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The s t a t e  o f  an ecosystem a t  any t i m e  t may be c h a r a c t e r i z e d  by 

a m u l t i d i m e n s i o n a l  s t a t e  v e c t o r  x ( t ) .  Changes i n  s t a t e  a r e  

represented  by t h e  t r a j e c t o r y  t r a c e d  o u t  by x ( t )  ove r  t i m e .  The 

e f f e c t s  o f  t o x i c a n t  s t r e s s  a r e  sumtnariLed b y  t h e  d isp lacement  of a 

pe r tu rbed  s t a t e  v e c t o r ,  x ( t ) ,  r e l a t i v e  t o  an a p p r o p r i d t e  

c o n t r o l ,  x,(t). 

response o f  an ecosystem t o  p e r t u r b a t i o n  i s  c o n v e n i e n t l y  q u a n t i f i e d  

b y  t h e  d i s t a n c e  s e p a r a t i n g  x ( t )  f r o m  x ( t )  as measured by a P C 

Mahalanobis m e t r i c .  Use o f  t h e  Mahalanobis m e t r i c  r e q u i r e s  t h d t  t h e  

covar iance r n d t r i x  assoc ia ted  w i t h  t t i e  c o n t r o l  s t a t e  v e c t o r  be 

P 
W i t h i n  a m u l t i v a r i a t e  s t a t i s t i c a l  framework, t h e  

e s t i ma t ed 

S t a t e  space d isp lacement  a n a l y s i s  was a p p l i e d  t o  d a t a  on t t i e  

response o f  d q u a t i c  microcosms and outdoor' ponds t o  a l k y l p h e n o l s .  

Dose-response r e l a t i o n s h i p s  were d e r i v e d  u s i n g  c a l c u l a t e d  s t a t e  space 

separa t i ons  as i n t e g r a t e d  measures o f  t t i e  e c o l o g i c a l  e f f e c t s  o f  

t o x i c a n t  exposure.  I n s p e c t i o n  o f  the d a t a  a l s o  r e v e a l e d  t h d t  t h e  

cova r iance  s t r u c t u r e  v a r i e d  b o t h  w i t h  t i m e  arid w i t h  t o x i c a n t  

exposure,  suggest ing  t h a t  a n a l y s i s  o f  such changes m i g h t  be a u s e f u l  

t o o l  f o r  p r o b i n g  c o n t r o l  mechdrri sms u n d e r l y i n g  ecosystem dynamics. 

x v  



S t c i t e  space d isp lacement  a n a l y s i s  was f u r t h e r  i n v e s t i g a t e d  i n  

the c o n t e x t  o f  an e c o l o g i c a l  s i m u l a t i o n  model. R e p l i c a t e  s t a t e  space 

t r d j e c l o r i e s ,  i n c o r p o r d t i n g  b o t h  r ia turd1 v a r i d b i l i t y  (randoin i n i t i a l  

c o n d i t i o n s  and s t o c h a s t i c  F o r c i n g s )  and measurement e r r o r ,  were 

produced u s i n g  Monte C d r l o  techn iques .  I 1  w a s  demonstrated t h a t  

a1 Lhough q u a n t i t d t i v e  e s t i m t e s  o f  sLi1.e space separa t i on  vary  w i t h  

t h e  est i rndted covar iance m d t r i x ,  q u a l i t a t i v e  f c a l i i r e s  o f  t h e  

dose - response r e l a t i o n s h i p s  a r e  r e l a t i v e l y  r o b u s t  t o  v a r i a t i o n  i n  the 

covdr idnce e s t i m d t e s .  Furtherr i iore,  t h e  s t d t r  space methodology was 

dcmons t ra t td  t o  have h i g h  s t a t i s t i c a l  power: e f f e c t s  a t  the  l owest  

s i lnu la ted  dose c o u l d  r e a d i l y  be de tec ted  w i t h  as  few as one o r  two 

Morite C a r l o  rep1 i c a t e s  p e r  t r e a t m e n t .  

F - i n a l l y ,  t h e  problem o f  s e l e c t i n g  J small s e t  o f  d i a g n o s t i c  

v d r i d b l e s  which r e f l e c t  ecosystern s t a t e  w a s  examined. The adequacy 

o f  d i a g n o s t i c  v a r i a b l e s  as p r e d i c t o r s  o f  ecological r i s k  i s  a 

f u n c t i o n  o f  t h e  p r o b a b i l i t i e s  o f  t h e  assoc ia ted  t y p e  I and t y p e  I 1  

s t a t i s t i c a l  e r r o r s .  A c o s t - b e n e f i t  approach f o r  choosing an o p t i m a l  

bd ldnce bctweuri these e r r o r  r a t e s  was developed. 

x v i  
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Chapter 1 

I N T K O D I I C I  ION 

’This t h e s i s  i s  concerned w i t h  t h e  development o f  a p r a c t i c a l  

methodology f o r  applying t h e  s t a t e  space approach t o  t h e  a n a l y s i s  of 

eco toxico logica l  d a t a .  The ob jec t ives  o f  t h e  research a r e  ( 1 )  t o  

d i s t i n g u i s h  the  response t o  s t r e s s  from o t h e r  a spec t s  of ecosystem 

behavior,  and ( 2 )  t o  develop a methodology f o r  de rc r ib iny  t h i s  

response,  both q u d l  i t a t i v e l y  and q u a n t i t a t i v e l y .  ‘Ihe work presented 

here represents  a s i g n i f i c a n t  ex ten l ion  of many of t he  prel iminary 

app l i ca t ions  o f  s t d t e  space techniques which w i l l  be reviewed i n  

s e c t i o n s  1 .1  and 1 . 3 .  S p e c i f i c a l l y ,  a methodology i s  developed w h i c h  

f i t s  n e a t l y  i n t o  the  framework o f  modern m u l t i v a r i a t e  s t a t i s t i c a l  

anal ys i s . 

This  s t u d y  employs a “ s t a t e  spaceti  o r  “phase space“ 

r ep resen ta t ion  o f  ecologica l  systems. Ihe s t a t e  5pace approach can 

b e  given a simple geometric i n t e r p r e t a t i o n ,  and thereby f a c i l i t a t e s  

matheml i c a l  a n a l y r i s  o f  s y s t e m  behavior.  The s t a t u  rpace approach 

i s  a w i d e l y  used mathematical t o o l ,  p a r t i c u l a r l y  i n  t h e  study o f  t he  

dynamic behavior o f  systems of d i f f e r e n t i a l  equat ions ( s e e ,  f o r  

example, Ladeh and Desoer 1 9 6 3 ) .  A s  such i t  has found f requent  

... 
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a p p l i c a t i o n  in  modeling r ea l  world systems, p a r t i c u l a r l y  i n  such 

Fields  a s  physics and engineer ing ,  and inc reas ing ly  in  t h e  b io logica l  

s c i ences ,  including ecology. 

A t  any i n s t a n t  in t ime,  an ecosystem Lan be def ined t o  be i n  a 

" s t a t e "  descr ibed b y  a s e t  of observable  q u a n t i t i e s  c a l l e d  s t a t e  

v a r i a b l e s .  I t  may be t h a t  t h e  s t d t e  va r i ab le s  a r e  n o t  themselves 

d i r e c t l y  measured, b u t  r a t h e r  a s e t  o f  output  va r i ab le s  which bear  

some mathematical r e l a t i o n s h i p  t o  t h e  s t a t e  v a r i a b l e s .  T h i s  does not 

a f f e c t  our  a b i l i t y  t o  apply t h e  s t a t e  space approach a s  long a s  t h c  

func t iona l  r e l a t i o n s h i p s  between the  s t a t e  va r i ab le s  and t h e  o u t p u t  

va r i ab le s  a rc  known. 

A s t d t e  space i s  defined by cons t ruc t ing  a coord ina te  system i n  

which a s epa ra t e  a x i s  i s  taken t o  represent  each s t a t e  v a r i a b l e ,  

x l h e  d imens iona l i ty  o f  the s t a t e  space i s  t h e r e f o r e  equal t o  

t h e  number o f  s t a t e  var iab  e s ,  n .  Any s e t  of values  f o r  the  s t a t e  

va r i ab le s  corresponds t o  a po in t ,  o r  equ iva len t ly  a vec to r ,  i n  the  

s t a t e  space:  x ( t )  - ( x , , x 2  . . . ,  x,)'. 

o f  t h e  ecosysterri occur ,  t h e  loca t ion  o f  t h e  corresponding vec to r  in  

t h e  s t d t e  space changes.  The p a t h  t raced  o u t  by t h e  s t a t e  vec tor  i s  

r e fe r r ed  t o  13s a s t a t e  t r d j e c t o r y .  !then the  d imens iona l i ty  i s  low 

( t w o  o r  t h r e e  s t a t e  v a r i a b l e s )  the  s t a t e  space r ep resen ta t ion  leads 

t o  a g raphica l  d i sp l ay  of t h e  d a t a .  S t d t e  space t r a j e c t o r i e s  of 

h igher  d imens iona l i ty  a r e  n o t  a c c e s s i b l e  i-o d i r e c t  v i sua l  i n spec t ion ,  

i' 

As changes in  t h e  s t d t e  
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but quantities related to distance or direction can be defined 

algebraically, and interpreted by analogy to lower dimensional 

systems. 

Ihe concepts of a state space and state trajectories are quite 

general. They can be applied to either continuous or discrete state 

variables. In the case o f  discrete state variables, such as numbers 

o f  individuals (which i s  restricted t o  integer value%), the state 

vector i s  constrained to lie on a multidimensional grid. Similarly, 

the state space representation is valid whether time i s  considered as 

a continuour variable ( a s  in models based on differential equations) 

or a dircrete variable ( a s  in models based on difference equations). 

State space analysis can be applied to systems that are linear or 

nonlinear, deterministic or stochastic, stable or unstable, near o r  

far from equilibrium. To place the present study in perLpective, a 

brief overview i s  presented o f  some applications o f  t h e  state space 

representation drawn from the recent ecological literature, with an 

emphasis on experimental studies. 

Two dimensional state space diagrams have been used ar, a 

graphical device for presenting data. Heath (1980) plotted 

trajectori es o f  nitrate concentration versus phosphate concentration 

for a series o f  small, flask -type aquatic microcosms. Mar-morek 

(1984) plotted trajectories of zooplankton biomasr versus chlorophyll 

f o r  lake enclosures used in an acidification study. Haltering (1985) 

plotted guppy biomdss versus amphipod biomass trajectories t o  display 
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r e s u l t s  obtdined i n  h i s  mu1 l i i p e c i e s  t o x i c i t y  t e s t  system. Waide e t  

a l .  (1980) displayed regions o f  a pH d isso lved  oxygen s t a t e  rpace 

occupied b y  t h e i r  aqua t i c  iiiicrocosn~s. In lhis l a s t  ca se ,  t h e  choice 

of  s t a t e  va r i ab le s  i s  given the  t h e o r e t i c a l  j u s t i f i c a t i o n  t h a t  they 

serve  a s  sur roga tes  f o r  hydrogen ion a c t i v i t y  and e l e c t r o n  a c t i v i t y ,  

two master va r i ab le s  c o n t r o l l i n g  biogeochcmical systems. 

Often higher  dimensional da t a  a r e  presented a s  t r a j e c t o r i e s  

projected i n t o  a two dimensional subspace def ined by p r inc ipa l  

components. Pr inc ipa l  coniponents a n a l y s i s  i s  a s t a t i s t i c a l  technique 

used t o  f i n d  lower dimensional representa t ion5  which o f t en  expla in  

most of t h e  var iance  i n  t h e  o r i g i n a l  m u l t i v d r i a t e  da t a  5 e t .  This was 

t he  approach taken by Gates (1983) i n  analy7ing changes i n  t h e  s i z e  

d i s t r i b u t i o n  f o r  the  protozoan T-etrghymena grown i n  b a t c h  cultur-e.  

Cel l  volume d i s t r i b u t i o n ,  a s  quan t i f i ed  by a 100-channel e l e c t r o n i c  

p a r t i c l e  counler ,  was seen t o  change a s  the  c u l t u r e s  a g e d ,  and these  

changes took t h e  form o f  a simple c i r c u l a r  t r a j e c t o r y  in t h e  space 

defined b y  the f i r s t  two p r inc ipa l  components. Gabes e t  a l .  (1983)  

appl ied t h e  same technique t o  ana lyre  biomass d i s t r i b u t i o n s  f o r  

plankton samples c o l l e c t e d  from a s e r i e s  of lakes  in Ontdrio,  

Canada. l h e  technique idas found t o  be useful  i n  summar i~ ing  b o t h  

seasonal and y e a r - t o  -year changes i n  t h e  plankton coriitnunity, and 

suggested severa l  hypotheses about processes  c o n t r o l l i n g  plankton 

dynamics i n  lake ecosystems. 
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Bartell et al. (1978) explored the use of trajectories in 

principal components space as a method of describing phytoplankton 

periodicity in Lake Wingra. More recently, Allen et al. (1984) 

analyzed patterns emerging from trajectories o f  phytoplankton data 

submitted to various transformations prior to principal components 

analysis. 

phytoplankton dynamics operating at different time scales. 

Shugart (1983) analyzed by principal components the community 

trajectories generated by a forest succession model. T h i s  analysis 

revealed a decoupling of overstory versus understory dynamics which 

had not been expljcitly built into the model, bu t  which could be 

explained in hlndsight. Allen et a l .  (1977) studied patterns o f  

phytoplankton succession in a state space based on "first 

differences" in species abundance. The first difference, which i s  

the difference in abundance between two successive observations, 

gives an indication of the r a t e  of change o f  species abundance. It 

was shown that over the course o f  a year, the state vector migrates 

in a cyclic fashion through a set of relatively stable configurations. 

Ecological observations can be expressed -in state vector form t o  

These techniques were able to uncover different aspects of 

Allen and 

facilitate mathematical calculations, 811ason (1977) studied the 

population densities of algae, rotifers and protozoans in freshwater 

microcosms, calculatng the speed at which the state vector moved 

along i t s  trajectory as a measure of the overall rate o f  community 

change. Leffler (1980) adopted the same approach for analyzing the 
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nutrient i nput-output dynami cs of f 1 ow-through m i  c rocosms . Usi rig a 

more elaborate mathematical approach, Morkoc et a l .  (1985) employed 

the state space approach to statistically model spatial and temporal 

variations in soil water content and temperature, 

1.2 CONCEPTS OF ECOLOGICAL STABILITY 

Central to the study of ecosystem dynamics, both in the 

unperturbed state and in response to toxicant stress, are a number of 

concepts related to stability. These concepts are relevant to this 

study because they can be used to describe the range o f  dynamic 

systems to whlch state space methodology is best applied. The state 

space method used in t h i s  s t u d y  requires comparing the state 

trajectory o f  a toxicant-perturbed system with some reference 

trajectory representing the: dynamics o f  an unperturbed system. 

meaningfulness o f  such a comparison is a function of the stability 

characteristics of the system. 

The 

The use o f  various stability r e l a t ed  terms in the recent 

ecological literature is summarized in 'Table 1 . l .  Various authors 

have obviously attached different meanings or shades of  meaning to 

these terms, but in many c a s e s  have failed to provide explicit 

definitions, making reconstruction o f  their intent a difficult task. 

The groupings shown in Table 1.1 are intended to represent 

constellations of related ideas, b u t  not necessarily strict synonymy. 
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Table 1.1.  A sumary o f  terminology relating to ecological stability 
employed in the recent scientific literature. 

Term( s 1 

Constancy 

Va ri ab 1 i ty 

Resistance 
Interia 
Resilience? 

Resilience 
Elasticity 
Stabi 1 i ty 

Amp1 i tude 
Resiliency 
Fragi 1 i ty 

Persistence 
Resilience? 

- References .. 

496 

2,496 
5 
9 

436,798 
3 

Approximate Definition 

The degree to which an 
ecosystem tends to remain 
in a fixed state. 

Inversely related to 
constancy. 

The capacity o f  an ecosystem to 
resist changes i n  state in the 
face o f  external disturbance. 

The rate o f  (or t i m e  t o )  
recovery following a 
perturbation. 

The extent to which an ecosystem 
can be perturbed and still be 
capable of recovery. 

The capacity f o r  continued 
survival o f  an ecosystem in the 
face of disturbance, although 
perhaps in an altered state. 

1 - Webster, Waide and Patten (1975) 
2 - Westman (1978) 
3 - Holling (1973) 
4 - Orians (1975) 
5 - Cairns and Oickson (1977) 
6 - Sheehan (1984) 
7 - Pimm (1984) 
8 - Harrison (1979) 
9 - May (1975) 
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In many respects the simplest, but also the most restrictive 

definition of stability is that o f  constancy. An ecosystem which 

displays little change over time is regarded, in some sense, as more 

stable than a continually changing one. It is apparent that the 

natural variability o f  an ecosystem is an inverse measure o f  its 

constancy. Furthermore, the notions of constancy and variability may 

Re generalized (though none o f  the authors reviewed explicitly do 

t h i s )  to apply not only in a static sense, but also in a relative 

sense to sys tems undergoing periodic or other predictable changes o f  

state. In t h i s  case, a system which faithfully repeats a cyclical 

pattern with only minor deviations is exhibiting a high degree o f  

constancy relatlve t o  t h a t  cycle, even i f  the changes in the state 

variables over time is grea t  (low constancy in an absolute sense). 

The shortcoming of using constancy (or variability) alone as a 

measure o f  ecosystem stabllity is that no distinction can be made 

between systems t h a t  exhibit little change due t o  a lack of 

disturbance as opposed to systems that are able to maintain a degree 

o f  constancy despite disturbance, This necessitates t h e  definition 

o f  a third concept o f  stability, variously referred t o  as 

resistance or inertla. Ideally the relative resistance (inertia) 

o f  different ecosystems could be quantified by measuring the 

differing amounts o f  change in s t a t e  variables gfven the same 

disturbance. 
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Frequently cont ras ted  w i t h  r e s i s t a n c e  i s  t h e  concept o f  

r e s i l i e n c e ,  w h i c h  i s  a measure of t h e  r a t e  o f  o f  recovery following 

pe r tu rba t ion .  The term e l a s t i c i t y  i s  a l s o  used i n  an apparent ly  

synonymous fashion by severa l  au thors .  e s i s t a n c e  has been r e l a t ed  

t o  t h e  presence o f  l a rge  components w i t h  slow turnover ,  such as 

d e t r i t u s ,  whereas r e s i l i e n c e  i s  a func t ion  o f  r a t e  r egu la t ion ,  

p a r t i c u l a r l y  by he te ro t rophs  (O 'Nei l l  e t  a l .  1975, O'Neill 1976) .  

Webster e t  a l .  (1975) proposed a gene ra l ly  inverse  r e l a t i o n s h i p  

between r e s i s t a n c e  and r e s i l i e n c e ,  b u t  empir ical  t e s t s  o f  t h i s  

hypothesis a r e  lacking.  

The concept o f  amplitude has been introduced as a measure o f  

t h e  maximum d is turbance  an ecosystem can withstand while r e t a in ing  

t h e  capac i ty  f o r  recovery t o  the o r i g i n a l  s t a t e .  S imi l a r  concepts 

a r e  expressed a s  r e s l l i e n c y  by Cairns and Dickson (19771, and as  

dynamic f r a g i l i t y  by May (1975) .  

thought o f  as  a d i r e c t  pe r tu rba t ion  o f  t h e  s t a t e  v a r i a b l e s ,  o r  as 

changes i n  parameters which cont ro l  t h e  dynamics o f  t h e  s t a t e  

v a r i a b l e s .  Orians (1975) de f ines  amplitude w i t h  r e spec t  t o  

displacement i n  the s t a t e  space,  whereas May (1975) e x p l i c i t l y  

r e l a t e s  f r a g i l i t y  t o  changes i n  t h e  parameters.  Therefore ,  t hese  may 

be regarded a s  d i f f e r e n t  concepts ,  b u t  s i n c e  the  dec is ion  as  t o  

whether a p a r t i c u l a r  quan t i ty  S s  t r e a t e d  a s  a parameter o r  a s  a s t a t e  

v a r i a b l e  i s  f r equen t ly  equivoca l ,  t h e s e  concepts have been grouped 

t o g e t  her  

Imposed d is turbances  can be 
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Persistence i s  alternately defined as the capability o f  an 

ecosystem t o  survive f o r  an indefinite time span, or in terms o f  the 

expected survival time f o r  the t h e  system (or its individual 

components). In either case, persistence is related to the ability 

t o  survive in t he  face o f  disturbance, although not necessarily in 

the same state. 

The terminology employed by C. S .  Holling deserves special 

attention. In an important and influential review paper, Holling 

(1973) uses the term stability to express the concept referred t o  

above as resilience. Unfortunately, he a l s o  uses the term 

resilience, but with a very different connotation. According to 

Holling, resilience "determines the persistence o f  relationships 

within a system and i s  a measure o f  the ability o f  these systems to 

absorb changes of state variables, and parameters, and still 

persist"". Qrians (1975) and Westman (1978) equate Walling's concept 

o f  resilience with their use o f  the term inertia. However, a careful 

inspection of Mslling's definition appears t o  show a greater affinity 

with the concept of persistence. In actuality, I-lolling's preclse 

meaning is elusive, and his concept o f  resilience may not fit neatly 

into any of the categories of Gable 1 .l. 

Having introduced the subject o f  ecological stability, it i s  now 

necessary to examine t he  implications for state space analysis. 

Clearly, a state space analysis is not ell suited to systems which 
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are unstable in the sense of lacking persistence. Systems which fail 

to persist will be characterized by state variables going to zero o r  

to other trivial values. Such a system may reorganize, but in 

general this will entail the appearance of new state variables 

replacing the now irrelevant original state variables. Simple 

comparison o f  perturbed and unperturbed trajectories in such a 

situation becomes fruitless. Fortunately, an observer usually has 

considerable latitude in the choice o f  state variables used t a  

describe an ecosystem. Frequently a judicious selection o f  state 

variables will yield a description in which the system i s  persistent. 

However, if persistence is the only form o f  stability displayed 

by the system, the application of state space analysis may still be 

problematical. 

trajectories differing only slightly in initial conditions will 

diverge greatly over time (even in the absence of toxicant stress). 

In such cases, distinguishing between endogenous system dynamics and 

true toxicant-induced displacement would be difficult at best. 

possible that valid distinctions could be made in terms o f  the long 

term statistical properties o f  the trajectories (i.e.$ the 

distribution o f  states visited), but such methods are not employed in 

Persistent systems may have the property t h a t  

It is 

this study. 

State space displacement analysis i s  

cases where ( 7 )  the unperturbed system f o  

reference trajectory, and ( 2 )  a perturbed 

most readily applied i n  

l ows a well-defined 

system tends to return 



l ?  

toward t h e  reference trajectory, a t  least For displacements over some 

noninfinitesmal magnitude range. I f  the unperturbed reference 

trajectory is in fact a s t a t i c  equilibrium point, such a system is 

referred to as homeostatic. In the ore genera? situation o f  a 

dynamic reference trajectory, the system i s  said t o  be homeorhetic. 

The stability concepts o f  resistance, resilience, and amplitude are 

all applicable to homeorhetic systems, and can be quantifjed using 

the s t a t e  space methodology. The constancy (or variability) of t h e  

system i s  important in determining the samp ing protocol necessary to 

adequately charactet-i ze the sys\tem dynamics 

1 . 3  QUAPJ 

With 

ecosystem 

I F Y I H G  ECOSYSTEM WESPQNSE TO PERTURBATION 

* 

n the state space representation, t h e  response o f  an 

to perturbation i s  reflected by the displacement o f  the 

state vector away from i t s  original location. 

t o  use some measurement o f  the distance the s t a t e  vector i s  displaced 

t o  quantify the response t o  perturbation. Several researchers have 

in fact explicitly used this approach. Others have used measures 

which are equivalent to a state space distance, although not defined 

in those terms. Several approaches t o  quantifying ecosystem response 

to perturbation, explicitly or implicitly based on state space 

displacements, are discussed be low.  

I t  is thus convenient 

Ulanowlcz (1978) distinguished between ecological stress and 

ecological strain using terminology borrowed from mechanical 



13 
... 

engineering. S t r e s s  was defined as  an ex te rna l  force  o r  pressure  

exerted on the  system, while s t r a i n  i s  t h e  response o f  the system t o  

the  imposed s t r e s s .  Then, fol lowing Innis  (1975) ,  Ulanowicz adopted 

the  the  following index of ecologica l  s t r a i n .  

value of some vec tor  func t ion  descr ib ing  an ecosystem i n  an 

unstressed cond i t ion ,  and H a s  the corresponding value o f  t h e  

funct ion f o r  a s t r e s s e d  ecosystem, ecologica l  s t r a i n  was quan t i f i ed  as 

T a k i n g  H" as  the 

S = IH - H * I  

which i s  an Euclidean d i s t ance  measure. 

Le f f l e r  (1978, 1980) defined several  measures of t h e  r e l a t i v e  

s t a b i l i t y  of ecosystem dynamics i n  response t o  pe r tu rba t ion .  

Constancy was defined i n  terms of  t h e  normal range of f l u c t u a t i o n s  of  

a measured ecosystem parameter over t ime.  A response t o  pe r tu rba t ion  

was considered s i g n i f i c a n t  i f  the parameter moved ou t s ide  t h i s  normal 

operat ing range. Resis tance was measured by t h e  l a r g e s t  excursion 

beyond t h e  normal opera t ing  range, and r e s i l i e n c e  by t h e  t ime 

required t o  r e tu rn  t o  t h e  normal opera t ing  range. L e f f l e r  appl ied 

these  s t a b i l i t y  measures t o  aqua t i c  microcosms, concent ra t ing  

p a r t i c u l a r l y  on n u t r i e n t  input /output  r a t i o s .  More r e c e n t l y ,  Shannon 

e t  a l .  (1986) employed L e f f l e r ' s  d e f i n i t i o n s  i n  t h e  a n a l y s i s  o f  o the r  

aquat ic  microcosms. These a p p l i c a t i o n s  were r e s t r i c t e d  t o  t h e  
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univariate case, but the methodology developed in this study can be 

regarded as an extension o f  the technique t o  a multivariate state 

space. 

O'Meill (1976) investigated the properties o f  a three 

compartment jproducer-heterotroph-detritus) simulation model using 

different sets of parameter values to represent various types of 

ecosystems. One aspect of thhis simulation involves perturbing the 

system by removing 10% o f  t h e  equilibrium producer biomass. 

cases ,  the systems tended t o  return t o  t h e  original equilibrium, and 

the ra te  of recovery was sum a r i z e d  by calculating the "sum of the 

In all 

squared deviations" for all t h r e e  components over time. This measure 

is equivalent to the squared Euclidean distance in the three 

dimensional state space. 

Finally, consideration i s  given to the method for quantifying 

unity recovery developed by Bloom (1988) .  Bloom addressed the 

problem of  analyzing of  data consisting o f  repeated observations of 

the abundance o f  various taxa over a time interval prior to and 

subsequent t o  perturbation. The data (either raw or suitably 

transformed) were analyzed by principal cornpanerrts t o  reduce the 

dimensionality o f  t he  state space.  Then, working in t h e  space 

defined by the first two or threat principal components, a cluster o f  

state v e c t o r s  corresponding to the "preperturbatisn" samples was 

identified. A rejection envelope was defined such that any vector 
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outside the envelope was considered to be significantly displaced 

from the preperturbation cluster, i*e., to be in a stressed 

condition. 

each vector from the cluster centroid on each axis, and then 

calculating a confidence interval for each axis. Confidence 

intervals were calculated either on a parametric basis (using a 

Student's t statistic) and on a nonparametric basis (using a 

Mann-Whitney U statistic). The recovery o f  a community following 

perturbation was monitored by calculating the distance from the 

postperturbation state vectors to the nearest face of the rejection 

enve 1 ope. 

