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Summaw 

A system of image processing and analysis utilities f o r  

a general-purpose hypercube topology concurrent 

multiprocessor system is described. The purpose of the 

system is to provide an efficient development and run-time 

environment for theoretical and experimental inquiry into 

computational vision for mobile and manupulative robots. An 

additional objective is to provide an environment with rich 

support for the development of concurrent computer vision 

algorithms. A number of principles for programming 

concurrent systems are embodied in the implementation of 

this system. In particular, all significant computation is 

performed by the hypercube proper, reserving the host 

processor exclusively for  input/output functions. One 

consequence of this principle is that applications are 

developed by viewing the concurrent multiprocessor as a 

single computer with a special internal structure, rather 

than as a number of independent machines, Applications 

derive from a single source, rather than many, reducing 

development time without sacrificing run-time efficiency. 

This document serves as an introduction to the image 

processing and analysis system, its principles of operation, 

and as a reference manual for its use. 

V 





1. Introductioq 

Due to large data sets, high throughput and low 

turnaround time requirements, single processor computers are 

insufficient for many applications in image processing and 

computer vision. A variety of alternative computer 

architectures have been proposed, some quite specialized 

[12, 15, 18, 211. These systems are characterized by 

parallel or concurrent distributed processors. 

In the Advanced Computing and Integrated Sensor Systems 

Group of the Center for Engineering Systems Advanced 

Research, we have been exploring the application of a 

specific general-purpose concurrent multiprocessor system 

[16, 131 to a variety of problems in low and intermediate 

level image processing and analysis, focussing specifically 

on robotics applications [I, 9, 103. This exploration has 

resulted in the implementation of a set  of image processing 

and analysis utilities which exploit the multiprocessor 

ensemble with efficiency approaching 100%. 

The objectives of this effort were threefold. First, 

to develop and implement on a hypercube multiprocessor 

network a multi-purpose high-performance system which is 

easy to learn, easy to program, and flexible enough to 

support a variety of computer vision applications. Second, 

to provide a development environment for research in 

computer vision problems relevant to mobile and manipulative 

robots. Third, to provide a development environment with 

1 
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rich support for research in image processing and analysis 

algorithms for concurrent computers. 

This document serves as an introduction to the image 

processing and analysis facility and its principles of 

operation, and as a reference manual for its use. Section 3 

reviews certain features of current hypercube 

multiprocessors. Section 4 describes the principles around 

which the system is organized. Section 5 describes image 

mapping onto the hypercube ensemble and some fundamental 

communications algorithms. Section 6 presents conclusions. 

An appendix describes the local. hardware configuration and 

the detailed operation of each system component, 

2. Hvpercubes 

A D-dimensional hypercube network (see Fig. 1) is 

composed of P=ZD processors, Each processor (node) is 

assigned a D-bit number between 0 and 2’-1. Direct 

connections are implemented between nodes whose numbers 

differ in exactly one bit. A pair of such nodes are said to 

be adjacent. Nodes which are not adjacent have a Hamming 

distance of PI, where H is equal to the number of b i t s  which 

are different in the the node numbers. The maximum Hamming 

distance in a D dimensional hypercube is therefore D. 

The communication channels between nodes of the cube 

are referred to as Pinks, The collection of all links 

between nodes whose logical node numbers differ in a single 

specific bit is called an ggaxisqg, since these channels are 
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C D 

m-1 

F i g u r e  1. (a) A hypercube network is  composed of P==Z**D p r o c e s s o r s .  Direct 
c o n n e c t i o n s  are implemented between p r o c e s s o r s  whose numbers d i f f e r  i n  
e x a c t l y  one b i t .  (b)  An a x i s  of t h e  hypercube i s  t h e  c o l l e c t i o n  o f  
a l l  l i n k s  between nodes whose numbers d i f fer  i n  a s i n g l e  s p e c i f i c  b i t .  
(c) Hypercubes of l a r g e  dimension a re  r e c u r s i v e l y  c o n s t r u c t e d  from pairs 
hype rcubes  of s m a l l e r  d imens ion .  
mapping of i n t e g e r s  o n t o  t h e  hypercube such  t h a t  successive i n t e g e r s  are 
mapped o n t o  a d j a c e n t  nodes.  

(d) An embedded graycode  r i n g  i s  a 
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parallel to a coordinate axis in D dimensional space. For 

instance, all nodes whose numbers differ in the least 

significant bit are said to communicate over the least 

significant axis,  or the 0th axis. In a B dimensional cube, 

the axes are numbered from 0 to 13-1, A D + l  dimensional 

hypercube is recursively constructed from D dimensional 

cubes by linking nodes whose numbers differ in bit M-1, 

A mapping of node numbers onto the set of integers 

R=(O, ..., P-1) such that successive elements of the map 

designate adjacent nodes is a graycode ring or simply a 

ring. The graycode computed by g=nAn/2 f o r  n = the node 

number, the exclusive or, and g an element of R is called 

the standard graycode ring or the standard ring. 

