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SIMDLA: A FORTRAN PROGRAM SIMULATING

DIFFUSION-LIMITED AGGREGATION

Lisa Anne Renker
Baldwin-Wallace College

D. G. Wilson

Mathematical Sciences Section
Engineering Physics and Mathematics Division
QOak Ridge National Laboratory

ABSTRACT

This report documents a FORTRAN program designed to simulate the diffusion-limited aggregation of
particles. Particles are released one at a time from a growing internal boundary on a grid of possible sites
and allowed to walk randomly until either they stick to the growing cluster or walk off the grid. The user
may specily the grid dimension, the number of particles t0 be added to the cluster, the location and size of
the seed clusier, and the possible directions (up to eight) in which particles are allowed to move. The output
is a list of the occupied cells after all particles have been added to the cluster. A graphics post processor

creates pictures from this list.

INTRODUCTION

The FORTRAN program described in this paper simulates diffusion-limited aggregation (DLA). DLA
is thought to form dendritic-like fractals with a fractal dimension of about 1.7. This program was originally
designed to experiment with growing aggregates on a grid of hexagonal cells o observe what patterns of
growth would form. It has been modified to allow other cell shapes. The user supplics the size of the grid,
the number of particles to be added to the cluster, the size of the scéd, and the initially occupied sced cells.
The program allows the particles to move in up to eight directions that the user specifies (specifying a

certain six will result in a grid of hexagonal cells). Particles are released one at a time at a growing internal
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boundary of the grid and allowed to walk randomly until either they move to a cell next to an occupied cell
or they walk off the grid, at which time a new particle is released. Here, “‘walk off the grid’’ means to
move out a specified distance beyond the growing internal boundary around the cluster. The output file is a
list of occupied cells.

Section A is a summary of some articles on diffusion-limited aggregation and how DLA relates to
fractals. Section B deals with the program itself beginning with a subsection that includes a description of
the differences between our model and the Witten and Sander model. The second subsection of section B
includes sample input and output files. Subsection 3 is further divided into subsections that describe the
details of the program. A flowchart is given for the main program, and pseudocodes are given for the
subroitine to choose a starting place for a particle and the subroutine to atiach a particle to the clusier. The
data structure used is explained and a diagram given. The method for taking a step is also described in

subscction 3. The paper ends with some suggestions for variations or further developinent of the program.

A. DIFFUSION-LIMITED AGGREGATION

This paper is concerned with diffusion-limited aggregation (DLA). DLA is thought to produce fractal
patierns that resemble dendrites. The motivation for this computer program was the study of dendritic
growth, but the aggregation of particles into clusters has many other applications. A detailed literature
scarch on this and similar subjects relating to phase change processes and fractals can be found in Renker
and Wilson [8].

The program is based on the DLA model proposed by Witten and Sander [13,14). Their model, in twm,
is based on the Eden model [1]. The Eden model is a simple model for the growth of wispy-looking
clusters of particles. It is a lattice model in which particles are added one at a time to random sites adjacent
to occupied sites. The result of this aggregation process is a relatively compact cluster with density
correlations that are independent of distance as the number of particles increases without bound.

Here we give a bricf description of the model proposed by Witten and Sander. Initially a sced particle is
located at the origin of a square lattice. Another particle is added at a random spot that is a large distance

from the origin. This particle walks randomly on the grid. If the particle walks to a site that is adjacent {0
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the seed, then that particle is added to the cluster and remains in that spot. The other possibility is that the
particle could step off the boundary of the lattice. In either case, the process begins again with a new
particle. The process is repeated as many times as specified by the number of particles to be released.
Witten and Sander [13,14] examined the density correlation function to obtain more information about
the particle distribution in their model. The density p(r) is defined to be 1 for occupied sites and O for
unoccupied sites. The density correlation function for an aggregate of N-particles in two dimensions is:

C(r)=N"Z p()p@” + 1) where the sum on 1’ is over all occupied sites and r is the step distance scparating
Y

two sites averaged over all possible directions (r must be greater than a few lattice spacings, but much less
than the size of the aggregate). Suppose, for example, we wanted the density correlation function at a
distance of 4. Then for every particle of the aggregate, we would determine how many occupied particles
were exactly 4 steps away from that particle in each possible direction. We average the totals obtained over
all possible directions and divide by the total number of pariicles in the aggregate. The resuit would be
C@.