The envelope was defined by calculating the distance of 

Although Bloom's work is significant in terms of attempting to 

employ multivariate techniques to study the trajectories o f  perturbed 

communities, there are significant problems with his methodology. 

Bloom specifies that the boundaries o f  the rejection envelope be 

determined by independent confidence intervals on each of the axes, 

but this method yields a true type I error rate that may be 

substantially different than the a value chosen for the univariate 

confidence intervals. T h i s  problem can be corrected by using 

established techniques for simultaneous statistical inference, such 

as a maximum modulus, a Bonferroni, or a Scheffc? approximation 

(Hiller 1966, pp. 12-22). 

computational complexity o f  determining the distance from an 

arbitrary point t o  the nearest face of a multidimensional rectangular 

More importantly, because o f  the 
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vation f o r  the 
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solid, Bloom reports t k d t  the method 

or fewer dimensions. Phis i s  his mot 

imited t o  three 

initial 

principal components analysis, t o  approximate a system of high 

dimensionality by one o f  low dimensionality. Furthermore, by 

defining the rejection envelope as a static region of t,he state space 

based on preperturbdtion samples, B l o o m ' s  method is restricted t o  

systems displaying homeostatic behavior. The methodology developed 

in the present study is applicable in more general situations, and 

overcomes Bloom's computational limitations. 

1.4 SPATE SPACE ANALYSIS AS AN ECOIOXICOLOGICAL TOOL 

The objective of this thesis is to present a state space 

representation o f  ecosystem dynamics which i s  appropriate for 

evaluating the response o f  such systems t o  inputs o f  toxic 

materials. The preceding discussion has demonstrated that t h i s  

response can be conceptualized as a displacement o f  the s t a t e  vector 

away froin its original trajectory. Thus, the response can be 

described by displacement vector, u ( t ) ,  defined as 

u ( t )  = x ( t )  -- x a ( t )  (1.2) 

where x(t) represents the state vector o f  the perturbed ecosystem, 

and x O ( t )  represents the s t a t e  vector which would have been 

realized if the ecosystem had not been perturbed. In experimental 
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situations x(t) is directly observable, but x,(t) must be 

inferred from observation of an appropriate reference system. In 

this study comparisons are always made between replicate experimental 

ecosystems (microcosms or ponds) randomly assigned to control 

(untreated) or to perturbed (toxicant-treated) groups. 

'The displacement vector measures the magnitude and the direction 

o f  perturbation to the state variables at a given time t. If u ( t )  

is plotted as a function o f  time in its own multidimensional space 

(the displacement space), the resulting trajectory contains all the  

information available in the original state variables about the 

dynamics o f  the system's response to the toxicant. 

the information necessary to evaluate the various aspects o f  

ecosystem stability, notably resistance, resilience, and amplitude. 

Resistance can be related t o  the maximum magnitude o f  the 

displacement vector following introduction o f  the tox-icant. 

Resilience can be quantified in terms o f  the rate at which the 

displacement vector returns t o  the origin of  the displacement space 

once exposure to the toxicant ceases. The boundaries of the domain 

o f  attraction associated with the unperturbed state, and therefore 

the amplitude o f  the system, can be determined by identifying those 

displacements which do not yie d a return to the control state. 

It captures all 

The magnitude o f  the disp acement vector i s  o f  considerable 

importance in establishing the stability properties of perturbed 
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ecosystems. This quantity will be referred t o  by the term 

separation. Separation is a scalar quantity which describes how far 

an  ecosystem hac, been displaced without regard to direction. This 

does not mean that the directional information contained in the 

displacement vector is superfluous, however. Only the displacement 

ects how the response of individual state variables varies 

from which the mechanisms of ecosystem response might be 

vector ref 

with time, 

elucidated 

Applying the state space approach to the analysis of ecological 

data requires consideration of t w o  factors Frequently excluded f r om 

purely mathematical discussions. First, although their underlying 

dynamics may be effectively continuous, ecological variables are 

usually sampled at discrete time intervals. Second, ecological state 

variables cannot be quantified with absolute precision. Uncertainty 

may ar 

caused 

system 

se due to measurement error or due to natural variability 

either by endogenous dynamics or  by external forcing o f  the 

Application o f  the state space approach t o  the analysis o 

discretely sampled state vectors in the presence o f  noise i s  a 

multivariate statistical estimation problem. 

The statistical approach t a k e n  t o  state space analysis is 

explained in detail in chapter 2 (see especially sect on 2.4). 

Chapter 2 also contains methodological details on the experimental 

systems and the simulation model t o  which state space analysis is 
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applied. Chapter 3 i s  devoted to the analysis o f  experimental data 

collected from freshwater ecosystems (microcosms and ponds) exposed 

t o  phenolic toxicants, providing an opportunity to assess its 

effectiveness and utility. 

analysis of the output from a computer simulation o f  a lentic 

ecosystem exposed to a toxicant. This allows an evaluation of the 

performance o f  the methodology in cases where the true response of 

the system (i.e., in absence o f  measurement error) i s  known, and 

where the number of replicates can be varied arbitrarily, allowing an 

investigation o f  the statistical power and other properties of the 

method. 

approach to ecological risk analysis in the context o f  defining 

diagnostic variables which can be used as predictors of ecological 

risk. Finally, chapter 5 attempts t o  summarize the strengths and 

weaknesses of the methodology as applied in the two preceding 

chapters, and t o  suggest directions for future research. 

In chapter 4 the method is applied in the 

This  chapter also presents an application o f  the state space 

... 
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Chapter 2 

M A T E R I A L S  A N 0  ME I H O D S  

The focus of t h i s  research i s  t he  app l i ca t ion  of s t a t e  space 

displacement a n a l y s i s  t o  b o t h  experimental da ta  and s imulat ion 

r e s u l t s .  Sec t ions  2 . 1  and 2 . 2  desc r ibe  t h e  experimental systems and 

t h e  methods used in  t h e i r  s tudy.  I conducted t h e  experimental 

s t u d i e s  using t h e  f l a s k  mjcrocosms a s  descr ibed in  sec t ion  2.1,  

whereas t h e  s t u d i e s  w i t h  aquariiim microcosms and ponds  descr ibed i n  

s ec t ion  2 . 2  were conducted by others (Franc0 e t  a l .  1985, G i d d i n g s  e t  

a l .  1985) and I subsequently performed t h e  s t a t e  space a n a l y s i s  o f  

t h e i r  d a t a .  Sect ion 2.3 desc r ibes  the computer model used t o  produce 

t h e  s imulat ion r e s u l t s .  The model used in  t h i s  s t u d y  i s  based on t h e  

Standard Water C ~ l i i m n  blade1 (SWACQN) developed by O'ldeill e t  a l .  

(1982) .  However, SMACON as  o r i g i n a l l y  conceived represents  a pe lag ic  

ecosystem, and I introduced s u b s t a n t i a l  modif ica t ions ,  descr ibed in  

sec t ion  2 . 3 ,  t o  produce a model more appropr i a t e  t o  l i t t o r a l  

ecosystems. F i n a l l y ,  s ec t ion  2.4 provides a d e t a i l e d  desc r ip t ion  of 

t h e  s t a l e  space a n a l y t i c a l  techniques developed and employed in  t h i s  

s t u d y  . 

2.1 FLASK M I C R O C O S M S  

2.1 .1  Assembly 

Twenty-four microcosms were e s t ab l i shed  i n  2-L Erlenmeyer f l a s k s  

a s  fo l lows .  Each f l a s k  received 600 mL of Freshly prepared,  Taub T82 
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n u t r i e n t  medium (Taub and Read 1982), t h e  compos i t i on  o f  which i s  

desc r ibed  i n  Tab le  2.1. The microcosms were t h e n  i n o c u l a t e d  w i t h  a 

m i x t u r e  o f  n a t u r a l  m a t e r i a l s ,  desc r ibed  below, b r i n g i n g  t h e  t o t a l  

volume t o  app rox ima te l y  800 mL. 

a t  room temperature,  under  a l i g h t  bank p r o v i d i n g  approx ima te l y  

200 p E i  m 

1 Oh: 14h 1 i g h t - d a r k  schedule.  

The microcosms were k e p t  on a t a b l e  

o f  p h o t o s y n t h e t i c a l l y  a c t i v e  r a d i a t i o n  on a -2 s-l 

The sources f o r  t h e  i n o c u l a  were two 80-L aquar ia  c o n t a i n i n g  

water ,  d e t r i t u s ,  and b i o t a  taken  f rom a l o c a l  f i s h  pond and a 

d ra inage  d i t c h ,  r e s p e c t i v e l y .  These aquar ia  had been main ta ined  

under  l a b o r a t o r y  c o n d i t i o n s  f o r  n e a r l y  t h r e e  months p r i o r  t o  t h e  

beg inn ing  o f  t h e  microcosm exper iment .  Each microcosm rece ived :  

(1) 100 mL o f  a d e t r i t u s  suspension siphoned f rom t h e  bottoms o f  b o t h  

aquar ia ,  ( 2 )  app rox ima te l y  0.5 g d r a i n e d  f r e s h  we igh t  o f  t h e  a q u a t i c  

moss Amblystegium, ( 3 )  approx ima te l y  1 . 5  g d r a i n e d  f r e s h  we igh t  of 

f i l a m e n t o u s  a lgae  dominated by Sp i rogy ra ,  ( 4 )  10 mL o f  zoop lank ton  

suspension concen t ra ted  f r o m  t h e  d i t c h  aquarium, and ( 5 )  s u f f i c i e n t  

water ,  equal  p a r t s  f r o m  b o t h  aquar ia ,  t o  b r i n g  t o  t o t a l  microcosm 

volume t o  800 mL. 

2.1.2 Species Composi t ion 

The microcosms con ta ined  a d i v e r s e  assemblage o f  organisms 

t y p i c a l  o f  a f r e s h w a t e r  l i t t o r a l  ecosystem, Because t h e  microcosms 

were s tocked w i t h  n a t u r a l  m a t e r i a l s ,  t h e  r e s u l t i n g  spec ies  
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T a b l e  2.1. Chemical composition o f  t h e  Taub T82 medium used in t h e  
flask microcosms. 

Chemical Species- 

major cations: 

Na + 

K' 

Ca2 + 

M p  

~ 1 3 b  

major anions: 

NO3 

POj- ' .  

SO$- 

s i  o$- 

c 1 '.. 

t r a c e  el rments : 

B 

co 

CU 

Fe 

Mn 

Zn 

che la t ing  agent :  

EDTA 

I_ Molar _-.- _._ Concentration ___I_ 

2.2 10-3 

4 . 0  10-5 

1 .0  x 10-3 

1.0 10-4 

1 . 0  10-5 

5 .0  10-4 

1 .2  10-4 

1.0 10-4 

3.5 x 10-3 

4.0  x 

7.5 x 10-1 

2.5 10-9 

5.0 x lov9  

7.5 x 10-7 

2.5 x 

2.5 x lo-@ 

1.4 x 10-6 
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composition was neither precisely controlled nor completely known. 

Since the focus in this experiment was on integrative measures of 

ecosystem dynamics, the advantages of using a complex, 

naturally-derived community were felt to outweigh the disadvantage o f  

an incompletely specified taxonomic composition. A general 

characterization o f  the biotic composition i s  given in Table 2.2. 

2.1.3 Measured State Variables 

Dissolved oxygen, pH and conductivity were monitored routinely 

at three day intervals throughout the course o f  the experiment. 

Dissolved oxygen was measured in the morning immediately after the 

lights came on using an oxygen electrode. Subsequently, the contents 

o f  each microcosm were gently mixed, and 100 mL samples were removed 

for pH and conductivity determinations. 

measurements, each water sample was returned to the microcorm from 

which it was taken. Small volumes of distilled water were added t o  

the microcosms as needed to compensate for evaporation. 

Following these 

2.1.4 Experimental Design 

The experiment lasted f o r  a total o f  38 days. Initially, 24 

replicate microcosms were established and maintained under laboratory 

conditions for 17 days. At this point, one microcosm which deviated 

... 
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l a b l e  2 . 2 .  B i o t i c  compos i t ion  o f  f l a s k  microcosms. 

P l a n t s :  
Arnblystegium ( a q u a t i c  moss) 
Lernna minor (duc,kweed) 

Fi larnentous Algae;  
S p i r o g y r a  
Oedoqonium 
Osci  1 l a t o r i a  
Anabaena 

Diatoms: 
Cocconeis 
N a v i c u l a  
Ac ha n thes  

O t  h e r A 1 ga e : 
Sc en e d e s inu s 
P e d i a r t r u m  

Proi.oroi4 : 
v a r i o u s  c i l a t e s  ( i n c l u d i n g  Colpoda) 
v a r i o u s  f l a g e l l a t e s  ( i n c l u d i n g  Euglena) 
v a r i o u s  p e r ' l t r i c h s  
o c c a s i o n a l  sarcodines 

I n v e r t e b r a t e s  : 
C y p r i d o p s i s  v idua  ( o s t r a c o d )  
Chydorus sphaericus (c ladocean)  
cyclopoid copepods 
r o t i f e r s  ( i n c l u d i n g  Ph- i lod ina)  
j u v e n i l e  s n a i l s  ( p r o b a b l y  I le l isoma) 
midges ( p r o b a b l y  Ca lopsec t ra )  
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the most in terms o f  appearance and measured state space dynamics was 

removed from the experiment. The remaining microcosms were randomly 

assigned to control and treatment groups. 

The toxicant used in this experiment was 2,4-dimethylphenol 

(2,4-DMP). Each treated microcosm received 10 mL of d n  aqueous 

2,4-DMP solution calculated to produce specified nominal 

concentrations in a geometric series spanning two orders o f  magnitude 

(see Table 2.3). The control microcosms each received 100 mL o f  

distilled water. There were f i v e  replicate control microcosms, and 

three microcosms at each o f  six treatment levels. 

2.2 AQIJARIUM MICROCOSMS A N D  OUTDOOR PONDS 

An abbreviated account of  the materials and experimental methods 

used i n  t h e  aquarium microcosm and the pond studies i s  presented here 

f o r  the convenience of the reader. For details, t h e  reports o f  the 

original investigators should be consulted (Pranco et a l .  1984, 

Giddings et a l .  1984) .  

2.2.1 Assembly 

Aquatic microcosms were arsembled in 72-L g l a s s  aquaria, using 

materials collected from a shallow, 0.04-ha pond. Each microcosm was 

filled to a depth o f  about 10 cm with sediment and then received 55 
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Table 2 . 3 .  Toxicant exposure regimes in  f l a s k  microcosms. 
~- 

- Treatment Level _-__--I Nominal ~ Concentration o f  2,4-DMP (rng/L) 

con t ro l s  0.0 

1 1 .o 
2 2 . 5  

3 6 .3  

a l b  

5 39 

6 98 
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l i t e r s  of pond water  and 100 g (dra ined  wet weight) of  the submerged 

aqua t i c  macrophyte Elodea canaden&. 

i n  a growth chamber under combined f l u o r e s c e n t  and incandescent 

i l l umina t ion  ( 1 2  h l igh t :12  h d a r k ) ,  w i t h  pho tosyn the t i ca l ly  a c t i v e  

r a d i a t i o n  ranging from 160 t o  215 W E i  m s a t  the water  

su r face .  Air temperature was regulated a t  21°C during t h e  l i g h t  

period and a t  15°C d u r i n g  the dark per iod.  

The microcosms were maintained 

-2 -1 

In l a t e  April  1982, outdoor experimental  ponds were assembled i n  

1-m--deep excavated depress ions  w i t h  s lop ing  s ides  ( 5  x 5-m per imeter ,  

3 . 5  x 3 . 5 - m  bottom) l i ned  w i t h  shee t s  of 0.036-in re inforced  

potable-grade Hypolon (DuPont). Fine--grained sediment f r o m  a f i s h  

pond was placed on t h e  bottom o f  each experimental  pond t o  a depth of 

1 5  cm. Water from t h e  f i s h  pond was pumped i n t o  t h e  ponds t o  a depth 

o f  80 t o  90 cm (about  1 5  m per pond),  One week l a t e r  8 L o f  

Elodea canadensis  from a na tu ra l  pond was added t o  each pond. On  

June 8 ,  35 immature and 4 a d u l t  mosquitofish (Gambusia a f f i n i s )  were 

added t o  each pond. 

3 

2 . 2 . 2  Species  Composition 

Since both t h e  microcosms and t h e  ponds were stocked w i t h  

na tu ra l  m a t e r i a l s  from the same source,  the r e s u l t i n g  spec ies  

assemblages were s i m i l a r .  The major d i f f e r e n c e  was that. t he  ponds 

were stocked with Gambusia a f f i n i s ,  whereas f i s h  were excluded from 
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t he  microcosms. A general  c h a r a c t e r f r a t  

of t h e  aquarium microcosms and the  ponds 

t i o n  

4 .  

Note  i s  made as t o  which taxa were reported in  t h e  microcosmx, i n  t h e  

ponds, or  in both,  b u t  s ince  e f f o r t s  t o  desc r ibe  the b io t a  were  not 

ex tens ive ,  the  lack o f  a reported observat ion i s  n o t  necessa r i ly  

evidence f o r  t h e  absence o f  a taxon.  

based upon tim c r i t e r  

rou t ine ly  measured a t  

included,  and ( 2 )  var  

de t ec t ion  l i m i t s  w e r e  exc 1 uded 

s u b s e t  were replaced by values 

and subsequent observa t ions .  

on of the  b i o t i c  compos 

i s  presented in  Table 2 

2 . 2 . 3  bleasured S t a t e  Variables  

The response o f  a wide v a r i e t y  o f  phys ica l ,  chemical,  a n d  

b io logica l  v a r i a b l e s  was monitored throughout the experiments.  For 

t h e  s t a t e  space a n a l y s i s ,  a subse t  o f  t hese  va r i ab le s  was se l ec t ed  

a :  ( 1 )  only those  va r i ab le s  which were 

weekly i n t e r v a l s  d u r i n g  the  d o s i n g  period were 

ab les  w i t h  values f r equen t ly  missing o r  b e l ~ w  

The few missing values i n  t h i s  

l i n e a r l y  in t e rpo la t ed  from preceding 

he response va r i ab le s  analyzed from 

t h e  pond experiment were pH, dissolved oxygen, conduct iv i ty ,  

a l k a l i n i t y ,  ammonium concent ra t ion ,  chlorophyl l  2 i n  phytoplankton 

and i n  per iphyton,  and t o t a l  abundance values of c ladocerans,  

copepods, and r o t i f e r s -  In t h e  mjcrcrcosm experiment,  t h e  same 

va r i ab le s  were analyzed,  w i t h  t h e  exception o f  a l k a l i n i t y  and 

periphyton ch lorophyl l .  
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Table 2.4. Biotic composition o f  the aquarium microcosms ( M )  and 
outdoor ponds (P). 

PI ants : 
Elodea canadensis M,P 
Potamogeton M,P 
Nitella M , P  

Filamentous Algae:  
Spi rogyra M, P 
O s c i  1 latoria M 
Gloeotrichia M 

Diatoms : 
Eunotia M 
Gomphonema M 
Navicula M 

Other Algae: 
Gonium M , P  
Coleochaeta M 
Scenedesrnus P 

Flagellates: 
Euglena M,P 
Phacus M,P 

Zooplankton: 
c l  adocera- 

Simocephalus v e t u l u s  M , P  
Chydorus sphaericus M , P  
Alona costata M , P  

copepoda- 
Cyclops vernalis M , P  
Cyclops varicans M,P 
Eucyclops agilis M,P 
Macrocyclops albidus W,P 
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Table 2 . 4 .  (Con t inued j  

r o t i  fera-- 
P l a t y i a s  pa-tulus P 
Uytilina M 
Euchlanis  F 
Lecane P 
Brachionus quadr iden ta ta  P 

I n s e c t s :  
d i p t e r a  (ipririiarily Chi ronornidae and Ceratopogonidae) P 
ephemeroptera (Caenidae and B a e t i d a e )  P 
frichoptera ( H y d r o p t i l i d a e  and Lep toce r idae )  P 
odonata (Coenagr ionidae) P 

Other Invertebrates : 
Physa (snails) M,F 
o l i g o c h a e t e s  W 
leeches PI 

FS sh : 
Gambusia a f f i n i s  P 
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2.2.4 Experimental Design 

The toxicant used in this experiment was an unrefined, coa l -  

derived middle distillate from an H--Coal process, identified in the 

Oak Ridge National Laboratory repository a s  ACD No. 887. By weight, 

12.4% o f  the o i l  consisted of water-soluble compounds. Approximately 

95% of this water--soluble fraction was composed of phenolic 

compounds, particularly cresols, dimethylphenols, and other 

alkylphenols. 

Both microcosms and ponds were subjected to chronic o i l  

contamination over a 56-d exposure period, beginning July 13,  1982. 

Duplicate microcosms were randomly assigned to controls or to Oine o f  

seven treatment levels (Ml-M7) .  Within each treatment level, one 

microcosm was dosed weekly and one was dosed daily, although the 

total amount o f  oil added per week was the same. Ponds were randomly 

assigned to controls or to one o f  five treatment levels ( P l - P 5 ) ,  with 

two replicates at at each level both dosed daily. Oiling rates in 

the ponds ranged From 1 to 16 mL m d , resulting in measured 

total phenol concentrations ranging from approximately 0.05 to 

8 mg/L, averaged over the 56-d exposure period (Table 2.5). Oiling 

rates in the microcosms encompassed a range from 0.07 t o  

18 ml- m d , resulting in 56-d average total phenol 

concentrations of 0.01 to 10 mg/L ( T a b l e  2.6). 

-3 -1 

-3 -1 
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Table 2.5. Toxicant exposure regimes in aquarium microcosms. 

Ireatmerat Oil Input Rate Measured Peak Concentration 

Controls 0.0 not detectable 

- 

o f  Phenols  (mg/L)  
. ......... (mL m-3 d - l )  

..-I...--__.II__ ..____I ......... . 
Level 

M 1 0.067 not detectable 

M 2 0.17 0.032 

M3 0.43 O.OS2 

M4 1 . l  0.23 

M5 2.7 0.92 

M 6  5.7 1.2 

M 7  1 7  18  
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.... Tab le  2.6.  T o x i c a n t  exposure regimes i n  outdoor ponds. 

Trea trnen t 
[eve 1 

Control s 
- 

P1 

P2 

P3 

P4 

P5 

Oil I n p u t  Rate 
(mL m-3 d - 1 )  

Measured Peak Concentration 
o f  Phenols (mg/L) 

0.0 

1 .o 
2.0 

4 .0  

8.0 

16 

0.26 

0.46 

0.90 

3 . 6  

4 . 5  

28 
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2 " 3  C O M P U l  E H  SIf4JLAT IONS 

A computer s imulat ion model was developed i n  o rde r  t o  

i n v e s t i g a t e  c e r t a i n  a spec t s  o f  t he  s t a t e  space methodology i n  g r e a t e r  

d e t a i l  than could p r a c t i c a l l y  be accomplished i n  t h e  experimental  

systems. I t  was hoped t h a t  explora t ions  o f  t h e  dynamics o f  t h e  

s imulat ion model would lead l o  t h e  genera t ion  of hypotheses w h i c h  

could be checked a g a i n s t  the ( jva i l ab le  experimental  da t a  o r  more 

r igorous ly  t e s t ed  i n  fu ture  experiments.  ,4 model o f  a t y p i c a l  

f re5hwater ,  l i t t o r a l  ecosystem was developed f o r  t h j s  purpose. 

Ihe Standard Mater Colurnn Model (SHACQN) descr ibed by O'Neill e t  

a l .  (1982) served a s  a po in t  o f  depa r tu re  f o r  bu i ld ing  t h e  model. 

SWAGOM i s  a genera l ized  f reshwater  ecosystem model designed t o  

represent  a temperate ,  d imic t i c  lake .  The dynamics of a pe lag ic  food 

web a r e  governed b y  phenomenological equat ions inco rpora t ing ,  as  

appropr i a t e ,  processes  such a5  photosynthes is ,  r e s p i r a t i o n ,  prey 

cap tu re  and as5imilation, and exc re t ion .  lhcse processes  a r e  

modified by  l i g h t ,  temperature ,  and n u t r i e n t  cond i t ions ,  as  well a s  

l ox ican t  concent ra t ion ,  a l l  of  w h i c h  a r e  t r e a t e d  a s  ex te rna l  fo rc ing  

func t ions .  Mathematically, t he  model c o n s i s t s  o f  a s e t  of l inked 

f i r s t  o rde r  nonl inear  d i f f e r e n c e  equat ions implemented i n  a FORTRAN 

code and i t e r a t e d  w i t h  a one day  t ime s t e p .  

A number o f  modif ica t ions  were made t o  the  o r ig fna l  vers ion o f  

SWWCOM t o  make i t  more s u i t a b l e  f o r  Comparison w i t h  t h e  s h d l l o w ,  
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l i t t o r a l  ecosystems wh ich  a r e  t h e  focus  o f  t h i s  s tudy .  The t r o p h i c  

s t r u c t u r e  was a l t e r e d  t o  r e f l e c t  t h e  fewer  t r o p h i c  l e v e l s  p r e s e n t  i n  

t h e  exper imenta l  ponds. S ince d i s s o l v e d  oxygen appeared t o  be a 

s e n s i t i v e  i n d i c a t o r  o f  s t r e s s  i n  t h e  pond exper iments,  d sso lved 

oxygen was i n c o r p o r a t e d  as a s t a t e  v a r i a b l e  i n  t h e  model D e t r i t u s  

dnd t h e  dynamics of i t s  decomposi t ion were a l s o  added t o  t h e  model, 

p r i m a r i l y  because o f  t h e  p o t e n t i a l  impor tance i n  a f f e c t i n g  oxygen 

balance.  F i n a l l y ,  c o n s i d e r a b l e  e f f o r t  was made t o  model macrophyte 

dynamics i n  a s imp le  b u t  r e a l i s t i c  f a s h i o n  because o f  t h e r e  

domina t ing  i n f l u e n c e  i n  t h e  systems under c o n s i d e r a t i o n ,  b o t h  i n  

terms o f  biomass and p r o d u c t i v i t y .  These m o d i f i c a t i o n s  a r e  desc r ibed  

i n  d e t a i l  below. 

2.3.1 M o d i f i c a t i o n s  t o  SWACOM 

2.3.1.1 T roph ic  S t r u c t u r e  

SWACOM c o n t a i n s  a food web i n c l u d i n g  10 phy top lank ton  spec ies ,  

5 zoop lank ton  spec ies ,  3 spec ies  o f  Forage f i s h ,  and 1 ca rn i vo rous  

game f i s h .  Fo r  t h e  purposes of t h i s  s tudy  t h e  s t r u c t u r e  o f  t h e  food 

web was a l t e r e d  by e l i m i n a t i o n  o f  t h e  t o p  p r e d a t o r  and by reduc ing  

t h e  number o f  f o rage  f i s h  spec ies  f rom t h r e e  t o  one. Th is  s i m p l i f i e d  

t r o p h i c  s t r u c t u r e  i s  r e p r e s e n t a t i v e  o f  t h e  exper imen ta l  ponds, i n  

wh ich  t h e  o n l y  f i s h  species p r e s e n t  was a p l a n k t i v o r e .  
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2.3.1.2 Dissolved Oxygen 

Since the experimental data included measurements of dissolved 

oxygen, which proved to be a sensitive indicator of ecosystem 

response t o  the toxicant, it was decided to include dissolved oxygen 

as a state variable in the model. The processes considered ' t o  affect 

dissolved oxygen levels were ( 1 )  exchange with the atmosphere, (2 )  

net photosynthetic oxygen production, ( 3 )  oxygen consumption by 

zooplankton and fish respiration, and (4) oxygen demand due to the 

decomposition of detritus. 