In the current generation of hypercubes, there is a 

distinguished processor in the system, not part of any 

hypercube, called the host. Aside from communications 

between nodes in the hypercube proper, t h e  host is 

responsible f o r  all af the 110 operations i n  the system. For 

instance, it is the only processor capable of reading a d i s c  

file or printing a character on a terminal. In the present 

system, the host processor runs a multi-user multi-tasking 

operating system. The host communicates directly with only a 

subset of the nodes in any hypercube. 

Communication between two nodes, or between a node and 

the host, is called message passing, and the infomation 

communicated is called a message. Message passing typically 
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consumes CPU time on both sending and receiving processors. 

It is a relatively time consuming operation, typically 1 to 

2 orders of magnitude slower than floating point arithmetic 

operations [2]. The exact time consumed depends upon the 

intrinsic speed of the hardware, the length of the message, 

the Hamming distance between communicating processors, 

overhead on the sending and receiving nodes, and overhead in 

any intermediate nodes. A simple approximation is a linear 

model where the message passing time is given by a fixed 

overhead plus the product of the message length, the Hamming 

distance, and a proportionality constant. In opposition to 

previous assumptians [11]# communication time is frequently 

dominated by overhead. Optimal communications algorithms 

jointly minimize the length of messages and the number of 

messages, with preference presently given t c a  minimizing the 

number of messages. For more details concerning system 

architecture, see [13]. 

3 .  A Drogramminq model 

3.1 The  1/0 system 

The hypercube based image processing and analysis 

facility is an integrated system which supports a number of 

conventional 1/0 devices (terminals, discs), image-oriented 

1/0 devices (cameras, monitors) and effector devices 

(rotation stages, and f o r  robots, motion controllers). 

Figure 2A illustrates many of the components of the current 
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system, which forms a hierarchy of processors and I / O  

devices. 

It is potentially difficult to program such a system in 

the absence of a well-defined assignment of function to each 

level of the hierarchy, and a well-developed communications 

interface between levels. To develop a system which is both 

easy to learn and easy to program we adopt a more generic 

model of the system, and abstract a number of operational 

principles. 

Figure 2B presents a somewhat abstracted view of this 

hierarchy. The hypercube occupies the highest level, and the 

1/0 devices the lowest level. The hypercube co 

only with the host processorr which in turn communicates 

with one or more device controllers, each of which in turn 

communicates with one or more I/O devices. The device 

controllers can be of heterogeneous functionality, spanning 

the range from limited function special purpose devices 

(such as SCC controllers) through general. purpose computers 

(e .g .  the M68020 in the present system), to additional 

concurrent multiprocessors, 

Illustrated in this way, it is apparent that the host 

is a single resource, shared by potentially many devices, 

and represents a potential bottleneck in the system. 

Therefore, the host should be strictly reserved far I / O  

operations. 
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NCUBE MOST -- 
Internal D M R  Controllers 

Intel 80286/7 CPU/FPU 

I/O Controllers [SCC, Disk) 

Host memory 

D R 1 1  /W Communications t 

O R 1  1 /W Communications - 
Uideo and system memory 

Uideo Digitizer/Display I 

Motorola 68020 

I/O Controllers (SCC, D i s k )  

U M E  Subsustem 
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Figure 2 .  (a) The image processing and ana lys i s  f a c i l i t y  i s  composed 
of two coupled systems, a hypercube multiprocessor and a WE-based 
system. (b) A n  abstraction of t h i s  system, which reveals  a 
bottleneck a t  the  level of the  hypercube's host  processor.  
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This principle has two i ediate consequences. First, 

it demands that all significant computation (applications 

programs) take place on the hypercube proper. Second, since 

erations can come in arbitrary order, the host must 

become a glslavell of the hypercube, executing I / O  

instructions in the order applications program request. 

Although these two conse ences may appear somewhat 

restrictive, they give rise to a programing environment of 

great power and simplicity. As long as the 1/0 devices 

remain fixed in number and function, it is possible to 

design a single host program of remarkably simple structure 

which satisfies all I / O  operations independent of 

application. Once developed, this program need never change. 

In the current system a single host program supports the 

vast majority sf our applications. applications differ only 

in the program(s) running on the hypercube proper. 

Access from hypercube applications to I / O  devices is 

provided by function calls which issue I / O  request messages 

to the host processor and send and receive data. Thus, the 

I / O  system appears to the applications program as an 

operating system interface, much in the spirit of UNIX. The 

details of message passing between the host and the 

hypercube is hidden within this interface. 

I / O  device controllers are similarly slaved to the hos t  

processor. Therefore, the interface between the hypercube 

and the host is isolated from the interface between the host 
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and its various slaves. Applications programs are therefore 

protected from a potentially dynamic hardware environment. 

The advantage of this model is that each resource other 

than the hypercube proper has a well-defined function, its 

operation follows a well-defined logical structure, and a 

well-defined communications protocol can be developed. 

General-purpose programs can be implemented serving the 

entire spectrum of functions for each non-hypercube 

processor in the system. If a loosely synchronous 

programming model is adopted [ 4 ] ,  concurrent applkations 

consist of a single source program: after the communications 

and 1/0 control software has been developed once, it is 

unnecessary to change it. 