The density correlation function conforms to a power-law relationship: C(r) - . This power-law form
is consistent with a fractal dimension D that characterizes the object by D=d - a:(d is the Euclidean
dimensionality of the cluster). The radius of gyration (R,) can also be used to determine the fractal
dimension. R, has a power-law dependence on the number of particles for large N, i.e., R, ~ NP. The fractal
dimension is then D = 1/8 (13].

The objects produced by this DLA mode! were thought to be fractal when the correlations between two
particle positions were examined closely by Witten and Sandelf [14], and Meakin [4,5]. The correlations
were found to be typical of a scale-invariant object, i.c., the patterns grown had no natural length scale.
The DLA growth formations are tenuous and wispy and do not fill a finite fraction of space. They have
large holes owing to the screening effect because the fingers formed make it difficult for particles to walk
into the gap belween the fingers, so the particles are more likely to stick to the tips of the fingers.

According to Sander (9], these holes must be on the order of the size of the object itself.
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B. THE PROGRAM
1. COMPARISON WITH THE WITTEN-SANDER MODEL
This program implements a variation of the model proposed by Witten and Sander. One difference is
that the program was originally designed with grid cells shaped like hexagons. This allowed six possible
directions in which to go at each step of the random walk. The program was later modified in order to
incorporate other grid cell shapes and structures so that now there are eight possible directions in which
moves can be made. Figure 1 demonsirates the numbering scheme for two different grids. The grid cell

shape is determined by directions specified in the input file.

a.) A square close packed grid b.) A hexagonally close packed grid

Figure 1.

Another difference is that we have incorporated Meakin’s [4] idea of having an internal boundary that

grows as the cluster size grows. This is done because as the grid size increases, the probability that a



particle released at the edge will make it to the cluster near the center of the grid decreascs greatly. A large
number of particles must be used to ensure that several of them stick. This results in much time wasted
because most of the particles walk off the grid. This tendency is reduced by setting up a second boundary a
few lattice spaces larger than the current cluster size. The particle then begins at that internal boundary and
is considered finished if it oversteps a somewhat larger boundary. The radius of the internal boundary is
increased as the size of the cluster increases, until the internal boundary reaches the edge of the grid. This
process could be thought of as an accelerated version of the original model because it is equivalent to
assuming that some number of particles would have reached that internally bounded section of the grid
after a certain number of particles were released.

In this program, a particle is started at a random spot on the edge of the internal boundary and allowed
to perform a random walk on the grid until either it visits a cell adjacent to one that is already occupied or it
walks off a boundary with a radius that is ten units larger than the boundary it started on. When onc of
those two possibilities occurs, a new particle is started at the internal boundary. The size of the intermnal
boundary increases as the radius of the cluster increases. The program is terminated when the specified

number of particles has been added to the cluster.

2. INPUT AND OUTPUT FILES
2.1 InputFile

The input file contains the desired size of the grid, the number of particles to be added to the cluster,
how many cells will initially be occupied, the locations of these initially occupied cells, and a random
number to be used as a seed for the random number generator. The desired size of the grid is the
dimension of one edge of the grid. The program is set up so lhat;a particle may move in any of up to eight
directions. The input file specifics in how many directions the particle may move and allows the user to
choose those directions. An example of an input file follows. This example is the data used to simulate a
grid of hexagonally close packed locations with a seed of five cells. All the entries are left justified and are

cxplained on the right.



2500 size of the grid

750 number of particles to be added to the cluster
S number of seed particles

1250 1250  seed locations

1251 1250

1250 1251

1249 1249

1251 1251

331740391  random number generator seed

number of directions to be checked

h-up, s-up *The direction descriptions are
h-x, s-up,right *given for both the hexagonal
h-up,right, s-right *and the square grid.

h-down,right, s-down,right
h-down, s-down

h-x, s-down,left
h-down,left, s-left
h-up,left, s-up,left

S H T ST =S

* h=hexagon, s=square, x=does not apply

2.2 Output File

The output file contains as its first entry, the dimension of one side of the grid. This is written to the
output file as part of the initialization process. After that, the output consists of a list of the occupied cells
in order of their addition to the aggregate beginning with the seed cells. Each cell is written to the file as it
is aitached to the cluster by the stick subroutine. The end of file is signalled to the graphics program by a
pair of negative numbers that are written by the last cxecutable statement of the program. A series of
pictures obtained using the graphics program during two simulations are shown in Figures 2 and 3. The
pictures in Figure 2 show the growth of a small aggregate on a grid of hexagonally close packed locations
of dimension 40 x 40. The pictures in Figure 3 show the growth of an aggregate on a square grid of

dimension 3000 x 3000. A small sample output filc obtained from another simulation follows.
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Figure 2. The growth of an aggregate on a hexagonally close packed grid with
a.) 50 particles stuck, b.) 70 particles stuck, and c.) 100 particles stuck.



a) b.) c)

d.) e.)