Atmospheric exchange was modeled using an algorithm developed by 

Bloomfield ( 1 9 7 5 )  in his model o f  microb ia l  decomposition and carbon 

cycling in Lake George, New York. Daily net oxygen flux is taken t o  

be the sum of X L ,  oxygen evolution from supersaturated solution, 

and of X D ,  exchange due to turbulen'l diffusion. 

function of t h e  degree of supersaturation, calculated with respect to 

X is a linear L 

an  empirical relationship f o r  temperature-dependent oxygen 

sol ubi 1 i ty: 

where LO2] i s  (epilimnetic) dirsolved oxygen, CO2Isat is t h e  

oxygen solubility, T is temperature in degrees Celsius, Z is the 
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depth o f  the euphotic zone in meters, and Ro is a rate constant. 

Turbulent diffusion is also governed by a set o f  empirical equations: 

5.0 < T 6.5 

otherwise 

where R1 and R 2  are constants. 

Photosynthetic oxygen production was calculated as being 

proportional to biomass production on the basis o f  stoichiometry. In 

the case o f  the macrophytes, experimental data on oxygen production 

and consumption was available (ree section 2.3.1.4). Oxygen 

consumption by zooplankton and fish was likewise calculated on the 

basis of stoichiometric proportionality (1.42 g O2 cansumed per g 

respired biomass). Finally, oxygen demand in decomposition, 

presumably due to microbial respiration, was calculated as being 

proportional to the current rate o f  decomposition (see section 

2.3.1.3) .  

2 .3 .1 .3  Detritus and Decomposition 

The major source of detritus in the ecosystems under 

consideration is dead macrophytes, in this case primarily Elodea. 

There have been numerous studies o f  the decomposition o f  plant 
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materials in aquatic systems. Notably, Jewel? (1971) investigated 

weight loss, oxygen utilization, and nutrient regeneration in the 

decomposition of a variety o f  aquatic plants, including Elodea. He 

concluded that the kinetics of decomposition could be adequately 

represented by an exponential disappearance of a labile fraction, and 

no significant decomposition o f  t h e  remaining refractory material, 

Subsequently, Godshalk and Metzel (19781, after a thorough 

investigation of  the decomposition of five aquatic angiosperms (not 

including Zlodea ) ,  argued f o r  a kinetic equation o f  t h e  form: 

where W is the weight of detritus remaining, and a and b are 

constants. A t  any time t ,  this i s  equivalent t o  a first-order 

kinetic equation, but the apparent rate "constant" itself 

exponentially decays w i t h  time. 

Carpenter (1992) examined the decomposition of leaf litter in 

laboratory microcosms, and evaluated the adequacy several possible 

kinetic equations, including those discussed above. He concluded 

that the most satisfactory was a composite exponential decay, 

conceptually dividing the det r i tus  into a rapidly decaying labile 

fraction and a slowly decaying refractory fraction. This approach 

was incorporated into the model by the equat ions 
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where A O L  and A DR a r e  the lo s ses  due t o  decomposition f o r  

the l a b i l e  and r e f r a c t o r y  f r a c t i o n s ,  DL and DR a r e  the cu r ren t  

amounts of l a b i l e  and r e f r a c t o r y  d e t r i t u s ,  and k 

assoc ia t ed  decay r a t e  cons t an t s .  H ( T )  i s  a genera l ized  temperature 

response func t ion  t h a t  modifies t h e  decomposition r a t e  a s  a func t ion  

of temperature ,  T, w i t h  a maximum r a t e  a t  25°C.  For a desc r ip t ion  o f  

t h e  temperature func t ion  see  Shugart  e t  a l .  ( 1 9 7 4 ) .  Parameter values 

were chosen pr imar i ly  on t h e  bas i s  o f  t h e  da ta  i n  Jewel1 ( 1 9 7 1 ) .  

and kR a r e  t h e  L 

2.3.1.4 Macrophytes 

Shallow l i t t o r a l  ecosystems a r e  Frequently dominated by 

macrophyte beds which can exert cons iderable  cont ro l  over the 

physical  and chemical c h a r a c t e r i s t i c s  of t h e  water column. Because 

o f  t h i s ,  inc lus ion  o f  macrophytes i n  t h e  model seemed d e s i r a b l e .  

Unfortunately,  most previous a t tempts  a t  modeling macrophytes have 

focused on physiological  a spec t s  o f  p l a n t  g r o w t h  and on the 

d i s t r i b u t i o n  o f  biomass w i t h  d e p t h ,  d e t a i l s  which a r e  d i f f i c u l t  t o  

incorpora te  wi th in  the context  o f  t h e  ecosystem model. 

hand, i t  was not  i n i t i a l l y  apparent  how a s impler  macrophyte model 

might be formulated o r  parameter ized.  Therefore ,  t h e  s t r a t e g y  

adopted was t o  f i r s t  bui ld  a s epa ra t e ,  d e t a i l e d  macrophyte model, and 

then t o  empi r i ca l ly  a r r i v e  a t  a s impl i f ied  model w h i c h  could mimic 

t h e  behavior of the  d e t a i l e d  model ( a t  l e a s t  under the condi t ions  o f  

i n t e r e s t ) ,  and t o  incorpora te  t h i s  empir ical  formulat ion wi th in  the 

ecosystem model. 

On  t h e  o t h e r  
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The detai l e d  mode 

Titus et al. (1975) in 

A similar mode 

The model part 

keeps track of 

was developed following the approach used by 

modeling the aquatic macrophyte !!y%_qphyllum. 

was a l s o  developed for Cgrgx)i'd'yllum by Best (1981). 

tions the water column into 10-crn depth intervals, and 

both leaf biomass and stern biomass in each depth 

interval. Additionally, the model includes a root biomass 

compartment and a labile carbohydrate pool .  The model incorporates 

the processes of photosynthesis, respiration, growth, leaf sloughing, 

and excretion o f  dissolved organic material. 

Within each each depth interval, net photosynthesis was 

calculated as 

where Dleaf is leaf biomass, Ei is the incident light, Pmdx and 

K are maximum photosynthetic rate and light half-saturation 

constants, F ( T )  is a function which modifies photosynthesis by 

temperature, and R, is a respiration rate coefficient. 

laboratory data from which parameter estimates could be derived are 

presented by Pokorny et al. (1984), Ondok e t  a l .  (1984), and Sirnpson 

and E a t o n  (1986). Light attenuation due t o  water and to macrophytes 

was mode?ed as a composite exponential reduction with depth using the 

parameters derived by Ikusima (1970) in a field study of t h e  light 

regime in a bed o f  Elodea nuJf.j.l.i.i-. 

E 

Field a n d  
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The direct result o f  photosynthesis was an augmentation o f  the 

available carbohydrate pool. 

following equations for leaves, stems, and roots, respectively. 

Growth was then modeled by the 

AB 
leaf ,i 

A B  = G  
stem, i opt max 

AB 
root r rma x 

( 2 . 9 )  

(2.10) 

(2.1 1 )  

In equation 2.9, G 

leafy biomass under optimal conditions. This i s  modified by a 

Michaelis-Menten function representing limitations in available 

carbohydrates ( C ) ,  a term expressing the ratio of the current 

photosynthetic rate to the maximal rate (Pi/Pmax). and a term 

expressing density dependent limitation. This last term i s  derived 

by assuming a maximum total leaf  biomass o f  amax, and assuming that 
the optimal vertical distribution is a concentration o f  

photosynthetic biomass at the surface, declining exponentially with 

depth; which leads t o  Fopt, the calculated fraction of total 

biomass optimally allocated to the ith depth interval. Equation 2.10 

represents the maximum rate o f  production for 1 

i s  a completely analogous expression f o r  the growth o f  stem biomass 

(Bstem, i 9 

function of current root biomass and available carbohydrates. 

and equation 2.11 expresses root biomass growth as a 
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The v e r t i c a l  d i s t r i b u t i o n  of shoot binmass i s  determined by the  

combined processes  of growth and sloughing. In add i t ion  t o  growth 

w i t h i n  a given depth i n t e r v a l ,  governed by t h e  equat ions descr ibed 

above, vacant depth i n t e r v a l s  rece ive  a pulse  o f  shoot biomass 

whenever the biomass i n  the  next  deeper i n t e r v a l  exceeds a s e t  

th reshold .  Sloughing occurs  a t  a cons tan t  r a t e  whenever the  shoot 

biomass e x c e e d s  t h e  c u r r e n t  optimum f o r  t h a t  d e p t h  i n t e r v a l .  

F i n a l l y ,  d i sso lved  organic  mater ia l  i s  excreted a r a t e  propor t iona l  

t o  t h e  s i z e  o f  t h e  carbohydrate pool .  

Few q u a n t i t a t i v e  da ta  a r e  a v a i l a b l e  from which es t imates  of t h e  

parameters i n  t h e  g r o w t h ,  s loughing,  and exc re t ion  equat ions can be 

es t imated .  The values  used i n  t h e  s imula t ions  represent  inf'ormed 

giiesses chosen t o  produce a p a t t e r n  o f  growth c o n s i s t e n t  w i t h  those  

reported i n  f i e l d  s t u d i e s  of Elodea beds (Pokorn; e t  a l .  1984,  K u n i i  

1984 ,  Bowmet- e t  a l .  1984).  

Simulat ions were run w i t h  t h i s  model under a v a r i e t y  of cons t an t  

temperature  and l i g h t  condi t ions  covering the  range l i k e l y  t o  be 

encountered i n  a shallow pond d u r i n g  t he  g r o w i n g  season (Pokorn; e t  

a l .  1984,  Dale and G i l l e s p i e  1977) .  Typical r e s u l t s  from such 

s imula t ions  a r e  shown i n  Fig.  2 .1 .  I t  was discovered t h a t ,  under any 

given s e t  o f  cons tan t  l i g h t  and temperature  cond i t ions ,  the  growth of 

t o t a l  macrophyte biomass could be c l o s e l y  approximated by a l o g i s t i c  

model. The parameters of t h e  l o g i s t i c  model, however, var ied a s  a 

func t ion  of l i g h t  and temperature .  On the  bas i s  o f  these 

s imula t ions ,  t h e  following modified l o g i s t i c  model was der ived f o r  

t o t a l  macrophyte growth: 
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dp_ ._ - -  
d t  .I- 0 ( 1 - W K )  (2.12) 

r = rn jn  C0.122, -0.142 t 2 x 10-5E0 6 1.05 x 10-21] (2 .13)  

K = 690 t 0.3 Eo (2.14) 

where dB/dt is the growth rate o f  macrophytes, B is their current 

biomass, r is the intrinsic r a t e  o f  increase, K is the carrying 

capacity, Eo is the photosynthetically active radiation incident at 

the water surface (in pCi m s ) ,  and T i s  the water 

temperature in degrees Celsius. I t  should be noted that although the 

exprersion for r has a negative intercept, under the range of 

conditions occuring in any of the simulations in this study (where 

the temperature exceeds 1SoC), this quantity i s  always positive. 

-2 -1 

A s  a partial test of the above simplified model, b o t h  the 

detailed and the simplified models were run under time-varying lighl 

and temperature conditions typical o f  those t o  be used in the 

ecosystem model. These time-varying conditions included an excursion 

outside the range o f  constant. conditions explored in parameterizing 

the simplified model. Despite this, the overall agreement between 

the predictions o f  the simplified model and the detailed model was 

good (Fig. 2 .2 ) .  A discrete-time version o f  the simplified model was 

therefore incorporated 1 nto the ecosysterii model. 
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2 . 3 . 2  Modeling Toxic Effects 

The ecologica l  e f f e c t s  of t ox ican t  exposure were modeled through 

changes i n  t h e  parameters of t h e  model. S p e c i f i c a l l y ,  each parameter 

of t h e  model was mult ip l ied  by a t o x i c  e f f e c t s  f a c t o r .  I f  t h i s  

f a c t o r  equals  1 .0 ,  t h e  parameter value remains unchanged, i nd ica t ing  

no t o x i c i t y .  Inh ib i to ry  e f f e c l s ,  s u c h  a s  a reduct ion i n  

photosynthet ic  r a t e ,  a r e  ind ica ted  by f a c t o r s  l e s s  than 1 .0 ,  and 

s t imula tory  e f f e c t s ,  s u c h  a s  increased r e s p i r a t i o n ,  a r e  ind ica ted  by  

f a c t o r s  exceeding 1 . 0 .  Within t h e  model, t h e  parameters a r e  s tored  

w i t h i n  a t w o  dimensional a r r a y  ( t h e  parameter ma t r ix ) ,  SO the e f f e c t s  

can a l s o  be summarized i n  a corresponding a r r a y  ( t h e  e f f e c t s  

ma t r ix ) .  For each run including t o x i c a n t  e f f e c t s ,  t h e  model i s  

reparameterized by mult iplying each parameter by t h e  corresponding 

element of t h e  e f f e c t s  matr ix .  

The e n t r i e s  i n  t h e  e f f e c t s  m a t r i x  must be estimated a s  a 

func t ion  of t ox ican t  concentrat ion using a v a i l a b l e  t o x i c i t y  d a t a .  In 

most cases  t h i s  involves an ex t r apo la t ion  from s i n g l e  spec ie s ,  

l abora tory  bioassay d a t a ,  A general  protocol f o r  making such an 

ex t r apo la t ion  i s  out l ined  by O'Neill  e t  a l .  (1982 ,  1983) .  In t h e  

absence o f  more d e t a i l e d  information regarding a t o x i c a n t ' s  mode o f  

a c t i o n ,  changes in  t h e  e f f e c t s  f a c t o r s  a r e  assumed t o  be pred ic t ab le  

on t h e  bas i s  of a general  s t r e s s  syndrome, For au to t rophic  

organisms, t h e  general  s t r e s s  syndrome p r e d i c t s  a lowering of maximum 

photosynthet ic  r a t e ,  increased r e s p i r a t i o n ,  lower l i g h t  s a t u r a t i o n  
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p o i n t ,  and inc reased  Michael is- -Menten c o n s t a n t  as a r e s u l t  o f  

exposure t o  t h e  t o x i c a n t .  Fo r  h e t e r o t r o p h s ,  a decrease i n  g r a z i n g  

r a t e ,  inc reased r e s p i r a t i o n ,  lowered tempera ture  optimum, and 

inc reased  m o r t a l i t y  and s u s c e p t i b i l i t y  t o  p r e d a t i o n  a r e  assumed. 

Labora to ry  b ioassays were s imu la ted  by m im ick ing  l a b o r a t o r y  

c o n d i t i o n s  ( i . e . ,  c o n s t a n t  o p t i m a l  l i g h t  and temperature,  ample food 

and no g r a z i n g  o r  p r e d a t i o n  l o s s e s ) ,  and t h e n  v a r y i n g  t h e  remain ing  

parameters i n  accordance w i t h  t h e  genera l  s t r e s s  syndrome u n t i l  t h e  

model p r e d i c t i o n s  matched t h e  exper imen ta l  r e s u l t s  ( e m s . ,  a 50% 

r e d u c t i o n  i n  biomass on day 4 t o  correspond t o  a 96-h LC50). E f f e c t s  

f a c t o r s  wh ich  c o u l d  n o t  be es t ima ted  on t h e  b a s i s  o f  a v a i l a b l e  

exper imenta l  da ta ,  such as s u s c e p t i b i l i t y  t o  p r e d a t i o n ,  were assumed 

t o  be o f  t h e  same magni tude as t h e  f a c t o r s  c a l c u l a t e d  f o r  t h e  o t h e r  

processes.  

I n  t h i s  s tudy ,  t h e  l a b o r a t o r y  t o x i c i t y  da ta  used t o  e s t i m a t e  t h e  

s e n s i t i v i t i e s  o f  t h e  p e l a g i c  spec ies  c o n s i s t e d  of  t h e  r e s u l t s  o f  a 

s e r i e s  o f  b ioassays  w i t h  t h e  wa te r -so lub le  f r a c t i o n  o f  t h e  o i l  added 

t o  t h e  ponds (G idd ings  e t  a1 1985) .  Acute b ioassays were conducted 

w i t h  t h e  c ladoceran Daphnia magna, t h e  fa thead  minnow Pimephales 

promelas,  t h e  m o s q u i t o f i s h  Gambusia a f f i n i s ,  t h e  midge Chironomus 

~~ t e n t a n s ,  and t h e  green a l g a  Selenast rum capr icornu tum.  A c h r o n i c  

b ioassay  was a l s o  conducted w i t h  Daphnia magna. D e t a i l s  o f  these 

t e s t s  a r e  p resented  in Gidd ings  e t  a l .  (1985). The e f f e c t  o f  t h e  

t o x i c a n t  on macrophytes was e x t r a p o l a t e d  f rom l a b o r a t o r y  b ioassays 

wh ich  examined t h e  changes i n  pho tosyn thes i s  and r e s p i r a t i o n  o f  
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__I_._.. Elodea canadensis ..I_._ shoot tips exposed to an equimolar mixture o f  

7,4 -dimethylphenol, 2 -isopropylpkenol, and 2-sec-butylphenol (Moore, 

1985). 

2 . 3 . 3  Modeling o f  Uncertainty and Variability 

Experimentally, it is impossible for ecosystem state variables 

to be known with complete accuracy and precision. In order to more 

realistically evaluate the potential applicability of state space 

analysis to experimental data, it was necessary t o  incorporate 

statistical errors into the model output sirnSlar to those that would 

be inherent in an actual observation set. It was assumed that such 

errors could be partitioned into two categories depending upon the 

source of the e r r o r :  (1) errors due tu the natural variability o f  

ecological systems, and  ( 2 )  errors introduced in the measurement 

process. Natural variability was incorporated into the model by 

choosing randoin initial values for the s t a t e  variables, and by 

running the model with stochastic forcing functions. Measurement 

errors were added t u  the output after the model was run. 

In terms of the experimental ponds the model was designed to 

simulate, randomized initial conditions can be interpreted a s  

reflecting the lack of homogeneity between individual ponds arising 

from differences in construct.ion and from non-uniform stocking and 

colonization. For each model run, a vector of initial values for the 

slate variables was selected from a multivariate normal distribution 
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by latin hypercube sampling using a FORTRAN computer code called 

PRISM (Gardner et al. 1983) .  Latin hypercube sampling is a 

stratified random sampling scheme which allows statistical 

distributions to be reliably approximated with substantially fewer 

Monte Carlo replicates than would be required by simple random 

sampling (McKay et al. 1979, Iman and Conover 1982). The initial 

values were chosen as independently distributed normal random 

variables with means equal t o  their deterministic values and 10% 

coefficients o f  variation. 

Stochastic forcing functions were used to model the 

spatiotemporal variability i n  environmental conditions experienced by 

individual ponds. In the model, both light and temperature were 

modeled as stochastic functions consisting o f  a random walk 

superimposed on a deterministic seasonal trend (Fig. 2.3). Although 

air temperature and incident light at the surface of a set o f  

experimental ponds may not vary greatly from pond to pond, it i s  

frequently observed that there i s  considerable variability in the 

color and turbidity of individual ponds, resulting i n  greater 

variability in the light and temperature regimes within the ponds. 

The stochastic forcing functions were generated such that random 

deviates with small variance were added daily, and deviates with 

progessively larger variance were added every 3, 9 ,  and 27 days. 

This produced a pattern o f  autocorrelations which favored runs of 

days with similar conditions, as is frequently encountered in actual 

meteorological data, The ensemble of stochastic forcing functions 
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averaged over all 200 Monte Carlo replicates did not exhibit any 

systematic deviation from the deterministic mean. 

Other sources o f  natural variability could, of course, be 

imagined. Variations in other forcing functions, such as nutrient 

inputs to the system, could be considered. 

experimental ponds, it seems likely that nutrient inputs from 

external sources, although they do occur, play a subordinate role 

relative to nutrient regeneration within the pond. A l s o ,  previous 

modeling studies using SWACOM have demonstrated a greater sensitivjty 

t o  changes in light and temperature than to nutrient inputs, further 

supporting the emphasis on light and temperature as sources o f  

natural variability. Other types of natural variability, such as 

differences in species composition, genetic variability, differences 

in microbial activity, local extinctions and invasion by new species, 

undoubtedly occur in the real world but are not explicitly 

incorporated in the model. It is argued that at the level of 

resolution of the current modeling effort, which is primarily 

exploratory in nature, such phenomena may be neglected. 

In the case of the 

Measurement errors were introduced as independent, normally 

distributed random numbers added to the values o f  the state 

variables. The biomasses and detritus variables were transformed by 

taking the natural logarithm prior t o  the addition o f  measurement 

errors and then transformed back to the original scale; a l l  other 

variables received measurement errors directly ( i . e . ,  without prior 
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t r a n s f o r m a t i o n ) .  The var iances  o f  t h e  e r r o r s  were chosen t u  

approx imate a l e v e l  o f  p r e c i s i o n  t e c h n i c a l l y  a t t a i n a b l e  i n  t h e  

absence o f  any v a r i a b i l i t y  o t h e r  t h a n  measurement e r r o r s .  Standard 

d e v i a t i o n s  o f  t h e  measurement e r r o r s  were as f o l l o w s :  0.20 f o r  t h e  

l og -phy top lank ton  and t h e  l og-zoop lank ton  biomasses, 0 . 3 8  f o r  t h e  

l o g - f i s h  biomass, log-e lodea biomass and l o g  d e t r i t a l  masses, 0.10 

f o r  phy top lank ton  p r o d u c t i v i t y ,  0.50 f o r  macrophyte p r o d u c t i v i t y ,  

0.10 f o r  d i s s o l v e d  oxygen, and 0 - 3 0  f o r  n u t r i e n t  c o n c e n t r a t i o n .  T h i s  

r e s u l t e d  i n  c o e f f i c i e n t s  o f  v a r i a t i o n  g e n e r a l l y  w i t h i n  t h e  range o f  

20-30% f o r  a l l  except  t h e  phys icochemical  v a r i a b l e s  ( d i s s o l v e d  oxygen 

and n u t r i e n t  c o n c e n t r a t i o n )  lsdhich had c o e f f i c i e n t s  o f  v a r i a t i o n  o f  

2 -4%. 

2.4 STATE SPACE A N A L Y S I S  

A s  d iscussed i n  Chapter  1, t h e  response o f  an ecosystem t o  

t o x i c a n t  s t r e s s  can be q u a n t i f i e d  by t h e  d isp lacement  o f  t h e  s t a t e  

v e c t o r  away f rom Some re fe rence  s t a t e  (see s e c t i o n  1 .4 ) .  In t h e  

s i t u a t i o n s  cons idered i n  P h i s  s tudy ,  t h e  r e f e r e n c e  s t a t e s  arc? 

measured s t a t e s  i n  r e p l i c a t e  c o n t r o l  ecosystems ( i . e . ,  t h o s e  t o  which 

Changer induced by t h e  t o x i c a n t  can be 

ng a d isp lacement  v e c t o r ,  ~ ( t ) ~  d e f i n e d  as 

between t h e  pe r tu rbed  and c o n t r o l  s t a t e  

no t o x i c a n t  

desc r ibed  by 

t h e  v e c t o r  d 

v e c t o r s :  

s added) 

c a 1 c u 1 a t 

f f erence 
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(2.15) 

as illustrated in Fig. 2.4. This equation i s  precisely equivalent to 

equation 1.4, except that the subscripts now explicitly reflect the 

comparison between perturbed and control ecosystems. The word 

"displacement", as used here, refers to a vector quantity, possessing 

both magnitude and direction. The word "separation" i s  used to 

denote the associated scalar quantity, defined as the distance 

between perturbed and control state vectors or, equivalently, as the 

magnitude o f  the displacement vector. 

2 .4 .1  Statistical Estimation of Displacement and Separation 

In experimental situations, the true state space trajectories 

and displacement vectors are not known, but must be estimated from 

discrete samples i n  the presence o f  natural variability, measurement 

error, and other uncertainties. At any sampling time, t, the 

displacement vector u ( t )  must be estimated based on observations of 

m replicate control ecosystems and n replicate perturbed ecosystems. 

The situation can be visualized as two clusters, o f  m and R points 

respectively, distributed in state space. In the absence of 

systematic bias these points will tend to be centered around the true 

population centroids, p,(t) and u (t). 

problem is one of finding an appropriate estimator o f  the distance 

between the centroids of the two  (statistical) populations. 

The statistical P 
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TRAJECTORY 

Figure 2.4 State space trajectories showing displacement vec'tnr as 
t h e  difference between perturbed and control state vectors. 
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One such estimator is the distance between the two sample 

centroids, pc(t) and p (t). 

estimator of the desired population quantity. The major disadvantage 

o f  this estimator i s  that it is difficult to assess its statistical 

accuracy (i.e., to compute its standard error or to construct a 

confidence interval). An alternative estimator i s  the average o f  the 

distances calculated from all pairwise comparisons between clusters. 

This is not an unbiased estimator o f  the true distance between 

population centroids, as can be seen by considering the case where 

p (t) = p (t), such that the true distance between 

centroids is zero, but the estimator yields a positive value related 

t o  the variance of the measured states about their centroids. In 

practice however, two considerations favor the use o f  this biased 

estimator: ( 1 )  the bias becomes less important as the distance 

between p (t) and FL (t) becomes large relative to the 

within group variance ( i . e . ,  as the ecosystem responds to the 

toxicant), and ( 2 )  the variability among the pairwise estimates gives 

an indication of the degree of uncertainty in the estimate of 

centroid separation. Furthermore, calculating the average distance 

between replicate control states provides a measure of the degree of 

bias in the estimator. 

This is an unbiased 
P 

C P 

C P 

I n  cases where the number of replicates is small, it is feasible 

to calculate the distances between all possible pairs, When 

comparing controls with perturbed states, there are rnn such pairs, 

whereas m(m-1) comparisons can be made between nonidentical 
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controls. I f  these numbers are  large, it is possible to compute the 

estimator on the basis  o f  a smaller number o f  randomly matched 

p a i r s .  Once a distribution of calculated pairwise distances is 

obtained, a confidence interval can be estimated. If the original 

state vectors follow a multivariate normal distribution with an 

identity covariance matrix, then under the null hypothesis that 

v,(t) = p (t), the squared distances will follow a 

chi-squared distribution with p degrees o f  freedom, where p is the 

dimensionality o f  the state space. A transformation which will 

convert an arbitrary multivariate normal distribution into one with 

an identity covariance m a t r i x  will be discussed in the next section. 

