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ABSTRACT 

A simplified method is presented for approximating the air-transported x-ray 
spectrum from nuclear detonations in the atmosphere. Computational time is 
reduced such that a desk-top computer ca2 provide results that match, within 4110% 
for a wide range of conditions, Monte Carlo results which require about the same 
computation time on a Cray. The method consists of 1) representing the black-body 
continuous spectrum by discrete emission windows, 2) consulting tables of photon 
buildup factors for the discrete emission energies, 3) unfolding the buildup photons 
by using air kema  response functions and an assumption for redistributing these 
photons to windows of lower energy, and 4) applying cutoff and weighting factors 
to improve the correlation with the Monte CarPo benchmark calculations. 

V 





1. INTRODUCTION 

This paper describes a simplified method for approximating the air-transported 
x-ray spectrum from nuclear detonations in the atmosphere.* The early fireball of 
a nuclear detonation emits intense x-ray radiation that can be approximated by the 
spectrum from a black-body at a temperature of around 107-108 K.' A number 
of procedures have been devised 2-5  for calculating the transport of photons and 
neutrons in various media. Tables have been prepared '-' that provide the x-ray 
flux at a distance R from a nuclear detonation in the atmosphere for a limited set 
of parameters. The method described here reduces computational time such that a 
desk-top computer can provide results that match, within &lo% for a wide range of 
conditions, Monte Carlo6 results which require about the same computation time 
on a Cray. 

The method consists of 1) representing the black-body continuous spectrum 
by discrete emission windows, 2) consulting tables of photon buildup factors for 
the discrete emission energies, 3) unfolding the buildup photons by using air kerma 
response functions and an assumption for redistributing these photons to windows of 
lower energy, and 4) applying cutoff and weighting factors to improve the correlation 
with the Monte Carlo benchmark calculations. 

* This work was sponsored by the U.S. Air Force, Aeronautical Systems Division, 
Air Force Wright Aeronautical Laboratories, Flight Dynamics Division, Advanced 
Development Projects Office. Mr. S. D. Tliompson wits the responsible Air Force 
project engineer. The work was performed during CY 1987. 
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2. METHCIDOLOGY 

The distribution of radiated power P, in cal/cm2 for a black-body at 
temperature T as a function of the photon frequency u at a distance D cm in 
vacuum from a nuclear detonation of yield W kilotons with the fraction F, going 
into x-ray production is given by 

10l2 WF,J,du 
P,dU = - 

4nD2aT4 ’ 
where J,dv represents the Planck emission equation in terms of the photon 
frequency and B is the Stefan-Boltzmann constant. 

It was assumed for this approximation that the black body spectrum can be 
represented adequately by 15 discrete frequencies, one of them being the frequency 
v, == 2.82141cT/h, at which the radian: power is a maximum. The other 14 
frequencies were specified by dividing the Planck spectrum into uniform bands 
representing 1/10, 1/20, and 1/40th of the total power emitted, the narrow bands 
being used at the ends of the spectrum. The Planck emission equation was 
integrated numerically to higher and lower values froin the frequency where the 
radiant power is a maximum in order to find the discrete emission frequencies 
and band widths that were used to represent the continuous power spectrum. 
These frequencies and band widths are shown in Table 1. With this scheme, the 
specification of the black-body temperature, T ,  uniquely specifies the 15 discretc 
representative frequencies v, for the entire spectrum, as well as the fractional power 
f p i  emitted at the ith frequency. 

For a specific problem, the uncollided flux at the desired range and the nurriber 
of mean free paths is computed for each discrete frequency. For problems involving 
other than zero angle between the source and detector, it is assumed that thc 
integrated air mass per unit area along the source-detector vector is uniformly 
distributed along the vector. The effect of this assumption was not checked, but 
it should not be significant as long as the range is less than an atmospheric scale- 
height. 

Buildup factors for energy flux are determined by interpolation from a matrix of 

data coxnpiited for air kerma response as a function of photon energy and number of 
mean free paths for a point source in an infinite uniform air medium.” The buildup 
factor B, for the ith discrete emission freqiiency is defined byll 
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Table 1. Representation of Black-Body 

Eniission Spectrum by 15 Discrete Emission Energies 

Conversion Numbers, N* 

Window Percent of Range of Discrete Emission Width of 
Number Total Power Spectral Window Energy Spectral Window 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