Figure 3. The growth of an aggregate on a square close packed grid with
a.) 1000 particles stuck, b.) 3000 particles stuck, ¢.) 5000
particles stuck, d.) 8000 particles stuck, and e.) 10000 particles stuck.



2500

1250 1250
1251 1250
1250 1251
1249 1249
1251 1251
1248 1248
1252 1250
1253 1250
1249 1251
1249 1252
-1 -1

3. IMPLEMENTATION DETAILS
3.1 Data Structure

The data structure used is a set of four one-dimensional arrays that form a set of linked lists, one for
cach row of the grid. This data structure is used to avoid having 1o store a great many zeroes
corresponding to unoccupied cells. The dimension of the array, irow, is the size of one edge of the grid
itsclf. It has an entry of zero or an integer for each row on the grid. The zero signifies that none of the
cells in that row are occupied. The integer signifies that there is at least one cell occupied and identifies
which entry it is in array ientry.

The dimension of the arrays ientry and jentry (and iptr) is the number of particles 1o be added to the
cluster. lentry and jentry are the first and second index of an occupied cell and ipir is the index of the entry
in Zentry (and jentry) where the coordinates of the next occupied cell in that row are stored (in ascending
order). A particle is added to the end of these arrays when it has stuck to the cluster. Next is the pointer 10
the next available position where an occupied cell can be added to the list.

This data structure saves on storage, but trades that savings for more computation time. Suppose the
dimension of a grid is 3000 x 3000 and the number of particles to be added to the cluster is 40,000. Then
having an array the size of the grid itself would result in a storage of 9,000,000 cells, and only a small
percentage (less than 1%) of those cells would be occupied. 9,000,000 exceeds the available storage on our
computer. Using the data structure just described, only 40,000 cells of storage are needed. Locating a

specific cell in the list of occupied cells requires one computation in the first case. However, locating a
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cell in the second case could require at most 3000 (the grid size) computations. This worst case occurs
only when every cell in a row is occupied and we are trying to locate the last cell in that row. Even though
there may be a lacge increase in the computation time required, the linked list data structure is betier
because it allows for a larger grid size.

A piclorial representation of the data structure is shown in Figure 4. This diagram represenis one stage
in a simulation with a grid size of 10 x 10 with 20 particles to be added to the cluster. Eleven particles
have already stuck to the cluster. In this diagram, (5,5) is the sced particle and therefore the first cell added
to the list of occupied cells. To determine whether a certain cell was occupied in row 6, for example, first
look at the sixth entry in irow. This has a value of 7. This 7 tells us to look in the seventh entries of the
other three arrays for the firsi cell in row 6 that is occupied. In this case, its coordinates are (6,3). Ipir(7) is
five. This is the pointer to the next set of entries in the linked list. This five means that the next entry in
row 6 of the grid is located in the fifth entries of the arrays. The coordinates of this entry are (6,4). The
index of the next occupied cell in row 6 is in ipir(5). Therefore, the next occupied cell in row 6 is (6,5).

The 0 in iptr(3) signifies that the end of the list for row 6 has bcen reached.

3.2 Program Organization

The main processing of the prograra is done in a subroutine named controller. A flow chart for this
subroutine is shown in Figure 5. A starting point for the random walk is chosen. If the starting point is
alrcady occupied, a new particle is introduced and the process of choosing a starting point begins again. If
the starting point is not occupied, then the neighbors are checked for occupation. (The only neighbors
checked are thosc that are in the user specified allowable directions list.}) Subroutine checknghbrs returns a
value of true or false in the form of the variable found to the controller subroutine, If a neighbor was found
10 be occupied then the stick routine is called and the new cell is added to the list of occupied cells. If none

of the neighbors were occupied, then the mkmove subroutine is called.
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1row next jentry Jentry iptr
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Figure 4.  The data structure is a set of arrays that form a linked list.
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Figurc 5. The flow chart for the main loop of the program.
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3.3 Choosing a Starting Point