Confidence limits can then be calculated from the appropriate 

percentage points in the chi-squared distribution. I f  such 

parametric assumptions are n o t  warranted, a confidence interval could 

be derived by means of nonparametric resampling methods, such as  t h e  

bootstrap procedure ( E f r o n  and Tibshirani 1986) e 

P 

2.4.2 Distance Metrics and D a t a  Transformation 

I n  the previous section emphasis was placed on estimation o f  the 

distance between state vectors o r  between the centroids o f  groups o f  

state vectors. Explicit consideration will now be given t o  how 

distances may be measured in the s t a t e  space .  The issue a t  Rand is 

the selection o f  an appropriate m e t r i c ,  or mathematical yardstick, 

far making such distance measurements, 
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The most straightforward mathemat cal analog o f  the intuit 

notion of distance i s  that employed in Euclidean geometry. The 

Euclidean distance metric i s  based on a generalization of the 

Pythagorean Theorem. Given two vectors in n-dimensional space, 

v =I (v,,v2, ..., vn)l and w -- ( w  w 1' 2' 
distance between them i s  

..., w,)', the Euclidean 

o r ,  in vector notation, 

dE ( v , w )  = [ ( V - - W ) ' ( V - W ) ]  l/* 

ve 

(2.16) 

( 2 . 1 7 )  

A problem that frequently arises in using Euclidean distance to 

measure state space separations i s  that the various axes o f  the state 

space are often scaled in incommensurate units. For instance, in the 

flask microcosm experiment to be discussed i n  Chapter 3 ,  both pH and 

conductivity were included a s  measured state varjables. In the 

controls, pH was typically observed to vary over a range o f  

approximately 1 pH unit, whereas conductivity, measured in different 

units, typically spanned about 50 units. Clearly a displacement of  5 

units along the pH axis would be seen as a major perturbation while a 

5 unit change in conductivity would be insignificant, but both are 

equivalent n terms o f  Euclidean distance! One obvious solution 

would be t o  rescale the axes i n  some way t o  make the units 

commensurab e. That option will be discussed later, but first a n  

alternative distance metric will be considered, 
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A distance metric commonly employed in multivariate statistics 

is the Mahalanobis distance (Mahalanobis 1936, Mardia 1 9 7 7 ) .  Given 

two random vectors, v and w ,  the Nahalanobis distance between 

them is 

(2.18) 

where E-’ is the inverse of the covariance matrix for the distribution 
1 from which the vectors were drawn . The interpretation of this distance 

measure can be seen by considering a cloud of data points distributed w i t h  

centroid p and covariance matrix C a s  shown in F i g .  2.5a. If the 

underlying distribution is multivariate normal, an elliptical joint 

confidence region can be defined ( F i g .  2 . 5 b ) .  The Mahalanobis distance 

from the centroid to any point on the ellipse is a constant. Thus, 

equally probable deviations from the centroid are equally distant when 

measured by the Mahalanobis metric. 

An alternative t o  the use o f  the Mahalanobis distance metric is to 

transform the st.ate space. The appropriate transformation involves the 

Cholesky decomposition (sometimes called the symmetric square root) of 

E-’. Given an arbitrary matrix* sui, i t s  Cholesky decomposition 

The quantity Mahalanobis actually considered in his original 
paper was the square of that given in equation 2.98, and the term 
Mahalanobis distance has been ambiguously used to refer to both 
quantities ever since. The usage adopted h e r e  parallels t h e  
traditional definition of Euclidean distance, a n d  is equivalent t o  
the standard distance proposed by Flury and Riedwyl (1986) .  

for positive definite matrices. This requirement i s  satisfied by any 
nons i ngu 1 ar covariance inatri x . 
matrices are seldom encountered except for situations where fewer 
degrees of freedom are available than the number of state variables. 

2Strictly speaking, the Cholesky decomposition is only defined 

In practice, singular covariance 
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) i s  a m a t r i x  A such t h a t  -1/2 ( o f t e n  w r i t t e n  as N 

A ' A  = M. It i s  u s e f u l  t o  t r a n s f o r m  t h e  d a t a  such t h a t  a v e c t o r  

x i n  t h e  o r i g i n a l  s t a t e  space i s  mapped i n t o  a v e c t o r  y i n  t h e  

t rans fo rmed  space, where 

y = Ax (2 ,19 )  

and 

A =. ( E 4 ) 1 / 2  E ( p / 2 ) - 1  I' c-1/2 (2.20) 

It can be e a s i l y  demonstrated t h a t  t h e  Euc l idean d i s t a n c e  between two 

v e c t o r s  i n  t h e  t rans formed space i s  equal  t o  t h e  Mahalanobis d i s t d n c e  

between t h e  cor respond ing  v e c t o r s  i n  t h e  o r i g i n a l  space. fur thermore,  

t h e  cova r iance  m a t r i x  o f  t h e  t rans formed da ta  I s  an i d e n t i t y  m a t r i x .  

I n  essence t h e  t r a n s f o r m a t i o n  can be seen as s imu l taneous ly  

s t a n d a r d i z i n g  t h e  da ta  and removing t h e  e f f e c t s  o f  any c o r r e l a t i o n s .  

T h i s  r e s u l t s  i n  a t rans fo rmed  s t a t e  space i n  which t h e  axes a r e  

o r thogona l  and have been a p p r o p r i a t e l y  resca led  i n  commensurable 

u n i t s .  P h i s  i s  i l l u s t r a t e d  g r a p h i c a l l y  i n  F i g  2 . 5 ~  and d. F i g .  2 . 5 ~  

shows a c o n c e n t r a t i o n  e l l i p s e  i n  t h e  o r i g i n a l  s t a t e  space. P o i n t s  A 

and 6 a r e  e q u a l l y  d i s t a n t  f rom t h e  da ta  c e n t r o i d ,  as measured by t h e  

Euc l i dean  m e t r i c ,  but p o i n t  8 c l e a r l y  rep resen ts  a l a r g e r  d e v i a t i o n  

f r o m  t h e  normal range o f  v a r i a b i l i t y ,  I n  t h e  t rans formed space, 

shown i n  F i g .  2.5d, t h e  c o n c e n t r a t i o n  e l l i p s e  becomes a c i r c l e ,  and 

t h e  Euc l i dean  d i s t a n c e s  o f  A '  and 8' f rom t h e  c e n t r o i d  r e f l e c t  t h e  
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B'  

x2 

Figure 2 , 5  An illustration o f  the Mahalanobis transformation. 
( a )  A sample o f  bivariate observations. ( b )  The co r respond ing  
concentration ellipse. 
centroid i n  the original data space,  (d) The locations of the two 
points in the t r ans fo rmed  da ta  space ( A '  and 0'). 

( c )  Two p o i n t s ,  A and B, equidistant f rom the 
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Mahalanobis d i s t a n c e s  f o r  t h e  cor respond ing  p o i n t s  i n  t h e  o r i g i n a l  

space* 

I n  t h i s  s tudy ,  t h e  sample cova r iance  m a t r i x  f o r  t h e  c o n t r o l  

(unper tu rbed)  systems was c a l c u l a t e d  f r o m  exper imen ta l  da ta  o r  Plonte 

Car lo  s i m u l a t i o n s .  Th is  was used t o  p e r f o r m  t h e  da ta  t r a n s f o r m a t i o n  

desc r ibed  above. Euc l i dean  d i s t a n c e s  were c a l c u l a t e d  l n  t h e  

t rans formed space between c o n t r o l  and p e r t u r b e d  s t a t e  vec ta rs ,  and 

between r e p l i c a t e  c o n t r o l  s t a t e  v e c t o r s .  The separa t i ons  thus  

c a l c u l a t e d  can e q u i v a l e n t l y  be regarded as Mahalanobis d i s t a n c e s  

between t h e  o r i g i n a l  s t a t e  v e c t o r  s tandard i zed  t o  t h e  v a r i a b i l i t y  of 

t h e  c o n t r o l s .  

2.4.3 Summary Measures 

The techn iques  o u t l i n e d  i n  t h e  p reced ing  s e c t i o n s  w i l l  p r o v i d e  

an e s t i m a t e  o f  t h e  d isp lacement  v e c t o r ,  and o f  t h e  Corresponding 

s t a t e  space separa t i on ,  between c o n t r o l  and p e r t u r b e d  ecosystem a t  

each p o i n t  i n  t i m e .  It i s  o f t e n  d e s i r a b l e  t o  summarize t h i s  d e t a i l e d  

i n f o r m a t i o n  by some s e t  o f  i n t e g r a t e d  measures t h a t  t y p i f y  ecosystem 

response o v e r  a s p e c i f i e d  t i m e  i n t e r v a l .  The f o l l o w i n g  i n t e g r a t e d  

measures a r e  proposed which,  when taken  t o g e t h e r ,  e f f e c t i v e l y  

summarize much o f  t h e  i n f o r m a t i o n  con ta ined  i n  t h e  full s e t  o f  

d isp lacement  v e c t o r s .  

1 .  Maximum Disp lacement  o r  Separa t i on  

The maximum d isp lacement  v e c t o r  i s  s imp ly  t h e  l a r g e s t  

d isp lacement  v e c t o r ,  u ( t ) ,  encountered o v e r  t h e  s p e c i f i e d  t i m e  
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were 

s amp 

interval. The maximum separation is defined a s  the magnitude o f  

the maximum displacement vector. 

2. Mean Separation 

Over a t i m e  interval beginning at t, and ending a t  t 

mean separation is defined as 

the 2 '  

where i u ( t )  I represents the magnitude o f  t h e  displacement 

vector u(t). 

3 .  Mean Displacement 

The mean displacement vector is defined as  

1 
(2 .22)  

Note that in general the magnitude of t h e  mean displacement 

vector will n o t  equal t h e  mean separation because a partial 

cancellation 

The integral 

approximated 

occurs as the vector u ( t )  changes direction. 

forrnu?ae for mean separation and mean displacement 

by summations calculated from the discretely 

ed d a t a  or s midlation results. Comparisons among these measures 

may reflect aspects of the behavior of the displacement vector over 

time. F o r  example,  if the response o f  the system remains fairly 

constant over a given time interval, the mean displacement will 

approach the maximum displacement. Similarly, a comparison o f  t h e  

magnitude of t h e  mean displacement with the mean separation measures 

the degree t o  which u ( t )  wanders over time, since these quantities 

will be equal only if the direction o f  u ( t )  is constant. Changes 
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i n  d i r e c t i o n  w i l l  decrease the  value o f  the mean displacement 

magnitude. This m i g h t  be expected, f o r  example, i n  systems which 

show a biphasic  response t o  a t o x i c a n t ,  such a s  an i n i t i a l  dec l ine  i n  

primary p roduc t iv i ty  due t o  d i r e c t  phytotoxic  e f f e c t s ,  followed by 

i n d i r e c t  e f f e c t s  a t  h i g h e r  t roph ic  l e v e l s .  The d e t a i l s  o f  such a 

response can be reconstructed from an a n a l y s i s  of t h e  displacement 

t r a j e c t o r y .  

2 .4 .4  Computation of S t a t e  Space S t a t i s t i c s  

All analyses  o f  both experimental  da t a  and s imulat ion r e s u l t s  

were performed u s i n g  the S t a t i s t i c a l  Analysis System ( S A S ) .  T h e  

c a l c u l a t i o n  o f  displacement vec tors  and s t a t e  space sepa ra t ions  was 

accomplished by an a lgor i thm w r i t t e n  using PROC MAIHIX (SAS '1985a). 

The summary ind ices  were subsequently computed using PKOC M€ANS o r  

PROC SUMMARY (SAS 1 9 8 5 b ) .  Other SAS procedures were used in  the 

course o f  the r tudy ,  n o t a b l y  f o r  regress ion  a n a l y s i s  ( P R O C  REG), f o r  

p r inc ipa l  components a n a l y s i s  ( P R O C  PRINCOMP and PROC F A C T O R ) ,  and 

f o r  d i scr iminant  a n a l y s i s  ( P R O C  DISCRIM, PROC CANDISC and PROC 

STEPDISC) (SAS 1 9 8 5 ~ ) .  

T h e  methods o f  da ta  a n a l y s i s  developed in  t h i s  chapter  a r e  

appl ied t o  experimental  microcosm and pond da ta  i n  chapter  3 .  

Chapter 4 presen t s  t h e  r e s u l t s  o f  s i m i l a r  analyses  o f  t h e  output  o f  

an ecosystem model. Because o f  t h e  l a rge  number o f  Monte Carlo 

r e p l i c a t e s  produced by t h e  model, c e r t a i n  s t a t i s t i c a l  p rope r t i e s  o f  

t h e  method can be addressed u s i n g  t h e  simulated da ta  s e t .  
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Subsampl ing o f  t h e  t h e  simulated d a t a  allows the robustness o f  the 

method t o  the  smaller, experimentally f e a s i b l e  sample s i z e s  t o  be 

assessed.  
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Chapter  3 

EXPERIMENTAL RESULTS 

l h i s  chap te r  p resen ts  t h e  r e s u l t s  of a p p l y i n g  t h e  s t a t e  space 

methodology developed i n  chap te r  2 t o  exper imenta l  da ta .  The da ta  

were c o l l e c t e d  i n  a s e r i e s  o f  s t u d i e s  o f  t h e  response o f  f reshwa te r  

ecosystems t o  t h e  i n t r o d u c t i o n  of a l k y l p h e n o l s .  The f l a s k  microcosm 

exper iment  i n v e s t i g a t e d  t h e  e f f e c t s  o f  an acu te  dose o f  a s i n g l e  

p h e n o l i c  compound, 2 ,4-d imethy lphenol .  The aquarium microcosms and 

ou tdoor  ponds were used t o  i n v e s t i g a t e  t h e  e f f e c t s  o f  c h r o n i c  

exposure t o  a c o a l - d e r i v e d  complex m i x t u r e .  These systems, and t h e  

exper imenta l  methods used t o  g a t h e r  t h e  da ta ,  a r e  d iscussed i n  

g r e a t e r  d e t a i l  i n  chap te r  2 ( s e c t i o n s  2.1 and 2 . 2 ) .  

3.1 FLASK MICROCOSMS 

3.1.1 Dynamics o f  I n d i v i d u a l  S t a t e  V a r i a b l e s  

A f t e r  i n o c u l a t i o n ,  t h e  microcosms underwent a p e r i o d  of  growth  

and development. Th is  t r a n s i e n t  phase was c h a r a c t e r i z e d  by an 

i n i t i a l  r a p i d  r i s e  f o l l o w e d  by d e c l i n e  i n  ptt ( f r o m  8.01 t o  9 . 2 4  t o  

8.24) and d i s s o l v e d  oxygen ( f r o m  7.9 t o  9 .0 t o  6.8 ppm), and by  a 

steady d e c l i n e  i n  c o n d u c t i v i t y  ( f r o m  447 t o  391 umho c m - ’ ) .  

A f t e r  app rox ima te l y  t h r e e  weeks, c o i n c i d i n g  w i t h  t h e  t i m e  a t  which 

t h e  t o x i c a n t  was in t roduced ,  t h e  u n t r e a t e d  microcosms appeared t o  

e n t e r  a quas i - -s teady  s t a t e ,  i n  which t h e  t h r e e  s t a t e  v a r i a b l e s  



66 

fluctuated around a relatively constant value for the rest of the 

experiment. W i t h i n  the quasi-sleady state there seemed to be greater 

variability between replicates thdn during the transient phase, 

especially for ptl and conductivity. 

The nominal concentration of 2,4-dirnethylphenol at each of the 

treatment levels is sunmar-ized in Table 2.3. The dynamics of the 

toxicant-perturbed microcosms was compared to that of the controls on 

t h e  basis o f  least significant differences with a comparisonwise type 

I error rate of 0.05, computed by the formula 

(3.1) 

where yc and y are the control and the perturhed means, nc and 
P 

n are the numbers O F  control and perturhed replicates, s is the 

root mean square error, and t is the Student's t value with 
Q ,  v 

a = .05 and u degrees of freedorn. lhe interval not significantly 

different from the controls was taken t o  represent the normal 

operating range for each variable. No significant differences were 

found for any of the state variables at the three lowest doses. The 

results for the higher treatment levels are sunirnarized i n  figs. 3 . 1 ,  

3 . 2  and 3 . 3 .  The mean pW a t  the two highest doses drops slightly 

below the normal operating range immediately after the perturbation, 

but quickly recovers. Dissolved oxygen i s  depressed well below the 

normal range, hilt. again recovers rapidly. Conductivity, by 

comparison, shows a delayed but sustained response, significantly 

increasing in all three of the higher treatment levels. 

P 
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Figure 3.1 Dynamics o f  pH in flask m i c r o c o s m s .  Shaded region 
indicates l e a s t  significant difference interval (a:-.Os). T r e a t m e n t  
levels 1-3 (not shown) did not significantly differ from controls. 
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Figure 3.2 Dynamics o f  dissolved oxygen in flask m i c r o c o s m s .  Shaded 
region indicates least significant difference interval ( a - = . O S ) .  
Treatment levels 1 - 3  ( n o t  shown) did not significantly differ from 
control 5 .  
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Figure 3.3 Dynamics of conductivity in flask microcosms. Shaded 
region indicates least significant difference interval (a=.Q5). 
Treatment levels 1-3 (not shown) d i d  n o t  significantly differ from 
controls . 
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3.1.2 State Space Analysis 

The separation between treatment group centroids, as defined in 

sections 2.4.1 and 2.4.2, is shown as a function o f  time in Fig. 3.4. 

The separation was estimated by the mean separation o f  all 

nonidentical pairwise comparisons of state vectors. The rapid 

response at treatment levels 5 and 6 is clearly shown. At treatment 

level 4 a smaller ,  delayed response is detectable. A s  was the c a s e  

when examining the state variables individually, no discernable 

response is observed a t  any of the lower t.oxicant exposures as 

compared to the controls. 

between replicate controls was n o t  constant over time. Some o f  this 

variability is probably due to random sampling error, but there is a 

pattern of consistently higher control variability in the second half 

o f  the experiment. 

It i s  a l s o  apparent that the separation 

As an aid to interpretation, the correlations between state 

space separations and changes in each o f  the individual state 

variable were examined. These correlations change over time, as 

shown in F i g .  3 .5 .  Immediately Following the introduction o f  the 

toxicant, there is a strong negative correlation between state space 

separation and changes in dissolved oxygen. Subsequently, the 

magnitude o f  this correlation decreases, while the correlation with 

changes in conductivity increases. The patterns revealed by these 

correlations are in accordance with the temporal patterns of response 

observed in the original data (Figs. 3 . 1  - 3 . 3 ) ,  lending support to 

the use of such correlations for interpreting the results o f  state 
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space analysis. At the same time, it may be noted that since the 

correlations are not strong ( I r l  seldom > 0.71, the multivariate 

response contains information not captured by individual variables, 

providing support f o r  the use of state space analysis. 

The response o f  the microcosms during the post-treatment period, 

as characterized by the summary indices described in section 2 . 4 . 3  

(maximum separation, mean separation, and mean displacement 

magnitude), i s  shown in Fig. 3 .6 .  All three curves increased 

significantly at the two highest toxicant concentrations, but showed 

little o r  no response at lower doses. The wide divergence o f  mean 

separation and mean displacement magnitude values at the low doses i s  

compatible with a relatively random, non-directional differences 

between microcosms, as would be expected i f  the dynamics o f  these 

systems i s  dominated by inherent natural variability o r  by stochastic 

factors affecting each microcosm differently. A s  response to the 

toxicant becomes the dominant influence on ecosystem dynamics, these 

indices converge toward the same value, indicating a more directed 

displacement. 

Ninety-five percent confidence intervals for maximum separation 

were calculated on the basis o f  an assumed normal distribution. 

These intervals are shown as bars in F i g .  3 . 6 .  The normality 

assumption was tested using the Shapiro-Wilk statistic (Shapiro and 

Wilk 1965) ,  and was rejected only f o r  the controls. Further 

Inspection o f  the control distribution indicated that i t  wds lighter 

in the tails than a normal distribution, so that a confidence 
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interval based on a normal approximation is likely to be larger than 

required. Confidence intervals are not shown for mean separation o r  

mean displacement magnitude. 

normal distribution was frequently violated, but inspection of the 

empirical frequency distributions indicated that appropriate 

confidence intervals would be somewhat asymmetric and of a size 

comparable to those for maximum separation. 

For these indices the assumption o f  a 

3 . 1 . 3  Changes i n  Covariance Structure 

Since the state space analysis i s  based on a data transformation 

which i s  a function o f  the sample covariance matrix, it i s  o f  

interest to observe changes in the covariance structure that occur 

over time. The covariance structure was investigated ?n two  ways: 

( 1 )  the generalized variance, defined as the determinant o f  the 

covariance matrix, was calculated for each sample over the course o f  

the experiment, and ( 2 )  the correlations between state variables were 

also calculated f o r  each sample. 

The square roo t  o f  the generalized variance, which can be 

regarded as a generalized standard deviation, i s  plotted f o r  the 

control microcosms in Fig. 3 . 7 .  lhere is a substantial increase in 

the variability o f  the controls coinciding with the beginning of the 

treatment period. The reasons f o r  this are not entirely clear, but 

it should be remembered that the controls did receive an a d d i t i o n  100 

mL of distilled water, corresponding the addition o f  100 ml of 

toxicant solution in the perturbed syLtems. I t  i s  possible that the 
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d i l u t i o n  caused by add ing  d i s t i l l e d  w a t e r  was i t s e l f  n o t  an 

i n c o n s e q u e n t i a l  p e r t u r b a t i o n  t o  t h e  system. 

It i s  i m p o r t a n t  t o  e v a l u a t e  t h e  e x t e n t  t o  wh ich  t h e  tempora l  

v a r i a t i o n s  i n  c a l c u l a t e d  c o r r e l a t i o n s  r e p r e s e n t  t r u e  changes i n  t h e  

u n d e r l y i n g  c o r r e l a t i o n  s t r u c t u r e  as opposed t o  random sample 

v a r i a t i o n .  T h i s  i s  examined i n  F i g .  3.8, where, c o r r e l a t i o n s  between 

s t a t e  v a r i a b l e s  i n  t h e  microcosms a r e  p l o t t e d  as a f u n c t i o n  o f  t i m e .  

A f t e r  a d d i t i o n  o f  t h e  t o x i c a n t  t o  t h e  t r e a t e d  microcosms, t h e  

c o r r e l a t i o n  s t r u c t u r e  must be c a l c u l a t e d  on t h e  b a s i s  o f  t h e  f i v e  

remain ing  c o n t r o l  microcosms. P r i o r  t o  t r e a t m e n t  w i t h  t h e  t o x i c a n t ,  

however, a l l  24 microcosms a r e  e f f e c t i v e l y  c o n t r o l s .  The c o r r e l a t i o n  

s t r u c t u r e  based on a l l  24 microcosms was c a l c u l a t e d  f o r  each sampl ing 

d a t e  i n  t h e  p r e t r e a t m e n t  p e r i o d .  These c o r r e l a t i o n s  can be compared 

w i t h  those c a l c u l a t e d  on t h e  b a s i s  o f  t h e  f i v e  c o n t r o l s .  The 

c o r r e l a t i o n  between pH and d i s s o l v e d  oxygen i s  g e n e r a l l y  s t r o n g  

( I r l  > 0 . 6 ) ,  and t h e  es t ima tes  based on t h e  f i v e  c o n t r o l s  agree 

w e l l  w i t h  those  based on a l l  24 microcosms. The p H - c o n d u c t i v i t y  and 

d i s s o l v e d  oxygen-conduc t i v i t y  c o r r e l a t i o n s ,  however, a r e  g e n e r a l l y  

weaker and t h e  concordance between t h e  n = 5 and n = 24 es t ima tes  i s  

poor ,  so t h a t  l i t t l e  can be i n f e r r e d  about  t h e  a c t u a l  tempora l  

dynamics o f  t hese  c o r r e l a t i o n s .  

In a d d i t i o n  t o  tempora l  changes i n  t h e  cova r iance  s t r u c t u r e  o f  

unper tu rbed microcosms, t h e  cova r iance  s t r u c t u r e  m i g h t  be expected t o  

change i n  response t o  t o x i c a n t  exposure. The accuracy i n  e s t i m a t i o n  

o f  a c o r r e l a t i o n  m a t r i x  i s  improved as more degrees o f  freedom a r e  
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a v a i l a b l e  r e l a t i v e  t o  t h e  rank o f  t h e  mat r ix ,  so c o r r e l a t i o n s  among 

s t a t e  va r i ab le s  were ca l cu la t ed  a t  each t rea tment  leve l  from da ta  

pooled over two t ime per iods :  before  and a f t e r  add i t ion  of the 

t o x i c a n t .  The r e s u l t s  a r e  shown in  Fig.  3.9. T h e  pH-dissolved 

oxygen c o r r e l a t i o n s  were moderately s t rong  (>  0.4) and p o s i t i v e  

during the  pre-treatment phase, and became gene ra l ly  s t ronge r  (> 0.5) 

i n  the pos t - t rea tment  phase,  b u t  no dose- re la ted  response was 

observed. The pH-conduct ivi ty  c o r r e l a t i o n s  were weak (mostly 

Irl < 0.3) and negat ive i n  t h e  pre- t reatment  phase, becoming 

p o s i t i v e  i n  t h e  pos t - t rea tment  phase ( r  = 0.8 a t  the h ighes t  dose) .  

In t h i s  ca se ,  a c l e a r  dose- re la ted  pa t ten  i s  d i s c e r n i b l e ,  with 

markedly s t r o n g e r  c o r r e l a t i o n s  a t  t h e  h igher  doses .  A dose- re la ted  

response i s  a l s o  ev ident  i n  the d isso lved  oxygen-conductivity 

c o r r e l a t i o n s .  Before t rea tment ,  t hese  c o r r e l a t i o n s  were moderately 

p o s i t i v e ,  t ak ing  on near  zero values fol lowing t rea tment ,  except  a t  

the two h ighes t  doses ,  where t h e  c o r r e l a t i o n s  were s t rong ly  p o s i t i v e  

( >  0 .7 ) .  

3 .2  A Q U A R I U M  M I C R O C O S M S  AND OUTDOOR PONDS 

The responses o f  both ponds and microcosms t o  the s y n t h e t i c  o i l  

a r e  summarized i n  F i g .  3.10. More d e t a i l e d  accounts of t h e  response 

of ind iv idua l  s t a t e  va r i ab le s  Rave been published by Franco e t  a l .  

(1985) and Giddings e t  a l .  (1985).  This s ec t ion  focuses on the 

r e s u l t s  of an a n a l y s i s  of t he i r  da t a  using t h e  s t a t e  space approach. 
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Figure 3.10 Surnniary o f  responses observed i n  aquar ium microcosm and 
outdoor pond exper iments.  
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3.2.1 Dose -Response Relationships 

Separation was plotted a s  a function of oil input rate and 

length o f  exposure for both ponds (Fig. 3.11a) and niicrocosms (Fig. 

3.115). For t h i s  analysis, daily- and Meekly-dosed microcosms at 

each treatment level were trented as replicates, as justified by 

previous statistical analysis (Franro et al. 1984, p . 4 5 1 ) .  

Additionally, the transformations of both pond and microcosm data 

before state space trajectory analysis were based on sample 

covariance matrices for control data pooled over the entire exposure 

period. This procedure is valid as long a s  the covariance structure 

of the state variables ~ 6 %  reasonably constant over the 56 d 

interval. The assumptions made in the analysis are necess tated by 

the low degree of replication provided by this experimental design, 

but could be relaxed for studies w i t h  greater replication. 

The relationship between separation, oil input rate, and length 

o f  exposure were qualitatively similar for both ponds and microcosms. 

Specifically, ( 1 )  there is a generally monotonic increase i n  response 

with increasing dose o r  t i m e  of exposure; ( 2 )  exposure conditions 

exist below which response is negligible; and ( 3 )  there i s  a 

suggestion o f  a response plateau a t  higher doses or with prolonged 

exposure. The rndjor apparent difference is the smoother texture o f  

the microcosm response surface. In part this apparent difference may 

be partly a consequence of t h e  longer t i m e  interval between 

observations in the microcosm data. If observations are deleted f r o m  

the pond data t o  produce the same sampling frequency, the resulting 
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surface also appears substantially smoother. However, the greater 

not completely artifactual, 

variability to which the 

the controlled laboratory 

roughness of the pond response surface i s  

and may reflect the greater environmental 

outdoor ponds were exposed in contrast t o  

envi ronmerrt of the microcosms. 

