with the 

prob (1) -a prob (2) interval, [ 1/6,1/6), will not be chosen because that interval is empty. 

Mkmove returns a value of “true” or “false” in the form of the variable again. This variable is set to 

Ixuc if the particle hac; not moved off h e  specified boundary edge. If again is true, the process of checking 

neighbors and moving that particle begins again. If again is false, that particle is finished and a new 

particle is released, starting the entire loop again. This loop is executed until the desired number of 

particles have been added to the cluster. 

3.5 Attaching a Panicle 

The subroutine for adding a particle to the list of occupied cells is called after the particle has moved to 

ik cell adjacent to an occupied cell. This involves updating the appropriate linked list and switching a few 

pointers. The pseudo-code follows. (IRefcr to the diagram in section 3.1 for the data structure.) Spot and 

hold are pointers. 
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spot=irow(i index) 
hold=spot 

enter the current i and j indices in the next available position 
if spoi = 0 (*no entries in that row*) 
irow( i index)=nexr 
iptr(next)=O 

ifjentry(spot)>j index (*attach to beginning of row list*) 
iprr( next)=spot 
if hoZd=spot (*attach to beginning oE occ. list') 

else 

else 
200 

irow(i index)=next 

ipir(hold)=next 
else (*keep looking for place in list*) 

haId=spor 
spot=iptr(spot) 
got0 2 0  

C .  SUGGESTIONS FOR VARIATIONS OR WRTHER DEVELOPMENTS 

One interesting variation of the program would result from changing the sticking probabilities. 

Particles could be given a probability of sticking each time they hit the cluster and thus they might bounce 

around for a while. Also, the program could be modified to make the probability of sticking on the tips 

lower and increase the probability of sticking in places where many neighbors are occupied. That is, the 

sticking probability would be smaller or larger on the perimeter sites depending on whether there were 

fewer or more neighbors occupied. 

Another possibility is EO model cluster aggregation. More than one particle could be released at a time 

and if that particle met another one, they would join. Clusters could also be released and allowed to attach 

to other clusters or single particles. (This model is discussed by Meakin [5]. )  

One more area of potential interest is to expand the model to three dimensions. Instead of having a 

hexagon shaped grid cell, we could have a three dimensional figure wilh twelve neighbors instead of six. 

This is three dimensional hexagonal close packing, and can be pictured by imagining dodecahedrons set on 

top of other dodecahedrons. These would rest on every other corner of &he lower hexagons, so each cell 

would have six neighbors in its own plane, three more neighbors above and three more neighbors below. 

'These are just a few suggestions, the possibilities are endless. 
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