A starting position on the edge of the grid is chosen as follows. Three random numbers in (0,1} are
generated. Using the square grid as a simple example, the first random number decides which set of sides
the particle will start on, the top and bottom rows or the two sides. This choice determines which index
will be set, the row index or the column index. The second random number determines which row or
which side out of the two that the starting position will be on. Once the starting edge has been picked, the
exact cell must be chosen. The remaining index is equal to the integer portion of two times the product of
the third random number and the current radius of the cluster, plus a constant to ensure that the result is in
the desired range. This method ensures that all starting locations on the internal boundary are equally
likely. The logic of this method is shown in the following pseudocode. This has been simplified by

assuming that the particle starts on the edge of the grid rather than on an internal boundary within the grid.

choose three random numbers
hold=int(3rd number * size of the grid) + 1
if 1st number < .5

j index=hold

if 2nd number < .5
1index=1

else
1index=size of the grid

else

i index=hold

if 2nd number < .5
jindex=1

else
j index= size of the grid

The method used for determining the boundary on a grid of hexagonally close packed locations is similar

to the above method, but slightly more complicated.
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34 Taking a Step

The array named prob contains the values of the intervals used in moving the particle. Using the input
file given earlier, the intervals of probabilitics would be divided into sixths. For example, prob(1)=1/6,
prob(3)=2/6, prob(4)=3/6, prob(5)=4/6, prob(1)=5/6, and prob(8)=6/6 because the respective entries in the
input file had the value of true. The other two prob entries (2 and 6), corresponding to false values in the
input file, would be set equal to the value of the previous prob entry, so prob(2y=1/6 and prob(6)=4/6. The
reason for this will be seen in the explanation of the mkmove subroutine.

The mkmove subroutine chooses a random number between zero and one. Then the cight intervals
(0 — prob (1), prob(1) — prob(2), ewc.) are checked. The particle moves in the appropriate direction
depending on which interval the random number falls in. The reason for sctting the prob entrics that
correspond to a value of false in the input file equal to the preceding prob entry is that the random number
cannot fall in that half closed, half open interval, thus, the particle cannot move in that direction. If, for
example, the randem number fell between 1/6 and 2/6, the particle should move in the second allowable
direction.  Setting prob(2) ecqual to prob(l) ensures that the direction associated with the
prob (1) — prob (2) interval, {1/6,1/6), will not be chosen because that interval is empty.

Mkmove returns a value of “‘true’’ or “‘faise’” in the form of the variable again. This variable is set to
truc if the particle has not moved off the specificd boundary edge. If again is true, the process of checking
neighbors and moving that particle begins again. If again is false, that particle is finished and a new
particle is released, starting the entire loop again. This loop is executed until the desired number of

particles have been added to the cluster.

3.5 Attaching a Pariicle

The subroutine for adding a particle to the list of occupicd cells is called afier the particle has moved to
a cell adjacent to an occupied cell. This involves updating the appropriaie linked list and switching a few
pointers. The pseudo-code follows. (Refer to the diagram in section 3.1 for the data structure.) Spot and

hold are pointexs.
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spot=irow(i index)

hold=spot
enter the current i and j indices in the next available position
if spot =0 {*no entries in that row*)

frow(i index)=next
iptr(next)=0
else ,
200  if jentry(spot)>} index (*attach to beginning of row list¥)
iptr(next)=spot
if hold=spot (*attach to beginning of occ. list*)
irow(1 index)=next
else
iptr{ hold)=next
else (*keep looking for place in list*)
hold=spot

spot=iptr(spot)
goto 200

C. SUGGESTIONS FOR VARIATIONS OR FURTHER DEVELOPMENTS

One interesting variation of the program would result from changing the sticking probabilitics.
Particles could be given a probability of sticking each time they hit the cluster and thus they might bounce
around for a while. Also, the program could be modified to make the probability of sticking on the tips
lower and increase the probability of sticking in places where many neighbors are occupied. That is, the
sticking probability would be smaller or larger on the perimeter sites depending on’ whether there were
fewer or more neighbors occupied.

Another possibility is 1o model cluster aggregation. More than one particle could be released at a time
and if that particle met another one, they would join. Clusters could also be released and allowed to attach
to other clusters or single particles. (This model is discussed by Meakin [5].)

One more area of potential interest is to expand the model to three dimensions. Instead of having a
hexagon shaped grid cell, we could have a three dimensional figure with twelve neighbors instead of six.
This is three dimensional hexagonal close packing, and can be pictured by imagining dodecahedrons set on
top of other dodecahedrons. These would rest on every other corner of the lower hexagons, so each cell
would have six neighbors in its own plane, thrée more neighbors above and three more neighbors below,

These are just a few suggestions, the possibilities are endless.
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