Dose-response curves calculated over 

for each o f  the three summary state space 

3.12 and 3 . 1 3 .  A s  expected, the summary 

increasing dose. The error bars on the M 

the 56--d exposure 

indices are shown 

nclices increase 1.1 

x i m u m  separation 

period 

in Figs. 

th 

!Jt-V€! 

represent the range o f  values over a l l  pairwise comparisons. Error 

bars for the other curves are of comparable size. The error bars 

associated w i t h  the pond data were substantially larger than for the 

microcosm data, reflecting the greater' variability o f  t h e  ponds. 

Since the degree of replication at each treatment was identical in 

bo%h pond and microcosm experiments ( n  = 2), t h i s  i s  not an effect o f  

sample size. I t  seems likely to be primarily a reflection of the 

greater environmental variability t o  which the ponds were subjected, 

although it i s  a l s o  possible that larger aquatic ecosystems differ 

organizationally form their smaller counterparts in ways which affect 

their dynamic variability. 

A comparison of maximum separation with mean separation 

indicates that the magnitude o f  t he  displacement vector changed 

substantially over the exposure period, a s  can be seen in the 

response surfaces. This is simply a reflection o f  the divergence iof 
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Figure 3 . 1 2  
synthetic o i l .  Squares represent maximum separation, diamonds mean 
separation, triangles mean displacement magnitude. Bars represent 
range of  maximum separation values observed. 

Dose-response curves for outdoor ponds exposed to 
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Figure 3 , 1 3  Dose-response curves For aquariu microcasms exposed t o  
synthetic oil, 
separation, triangles mean displacement magnitude. 
range of maximum separation values observed. 

Squares represent ~~x~~~~ separation, diamonds mean 
Bars represent 
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initially similar systems in response to different levels of toxicant 

exposure. 

displacement magnitude indicates that the direction of the 

displacement vectors was relatively uniform, especially at the higher 

doses. This indicates that there was relatively little change over 

time in the contribution o f  each of the state variables to the total 

response. It is possible that changes i n  direction, due to delayed 

responses and differential recovery rates, would have been observed 

i f  the analysis had extended beyond the dosing period. 

In contrast, a comparison of mean separation and mean 

The description of ecosystem response provided by state space 

analysis is consistent with that provided by previous analyses based 

on univariate statistical methods (Franc0 et al. 1985, Giddings et 

al. 1985). Moreover, while those authors provided only a verbal and 

qualitative description of the overall multivariate response, state 

space analysis provides a statistically valid quantitative 

description. 

significant effect in a multivariate quantity to not be observable as 

a statistically significant effect in any of its univariate 

components. Therefore, the lack of an appreciable response at low 

doses as quantified by the state space analysis provides important 

additional support for conclusions previously predicated on 

univariate analyses alone. 

It i s  frequently possible for a statistically 
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3.2.2 Correlation ~ 4 t h  Original State Variables 

The relationship of the calculated state space separation to the 

original variables was assessed by calculating correlation 

coefficients from the data pooled over the 56 day t ~ e ~ ~ m e n t  perlo 

In the ponds, separation was most highly correlate 

conductlvity, alkalinity, and cladoceran abundance! (r- = 0.8 

and -0.74, respectively). Phytoplankton chlorophyll p1 rot-ifer 

abundance, and amoniu  concentration were l e a s t  correlated wi th 

separation ( I r l  < 0,2). All other variables were ~ o $ ~ ~ a t ~ l y  

correlated ( 0 . 5  c 1r-I € 0.7). Correlatlons ere generally higher 

f o r  the rnicrocos r; than for  the ponds. All variables except for 

phytoplankton chlorophyll & had Irl values 0.7.  The highest 

correlations were found f o r  conductivity (r = S,99>, pH (r = -0,93), 

onium concentration ( r  = 0.88). and cladoceran abundance 

( r  = -0 ,84) .  

appeared similar in bath ponds and rnlerocosmo, with the exceptions of 

For most variables, the relationship t o  separation 

concentration and rotifer abundance. Because a correlation 

coefficient is a easure of the linear assacSaPlon betwee 

values af I" can be misleading .%f the true relationship is 

significantly nonlinear. 

which increase 

This may be the case f o r  rotifer abundance, 

at moderate doses but decreased at higher doses. 

es In Covariance Structure  

A l a rge  number of  state variables were me sureel in a small 

bel- o f  replicate syste  s ,  Therefore, It was not possible to 
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obtain reliable estimates o f  the covariance matrix without 

the data over time. Consequently, the variations in covar 

structure over time were not analyzed, but changes in the 

pool i ng 

ance 

orrelation 

of state variables induced by toxicant exposure can be evaluated from 

the pooled data. 

The state variables showed stronger overall correlations I n  

those ponds subjected to toxicant stress. This is clearly 

demonstrated in Fig. 3.14, where the percentage of correlations 

greater than 0.7 in absolute value is seen to increase steadily as a 

function o f  treatment level. Although somewhat arbitrary, the value 

o f  0.7 was chosen because a correlation coefficient of 0.7 implies 

that the given variable explains approximately half of the measured 

variance in its correlate. 

seem to indicate a situation in which most o f  the state variables 

were relatively independent of one another in the controls, but which 

came to covary under toxicant exposure, either due to direct 

interaction between state variables, or due to thelr separate but 

simultaneous reactions to a common stress. 

The trend exhibited in Fig, 3.14 would 

The toxicant-induced changes l n  the covariance structure o f  the 

ponds is further elucidated by the use o f  principal components 

analysis. Geometrically, principal components correspond to the 

principal axes of a concentration ellipse {or higher dimensional 

analog) of a cloud o f  multivariate data (Fig. 3.15). Principal 

components are numbered such that the f i r s t  principal component 

explains the greatest amount o f  the total variance. I f  no 

, 
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FOR CORRELATED DATA 

nvector associated with first prl,iclpa 
(a) Eigenvector aligned along major o f  -correlated data. 

concentration ellipse for moderately correlated data. 

I component 
axis o f  

( b )  Eigenvector of greater magnitude associated with more strongly 
correlated data. 
the nature of the correlation. 

(c) Rotated eigenvector associated with change i n  
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c o r r e l a t i o n s  a r e  present  -in t h e  d a t a ,  then (except  f o r  sampling 

e r r o r )  a l l  p r inc ipa l  components should expla in  an equal f r a c t i o n  of  

t h e  t o t a l  var iance.  As t h e  s t r eng th  of t h e  c o r r e l a t i o n s  inc reases ,  

fewer pr inc lga l  ccp ponents a r e  r equ i r e  t o  expla in  most o f  t he  

var iance,  and t h e  proport ional  var iance  explained by t h e  f i r s t  

principal component increases .  Also, as  t h e  n a t u r e  of  t h e  

c o r r e l a t i o n s  change, t h e  o r i e n t a t i o n  of t h e  mul t iva r i a t e  da t a  cloud 

s h j f t s ,  and t h e  f i r s t  p r inc ipa l  component i s  ro t a t ed  i n  space.  

Changes i n  t h e  var iance explained and i n  t he  o r i e n t a t i o n  of t he  First 

p r inc ipa l  component r e s u l t i n g  from t o x i c a n t  exposure a r e  sho 

F i g .  3.16. The explained varjaasrce inc reases ,  e s p e c i a l l y  a t  t h e  t h r e e  

higher  doses ,  confirrnlsagl the overall increas ing  degree of 

c o r r e l a t i o n .  A l s o ,  t h e  nature  o f  t h e  c o r r e l a t i o n s  changes, a s  

ind ica ted  by the l a rge  angle  of r o t a t i o n  of t h e  major a x i s  o f  t h e ?  

concent ra t ion  e l l i p s o i d  r e l a t i v e  t o  t h e  con t ro l s .  
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R o t a t i o n  o f  f i r s t  p r i n c i p a l  component r e l a t i v e  t o  controls. 



94 

Chapter 4 

SIMULATION RESULTS 

T h i s  chapter presents results O F  t h e  analysis o f  output from an 

ecosystem simulation model. The model used is intended t o  simulate a 

small littoral ecosystem analogous t o  the experimental ponds. 

Results o f  deterministic runs o f  t h i s  model, bath with and without 

the effects o f  the toxicant, are presented in section 4.1, along with 

comparisons to observations from the experimental studies whenever 

possible. In section 4.2, t h e  influence o f  n a t u r a l  variability and 

measurement error on t h e  model output is d e s c r l b e d .  Section 4 . 3  

summarizes the  results of applying s t a t e  space displacement analysis 

to the model output. Furthermore, by varying the nu 

simulations used in t he  state space analysis, t he  sample size 

requi rernenhs of  the method are investigated. Section 4.4 explores 

cha~lges i n  the  covariance structure o f  the simulated state space 

trajectories, both over t i m e  and i n  response to the toxicant. 

Finally, section 4.5 considers the problem o f  monitoring the state o f  

an ecosystem within a decision-oriented, management context, and 

introduces the concept of diagnostic variables. 
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4.1 RESULTS OF DETERMItdISTIC SIMULATIONS 

4.7.1 Model Dynamics in the Absence o f  Toxicant 

In the absence of toxicant exposure, the phytoplankton exhibit a 

bloom peaking at approximately t h e  midpoint of the 56 day sirnulation 

period. This bloom is dominated by phytoplankton species 9, with 

species 8 as an important subdominant. This accords with previous 

experience with SWACOM, where species 8 and 9 are typically 

late-summer species with temperature optima near 25 OC, high light 

saturation constants, and low Michaelis-Menten nutrient uptake 

half-saturation constants. 

there is a sigmoidal increase in zooplankton biomass, leveling off 

near the end o f  the simulation period. Lagging several days behind 

the zooplankton i s  a nearly exponential rise in fish biomass. The 

dynamics o f  the three trophic levels of the pelagic food web are 

summarized in Fig 4.la. 

Accompanying the phytoplankton bloom, 

Macrophyte biomass increases rapidly to a maximum of nearly 

1200 g dry wt tn-* on day 8 of the simulation, followed by a per-iod 

of slow, but steady, decrease (Fig 4.2) .  The mass o f  detritus 

decreases continually throughout the 56 day interval, although the 

rate o f  loss is more rapid at first. The change in the rate of 

decomposition is primarily a reflection o f  changes in detrital 

composition, which initially i s  60% labile, but which i s  only 

approximately 10% labile at the end o f  the simulation period 

(Fig. 4 . 3 ) .  Primary production i n  the system i s  dominated by the 
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contribution of macrophytes. Macrophyte net photosynthesis shows an 

initial increase corresponding t o  the initial growth of the 

macrophyte bed, followed by a slight depression as summer 

temperatures exceed the plant's physiological optimum, and finally an 

increase as environmental conditions once again become more favorable 

(Fig. 4.4). The phytoplankton exhibit a somewhat different temporal 

pattern of productivity, and are always at least an order of 

magnitude less important than macrophytes in terms of total 

photosynthetic production (Fig. 4.5). 

Dissolved oxygen displays a temporal pattern qualitatively 

similar t o  the macrophyte productivity curve (Fig. 4 . 6 ) .  The 

dissolved oxygen concentrations predicted by the model were 

consistently above saturation (oxygen solubility is 7,64 ppm a t  29'C, 

the approximate average temperature). 

was frequently observed in the experimental ponds, including 

concentrations as high as 14.00 ppm, The other physicochemical 

parameter in the model, dissolved nutrient concentration, generally 

decreased over the period of the simulation, with the greatest rate 

o f  decrease occuring during the phytoplankton bloom (Fig. 4.7). 

Such oxygen supersaturation 

4.1.2 Model Dynamics with Toxicant Effects 

At low concentrations, the introduction o f  the toxicant has an 

apparently stimulatory effect at all trophic levels. For instance, 

at a simulated phenol concentration of 0.3125 mg/L, the initial direct 

toxic effects on the consumer populations allow for a substantially 



I I I I I 

a 10 20 38 40 50 60 
TiME (all  

- 0  - - - -  - - - -  0,3125 I - - -0 .625 
--- 1.25 - 2.5 - - 5  
- - -  10 20 

F i g u r e  4.4 
deterministic simulations a t  v a r i o u s  toxicant concentrations. 

Dynamics of macrophyte net photosynthesis i n  



.... 

ORNL-DWQ 8747366  

0.9 

-f' 0.8 
U 

Iy 
I 

z1) 
0.7 - 

P ' 0.6 

;e 
t 
in e 0.5 
0 
I o. 
c 0.4 w z 
X e 0.3 
Y z 

E 

5 
0.2 

a. 0.1 

c * 
X 

0 

0 10 20 30 40 so 60 

TIME (d) 

- 0  _ _ _ _ _ _ _ _  0.3125 _ _ _ _ _  -0.625 _ _ -  1.25 -- 2.5 --s 
.__-- 10 -..- 20 

Figure 4.5 
deterministic simulations at various toxicant concentrations. 

Dynamics of phytoplankton net photosynthesis in 



102 

ORNL-DWO BJ-17367 

I i 1 
"-1 ................. 

' /  

F i g u r e  4 . 6  
various toxicant concentrations. 

Dissolved oxygen dynamlcs in determdnistic simulations at 



103 
..... 

ORNL-DWG 87-'17568 

I I 1 

- *. 

I I I I I 

TIME (d) 
- 0  _ _ _ _ _ _ _ -  0.3125 ------ 0.625 
- -- 1.25 -- 2.5 -- 5 
-..- 10 -..- 20 

Figure 4.7 
toxicant concentrations. 

Nutrient dynamics in deterministic simulations at various 



104 

larger phytoplankton bloom. I n  r e s p ~ n ~ e  t o  increased food 

availability, all zooplankton except for species 5 eventually attain 

a higher biomass than i n  the absence o f  toxicant ( F i g .  4.lb). 

Similarly, fish biomass, although initially depressed, is eventually 

increased above control levels due t o  greater availability of prey. 

The phenomenon of stimulatory effects arising From exposure t o  

low toxicant. concentrations is called hormesls. It has been 

repeatedly observed at t he  organismal level and may be a general 

feature o f  physiological response to inhibitors (Stebbing 19$2). In 

attempting t o  provide a theoretical basis for understanding hormt?sis, 

Stebbing  (1982) hypothesizes t h a t  hormetie effects can be explained 

as "a consequence of t h e  adaptive behavior o f  rate sensitive control 

mechanisms". Stebbing's explanation o f  hormetic effects at the 

organismal level is based upon the properties of biosynthetic 

networks with feedback control. The same properties are apparent in 

ecological system, so it seems appropriate to extend t h e  concept o f  

hormesis to include ecosystem-level phenomena. In these terms, it 

can be s a i d  that the model predicts a harmetic effect on plankton and 

fish populations in response to phenolics. This prediction i s  

partially confirmed by the the pond,  and more dramatically, by the 

aquarium microcosm studies, where increases in water column 

chlorophyll a were observed at low to moderate treatment levels. 

Also in the microcosms, t he re  is a c l e a r  increase in cladoceran 

biomass concurrent with the increase i n  chlorophyll 5.  Copepod 

biomass and r o t ' i f e r  biomass did n o t  show a clear increase, but these 
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groups contain many carnivorous or bacteriovorous species which are 

not represented by the model structure. 

I f  the toxicant concentration is doubled to 0,625 mg/L, the 

phytoplankton bloom becomes even larger. Total zooplankton biomass 

i s  also increased, but now both species 4 and 5 show lower standing 

crops than in the controls. Fish biomass i s  also reduced below 

control levels (Fig. 4.1~). At 1.25  mg/L the ~hytopla~kton bloom is 

longer in duration, total zooplankton biomass attains higher levels 

than in the control, but not as high as at 0.625 mg/L, and the 

production o f  Fish biomass i s  very slight (Fig. 4.18).  

Another doubling of toxicant concentration to 2.5 mg/L causes 

the virtual elimination of both fish and zooplankton (Fig. 4.fe). A s  

concentrations increase to 5 and to 10 mg/L, the magn-ltude of the 

phytoplankton bloom progressively decreases due t o  direct toxic 

effects (Fig. 4.lf and 9). A minor shift in community composition is 

also observed, with phytoplankton species 8 becoming relatively more 

important until it i s  a codominant with species 9 .  Finally, at a 

concentration o f  20 mg/t, all phytoplankton species are negatively 

affected by the toxicant, and phytoplankton biomass remains 

essentially constant except for a small increase in species 5 

occuring near the end of the sirnu3ation (Fig, 4.1h). 

Macrophyte biomass is relatively unaffected at phenol 

concentrations up to 10 mg/L. However, a concentration of 20 mg/L is 

directly toxic to Elodea, and the predicted biomass af the macrophyte 

bed decreases exponentially with time (Fig. 4 . 2 ) .  Similarly, the 
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dynamics of the detritus pool is relatively unperturbed except a t  the  

highest toxicant concentration, where a large Influx o f  dying 

macrophytes occurs (Fig. 4 . 3 ) .  Macrophytes were observed to be 

relatively resistant in the pond and aquarium systems, although not 

quite as resistant as predicted by the model. A substantial 

reduction in growth was observed at a toxicant concentration of 

approximately 1 mg/b, and at 10 mgJL the macrophyte bed was nearly 

destroyed (. 

The model predicts a decline in net photosynthesis with 

increasing toxicant exposure for both phytoplankton and macrophytes 

(Fig. 4 - 4  and 4 . 5 ) .  In the experimental ponds, phytoplankton 

photosynthesis, as measured by 14C-incorporation, tended to be 

lower in levels P3 through P5 (where average phenol concentration 

ranged from 0.5 to 8 mgJL) immediately following the oiling p e r j o d ,  

w h i l e  ponds exposed to lower doses of synthetic oil had elevated 

photosynthesis corresponding to a phytoplankton bloom. However, due 

to the very high variability in the photosynthesis data, these 

differences were not found to be statistically significant using 

Dunnett's two-sided test (a 2 0.05). Total ecosystem net  

production, as computed from diurnal changes in d i s s o l v e d  oxygen, was 

significantly reduced in the highest exposure (PS) ponds. 

Dissolved oxygen concentrations predicted by the model decline 

with increasing toxicant exposure, falling t a  approximately 7.6 ppm 

(near saturation) a t  the highest dose (Fig, 4 . 6 ) .  In the 

experimental systems, effects on dissolved oxygen were in the same 
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direction, but o f  greater magnitude. The high dose microcosms became 

essentially anaerobic for the last 5 weeks of the oiling period, and 

in the outdoor ponds, dissolved oxygen dropped t o  below 2.0 ppm. 

There a several possible explanations for this discrepancy. One 

factor may be that microbial respiration is inadequately accounted 

f o r  within the model. Currently, the model includes a microbial 

respiration term proportional to the pools o f  detrital material, but 

no account i s  taken of respiration associated with biodegradation of 

the phenols themselves or of catabolism o f  dissolved organic 

substances which may be secreted by the macrophytes under conditions 

of sublethal stress. 

Additionally, oxygen exchange with the atmosphere may not be 

accurately predicted by the model, 

between the aqueous and gaseous phases depends upon the extent o f  

mixing. The model currently assumes an effective mixing depth of 

1.0 m, the depth o f  the entire water column. However, the available 

dissolved oxygen profile data suggests that although the ponds were 

usually well mixed in the mornings, they could became stratified 

later in the day. Unfortunately, such profile data were obtained too 

sporadically t o  provide a clear picture o f  the diurnal changes in 

mixing regime. If, somewhat arbitrarily, a time-weighted effective 

mixing depth o f  0.5 m is assumed, the model predicts dissolved oxygen 

concentrations ranging from 6 .1  t o  9.8 pprn in the controls, and f rom 

4 . 3  t o  3 . 8  ppm at the highest toxicant dose. 

The rate o f  oxygen exchange 
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The genera l  t r e n d  i n  s imu la ted  n u t r i e n t  dynamics i s  toward 

i nc reased  d is .so lved n u t r i e n t  concen t ra t i ons  i n  response t o  t o x i c a n t  

exposure ( F i g  4 . 7 ) .  T h i s  t r e n d  i s  suppor ted by measure 

inc reased wa te r  column ~ ~ ~ ~ ~ i u m  concen t ra t i ons  i n  t h e  RSghest dose 

ponds and microcosms 

4.2 RESULTS OF STOCHASTIC SI 

4.2.1 N a t u r a l  V a r i a b i l i t y  

N a t u r a l  v a r i a b i l i t y  encompasses v a r i o u s  f a c t o r s  t h a t  prec lude  

t h e  p o s s i b i l i t y  o f  a t t a i n i n g  e x a c t l y  u n i f o r m  behav io r  i n  complex 

exper imenta l  systems. I n d i v i d u a l  ponds o r  microcosms d i f f e r  i n  t h e i r  

e c o l o g i c a l  dynamjcs due t o  d i s s i m i l a r i t i e s  I n  compos i t ion  and 

d i f f e r e n c e s  i n  env i ronmenta l  i n f l u e n c e s ,  D i f f e r e n c e s  i n  compos i t ion  

were s imu la ted  by s e l e c t i n g  random i n i t i a l  c o n d i t i o n s  f o r  r e p l i c a t e  

model runs .  V a r i a b i l i t y  i n  envii-can e n t a l  d r i v i n g  v a r i a b l e s  was 

i n t r o d u c e d  by us ing  s t o c h a s t i c  f u n c t i o n s  for  ambient l i g h t  and 

tempera ture .  The e f f e c t s  o f  i n c l u d i n  t hese  these sources o f  n a t u r a l  

v a r i a b i l i t y  on t h e  behav io r  of t h e  model, b o t h  s e p a r a t e l y  and i n  

concer t ,  a r e  d iscussed below, 

4.2.1.1 Random i n i t i a l  c o n d i t i o n s  

I n i t i a l  va lues o f  s t a t e  v a r i a b l e s  were chosen f rom a 

m u l t i v a r i a t e  normal d i s t r i b u t i o n  w i t h  c e n t r o i d  equal t o  t h e  

d e t e r m i n i s t i c  i n i t i a l  state and a c o e f f i c i e n t  of  v a r i a t i o n  o f  10 
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each dimension (as described In section 2.3.3). The resulting 

dynamics are illustrated for six representative state variables in 

Fig. 4.8. 

4.2.1.2 Stochastic forcing functions 

Light and temperature forcing functions were modeled as one 

dimensional random walks superimposed on a deterministic, sinusoidal 

trend (see section 2 . 3 . 3 ) .  Typical realizations of this stochastic 

process are illustrated in Fig. 2.3. It should be noted that thle 

variability among Monte Carlo replicates i n  temperature and light 

conditions increased with time during over the simulation period. 

The resulting variability in the dynamic behavior o f  s i x  state 

variables is illustrated in Fig. 4.9. 

4.2.2 Measurement Error 

Measurement errors were added to the simulation results as 

independent normal deviates as described in section 2.3.3. Examples 

of simulation output from ten typical runs with measurement error as 

the sole source o f  variability are shown in Fig. 4.10. 

4.2.3 Combined Sources o f  Variation 

The effects of random initial conditions, stochastic forcing 

functions, and superimposed measurement error on the output o f  the 

model have been illustrated. In most, if not all, experimental 
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situations, all of  these sources of variation must be taken into 

account. The simulation resu?ts shown in Fig. 4.11 were obtained by 

simultaneously including all these sources of variation. 

4 . 3  SPATE SPACE ANALYSIS 

4.3.1 Summary of State Space Dose-Response Relationships 

Simulation results were summarized by a state vector in a space 

defined by the following dimensions: log-transformed biomasses of 

each o f  the biotic components o f  the model, log-transformed masses o f  

labile and refractory detritus, dissolved oxygen, nutrient 

concentration, and net phOtQSyntheSiS rates for phytoplankton and 

macrophytes. The results i s  a 23-dimensional state vector. State 

space displacements were computed every five days, beginning on day 

1 ,  resulting in twelve comparisons during the 56 day simulation 

period. The stochastic simulations were run t o  provide 200 

replicates at each of the treatment levels. For each treatment level 

on each sampling day, 4000 different pairwise comparisons between 

control and perturbed state vectors are possible. The state space 

analysis presented here is based on comparisons from 100 randomly 

matched pa! rs of  trajectories a 

4.3.1.1 Calculations based on natural variability 

Figure 4-12 shows the  response surface f o r  s t a t e  space 

separation calculated as a function o f  time and dose from 100 
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s t o c h a s t i c  s i m u l a t i o n s  w i t h  n a t u r a l  v a r i a b i l i t y  i n c o r p o r a t e d  b u t  

w i t h o u t  measurement e r r o r .  The r e s u l t i n g  s u r f a c e  d i s p l a y s  a 

monotonic i nc rease  i n  separa t i on  w i t h  i n c r e a s i n g  dose o r  l e n  

exposure. The i n c r e a s e  i r  not  a1 ayS SmOoth, hOWE??!er. There appt2ak-s 

t o  be a sharp ju p i n  response between the t r e a t m  nt concen t ra t l ons  

o f  2.5 and 5.0 rng/L, e s p e c i a l l y  d u r i n g  t h e  m i d d l e  o f  t h e  s i  

p e r i o d  . 
Dose-response curves based on t h e  t h r e e  s t a t e  space S M  

rnedsures d e f i n e d  i n  s e c t i o n  2 . 4 . 3  a r e  shown i n  F i g .  4.13. 

s e p a r a t i o n  inc reases  r a p i d l y  at, t h e  two  l owes t  t rea tmen t  l e v e l s ,  and 

s t e a d i l y  b u t  more s l o w l y  t h e r e a f t e r .  Both mean s e p a r a t i o n  and mean 

d isp lacement  magnitude i n c r e a s e  r a p i d l y  a t  f i r s t ,  t hen  e x h i b i t  a 

p l a t e a u  f o l l o w e d  by t h e  sharp jump a t  5.0 mgJL, and f u r t h e r  steady 

i nc rease .  The c loseness o f  t h e  numer ica l  va lues  f o r  these t'rdo 

q u a n t i t i e s  i m p l i e s  a r e l a t i v e l y  cons tan t  d i r e c t i o n a l  o r i e n t a t i o n  f o r  

t h e  d7ssplacement v e c t o r  ove r  t h e  s i m u l a t i o n  p e r j a d ,  

4.3.1.2 C a l c u l a t i o n s  based on measurement error 

The s u r f a c e  i n  F i g .  4.14 shows t h e  response a s  a f u n c t i o n  o f  

time and t o x i c a n t  concent ra t ion  i n  s i m u l a t i o n s  where measurement 

er ror  i s  t h e  s o l e  source of v a r l a b l l i t y .  S t a t e  space separa t i on  

g e n e r a l l y  inc reases  w i t h  i n c r e a s i n g  dose o r  l e n  t h  o f  exposure,  b u t  

w i t h  t h e  peak response a c t u a l l y  o c c u r i n g  bander i n t e r m e d i a t e  

c o n d i t i o n s .  More dramat ic  than t h e  changes i n  t h e  p a t t e r n  o f  

response, however, i s  t h e  change i n  numerical scaling o f  t h e  
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separation values as compared t o  Fig. 4.12. As will be argued in 

subsequent sections, this is a typical consequence o f  the use of a 

Hahalanobis distance metric. 

sensitive to changes in the covariance matrix used in the 

calculations. Since in this case, the measurement errors were 

uncorrelated, whereas the simulations under natural variability had a 

correlation structure imposed by the system dynamics, the distances 

calculated for these two scenarios cannot be directly compared. They 

are, in effect, measured in different units. 