4.6 

5 

10 

10 

10 

10 

10 

10 

10 

5 

5 

2.5 

2.5 

2.5 

2.9 

2.75042-3.15539 

2.34632-2.75042 

1.9 1842 - 2.34632 

1.64444 - 1.91 842 

1.43 122 - 1.69444 

1.24847-1.43122 

1.081 17-1.24847 

0.91881 - 1.081 17 

0.75008-0.91881 

0.65760-0.75008 

0.55306-0.65760 

0.49259-0.55306 

0.42 199 - 0.49259 

0.33110-0.42199 

0.20000 -0.331 10 

3.15539 

2.51554 

2.10060 

1.77068 

1.53270 

1.33715 

1.16359 

1 .ooooo 
0.8361 5 

0.70490 

0.60739 

0.52378 

0.45895 

0.38029 

0.26000 

0.40497 

0.40410 

0.42790 

0.27398 

0.21322 

0.18275 

0.16730 

0.1632363 

0.16873 

0.09248 

0.10454 

0.06047 

0.07060 

0.09089 

0.13110 

*Photon energies are given by 

E = 2.432 x 10-7NT, ( k e V )  

where N is a conversion number from the table above and T is the black-body 
temperature in K. 
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where RYn is the reading of an idealized ionization chamber with no walls and air 
response characteristics to the uncollided flux, and R; is the reading in response 
to the actual photon flux, which includes inscattered photons due to Compton 
scattering. A ( E )  is the response function", r$un(Ez) is the uncollided flux of photons 
with the discrete energy E;, and +t"t(E) is the total flux of all photon energies, 
including the uncollided flux of energy E; and photons of lower energy resulting 
from incoherent scattering. 

We assume that the integral in Eq. (2) taken over all energies is sufficiently 
represented by the sum over the appropriate discrete frequencies used to represent 
the black-body radiation, the appropriate frequencies including the frequency vi and 
all lower frequencies. Furthermore, we assume, initially, that inscattered photons 
are distributed equally throughout all transmitted frequencies below the incident 
photon frequency. These assumptions allow Eq. (2) to be solved for the total 
scattered flux 4:' resulting from the ith discrete emission, namely, 

in which Wj is the window width in frequency for the j t h  window, and § is the s u ~ n  
of the frequencies over all transmittable windows. n o m  this solution, the scattered 
flux contribution to window j is simply girren by 

In anticipation that the assumption of equal distribution of scattered photons 
through lower frequencies may not be valid either throughout the range of pertinent 
black-body temperatures or throughout a range of values for the mean free path 
or for a combination of these factors, a dimensionless form factor was developed to 
modify the window width, given by 

where -13; is the buildup factor obtained by extrapolation from a table", E; is the 
energy of photons from the ith window, 170 is the cutoff energy for transmission, 
taken to be 1 keV, and .Mi is the number of mean free paths for the photon in the 
problem under consideration. The value of G was determined by comparing the 
approximation results with those obtained with a Monte Carlo calculation. 





3. CALIBRATION AND RESULTS 

Monte Carlo benchmasks were calculated for 24 cases, namely, black-body 
temperatures of 4 x lo7 and 4 x 10* K (3.45 and 34.5 keV), atmospheric densities 
of 4.42 x 1.78 x lo-', and 2.74 x lou7 g/cm3 (corresponding 
to altitudes of 80, 100, 150, and 200 kft, respectively), and ranges of 1, 2, and 4 km. 
The MCNP code5 was used on a Cray computer, requiring about 15 seconds machine 
time per run. Both methods of calculation used photon mass attenuation coefficients 
included within the MCNP program. The approximation calculation used energy 
absorption coefficients from Hubbell12 to calculate the response functions. 

For each case, a value of G was found that provided approximately the best 
match between the two results, using total energy flux, total photon flux, and the 
number of windows in which the photon flux differences were less than 20%. It was 
found that the optimum G plotted against the parameter P = B ~ L V ~ E ~  ( E  in keV) 
for each case could be represented by two straight lines on exponential graph paper, 
thus specifying optimum G valucs given by the equations. 

1.71 x 

G = 0.7744ln(207.9/F) For P < 200 

and 

G = 0.26671n(178.7/P) For P 2 200 . 
Comparisons of the integrated energies and photon fluxes for the 24 cases are 

shown in Figures 1 and 2, respectively. The percent deviations of the results of the 
approximation from those of the MCNP calculation are less than 10% for 20 out of 
24 cases for the energy (Figure l), and for 19 out of 24 cases for the flux (Figlire 2). 
The approximation does not provide good results when over half of the emission 
channels become nontransmitting due to a large number of mean free paths (>lo).  

Detailed spectral comparisons between the results of the approximation and 
the Monte Carlo runs are illustrated in Figures 3-26. 

For the lower temperature black-body spectrum (4 x lo7 K), the most energetic 
source photons have an energy of only 30.7 keV, and range down to 1.4 keV. 
Consequently, photoelectric absorption of photons dominates the attenuation, and 
low energy photons are strongly absorbed, i ls illustratcd in Figures 3- 14. 