Mahalanobis distances can be relatively 

The dose-response curves for the three summary indices are shown 

in Fig. 4 . 1 5 .  Again, the close similarity o f  the mean separation and 

the mean displacement magnitude curves suggests a nearly 

unidirectional displacement over time. 

4.3.1.3 Calculations based on combined sources o f  variation. 

The response surface of state space separations calculated from 

simulations which included both natural variability and measurement 

error is shown in Fig. 4.16. Again, the numerical scaling o f  the 

vertical axis reflects the different covariance matrix used in 

calculating the Mahalanobis distances. The general pattern of 

response, as reflected in the qualitative features o f  the surface, 

appears intermediate between that observed in Figs. 4.12 and 4.14. 

The same i s  true for the dose-response curves, shown in Fig. 4.17 .  
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4 . 3 . 2  Statistical Power and Sample Size Req~irements 

The simulation results presented thus far have been based upon 

sample sizes of 100 Monte Carlo replicates at each treatment level. 

In experimental situatlons such large sample sizes are seldom 

attainable. The experimental studies described in the preceeding 

chapter included only two o r  three replicates at each level o f  

toxicant exposure, and this degree of  replication is representative 

of ecotoxicological studies. It i s  important, therefore, to 

investigate the effect o f  sample site on the results derived from a 

state space displacement analysis. Specifically, two questions need 

to be addressed: (1) How does the statjstical accuracy of  the method 

vary with sample size; and ( 2 )  Is  the method powerful enough t o  

detect ecologically significant effects on the basis of reasonable 

sample sizes? 

To investigate the effects o f  sample size on statistical 

accuracy, attention was directed toward the estimation o f  mean 

separation. The sampling distribution for the mean separation 

estimator was approximated, for each sample s i z e ,  by repeatedly 

resampling from a universe o f  200 trajectories produced by the Monte 

Carlo runs at a given treatment level. In other words, for each 

treatment level and each sample size N ,  a sample o f  N trajectories 

was drawn from the 200 trajectories previously generated by the 

model, and the mean separation was estimated on the basis o f  that 

sample. 

the entire set of 200 possible trajectories, and a new calculation of 

Then a new sample o f  N trajectories was drawn, again from 



distribution for a samp 

toxicant concentration. 

statistical accuracy o f  

124" 

the mean separation was made. Phfs process continued until 20 

samples o f  size M had been drawn a t  each treat ent level for values 

o f  I4 = 1, 2, 4 ,  8 ,  16, 32, and 64.  

The results of this resampling exercise are shown in Fig. 4.18. 

The sampling error clearly decreases monotonically with increasing 

sample size. Yet, even for small sa ple sizes, the sampling error is 

not large enough to obscure the basic dase-response pattern observed 

from large sample calculations. This is shown in Fig. 4.19, 

t h e  range between the 5 t h  and 95th  percentiles o f  the sampling 

e s i z e  of one is plotted as  a function o f  

Another convenient descriptor of the 

an estimator is its standard error, which i s  

the standard deviatlon of the sampling distribution. Estimated 

standard errors f o r  mean separation, as a function of exposure 

concentratjon and o f  sample s i z e ,  are given in Table 4 . 1 .  A decrease 

in the s t a n d a r d  ~ W Q T  with sample size i s  o b s e r v e d  a% all toxicant 

concentrations. Changes in standard error as a function o f  

concentration far a fixed sample size are n o t  as  consistent, but 

o f t e n  the largest standard errors occur at intermediate toxicant 

exposures. This suggests that t he  made; dynamlcs are more tightly 

constrained at very high or very low toxicant concen%ratlons, and 

t y  exists a t  that t he  greatest potential for dynamic variabil 

intermediate levels o f  toxicant. s t ress .  

On the basis of the information the stat 

the mean separation estimator, it is possible to 

s t i c a l  accuracy o f  

assess the ability 
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Table 4.1. Standard error o f  the mean separation as calculated from 
the empirical sampling distribution. 

... ... 

Concentration Sample S i z e  
(mg/L) - 1 - 2 I_ 4 - a - 16 - 32 - 64 

0.0 0.59 0.49 0.27 0.16 0.12 0.06 0.04 

0.3125 0.64 0.44 0.34 0.24 0 -15  0.10 0.06 

0.625 0.66 0.50 0.34 0.15 0.13 0.09 0.05 

1.25 1.40 0.68 0.48 0.36 0.29 0.15 0.11 

2.5 1.49 0.91 0.58 0.54 0.41 0.26 0.11 

5.0 0.80 0.71 0.40 0.43 0.30 0.13 0.06 

10.0 1.11 0.94 0.43 0.27 0.19 8.12 0.06 

20.0 1.16 0.97 0.74 0.46 0.30 0.17 0.08 
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Figure 4.18  
(N-1,2,4,8,16,32,64)  a t  various t o x i c a n t  concentrat~ono.  

Mean s e p a r a t i o n  f o r  20 independent samples o f  s i z e  N 
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Figure 4.19 
f o r  a sample s i z e  of N = l .  
sampling d i s t r i b u t i o n .  Bars represent  an est imated 90% confidence 
i n t e r v a l .  

Mean sepa ra t ion  a s  a func t ion  a f  t o x i c a n t  concent ra t ion  
C i rc l e s  represent  es t imated median o f  t h e  
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of -the method t o  detect ecoloy%cally significant perturbations from 

sinal1 samplesn 'This is bes t  described in terms of stat?stical 

hypothesis testing. 

no effect. 

that dM(Vcs )=O. T h i s  can be contrasted Po the 

ane-sided alternative hypothesis (Hl) that dH(uc, vp)>D. 

The mean separation will be used as an estimator o f  the Mahalanobis 

distance between population centroids. The null hypothesis w j l l  be 

rejected if and only if t h e  t he  mean separa t ion  calculated f o r  the 

"per turbed"  trajectories is significantly grea te r  than for the 

control trajectories. S t a t i s t i c a l  significance can be established on 

t h e  b a s i s  o f  what is known about the sa pling distribution o f  the 

estimator-. Exa ination o f  t h e  e pirical sampling distributions 

showed that they tended to be a t  least approximately normal. In 

particular, all four of the empirical sampl-ing distributions for 

H = 1 , 2  and toxicant concentrations of 0 .0  and 0.3125 mg/h could not 

be distinguished From normality using a Shapiro-Wilk t e s t  wdth  

a = 0-05 (Shapiro and Mjlk 1965). Therefore, for low toxicant 

exposures (50.3125 m g / L ) ,  it was assumed that the sampling 

distribution was norma?, w i t h  a variance equal t o  the pooled variance 

o f  the control and 0.3125 mg/L distribut ons. 

Take as  a null hypothesis ( H O )  t h a t  there is 

o r  equivalently, % * This i m  lies that pc --r 

P 

Given these assu  p t i o n s ,  the  power F the statistical Pest can 

be derived, Statistical power is defined as the probability that an 

effect, in this case a difference between populat lon centroids, will 

be detected when such  an effect t r u l y  exists. The power o f  a test 
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depends upon three factors: 

( 2 )  the significance level of the test, and ( 3 )  sample size. The 

significance level, denoted by a, is the probability o f  rejecting 

the null hypothesis when in fact the null hypothesis i s  true. Such 

an incorrect inference is referred to as a type I error. In 

contrast, a type I1 error i s  the acceptance of a null hypothesis 

which is false, and the probability of a type I 1  error is represented 

as B .  It follows from the above definitions that the statistical 

power o f  a test i s  1-43. 

(1) the actual magnitude of the effect, 

Fig. 4.20 shows plots of the probability o f  accepting the null 

hypothesis as a function of the true separation between population 

centroids in Mahalanobis distance units. Such plots are 

traditionally referred to as operating characteristic curves (see, 

for example, Hines and Montgomery 1980, p.270ff). Operating 

characteristic curves can be thought o f  as inverted plots of 

statistical power. Two graphs are shown, one for a sample size o f  1 ,  

and one for a sample size of 2. 

corresponding to different significance levels (a = 0.10, 0.05, 

0.01, 0.005, 0.001). It can be seen that even with a sample size of 

1 and a significance level o f  0.001, a true separation o f  5 

Mahalanobis distance units is almost certain to be detected. This is 

approximately the magnitude of effect observed at the lowest toxicant 

concentration used in the simulation. These operating characteristic 

curves illustrate the power of the state space analysis t o  detect 

changes in trajectories under realistic conditions of natural 

Each graph contains several curves, 
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variability, measurement error, and small sample sizes. It would 

appear, on the b a s i s  of this analysis, that the state space 

and that, if 

d rarely go 

in this study is quite sensitive, 

ogically significant effects shou 

methodology developed 

properly applied, eco 

undetected. 

4 . 4  CHANGES IN COVARIANCE STRUCTURE 

4.4.1 Changes in Covariance Structure with Time 

Since in 

independently 

between state 

tial values for the state variab 

by latin hypercube sampling, the 

variables were negligible. This 

however. Within five days, the model dynamics 

es were chosen 

initial correlations 

rapidly changed, 

had imposed a definite 

correlation structure upon the simulation results. Phis i s  clearly 

observable in F ig .  4.21, which summarizes the results of  a principal 

components analysis of the control trajectories. The increasing 

degree o f  state variable intercorrelation is demonstrated by the 

monotonic increase in the variance explained by the first principal 

component ( F i g  4.21a). 

component relative to i t s  orientation on day 1 was calculated as 
-1 cos 

eigenvectors oriented in the directions of the first prlncipal 

component on day 1 and day d ,  respectively, These rotation angles 

are shown i n  F i g .  2.4lb. Inspection of the rotation angles confirms 

that there is a rapid convergence toward a relatively constant 

The rotation angle o f  the first principal 

(elled), where e, and ed are standardized 
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orientation (after day 11 all rotation angles are within 20" o f  each 

other). Subsequent evolution of the correlation structure may be 

taking place, but at a slower rate that in the Initial transient 

phase. 

The nature of the correlation structure that arises from the 

dynamics o f  the model i s  best characterized by inspection o f  some of 

the individual correlations between state variables. Specifically, 

the two strongest correlations present in later part o f  the 

simulatlon period are the negative correlation between phytoplankton 

species 7 and 9 ,  and the positive correlation between dissolved 

oxygen and the net photosynthetic rate o f  the macrophytes. The 

strength of these two correlations as a function o f  time is shown in 

Fig. 4 . 2 2 .  A number of other variables consistently exhibited 

moderate to strong correlations ( I r l  > 0.6). For example, 

zooplankton species 3 became negatively correlated with phytoplankton 

species 7 and positively correlated with phytoplankton species 9. 

4.4.2 Toxicant-Induced Changes in Covariance Structure 

The alterations in model dynamics resulting from toxicant 

exposure were reflected in altered correlations between state 

variables. Again, this i s  conveniently summarized in terms o f  the 

behavior of the first principal component, as illustrated in 

Fig. 4.23  f o r  an analysis o f  the simulation results pooled over the 

entire 56-day exposure period. The overall strength of correlations 

increases at low to moderate toxicant exposures, but declines 
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dramatically at the highest concentration (Fig. 4.23a). The 

orientation of the first principal component changes progressively 

for toxicant exposures up to 1.25 rng/L, then remains relatively 

constant for exposures ranging from 2.5 to 10 mg/L, and shifts once 

again at the highest dose of 20 m g / L  (Fig. 4 . 2 3 b ) .  A progressive 

change in the nature o f  the correlations is also evident, as 

illustrated by the change in orientation of the first principal 

component. 

A more detailed inspection of the correlations between state 

variables reveals some interesting patterns. When the data are 

,pooled over time, the strongest correlations evident in the control 

simulations are those between the consumer biomasses. A s  a matter o f  

fact, given five zooplankton species and one fish species, there are 

15 nonidentical consumer correlations, and these turn out to be the 

15 strongest correlations in the entire correlation matrix, all 

having positive values exceeding 0.90. 

The introduction o f  the toxicant causes changes in this 

pattern. At an exposure concentration o f  0.625 mg/L, zooplankton 

species 5 becomes strongly negatively, rather than positively, 

correlated with the other consumer populations. T h i s  is a result of 

the negative impact of the toxicant on the success o f  zooplankton 

species 5, which i s  the most sensitive o f  the consumers to direct 

effects of the toxicant, A t  a concentration of 1 . 2 5  rng/L, the 

correlations among consumer biomasses are similar, and strong 

positive correlations among phytoplankton species 7 through 10 become 



136 

60 

w g 50 

3 

2 

i! rc 

-1 

40 
Y 
0 
w 
0 

z w 
0 

n 

2 

% 30 

20 -4"- ....... I .......... 1 ........ L... I 
0 0.3125 0.625 1.25 2.5 5 10 20 

TOXICANT COMCEN~RA~IQH ( m g u  
90" 

75' 

60. 
W 

CI 

4 

z 45. 

+- 0 

2 
30" 

15' 

0. _ 1 I . . I  .......... 1 ...... I 

I 

0 0.3125 0.625 1.25 2.5 5 10 20 
TOXICANT CONCENTRATION lmg/L) 

F i g u r e  4.23 Changes i n  cova r iance  s t r u c t u r e  o f  s t a t e  v a r i a b l e s  as a 
f u n c t i o n  o f  t r e a t m e n t  l e v e l  i n  t h e  s i m u l a t i o n  model. ( a )  Percentage 
o f  t o t a l  va r iance  e x p l a i n e d  by t h e  f i r s t  p r i n c i p a l  component. 
( b )  R o t a t i a n  o f  f i r s t  p r i n c i p a l  component r e l a t i v e  t o  con t ro l s .  



... 

... 

137 

These phytoplankters also generally exhibit strong apparent. 

negative correlations with phytoplankton net photosynthetic rate. 

Similar correlations are observable at concentrations of 2.5 and 5.0 

mg/L, with additional positive correlations o f  phytoplankters 7 

through 10 with zooplankton species 5, and accompanying negative 

correlations with all other consumers. Finally, at the two highest 

toxicant exposures, zooplankton species 3 and 4 are also impacted by 

the toxicant, exhibiting a negative correlation with phytoplank~o~ 

species 7 through 10. 

4.5 DIAGNOSTIC VARIABLES 

The number of variables required to provide a comprehensive 

description o f  ecosystem state i s  u s u a l l y  large. T h i s  introduces 

difficulties from the standpoint o f  ecosystem protection or 

management, Routine monitoring o f  such a large suite of ecological 

state variables can be a formidable t a s k .  Practical constraints on 

the expenditure o f  time, effort, o r  monetary resources may dictate a 

sampling scheme which allows routine monitoring o f  only a portion o f  

the relevant variables, Perturbations, once detected in this subset 

o f  routinely monitored variables, can then be further characterized 

by measurement of ancillary state variables, and remedial actions 

taken as appropriate. 

Routinely monitored variables which can be used as indicators o f  

ecosystem state will be referred to as diagnostic variables, 
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follow ng the terminology of Patten ( 1 9 8 4 ) .  Ideally, a small set o f  

easily measured diagnostic variables which accurately predict actual 

ecosys em state is sought. In the context of ecosystem management, 

it is usually desired that the ecosystem remain within some bounded 

region of the state space. 

states be denoted by X .  The objective is then to find a set Q of 

states in the space o f  diagnostic variables corresponding to the 5 e t  

X in the state space. T h i s  correspondence is achieved if two 

conditions are met: ( 1 )  a measured vector o f  diagnostic variables, 

w ,  whlch is contained w i t h i n  Q insures that t h e  state vector 

x is within X (sufficiency), and ( 2 )  the state vector x is found 

Within X only if w is within R (necessity). 

Let this set of acceptable ecosyste 

In the rea? world, insistence on absolute sufficiency and 

necessity is t o o  stringent of a requirement. The problem i s  more 

fruitfully addressed within the frame ork of statistical hypothesis 

testing, Take as a n u l l  hypothesis that the state vector x is 

within the acceptable domain X .  This hypothesis is teated using the 

measured diagnostic vector a. If w is within Q ,  the null 

hypothesis i s  accepted; if n o t ,  it i s  rejected. As w i t h  any 

statistical test of a hypothesis, two types o f  incorrect inference 

a r e  possible. If w falls outside o f  Q when in fact x is 

within X ,  the null hypothesis w i l l  be mistakenly rejected when it is 

true, and a type I statistical error is made. Alternatively, a 

type I1 error occurs if the diagnostic vector remains within R when 

in fact the state vector i s  outside o f  X .  
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Type I errors can be thought of  as false positives. Actions 

taken in response to such a false positive will in fact be 

unnecessary, leading to an unacceptable waste o f  time, effort, and 

money if they occur too frequently. 

errors can be thought o f  as false negatives, the occurrence o f  wh-ich 

can lead to unacceptable environmental damage that might have been 

avoided i f  mitigating steps had been taken. Clearly, it i s  desirable 

to minimize the occurrence o f  both types o f  error. 

criteria may be designed so as t o  yield an appropriate 

between the rates of type I and type I1 errors. Determining 

acceptable error rates and the balance between types o f  error must be 

done on a case by case basis, and may entail consideration o f  

numerous social, political, economic, aesthetic, or ethical factors. 

On the other hand, type 11 

Diagnostic 

The scientific task i s  t o  devise procedures for identifying 

possible diagnostic variables and for estimatin the error rates 

associated with specific diagnostic criteria so that their 

acceptablity can be evaluated. 

provide a context f o r  examining various procedures which may prove 

useful 

The simulation results presented here 

To illustrate the selection and use o f  diagnostic variables, 

variables were sought which would be good predictors of ecosystem 

state on day 21 of the simulation. Furthermore, it was decided that 

any state space separation of 15 or less Wahalanobis distance units 

would be considered acceptable. Day 21 was chosen as being late 

enough for responses to be evident, but early enough t o  exclude an 



140 

undue i n f l u e n c e  o f  s t a t e  v a r i a b l e s  w i t h  very slow response t ime,  

D e f i n i t i o n  o f  an acceptab le  s t a t e  space domain a s  a hypersphere w i t h  

ahalancsbis rad ius-15 allows f o r  a s t a t i s t i c a l l y  significant, b u t  n o t  

severe, d e v i a t i o n  f rom t he  c o n t r o l  t r a j e c t o r y  ( see  F i g .  4.16 and 

4.17) .  T h i s  i s  p robab ly  r e p r e s e n t a t i v e  o f  m o s t  ecosys te  

s i t u a t i o n s ,  where maintenance o f  comp le te l y  p r t s t i n e  c o n d i t l s n s  i s  

i m p r a c t i c a l ,  b u t  limjto a r e  s e t  a t  same law l e v e l  of  a l l o w a b l e  

There a r e  many p o s s i b l e  d i a g n o s t i c  v a r i a b l e s .  Each o f  t h e  s t a t e  

v a r i a b l e s  i s  a cand ida te ,  a5 a r e  aggregate v a r i a b l e s  such as the  sum 

o f  phy top lank ton  biomasses, o r  o t h e r  f u n c t i o n s  o f  s t a t e  v a r i a b l e s ,  

such as  t h e  r a t i o  o f  consumer biomass t o  producer biomass. Several 

procedures were used t o  i d e n t i f y  p romis ing  d i a g n o s t i c  v a r i a b l e s  f rom 

t h e  pool o f  cand ida tes .  F i r s t ,  s imp le  c o r r e l a t i o n s  o f  the  s t a t e  

space s e p a r a t i o n  w i t h  t h e  cand ida te  v a r i a b l e s  was cons idered.  

Second, v a r i o u s  l i n e a r  reg ress ions  o f  s t a t e  space s e p a r a t i o n  a g a i n s t  

cand ida te  va r - l ab les  were examined. Th is  i n c l u d e d  a s e t  o f  s tepwise  

m u l t i p l e  reg ress ions  performed u s i n g  t h e  maximum f f2  imp ave 

method l n  t h e  STEPWISE procedure a v a i l a b l e  i n  SAS (SAS 9 8 5 ~ ) .  

F i n a l l y ,  t h e  obse rva t i ons  i n  t h e  da ta  s e t  o f  s i m u l a t i o n  r e s u l t s  were 

p a r t i t i o n e d  i n t o  two  g r o i ~ p r  based on whether  o r  not t h e  s t a t e  space 

separatjon exceeded 1% Mahalanobis d i s t a n c e  u n i t s ,  and a stepwise 

d i s c r i m i n a n t  a n a l y s i s  was performed on t h e  c l a s s i f i e d  da ta  u s i n g  t h e  

STEPDISC procedure (SAS 1 9 8 5 ~ ) .  
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As a result of these analyses, the best single diagnostic 

variable identified was the total zooplankton biomass. Linear 

regression yielded the relationship 

S = 25.8784 + 3.2608 In Z (4.1) 

where S I s  the predicted separation, and Z is the sum o f  the 

biomasses of the five zoaplankton species. This regression had an 

adjusted R value of 0.731. The result i s  a one dimensional 

diagnostic space defined by a single aggregate variable. It remains 

to define the set Q In thls diagnostic space which will best 

corresponds to the s e t  X in the state space. 

the set o f  all states such that 5 9 5 ,  where S is the separation 

calculated in the full state space, an obvious choice off diagnostic 

criterion would be 5515, which is equivalent to In 7. <= -3.3361. The 

statistical error rates associated with this diagnostic criterion can 

be estimated on the basis o f  the simulation results. Out o f  800 

Monte Carlo simulations, spanning the range o f  toxicant 

concentrations from 0.0 to 20 rng/L, the rate o f  occurrence of type I 

and type I I  errors I s  3.13% and 75.63, respectively. 

2 

Since X is taken to be 

The frequency o f  type I1  errors is higher than one might like. 

Since a type I1 error implies that actual environmental degradation 

occurs but is undetected, this is a potentially serious f l a w .  One 

alternative i s  t o  retain the same diagnostic space, but t o  define the 

set Q dqfferently. A more conservative diagnostic criterion would 
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be $<Q where Q 4 5 .  

type  I [ H  e r r o r s ,  b u t  at the cast o f  an increased Frequency of t y p e  I 

ek-rors. Fig. 4 .24  jllustrates the t rade-off  between type T and t y p e  

I1 error yrobab$lities for values o f  Q between 12 and 1 5 .  

it i s  possible t o  achieve a low rate of type I1 errors (say less than 

1, t h e  result is a nuch higher r a t e  o f  type I e r r o r s  (grea te r  than 

Such a s t r a t e g y  will reduce t h e  probability o f  

Although 

20%). Since money and e f f o r t  may be unnecessarily expended in 

responding t o  such f a ? s e  zilams, m high type 1 error probability may 

a l s o  be unacceptable. 

If  t h e  e r ror  rates associated with the use o f  t o t a l  zooplankton 

biomass as a diagnostic variable a r e  de@med unacceptable,  another  

diagnontjc space m u a t  be sought. Several other one dimensional 

diagnostic spaces uere examined, but none were found t o  be supe r io r  

t o  tota l  zooplankton in overall predictive power. Therefore ,  

consideration is naw gtven t o  possible two dimensional s t a t e  spaces. 

One method of searching f o r  possible two  dimensional diagnostic 

spaces is w i t h  steygnpjse multiple r e  reasion analysis. U s i n g  t h e  
2 4cSE procedure i n  SASI u l t h  a maximum R criterion f a r  variable 

selection, t he  best two variable  mode? f ound  was 

S = 31.8689 4 2.1648 In Z .- 11.2891 I n  Pq 

where the new variable, P4, is t h e  biomass o f  the f o u r t h  

phytoplankton species. 

0.822. Using this regression wdth a diagnostic criterion o f  S515 

This regression has an adjusted R* o f  
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yields type I and t y p e  I 1  e r r o r  r a t e s  o f  5.88 

respectively. Compared t o  t h e  regression with Z alone, use o f  this 

relationship only slightly improves t h e  type 11 error r a t e ,  and in 

fact leads t o  a higher total ( t y p e  I d- type 11) error rate. 

Inspection o f  a scatterplot o f  ecosyste states projected into t h e  

two dimensional Z-P4 space, and coded t o  indicate whether o r  not 

SLlS, indicated that it was unlikely t h a t  arty o t h e r  diagnostic 

c r i t e r i o n  w i t h i n  t h i s  space would be substantially better than one 

based on Z alone. 

Alternatively, stepwise discriminant analysis can be use Po 

search for  s e t s  o f  diagnostic variables. Using the  STEPDISC 

procedure in SAS, w i t h  groups classified according t o  whether or not 

SL15, t h e  best two v a r l a b i e  discrimination achieved w a s  i n  a space 

defined by Z and Pblugrn, where Pbl irgrn is t h e  sum o f  the 

biomasses of phytoplankton species 8 t h r o u  h 10, which occupy an 

ecological niche w i t h j n  t h e  model similar t o  typical blue-green algal 

species. 

diagnostic variables, it remains to specify a numerical diagnostic 

criterion within this t w o  dimensional space. T h i s  is easily 

accomplished u s i n g  t h e  D I S C R I M  procedure within SAS. For each 

o b s e r v a t l o n  in the data  s e t ,  the DIS@RI [M procedure calculates a 

probability o f  membership in X ,  t h e  set o f  acceptable states, based 

upon the  values o f  t h e  diagnostic variables. The s e t  0 is then 

defined as the colleck.ion o f  s t a t e s  such t h a t  the calculated 

Waving identified Z and Pblugrn as a candidate p a i r  o f  

probability o f  membership in X exceeds some specified threshold 
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r e f e r r e d  t o  as a p r i o r  p r o b a b i l i t y .  

i n f o r m a t i o n  on which t o  base s e l e c t i o n  o f  a p r i o r  p r o b a b i l i t y ,  a 

va lue  o f  0.5 i s  u s u a l l y  chosen. On t h e  b a s i s  o f  t h i s  c r i t e r i o n ,  t h e  

es t ima ted  t y p e  I and t y p e  I1 e r r o r  r a t e s  a r e  3.25% and 75.88%, 

r e s p e c t i v e l y .  U n f o r t u n a t e l y ,  t h i s  s e t  o f  d i a g n o s t i c  v a r i a b l e s  a l s o  

I n  t h e  absence o f  r e l e v a n t  

f a i l s  t o  p r o v i d e  a s u b s t a n t i a l  improvem 

cons idered cand ida tes .  

The f a i l u r e  o f  s tepwise  r e g r e s s i o n  

a n a l y s i s  t o  f i n d  an adequate two dirnens 

n t  ove r  t h e  p r e v i o u s l y  

and s tepwise  d i s c r i m i n a n t  

ona l  d i a g n o s t i c  c r i t e r i a n  

does n o t  p rove  i t s  nonex is tence.  

missed f o r  two reasons: (1) s tepwise  procedures wh ich  do n o t  

c o n s i d e r  a l l  p o s s i b l e  models may f a i l  f i n d  t h e  b e s t  model due t o  a 

convergence o f  t h e  o p t i m i z a t i o n  c r i t e r i o n  t o  a l o c a l ,  r a t h e r  than  a 

A s u i t a b l e  c r i t e r i o n  may have been 

g l o b a l ,  extremum; and ( 2 )  b o t h  s tepwise  procedures seek l i n e a r  

r e l a t i o n s h i p s  between ecosystem s t a t e  and s e t s  o f  d i a g n o s t i c  

v a r i a b l e s ,  a l t hough  n o n l i n e a r  r e l a t i o n s h i p s  may e x i s t  and prove t o  be 

more u s e f u l .  W i th  t h i s  i n  mind, seve ra l  cand ida te  two d imens iona l  

d i a g n o s t i c  spaces were examined which had been suggested p r i m a r i l y  on 

t h e  b a s i s  o f  i n t u i t i v e  appeal .  

One such d i a g n o s t i c  space i s  t h a t  d e f i n e d  by t h e  v a r i a b l e s  

where P i s  t h e  sum o f  t h e  biomasses ’bl ug rn  and ‘spr ing ’  s p r i n g  
o f  phy top lank ton  spec ies  3 th rough  5 ,  t h e  dominant spec ies  s f  t h e  

s p r i n g  bloom. 

t h e  b a s i s  o f  l i n e a r  r e g r e s s i o n  w i t h  S z l S ,  t h e  r e s u l t i n g  e r r o r  r a t e s  

a r e  9.50% and 6.25% f o r  t y p e  I and t y p e  11 e r r o r s ,  r e s p e c t i v e l y .  

I f  a d i a g n o s t i c  c r i t e r i o n  i s  d e r i v e d  i n  t h i s  space on 
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T h i s  can be improved by u s i n g  d iscr iminant  analysis t o  a r r i v e  a t  the 

numerical c r i t e r i o n .  Assuming a prior- p robab i l i t y  o f  membership i n  

s e t  X of 0 .5 ,  e r r o r  r a t e s  o f  4 .38% ( type  I )  and 6 . 3 8  

r e s u l t .  T h i s  i s  a c l e a r  improvement over t h e  d iagnos t ic  c r i t e r i a  

considered so f a r ,  b u t  an even b e t t e r  c r i t e r i o n  can be der ived within 

t h i s  diagnos'tic space.  P h i s  becomes evident  upon inspec t ion  o f  the 

da ta  as p lo t t ed  i n  F i g ,  4 .25 .  I t  i s  apparent  t h a t  a mi l l i nea r  

c r i t e r i o n ,  such a s  curve C ,  provides a b e t t e r  p red ic t ion  o f  ecosystem 

s t d t e  than e i t h e r  o f  t h e  c r i t e r i a  based on regress ion  a n a l y s i s  ( l i n e  

A )  o r  d iscr iminant  ana lys i s  ( l i n e  13). In f a c t ,  t h e  ca l cu la t ed  t y p e  I 

and type  I 1  e r r o r  r a t e s  as roc ia t ed  w i t h  such a nonl inear  diagnostic 

c r i t e r i o n  a r e  7.63% a n d  O.OO%, r e spec t ive ly .  

F ina l ly ,  a note  m u s t  be made a b o u t  t h e  i n t e r p r e t a t i o n  of t h e  

p r o b a b i l i t i e s  of type I and type I I  errors  as presented i n  t h i s  

s e c t i o n .  These p r o b a b i l i t i e s  a r e  not equiva len t  t o  a and B e r r o r  

r a t e s  a s  t r a d i t i o n a l l y  defined fori s t a t i s t i c a l  hypothesis t e s t i n g ,  

Although u ( 0 )  i s  s ~ m e t i m e s  loose ly  r e fe r r ed  t o  a s  the p r o b a b i l i t y  

of making a type  I ( t ype  11) e r r o r ,  i n  f a c t ,  Q (Is) i s  t h e  

condi t iona l  p r o b a b i l i t y  o f  a type  1 ( type  11) e r r o r  given t h a t  the 

n u l l  hypothesis i s  t r u e  ( f a l s e ) .  The occurrence r a t e s  discussed 

above, on t he  o the r  hand, a r e  es t imates  o f  t h e  p robab i l i t y  of a t y p e  

I o r  type I I  e r r o r  without regard t o  the  t r u t h  o r  f a l s i t y  o f  the nul l  

hypothesis .  l h e  r e l a t i o n s h i p  between the twa q u a n t i t i e s  can be seen 

by applying t h e  d e f i n i t i o n  of  condi t iona l  p robab i l i t y :  
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h lucid discussion o f  the logic of statistical inference, with 

relevant remarks on error probabilities, is contained in Qakes (1986, 

see especially Chapter 1 ) .  

The numerators in equations 4 . 3  and 4 .4  are joint probabilities, 

expressing the rates of simultaneous occurre~~ce o f  two events, one in 

the diagnostic space and one in the full state space. It i s  these 

joint probabilities which have been reported in the discussion of 

possible diagnostic variables. 

conditional probabilities o r  joint probabilities i s  partially a 

matter o f  personal taste, but .in this application, the latter see 

more readily interpretable. For instance, if the conditions o f  

The choice between reporting 

toxicant exposure are such that it i s  improbable that the state 

vector will in fact be w j t h l n  the acceptable domain (i.e., P ( x c X )  

is near zero),  then even if the conditional probability o f  a type 1 

error is high, t h e  expected frequency o f  type I errors w i l l  be low. 

The joint probability, on the other hand, is always proportional %a 

the expected error frequency. 

It should be noted that both the conditional and t h e  joint error 

Strictly speaking probabilities depend upon the exposure conditions, 

therefore, t h e  error rates presented are  only valid f o r  the 

pat-ticular exposure s c e n a r i o  used i n  the simulation. The 

relationship between error probabdlities and exposure conditions is 
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examined in greater detail in section 5.4, where t he  use o f  

diagnostic variables i s  linked t o  the theory o f  risk analysis. 
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Chapter  5 

D I SCblSS I ON AND CONC [.US E ONS 

MARY BEID EVALUATION OF RESULTS 

The method a f  u s i n g  s t a t e  space d isp lacements t o  su 

response t o  a t o x i c a n t  has been applied i n  three r e l a t i v e l y  

independent situations: (1) t o  i n v e s t i g a t e  t h e  response o f  f l a s k  

~ C ~ O C O S ~ S  t o  2 , 4 4 1  e thy lpheno l ,  ( 2 )  t o  i n v e s t i g a t e  t h e  response o f  

aquarium mic rocos  5 and o f  experimental polads t o  a coa l -de r i ved  

s y n t h e t i c  o i l ,  and ( 3 )  %a i n v e s t i g a t e  t h e  dynamics of  an a q u a t i c  

del under s imu la ted  c o n d i t i o n s  o f  exposure t o  a m i x t u r e  

o f  phenols. The results o f  these i n v e s t i g a t i o n s  have been presented 

in preced ing  chapters .  MOW, a t t e n t i o n  w i l l  be d i r e c t e d  toward 

summasizing t h e  i m p o r t a n t  Features o f  t h e r e  r e s u l t s ,  and  toward 

e v a l u a t i n g  t h e  s t rengths  and weaknesses o f  t he  s t a t e  space 

d isp lacement  methodology employed i n  t h l s  study.  

In a l l  th ree  a p p l i c a t i o n s  o f  t h e  method, t h e  pr imary  p roduc t  o f  

t h e  a n a l y s i s  was a d e s c r i p t i o n  of t h e  dose-response c h a r a c t e r i s t i c s  

t o  t h e  t o x i c a n t  under c o n s i d e r a t i o n .  Dose-response 

r e l a t i o n s h i p s  were derived u s i n g  s t a t e  space ddsplacements, o r  s c a l a r  

q u a n t d t i e s  d e r i v e d  from disp lacements,  as i n d i c a t o r s  of  ecosystem 

response, T n e v i t a b l e l y ,  reduc ing  ecosystem response t o  one o r  a few 

q u a n t i t i e s  i n v o l v e s  t h e  suppress ion o f  c e r t a i n  d e t a i l e d  a s p e c t s  o f  

t h e  o r i g i n a l  multivariate d a t a .  However, t h e  comp lex i t y  of a l a r  

mul t iva r i a t e  data  s e t  can obscure g e ~ e r a l  t rends  o r  p a t t e r n s  which  
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can be clearly shown by the use of appropriate summary statistics. 

The most successful strategy is to develop statistical measures which 

effectively capture the trends o r  patterns o f  interest, but which can 

be readily related t o  the original variables to aid in the 

interpretation of the results. 

The state space measures used in this study have demonstrated 

their heuristic value. Calculation o f  a state space displacement 

vector recasts the original data in a different mathematical 

framework, discarding information on the absolute values o f  state 

variables, but preservlng information on the differences between 

control and perturbed systems. The contribution o f  individual state 

variables can be reconstructed from the directionality of the 

displacement vector. The displacement vector will be close t o  (at a 

small angle from) the axes corresponding to the state variables 

contributing most heavily t o  the response, 

displacements are readily interpretable in terms o f  the original 

variables. 

Thus state space 

Summarizing response Sn terms of the magnitude o f  the  

displacement vector means suppressing the directional information, 

but provldes a measure of the distance between control and perturbed 

ecosystem states. I t  has proved convenient t o  use a Mahalanobis 

metric to measure this distance, since Mahalanobis distances can be 

regarded as an inverse measure o f  the probability o f  such a 

displacement being realized in the absence of toxicant stress. The 

response surfaces shown in Figs. 3 . 4 ,  3 . 1 1 ,  4.12, 4.14, and 4.16 are 
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plots o f  the Mahalanobis distances separating control and perturbed 

trajectories as a function time and toxicant input. 

Occasionally it i s  useful to further summarize the data by 

suppressing the temporal dynamics o f  ecosystem response. Three 

measures were  proposed f o r  this purpose: maximum separation, mean 

separation, and mean displacement rnagn-ltude. Haximum reparation is 

primarily of interest as a possible index o f  ecosystem resistance 

( s e e  discussion in s e c t i o n s  1 . 3  and 1 . 4 ) .  ean separation and mean 

displacement magnitude are both measures o f  response averaged o v e r  a 

t l m e  period. In  the case o f  mean separation, the distances are 

averaged, whereas mean displacement ma n i t u d e ,  as the name implies, 

is bared on an averaging of displacement vectors. The distinction 

was discussed niore fully in section 2 . 4 . 4 .  I t  was suggested that a 

comparison o f  the mean separation with the mean displacement 

magnitude could be used t o  assess t he  extent o f  changes in the 

directional nature o f  the displacements over t h e  time period. Such 

comparisons, hok~ever, were not especially informative with respect to 

t h e  data analyzed in this study. Perhaps information on 

directionality would be better conveyed by direct calculation o f  

angular rotation between successive displacement vectors, as was done 

to indicate changes in the orientation o f  the first principal 

component ( s e e  Figs. 3.16, 4.21 and 4 . 2 3 ) .  

A s  a multivariate statistical technique, state space analysis 

can frequently provide greater slatistjcal power than univariate 

analysis o f  individual s t a t e  variables. This results siniply from the 
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geometric fact that the length of a displacement vector (separation) 

cannot be less than the length of its projection onto any axis. This 

is true whether an Euclidean or a 1'4ahalanobis metric i s  used, 

although, to be consistent, the projection must, in the latter case, 

be defined to be orthogonal in terms o f  Mahal~nobis angles (Mardia 

1 9 7 7 ) .  The power of a linear function of state variables t o  detect 

changes in state is a function of both the length of the displacement 

vector projected onto that axis and o f  the covariance structure of 

the data. In practical applications the length considerations 

frequently dominate, meaning that separation is usually nearly the 

most powerful statistic. (The strictly most powerful statistic i s  

that provided by discriminant analysis, see section 5.2.2).  

The statistical power obtained by the use of state space 

separation can be compared to that obtained with individual state 

variables using the simulation results. The type ? I  error rates, 

based on the use o f  separation o r  o f  several o f  the individual state 

variables, are shown in Table 5.1. In most cases these were 

calculated from the number o f  simulations at the lowest treatment 

level (0.3125 mg/L) that fell within the the interval defined by the 

1st and the 99th percentiles o f  the control simulations (a13 on clay 

21).  This analysis estimates the probability o f  a type I1 error 

under a two-sided test of the hypothesis o f  no effect with a 

significance probability a = 0.02. 

I1  error rate was low, 4t was estimated by assuming that the 

statistic followed a normal sampling distribution* In the case of 

In those cases where the type 
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Table 5.1 Type I1  error rates associated with the use o f  separation 
and of individual state variables to test the hypothesis 
o f  no e f f e c t  on day 21 o f  t he  ecosystem simulation, 

T e s t  Statistic _ - - ~  

separation 

phytoplankton 4 biomass 

phytcplankton 8 biomass 

phytoplankton 9 biomass 

zooplankton 1 biomass 

zooplankton 2 biomass 

zooplankton 3 b ion iass 

zooplankton 4 biomass 

zooplankton 5 biomass 

fish biomass 

macrophyte biomass 

refractory detritus mass 

phytoplankton net photosynthesis 

macrophyte net photosynthesis 

nutrient concentration 

dissolved oxygen 

Type I 1  jrror Ratc....(fiO 

0.00tiO 

0.0014 

0.20 

O.QQ45 

0 . 3 6  

0.24 

0.21 

0.76 

0.76 

0.80 

0.98 

0.99 

0.825 

0.99 

0 .94  

0.98 
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separation this proved to be a good approximation. The phytop a n k t s n  

biomasses, however, deviated significantly from a normal distr bution 

(as determined by a Kolmogorov-Smirnov test, a = O,CaS), but th 

approximation was probably good enough For an order-of-magnitude 

estimate of the error rate. The null ~ y p o t ~ e s ~ ~  (no effect) was in 

fact false; therefore, these error rates are estfmtes o f  0 as 

traditionally defined. The statistical power associated with each 

statistic i s  1-13, Note that the state space separation is typically 

an order o f  magnitude more powerful than individual state variables. 

The only state variables o f  comparable power were the biomasses o f  

phytoplankton species 4 and 9 ,  which are representatives of  the two 

phytoplankton groups identified as diagnostic variables in section 

4 . 5 .  

In applications o f  state space isplacement analysis, especially 

if few replicates are available, consideration m u s t  be given t o  the 

sensitivity o f  Mahalanobis distances to errors i n  the estimated 

covariance matrix. Although qualitative patterns o f  response appear 

relatively robust t o  variations in the estfmate 

structure, the numerical values o f  calculated separatio 

quite strongly on the covariance matrix. T h i s  implies that for 

quantitative studies i n  which emphasis is placed on the absolute, and  

not just the relative, magnitude o f  response, the covariance 

structure must be well characterized. Extensive sampling may be 

required t o  reliably estimate even a stationary covariance 

and if the covariance structure changes with time, the samplin 
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requirements are likely t o  be formidable, Fortunately, many 

ecotoxicological questions can be answered on the b a s i s  o f  relative, 

rather than absolute, separations* Nevertheless, derivation of 

methods that reduce the sensitivity t o  covariance structure would be 

a major improvement to the method, Two possible im rovemenks, based 

on robust estimation o f  the covariance atrix and on an alternative 

distance metric, a r e  outlined in section 5.3. 

The emphasis on estimating t h e  covariance structure o f  

ecological variables necessitated by the methods employed in this 

study has had a positive aspect also, On t h e  b a s i s  o f  the 

experimental data and simulations results presented here, it can be 

seen that t h e  covariance structure o f  ecological state variables 

change significantly over time, either due to internal system 

dynamics o r  in response t o  a toxicant. I f  the stilte variables are 

selected appropriately, changes in covariance structure should 

provide valuable information on the underlying changes in ecosystem 

function. Exploring the use of measures based on covariance 

structure to monitor ecosystem dynamlcs along b o t h  perturbed and 

unperturbed trajectories appears to one o f  the more fruitful avenues 

o f  research suggested by this study. Analysis of covariance 

structure may provide a useful means for comparing the dynamics of 

systems, whether the comparison is between different experimental 

ecosystems, simulation models, o r  bath. 

The state space methodology presented in this study a l s o  

provides a convenient framework f o r  practical application o f  Patten's 
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(1984) concept of diagnostic variables. This concept has broad 

applicability to a range of problems encountered in the management o f  

ecological systems. The statistical framework developed in section 

4 . 5 ,  allowing the estimation o f  the error rates associated with the 

use o f  any particular diagnostic criterion, seems particularly 

relevant as a guide to rational decision making. The usefulness o f  

this approach i s  enhanced by its compatibility with established 

theory in risk analysis. 

diagnostic variables w i t h  the theory of risk analysis is taken Sn 

section 5.4. 

A first step in linking the concept o f  

5 . 2  RELATIONSHIP WITH OTHER NULTIVARIATE TECHNIQUES 

The state space methodology developed in this study can be 

regarded as prlmarily a multivariate statistical technique. Further 

insight can be gained, therefore, by comparing it with other well 

established multivariate techniques, both to point out the 

similarities in the underlying theoretical basis, and the  differences 

that influence the choice o f  an appropriate method for a particular 

problem. State space displacement analysis will be compared with two 

commonly used multivariate techniques: principal components analysis 

and discriminant analysis. 
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Pri wc i pa 1 Comp~nent  s Ana l y s i s 5 - 2.1 

One technique frequently applied to t he  analysis of state space 

trajectories is the projection o f  t h e  d a b  into a lower dirnewsianai 

space defined by principal components, P h i s  technique has been used 

to elucidate qualitative features o f  t he  trajectories ( e . g . ,  Allen e t  

al. 1977,  Bartell e t  al. 1978, Allen arid Shlagart 1983, Allen e t  al. 

19841, and i n  quantitative assess  en ts  o f  perturbation-induced 

e n t s  (Ellasm 7960). It is w r P h  considering the relative 

merits of this approach. 

Fig, 5.1 shoks the results o f  a17 analysis o f  hypothetical data 

de5igned to illustrate the potentSal shortcomings o f  an a n a l y s i s  in 

principal component space. The hypothetical data consist o f  repeated 

observations of  two  bivariate normal populations. 80th p o p u l a t i o n s  

have a cons tan t ,  and identicalo covar la i l ice structure, w i t  

correlation of  Q.78 bet een the two (;tate variables. The dlstsnnce 

between t h e  t w o  papulatlun cenCLrolidsp however, varies w i t h  time. The 

largest displacement occurs ow day 4, w i t h  an increase in one s t a t e  

variable and a concomitant decrease in the other ,  followed by a 

period o f  recovery. The t r u e  Wshalanobis clistdnce between popula t ion  

centroids is shown i n  F i g .  5.la. The state space separation 

ated by t h e  pipethods developed in this study is sho 

F i g ,  5.9b f o r  a particular rando samklle of 14 replicate 

trajectories. Some of t h e  d e t a i l s  o f  t h e  pop!;lation response are 

obscured by raaadsfi error, b u t  t he  existence o f  the  peak a t  day 4 is 

clearly indjcated. 
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Figure 5.1 Resul t s  o f  a n a l y s i s  of hypothe t ica l  da t a  s e t .  ( a )  True 
s t a t e  space sepa ra t ion  between populat ion c e n t r o i d s .  ( b )  S t a t e  space 
sepa ra t ion  est imated from sample. ( c )  Separat ion est imated i n  
reduced space def ined by f i r s t  p r inc ipa l  component. j d )  Separat ion 
est imated i n  reduced space def ined by second p r inc ipa l  component. 
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In p r a c t i c e ,  p r inc ipa l  components a n a l y s i s  would r a r e l y  be 

appl ied t o  a two  dimsnsional data  s e t .  However, t h i s  hypothet ical  

d a t a  s e t  s e r v e s  t o  i l l u s t r a t e  a phenomenon 

ar’lse i n  d a t a  se t s  of higher  d imens iona l i ty .  It i s  found t h a t  82% o f  

t h e  var iance i n  the da ta  i s  explained by t h e  f i r s t  p r inc ipa l  

component, so one m i g h t  suppose t h a t  t h i s  one dimensional p r inc ipa l  

component space idould adequately r e f l e c t  behaviors  i n  t he  F u l l  s t a t e  

space,  Such i s  n o t  the  case ,  as can be seen from F i g .  5 . l c  which 

shows the  separa t ion  ca l cu la t ed  i n  t he  f i r s t  p r inc ipa l  component 

space.  The separat-ion o f  t r a j e c t o r i e s  pro jec ted  i n t o  the f i r s t  

p r inc ipa l  cornponenL space shows no h i n t  of t h e  ac tua l  per turba t ion  on 

day 4 ,  and misleadingly suggests  a per turba t ion  on day 9 .  

Surp r i s ing ly ,  m o s t  of t h e  displacement information i s  contained i n  

t h e  second p r inc ipa l  conponent, sAIhish, t h o ~ g h  i t  only expla ins  18% o f  

t h e  t o t a l  var iance ( F i g .  5 . l d ) ,  shaws the per turba t ion  on day 4 as 

c l e a r l y  a s  t h e  f u l l  s t a t e  space separa t ion .  

h i c h  can a l s o  e a s i l y  

The data  analyzed in  t h i s  example a r e  admit tedly contr ived t o  

i l l u s t r a t e  a p o j n t .  

i n  a d i r e c t l s n  near ly  perpendicular  t o  t h e  reduced p r inc ipa l  

component space,  insur ing  the  inadequacy of t he  pr inc ipa l  component 

r ep resen ta t ion .  In gene ra l ,  however, t h e  d i r e c t i o n  o f  displacement 

i s  n o t  known g p r i o r i ,  so  t r a j e c t o r i e s  i n  spaces o f  reduced 

dimensional i ty  m u s t  be i n t e rp re t ed  cau t ious ly .  Such spaces may be 

useful f o r  graphical  presenta t ion  O F  t h e  d a t a ,  o r  t o  explore  c e r t a i n  

The displacements were d e l i b e r a t e l y  chosen t o  be 
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q u a l i t a t i v e  f e a t u r e s  o f  t h e  t r a j e c t o r i e s ,  b u t  f o r  q u a n t i t a t i v e  

a n a l y s i s ,  c a l c u l a t i o n s  based on t h e  f u l l  s t a t e  space a r e  p r e f e r a b l e .  

A l though t h e  methodology developed i n  t h i s  s tudy  does n o t  r e l y  

on a p r i n c i p a l  components a n a l y s i s  t o  reduce t h e  d i m e n s i o n a l i t y  o f  

t h e  s t a t e  space, t h e  method i s  c l o s e l y  r e l a t e d  t o  p r i n c i p a l  

components a n a l y s i s  i n  ano the r  sense. T h i s  connec t ion  a r i s e s  i n  t h e  

use o f  t h e  Cholesky decompos i t ion  o f  t h e  i n v e r t e d  cova r iance  m a t r i x  

t o  t r a n s f o r m  t h e  da ta  p r i o r  t o  a n a l y s i s .  Under t h i s  t r a n s f o r m a t i o n ,  

a random v e c t o r  x f r om a p o p u l a t i o n  w i t h  cova r iance  m a t r i x  E i 5  

t r ans fo rmed  i n t o  a v e c t o r  y ( =  A x ,  where A = C 

w i t h  an i d e n t i t y  cova r iance  m a t r i x .  Under p r i n c i p a l  components 

a n a l y s i s ,  i f  a l l  t h e  p r i n c i p a l  components a r e  r e t a i n e d ,  a random 

v e c t o r  x w i t h  cova r iance  m a t r i x  C i s  t rans formed i n t o  a v e c t o r  

z (=  Bx)  w i t h  a d iagona l  cova r iance  m a t r i x  A (Tatsuoka 971, 

pp. 127-130). The elements of A a r e  t h e  e igenva lues  o f  t h e  

o r i g i n a l  cova r iance  m a t r i x  C, and can be i n t e r p r e t e d  as t h e  

amount o f  va r iance  exp la ined  by each o f  t h e  p r i n c i p a l  components. 

4 2 )  

S t a n d a r d i z i n g  t h e  p r i n c i p a l  component scores r e s u l t s  i n  a 

t r a n s f o r m a t i o n  t o  a v e c t o r  w i t h  an i d e n t i t y  cova r iance  m a t r  

t h e  r e s u l t i n g  v e c t o r s  a r e  i d e n t i c a l  t o  those  r e s u l t i n g  f rom 

t r a n s f o r m a t i o n  used i n  c a l c u l a t i n g  t h e  s t a t e  space measures 

E f f e c t i v e l y ,  t h e  t r a n s f o r m a t i o n  i s  e q u i v a l e n t  t o  t h a t  which 

f rom p l o t t i n g  t h e  da ta  i n  a space o f  s tandard i zed  p r i n c i p a l  

x ,  and 

the 

r e s u l t s  

components c a l c u l a t e d  f r o m  t h e  cova r iance  m a t r i x  o f  t h e  c o n t r o l  
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ecosystems. The relationship is su arized in t h e  equality A = 

5.2.2 Discriminant Analysis 

Discriminant analysis is a multivariate statistical technique 

designed to identify a subspace o f  reduced dimensionality which 

maximizes the distinction between groups selected prior to the 

analysis. The ,technique has been used t o  quantify the response o f  

mSi rob ia?  communities t o  t o x i c a n t  exposure (Sayler et a l .  1982, 

1983). State space displacement analysis i s  also aimed at the 

quantification of d i f f e r e n c e s  between control and perturbed state 

trajectories. Hence, it i s  worth investigating t h e  relationship 

between t h e  tzdo techniques. A description based on t h e  qeo 

in%erpretation o f  a discriminant function i s  presented here; a more 

rigorous t r ea tmen t  o f  discriminant analysis is available in standard 

texts ( e - g . ,  T a t s u o k a  1971, pp. 157-177). 

Imagjne two clusters o f  points i n  a multidimensional space 

correspon 

5 1. 
represent 

t ra j ec tor 

ing t o  the two  groups ( e e g . ,  control and perturbed s y s t e  

Consistent with the  focus o f  this study, these clusters can 

measured s t a t e s  along control and perturbed state 

e s ,  Oiscriminant analysis techniques construct a 

discriminant funct - ion which is a linear combina+'non o f  state 

variables, or equivalently an a x i s  in the state space, such that the 

overlap between groups is min imized when the d a t a  a r e  projected onto 
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that axis. The axis whlch satisfies this requirement is determined 

by a compromlse between maximizing the distance between the projected 

ceniroids and minimizing the projected ~ i t h ~ n - ¶ ~ o ~ p  variance. 

This compromise i s  illustrated for the case o f  a two di~ensi~nal 

state space In F i g .  5.2. In fig. 5 . 2 ,  centroids and concent~at~on 

ellipses are shown for two groups of data. In F i  . 5.2a, the results 

of projecting the data onto an axis which maximizes the (Euclidean) 

distance between centroids is shown. The ifference between the 

means of the resulting ~ ~ ~ ~ r i b ~ t i o n s  I s  large, but so j s  the 

within-group variance, s o  there is a notfceable overlap in the 

tails. Fig. 5.2b shows the data projected onto an axis which 

minimizes the wlthin-group variance. ~ ~ t h ~ ~ ~ h  the spread o f  the 

distributions is much smaller than in F i g .  5.2a, the istance between 

the means i s  also much reduce and a noticeable overlap s t i l l  

exists, Finally, Fig .  5 . 2 ~  shows the data projected onto the axis 

which serves as the best discriminant functio a Thjs axis i s  

oriented in a direction between the other two axes considered. With 

this compromise it I s  poss’ible to separate the two groups such that 

there i s  no significant overlap between the projected istributions. 

Unlike discriminant analysis, state space displacement analysis 

is not aimed solely at maximiz3ng the ability t o  distinguish between 

groups, but rather attempts t o  provide an objective quantiffcation of 

the differences in control and perturbed systems relative to normal 

variation. For  this purpose, It is the displacement between group 

centrolds which conveys the most useful Information.. Thus, the 
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F igure  5.2 Illustratian o f  g e o m e t r i c  i n t e r p r e t a t i o n  o f  d i s c r l m i n a n t  
a n a l y s i s .  ( a )  Axis maximizing t h e  d i s t a n c e  between c e n t r o i d s .  
( b j  A x i s  min imiz ing  t h e  wi th in-group v a r i a n c e .  
y i e l d i n g  best d i s c r i m i n a t l a n .  