For the higher temperature spectrum (4 x 108 K), the photon energics range 
horn 14--307 keV, spanning the energy range over which the incoherent scattering 
cross section has a maximum (30-50 keV), and also the range over which buildup 
factors have maxima (80--100 keV)." In tnis cam, redistribution of the buildup 
photons provides significant modification of the resultant spectra, as indicated by 
results of both methods in Figures 15-20. 
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Figure 3. Detailed spectral comparisons of results from the approximation method 
(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 



11 

O W  DWO NO 88-9303 

l o o  11 

cn z 

0 
32: 

io-' 

a, 

1 o - ~  

1 

Figure 

Black-body temperature: 4 x lo7 K 
Air density: 4.42 x gm/cm3 
Range (source to detector): 2 km 

10 10 

0 
la 

PHOTON ENERGY (keW) 
4. Detailed spectral comparisons of results from the approxirnatioxl method 

(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 



c
.
 
0
 

PH
 

cr
 
0
 m 

c-
r 0
 W
 

c
.
 
0
 N
 

c
.
 
0
 

3.- 



1 3 

DWO NO 11-9305 10 

Black-body temperature: 4 x lo7 K 
Air density: 1.71 x gm/cm3 
Range (source to detector): 1 km 1 0-o 

1 o-2 

1 o - ~  

1 

0 I: io-' 
n 

io-* 

f 

r 

+ 

m 

1 I I 1 1 1 1 ,  I I 

10 10 

PHOTON ENERGY [keV) 
10 
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(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated 011 the figure. 
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Figure 7. Detded spectral comparisons of results from the approximation method 
(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 
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1 '7 

ORNL DWO NO ll-930Q 

Black-body temperature: 4 x lo7 K 
Air density: 1.78 x gm/crn3 
Range (source to detectior): 2 km 

10 

10 

t 
0 c- 
0 lo-' 1 I 
a, 

I 1 

10 18 

PHOTON ENERGY (keV) 
Figure 10. Detailed spectral comparisons of results from the approximation niethod 

(pliis signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 



18 

O W L  DWQ NO 81-9310 

1.0 * 

Air density: 1.78 x I O m 6  grn/cm3 
Range (source to detector): 4 km 

PHOTON 

L 

10 l 

ENERGY (k 
Figure 11. Detailed spectral comparisons of results from the approximation method 

(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 

10 



10 

I-- 
0 
sz a 
L L J  

3 
0 
v, 

g lo-' 

io-' 
z 
0 
t- 
0 
I: 
a, 

19 

ORNL DWO NO 88-9311 
I I I I , , , @ I  1 I I I 1 , , 1  

Black-body temperature: 4 x IO7 K 
Air density: 2.74 x gm/cm3 
Range (source to detector): 1 km 

i 

P 472001 1 I 

io-' 
10 O 10 10 

PHOTON ENERGY (keV) 
Figure 12. Detailed spectral comparisons of results from the approximation method 

(phis signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated 3n the figure. 



20 

10 
Black-body temperature: 4 x lo7 K 
Air density: 2.74 x grn/cm3 
Range (source to detector): 2 km 

1 0 0  1 

CT 
223 
c9 
6p) 

E 
W 

1 

a, 

1 

1 
10 O 10 l 

PHOTON E ERGY [keV) 
10 
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(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 
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Figure 18. Detailed spectral comparisons of results from the approximation method 
(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 
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Figure 21. Detailed spectral comparisons of results from the approximation method 
(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 
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Figure 23. Detailed spectral comparisons of results from the approximation method 
(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated on the figure. 
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Figure 25. Detailed spectral comparisons of results from the approximation method 
(plus signs) with the Monte Carlo method (histograr-n with error limits 
indicated) for the case indicated on the figure. 
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Figure 26. 
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Detailed spectral comparisons of results from the approxirnation method 
(plus signs) with the Monte Carlo method (histogram with error limits 
indicated) for the case indicated 3n the figure. 
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At the lower atmospheric densities corresponding to 150 and 200 kft altitude, 
the riumber of mean free paths ranges from 0.004 to 0.2, consequently, absorption is 
negligible, as shown in Figures 15--26. For these cases, the statistical variations 
implicit in the Monte Carlo method show occasional sma,ll excursions from 
conservation of energy, the energy balance not being a factor in the MCNP program. 



4, CONCLUSIONS 

A simplified method and PC-basec! computer code were successfully developed 
which allows one to approximate to within about f 10% the air transported x-ray 
spectrum from nuclear detonations in the atmosphere. The new code reduces thc 
computational effort two to three orders of magnitude relative to the usual Monte 
Carlo-based computational approach. The new code will be especially valuable 
in conducting parametric studies of atmospheric attenuation wherein significant 
numbers of calculations may be required. 
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