( c )  Comgromjse a x i s  
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expected orientation of the displacement vector is parallel to the 

axis in Fig. 5.2a. As this is one ingredient in determining the 

discriminant function, there is relationship between the two, but 

they are not equivalent, the degree of difference being determined by 

the variance-covariance structure of the data. The Wahalanobis 

transformation used in this study is designed to convert the control 

data to a spherically symmetrical distribution, in which case it is 

only the covariance structure of the perturbed state vectors which 

influences the discriminant function. In the special case of  a 

perturbation which does not affect the covariance structure, the 

discriminant functfon and the displacement vector are equivalent when 

both are described in the transformed space. 

5.3 DIRECTIONS FOR FUTURE RESEARCH 

5.3.1 Use o f  Alternative Distance Metrics 

The applications o f  state space analysis explored 

o f  this study have all relied upon the use a Irlahalanob 

measure distances. This metric was used in preference 

in the 

s metr 

t o  the 

course 

c to 

traditional Euclidean metric to compensate for the differences in 

scaling o f  the various measured state variables, and for their 

intercorrelations. For the cases examined in this study the 

Mahalanobis metric appears to have served its intended purpose, but 

it i s  not the only non-Euclidean metric available, and others may be 

o f  use in some situations. The choice of a metric will largely 
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depend upon t h e  nature  o f  t h e  problem t o  which s t a t e  space a n a l y s i s  

One d i s t ance  metr ic  which, because i t  does n o t  r equ i r e  

e s t i m a t i o n  0% t he  en t? re  covariance m a t r i x ,  may be u s e f u l  i s  t h e  

Karl Pearson d i s t ance  (ordglwal ly  ca l l ed  the c a e f f i e i e n t  o f  r a c i a l  

l i keness ,  Pearson 1926; f o r  a recent  t reatment  see Mardia 1977).  

Glven two random vec to r s ,  v and w,  drawn f r om a papulat ion w i t h  

covariance matrix E ,  t h e  Karl Pearson d i s t ance  between them i s  

where diag(C)  represents  a matrix w h i c h  conta ins  the diagonal 

elements o f  t h e  covardance matrix ( i . e . ,  t h e  var iances)  and zeroes 

elsewhere. I t  can be demonstrated t h a t  t h e  Karl Pearson d i s t ance  i s  

equiva len t  t o  the Euclidean d i s t ance  between vec tors  w i t h  

standardized s t a t e  va r i ab le s .  Unlike t h e  Mahalanabis metric, t h e  

Karl Pearson metric does n o t  account f o r  c o r r e l a t i o n s  between t h e  

s ta te ,  va r i ab ie s .  Hawever, empir ical  s t u d i e s  have shown t h a t  Karl 

Pearson d i s t a n c e s  a r e  highly co r re l a t ed  w i t h  Mahalanobis d i s t a n c e s ,  

and the  Former can be used as  a s u b s t i t u t e  f o r  t h e  l a t t e r  i n  many 

cases (Penrose 1954) .  The r e l a t i o n s h i p  between t h e  two breaks do 

as  t h e  i n t e r c o r r e l a t i o n s  among state! va r i ab le s  becomes s t rong .  

W i t h i n  the contex t  o f  t h e  s t a t e  space analyses  conducted i n  t h l s  

s tudy ,  t h e  p r i  a r y  advantage t o  u s i n g  the  Karl Pearson d i s t a n c e  i s  

t h e  e? i rn lna t ion  o f  -the need t o  e s t i m a t e  the e n t i r e  covariance 

s t r u c t u r e  f o r  t h e  control  eco,systems. In  an n--djmensional s t a t e  
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space, o n l y  t h e  n va r iances  a r e  needed t o  c a l c u l a t e  K a r l  Pearson 

d i s tances ,  as opposed t o  t h e  n(n-1)/2 var iance-covar iance elements 

needed t o  c a l c u l a t e  Wahalanobis d i s tances .  Es t imates  o f  t h i s  s m a l l e r  

number o f  s t a t i s t i c s  should be more r e l i a b l e ,  which i s  an i m p o r t a n t  

c o n s i d e r a t i o n  i n  t h e  case o f  smal l  sample s i t e s  f r e q u e n t l y  

encountered i n  e c o t o x i c o l o g i c a l  da ta .  I n  p a r t i c u l a r ,  t ime-va ry ing  

es t ima tes  o f  t h e  var iances  may show l e s s  sampl ing v a r i a t i o n  than  

t i m e - v a r y i n g  es t ima tes  o f  t h e  e n t i r e  cova r iance  s t r u c t u r e .  

Another  i m p o r t a n t  f a m i l y  o f  d i s t a n c e  m e t r i c s  a r e  t h e  Minkowski 

p -me t r i cs  (Gat re11 1983, pp. 27-33). The Minkowski d i s t a n c e  between 

two v e c t o r s ,  v = (v,,v 29 . . . , vn ) '  and w = ( w  1 * w 2 '  * * JJ$J ' , 
i s  c a l c u l a t e d  as 

where p can be any r e a l  number f rom 1 t o  i n f i n i t y .  If  p 2, t h i s  

fo rmu la  reduces t o  t h e  Euc l i dean  m e t r i c .  The m e t r i c  ob ta ined  by 

s e t t i n g  p = 1 i s  r e f e r r e d  t o  as t h e  t a x i c a b  o r  c i t y - b l o c k  m e t r i c ,  

s i n c e  i t  can be viewed as a measure o f  d i s t a n c e  i n  a space where 

t r a v e l  i s  r e s t r i c t e d  t o  a r e c t a n g u l a r  g r i  , such as c i t y  s t r e e t s .  A t  

t h e  o t h e r  extreme, a s  p approaches i n f i n i t y ,  t h e  Minkowski m e t r i c  

possesses a w e l l  d e f i n e d  l i m i t  which can be w r i t t e n  as 

l i r n  dp(V,W) = dg(Y,W) = max I V i  - W i  I 
p- i 

and i s  s imp ly  t h e  l a r g e s t  d i f f e r e n c e  between p a i r s  o f  v e c t o r  

components. Thus, i t  i s  r e f e r r e d  ta as a dominance m e t r i c .  
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The geometric i n t e r p r e t a t i o n  o f  Winkowski met r ics  can be 

i l l u s t r a t e d  by consider ing se t s  o f  po in t s  which a r e  e q u i d i s t a n t  from 

some cen te r  as  measured by a Hinkobpiski met r ic .  A se t  o f  such 

Winkcawski l t c i r c l e s ' l  i s  shown i n  Fjg. 5.3,  A t  p = 2 ,  t h e  r e s u l t  i s ,  

o f  course,  t h e  t r a d i t i o n a l  Euclidean c i r c l e .  A t  p = 1, t h e  r e s u l t  Ss 

orad inscr ibed  within t h e  t r a d i t i o n a l  Euclidean c i r c l e ,  whereas 

a t  p := a, t h e  resu l t  i s  a square circumscribing t h e  Euclidean 

c i r c  1 e a 

The dominance metr ic  ( p  = m )  may be app l i cab le  i n  some cases  

e re  s t a t e  space a n a l y s i s  i s  used i n  a regula tory  framework. W i t h i n  

t h i s  c a n t e x t ,  an  acceptab le  s t a t e  space domain i s  f r equen t ly  defined 

i n  terms o f  acceptab le  ranges f o r  each of t h e  s t a t e  v a r i a b l e s .  This 

desc r ibe r  a rec tangular  r e g i o n  in  s t a t e  space which can be made 

square by an appropr i a t e  s ea l ing  o f  t h e  axes ,  and which t h e r e f o r e  i s  

a c i r c l e  a s  measured by the dominance met r ic .  This  reduces t h e  

problem of determining vhether  an ecosystem i s  with in  t h e  acceptab le  

domain t o  t h a t  o f  determining i f  i t s  d i s t ance  from t h e  cen t ro id ,  as 

measured by t h e  dominance me t r i c ,  i s  less t han  the rad ius  of t h e  

Wtnkowski c i r c l e .  Applicat ion of t h e  dominance metr ic  would probably 

have f a c i l i t a t e d  Bloom's (1980) a n a l y s i s  o f  t he  recovery o f  perturbed 

comniinni t i e s ,  which was based on d i s t ance  frsrii a r ec t angu la r  

" r e j e c t i o n  envelope" ( s e e  d iscuss ion  i n  sec t ion  1 . 3 ) .  

The M 7 n k o m k i  p-me t r i c s  a r e  independent o f  t h e  covariance 

s t r u c t u r e  o f  t h e  d a t a ,  I t  i s  poss ib l e  t o  devise  a metr ic  which 

combines t h e  gesme'tric p rope r t i e s  of t h e  Minkowski met r ics  and the  
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covariance correction of  the ahalanobis metric. ihe following is 

such a hybrid metric: 

If g = 2, this is equivalent t o  the Mahalanobis metric, and  the s e t  

of points equidistant from a centroid describe an ellipse. For other 

values o f  p ,  the shape of t h e  set o f  equidistant paints changes in 

the same fashion as f o r  a Minkowski metric. For  example, if p = UI 

the metric results in a set of  equidistant points which form a 

rectangle circumscribing the p .-1 2 ellipse- 

5,3.2. Robust Estimation of t h e  Covariance Matrix 

In many cases, the number of degrees of freedom civailable t o  

estimate a covariance matrix from experimental data is not much 

greater t h a n  the number of state variables. In such cases, the 

estimated covariance matrix can be strongly influenced by one or t 

anomalous observations, o r  outliers. Recently, considerable effort 

has been directed toward the development of robust statistical 

methods which are relatively insensitive t o  the presence o f  small 

numbers of  outliers. One class of robust statistics encompasses the 

b l -es t ima to rs ,  where the influence of an observation on t h e  statistic 

varies gradually with its distance from the sample centroid. l o  make 

t h e  estimator robust, t h e  influence function is bounded such t h a t  t he  

effect of  an outlier is limited. 
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Robust #-setimators for the covariance matrix have been 

discussed by Huber (1977) and by Hampel et al. (1986). Unfortuntely, 

the equations f o r  such an estimate o f  the covariance matrix have 

analytical solution, and must be solved by iterative methods. This 

can be computationally expensive, requlses that an initial estimate 

o f  the covariance matrix be derived by non-robust means, and i s  not. 

guaranteed to converge t o  the ogtiomal robust e s t i m a t e .  I n  general 

these problems become more acute -in higher dimensions, Research i n t o  

better and more efficient computational schemes is underway, I t  can 

be concluded that robust esitmators of covariance matrices are not 

yet  practical for  routine application, but that further research into 

their  potentia? usefulness in state space d j ~ ~ ~ ~ ~ ~ ~ e n ~  analysis i s  

warranted. 

5 . 4 .  DIAGNOSTIC VARIABLES AND RISK ANALYSIS 

Risk can be defined as the probability o f  occurrence o f  a 

specified undesirable event. 

scenario presented in section 4-5, There 11: was assumed that on day 

21 o f  the simulation a set o f  acceptable ecosystem states CQUILI be 

defined as those less than 15  Mahalanobis istance units from a 

matched control trajectory. This set was denoted by X .  Lower 

dimensional diagnostic spaces were sought w 

predjct the acceptability or u n a ~ c e p ~ ~ b i ~ i ~ y  o f  an ecosystem state on 

the basis o f  restricted monitoring data. This  goal is achieved i f  a 

This definition can be applied to the 
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s e t  o f  s t a t e s ,  Q ,  can be Found in the diagnostic space such t h a t  

knowing whether or not the vector o f  diagnostjc var-dables, a, is 

in Q can be used to predict (with sufficient accuracy) whether the 

state vector, x ,  is in X .  

For the situation outlined above, risk can be defined as the 

probability that an ecosyste state vector will be found outside o f  

the acceptable domain (i.e., greater than 1 5  Mahalanobis distance 

units from the control centroid). T h i s  probability will, of course, 

depend upon the toxicant exposure regime imposed on the ecosyste 

well as o t h e r  factors. Assuming that for a specified system all 

other factors are e l ther  constant or  are predictable (at l eas t  in a 

statistical sense), then risk can be examined as a function o f  

%oxfcant concentration. Taking the ecological slmulat?on model as 

t h s  system to be considered, r i s k  can be estimated by the fraction of  

Monte Carlo results which f a l l  outside the acceptable domain at a 

given toxicant concentration. A s  the number o f  Monte Carlo 

iterations becomes large, this estimate converges to ard a constant 

value which, within the context a f  this odeling exercise, i s  

regarded as the true risk. Whether ~ t + -  not this i s  an accurate 

estimate o f  the true risk for any particular real-world ecasyste 

depends upon the adequacy of the model as a representation of that 

ecosystem. For a discussion o f  that aspec t  of  risk evaluation, see 

Suter et al. (1987). 

Since the acceptable domain i s  defined in Perms of  the full 

(23-dimensional) state space, estimates o f  the actual risk must be 
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made i n  t h e  f u l l  s t a t e  space t o  avoid b i a s .  However, i n  p r a c t i c e ,  

risk es t ima tes  a r e  o f t en  required on t h e  bas i s  o f  incomplete 

knowledge of  some o f  t h e  s t a t e  v a r j a b l e s .  Diagnostic v a r i a b l e s ,  

which were introduced i n  s ec t ion  4.5 as  p red ic to r s  o f  ecosystem 

s t a t e ,  can now be  used t o  p r e d i c t  eco logica l  r i s k .  W i t h i n  t h e  

modeling con tex t ,  t h e  rlsk predic ted  by var ious  sets o f  poss ib l e  

d t agnos t i c  va r i ab le s  can be est imated and compared w i t h  t he  es t imates  

o f  ac tua l  risk ca l cu la t ed  i n  t h e  f u l l  s t a t e  space.  

T h e  r e l a t j o n s h i p  between t h e  accuracy o f  r i s k  p red ic t ions  and 

the r a t e s  o f  type  I and type I1 e r r o r s  can be derived a s  f o l l o w .  

There a r e  four  d i s t i n c t  events  w h i c h  can occur w i t h  t he  use of 

d i agnos t i c  va r i ab fes .  

E,: x C X and o c Q ( c o r r e c t  in ference  o f  no damage) 

E*: x C X and G) @ Q ( type  I e r r o r )  

E3: x $! X and o C Q ( type  I1 e r r o r )  

E4: x $ X and o $! Q ( c o r r e c t  in ference  o f  damage) 

Denoting t h e  risk a t  a spec i f i ed  t o x i c a n t  concent ra t ion  C as RC, we 

have 

Since .events  E3 and E4 mutually exhaust t h e  p o s s i b i l i t i e s  f o r  x 

t o  fall ou t s ide  o f  X ,  th4s becomes 
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Furthermore, since Eg and E4 a r e  rn%strs;ally exclusive, the 

probability o f  t h e i r  u n i o n  is simply t h e  sum o f  their separate 

probabllitjes: 

The risk predicted on the basis o f  t he  diagnostic variables, denoted 

R C ,  i s  

Re = P ( u $  Q I C )  

B y  reasoning analogous t u  that used above, we f i n d  

Combining 5.7 and 5.9 yields 

(5.9) 

(5-10) 

or ,  by rearraiagi ng terms 

I ihe last two  t e r m s  i n  equat ion  5.11 are analogous t s  the j o i n t  

probabilitlss o f  type 1 and type I1 error r=eported i n  section 4.5. 

The only difference is that these probabilities are condit-ional upan 

a speciffed t o x i c a n t  concentration, whereas t h e  probabilities 

reparted i n  section 4.5 were calculated f rom the e n t i r e  set o f  

t o x i c a n t  concentrations used i n  t h e  simulations. It is 
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straightforward to obtain the error rates conditional upon toxicant 

concentration by performing the same analysis as in section 4 . 5  for 

each simulated toxicant concentration. 

The results of such an analysis using total zooplankton biomass 

( 2 )  is shown in Fig. 5.4. A shortcoming of this diagnostic variable 

is readily apparent from inspection of Fig. 5.4a:  the risk function 

is seriously underestimated for a range o f  intermediate toxicant 

concentrations. 

I 1  error at these concentrations (Fig. 5.16b). Although the joint 

probability o f  a type 11 error averaged over the range o f  exposure 

This is due to a high probability of making a type 

conditions i s  15.6% (as reported in section 4 . 5 1 ,  at the intermediate 

concentration o f  1.25 mg/L the type I1 error rate i s  68%. In 

contrast, the type I error rate is always relatively low (less than 

IO%), although type I errors are likely over a wider range of 

exposure conditions than type I 1  errors. 

Risk functions and toxicant-specific error rates for diagnostic 

criteria defined on the variables Pspring and Pblugrn ( summed 

biomasses o f  phytoplankton species 3-5 and 8-10, respectively) are 

shown in Figs. 5.5, 5 . 6  and 5.7. These three functions differ in the 

way the boundaries o f  the Q region are defined (see Fig. 4 . 2 5 ) .  

The first function ( F i g .  5.5) uses predicted values from a multiple 

linear regression to define the I) region. The resulting predicted 

risk function approximates the true risk function fairly well, but 

the error rates are in fact moderately high. At a toxicant 

concentration o f  0.625 mg/L, the predicted risk equals the true risk, 
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b u t  t h i s  i s  s imp ly  because t h e  type  E and t y p e  I1 error r a t e s ,  be ing  

equal ,  cancel  each other  o u t .  I n  f a c t ,  t h e r e  i s  o n l y  a 56% chance of 

any p a r t i c u l a r  p r e d i c t i o n  o f  t h e  ecosys te  

c o r r e c t  a t  t h i s  concen t ra t i on .  I f  t h e  Q r e g i o n  i s  d e f i n e d  on t h e  

b a s i s  o f  d i s c r i m i n a n t  a n a l y s i s ,  t h e  p r e d i c t e d  r i s k  f u n c t i o n  more 

c l o s e l y  approx imates the  t rue ri.;k, b u t  aga in  t h e  error r a t e s  a r e  

s u b s t a n t i a l  a t  i n t e r m e d i a t e  exposures ( F i g .  5 . 6 9 .  F i n a l l y ,  r e s u l t s  

based on a r e g ? o n  w i t h  an ad-hoc n o n l i n e a r  boundary a r e  shown i n  

F i g .  5 .7 .  T h i s  d i a g n o s t i c  c r i t e r i o n  i s  c o n s e r v a t i v e  i n  t h e  sense 

that. t h e  p r e d i c t e d  r i s k  i s  always g r e a t e r  than o r  equal t o  t h e  a c t u a l  

r i s k .  Acco rd ing l y ,  t h e  t y p e  I1 e r r o r  r a t e  i s  zero over  t h e  e n t i r e  

range a6 c o n c e n t r a t i o n s .  The t y p e  i error r a t e ,  however, reaches a 

maximum a f  36 a t  a t o x i c a n t  c o n c e n t r a t i o n  o f  0.625 m g A .  

s t a l e  a c c e p t a b i l i t y  be ing  

I n  s e c t i o n  4.5, s e l e c t i o n  of  a d i a g n o s t i c  c r i t e r i o n  was seen t o  

i n v o l v e  making a compromise between t y p e  1 and t y p e  I1 e r ~ o r  r a t e s .  

Al though these e r r o r  r a t e s  were q u a n t i f i e d ,  choosing an a p p r o p r i a t e  

t rade-o f f  was l e f t  a s  a m a t t e r  o f  s u b j e c t i v e  j u d g  

p o s s i b l e ,  however, t o  a r r i v e  a t  more o b j e c t i v e  means o f  d e t e r m i n i n  

an op t ima l  ba lance i n  t he  r a t e s  o f  occurrence o f  t y p e  I and t y p e  I I  

e r rors .  I n  p a r t i c u l a r ,  i f  c o s t s  can be assoc ia ted  w i t h  each of t h e  

va r ious  p o s s i b l e  outcomes o f  management dec i s ions ,  i t  i s  p o s s i b l e  t o  

s e l e c t  a d iagnose c c r i t e r i o n  t o  mlnim-ime t h e  o v e r a l l  expected c o s t ,  

Such a cost-miniisl z i n g  s t r a t e g y  w i l l  now be considered,  f o l l o w i n g  t h e  

approach o u t l i n e d  by Page and R i c c i  (1985). 
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Reconsider the four mutually exclusive events which may occur 

with the use o f  diagnostic criteria in ecosystem management. We can 

associate costs with these events as f o l l o w s :  

E,: no damage, cost=O 

E2: unnecessary management activity, cost=F 

E3: undetected damage, cos t -6  

E4: management activity (cost=E) resulting in 

lessened damage (cost=& , where O<= d <=ti) 
* * 

In the long run, the expected total cost will be determined by the 

costs of these individual events, and by their relative likelihood. 

Speclfically, the expected c o s t ,  E(cost), is: 

E(cost) = OeP(E1) t- c P ( E 2 )  + S P ( E 3 )  + ( E  + S*)P(E4) (5.12) 

In general, these probabilities, and perhaps also the costs, a,re 

conditional upon the toxicant concentration, but this dependence is 

not explicitly shown for the sake of notational simplicity, Equation 

5.12 can be simplified to yield 

(5.13) 

and then, substitutlng on the basis o f  5 . 9 ,  



(5.14) 

I f ,  following Page and Ricci ( 1 9 8 5 ) ,  we assume t h a t  mitigatory 

strategies are possible which prevent significant damage t o  t h e  

ecosystem (6 near  zero), the last t e r  can be dropped. Then, 

substituting on t h e  b a s i s  o f  equa t ion  5.11, 

.k 

(5 .15)  

The f i r s t  t e rn  i n  equation 5.15, the a c t u a l  r i s k ,  will not v a r y  w i t h  

t h e  choice of  dlagnostic criteria. There fo re ,  the t a s k  simplifies t o  

rnin.?rrnizing the sum o f  t h e  last two  t e r m s ,  which is solely a func t i on  

of the  probabilities of occurrence o f  t y p e  I and type I1  e r r ~ r ~ .  

Once t h e  costs associated w i t h  t h e  four basic events a r e  

determined, the ewpectc?d cost assocjated w i t h  any p a r t i c u l a r  

d i a g n o s t i c  criterion i s  seen t o  a function of quantities previously 

determined. Grea te r  flexibility i n  t h e  model may be achieved by 

assuming t h a t  ~~~a~~~~~~ and damage c o s t s ,  rather t han  being d e s c r i b e d  

by cons tan ts ,  are themselves a function of  ecosysteni s t a t e ,  Again, 

t h e  s t a t e  space a p p r o a c h  elaborated in t h i s  studyp coupled w i t h  M n t e  

Car10 sirnulatlon model ing,  are useful t o o l s  w h i c h  would be  well-suited 

f o r  such ana!ysis. 
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5 . 5 .  CONCLUSION 

This study has focused on the problem o f  quantitative and 

qualitative description o f  the dynamic response of ecosystems to 

toxicant stress. Due t o  the multifaceted aspects o f  ecosystem 

behavior required to characterize such response, it was argued that a 

multidimensional state space description i s  most appropriate. 

Specifically, the response can be characterized by the  trajectory of a 

displacement vector, which is calculated a s  the vector difference 

between a perturbed system state trajectory and an unperturbed 

(control) trajectory. 

State space analysis i s  readily applied t o  deterministic models 

o f  ecosystem dynamics, but extrapolation t o  the case o f  systems 

sampled discretely in the presence of noise is n o t  trivial. 

Traditional multivariate techniques, such as principal components or 

discriminant analysis, are useful for elucidating certain aspects o f  

ecosystem dynamics, but do not necessarily yield information on the 

displacement o f  perturbed trajectories. Therefore, I opted for direct 

estimation o f  the  state space displacements as measured by a 

Mahalanobis distance metric. Since Nahalanobis distances are  a 

function of the covariance structure of the data, it became important 

to consider changes in the covariance structure of ecological 

variables as a function o f  time and o f  toxicant exposure. 

State space displacement analysis was applied to study the 

responses o f  aquatic ecosystems to phenolic toxicants. Data from 
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experimental systems encompassing 1.2 L flask microcosms, 72 L 

aquarium microcosms, and 15 rn ou%daor ponds, were analyzed. Also 

analyzed were Monte Carlo computer simulations produced by a littoral 

ecosystem model incorporating the effects of natural variability and 

measurement error. The results of these analyses demonstrated the 

feasibility and utility o f  using state space measure5 as indicators o f  

ecosystem response. The Monte Carlo simulation results were also used 

to demonstrate the high degree o f  statistical power provided by state 

space displacement analysis even with realistically noisy data. The 

ability o f  analysis t o  detect simulated effects o f  low toxicant 

concentrations even with little or ~ C I  replication strwtgly supports 

its application to experimental data. It is likely that the state 

space approach will uncover effects not detected by conventional 

mnivar’late approaches. 

3 

Additionally, analyses of both experimental data and simulation 

output revea s that t he  covarjance structure of ecological systems is 

not constant Rather, the covariance structure displays both temporal 

dynamics and changes in response t o  toxcant exposure, This emphasizes 

the importance of careful and adequate characterimat-ion o f  the 

covariance matrix used in the calculation o f  Mahalanobis distances. 

In situations where accurate estimation o f  the covariance matrix i s  a 

problem, the use of  robust estimation techniques, o r  o f  Karl Pearson 

distances, may be desireable, 

Although the best descriptions o f  ecosystem dynamics may require 

a state space of high dimensionality, practical considerations often 
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preclude the  rou t ine  monitoring o f  l a rge  numbers of ecological  

v a r i a b l e s .  In t h i s  s i t u a t i o n ,  a space of  reduced dimensional i ty  i s  

des i red  w h i c h  can  be used t o  p red ic t  the  pos i t i on  o f  t he  s t a t e  vec tor  

in i t s  higher  dimensional space.  The va r i ab le s  def in ing  t h e  lower 

dimensional space a r e  r e fe r r ed  t o  as  d iagnos t ic  va r i ab le s .  Using t h e  

s imulat ion output ,  i t  was poss ib le  t o  explore  several  poss ib l e  s e t s  o f  

diagnos t ic  v a r i a b l e s ,  and t o  es t imate  t h e i r  assoc ia ted  type I and type 

11 s t a t i s t i c a l  e r r o r  r a t e s .  

The emphasis o f  t h i s  research has been on t h e  desc r ip t ion  o f  

ecosystem dynamics i n  response t o  t o x i c a n t  s t r e s s .  Such a desc r ip t ion  

may n o t  t r a n s l a t e  d i r e c t l y  i n t o  an  understanding o f  t he  underlying 

mechanisms o r  causal  r e l a t i o n s h i p s  generat ing t h e  dynamics. However, 

a n y  experiments aimed a t  e luc ida t ing  mechanisms wi l l  r equ i r e  adequate 

measures o f  response,  such a s  provided by s t a t e  space a n a l y s i s .  

Moreover, t he  covariance s t r u c t u r e  can be used a s  a to01 t o  

i n v e s t i g a t e  underlying mechanisms. While i t  i s  t r u e  t h a t  t he  

ex i s t ence  of a Corre la t ion  does not l o g i c a l l y  imply a causal 

r e l a t i o n s h i p ,  c e r t a i n  causal  r e l a t i o n s h i p s  do have log ica l  

impl ica t ions  regarding the  c o r r e l a t i o n  s t r u c t u r e .  Thus, t h e  ex is tence  

o f  an incompatible c o r r e l a t i o n  s t r u c t u r e  may be used t o  r u l e  o u t  

otherwise p l aus ib l e  mechanisms. I t  i s  hoped t h a t  t h e  use of  t he  

methods developed i n  t h i s  s t u d y  wi l l  lead t o  an increased 

understanding o f  ecosystem dynamics, and t o  more e f f e c t i v e  pro tec t ion  

and management o f  ecosystems subject t o  t ox ican t  s t r e s s .  
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