There are two main problems with this model, 

particularly with respect to real-time operation. First, the 

host processor is a single shared resource, and represents a 

potential bottleneck during communications between the 

hypercube and the I / O  processors. We have observed the 

limitations imposed by this bottleneck particularly in image 

1/0 operations, where large quantities of data must be 

communicated in a short time. Second, the host processor 

currently runs a multi-user multi-tasking UNIX-like 

operating system, which does not permit user interrupt 

service routines. This makes it impossible to guarantee 

response within a given time. These difficulties are 

ameliorated to some extent by the 1/0 controllers, which can 
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execute real-time operations, but the majority of the 

computational resources in the system are excluded from 

real-time response, 

These problems can be solved in principle through 

elaborations on the abstract programming model illustrated 

in Figure 2b. F i r s t ,  the host processor is replaced by a 

butterfly communications network, or an g911/0 cube" which has 

the ability to route data between any of N=2M hypercube 

processors and N=2' 1/8 device controllers in M<=Pog (N) 

steps. In this system the host processor acts as a device 

for program development and loading. This architectural 

modification also has the advantage that the 180perating 

systemgt in the communications network can be specialized for 

data-driven or real-time communications. 

3.2 Concurrent Utilities 

The 1/0 system outlined above effectively isolates 110 

operations from computation, and places the burden of 

computation an the hypercube proper, Current hypercube 

computers contain as many as 31624 processors [319], and it is 

expected that by 1990 systems will be available with 4096 or 

more general purpose processors. It is unreasonable to 

expect that each processor in such a system will be 

individually programmed. Therefore, it i s  desirable to 

minimize the number of programs which must be written to 

control the system for a given application. 
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Furthermore, it is desirable to support a class of 

applications through the development of utilities generic to 

that class. For example, in numerical linear algebra, a wide 

variety of specific applications are supported by LINPAK. 

This strategy places the burden of certain low-level 

considerations, such as round-off errors, on the developer 

of library functions. In a distributed-memory message- 

passing multiprocessing environment, we identify the 

messages, the communications topology, and the distributed 

nature of the memory as a~low-levellg features. These features 

should properly be hidden from applications. 

These considerations lead us to adopt, in the present 

system, an SPMD (single program, multiple data) loosely- 

synchronous approach, in the spirit of the Crystalline 

system 141,  supported by a number functions generic to 

computer vision applications. A single program runs on all 

processors simultaneously, implicitly exploiting the 

concurrency of the machine through function calls. Image 

processing and analysis operations are implemented through 

these function Calls. Distributed data structure management, 

concurrency and its optimization, and message passing are 

handled inside the functions. Thus, the machine is 

programmed using a high level set of "instructions". To 

applications programs, this causes the machine to appear as 

an ordinary sequential computer, but very fast. 
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There are a number of advantages to this approach. Only 

one program need be written to control an arbitrary number 

of processors, and thus the software development time and 

associated costs are reduced. Most applications of 

significant size can be reduced to a sequence of relatively 

high level functions, and thus the approach is fairly 

general. Individual functions are small enough to be easily 

understood, and performance can frequently be optimized 

through the use of deterministic communications algorithms. 

With a relatively well-developed 1/0 interface, error 

diagnostics can be easily reported, and typically apply to 

the program as a whole, rather than to individual nodes. 

Naturally, this approach suffers from certain 

limitations. In some cases, computational bottlenecks 

develop due to the need for global communication in the 

course of executing a given function. This effect is most 

profound in hypercubes of large dimension. The burden upon 

the host processor is exacerbated, since all nodes request 

110 at roughly the same time. In addition, as the number of 

processors in the largest systems increases some degree of 

instruction parallelism will be inevitable. In such a system 

we anticipate creating several concurrent virtual machines, 

each balanced, each running in SPMD made. The scheduling 

problem in such a system would be greatly simplified. 

A simple example illustrates the points made in this 

section. A copy of the following program runs on each node 



of the hypercube. The program reads an image, finds the 

edges in the image using the Sobel operator [17J, and 

outputs the image. 

main ( )  
{ 

IMAGE 

src = 
dst = 

src, dst; I *  0 */ 
imalloc(256,256,1) / *  1 */ 
imalloc (256,256 , 1) /" 2 */ 

imagein(src) ; 
sobel (src, dst) i 
imageout {dst) ; 

1 

/* 3 "/ 
/* 4 */ 
/'* 5 */ 

IMAGES (see below) are concurrent data structures. They 

are declared in line 0 and actively allocated in lines 1 and 

2. Line 3 acquires an image, line 4 convolves the image with 

a Sobel operator, placing the result in the destination 

object, line 5 outputs the image. 

The host processor is reserved for I/Q. T h e  I / O  

functions imagein and imageout pass messages to the host 

processor instructing it to perform the requisite I / O .  

Otherwise, the host processor is not involved in the 

computation. 1/0 functions can occur in arbitrary order. 

Naturally, each node on the hypercube must request 110 in 

the same order as all other nodes. 

The details of the architecture (message passing, 

communications topology, distributed data) are hidden from 

the applications program. No explicit reference is made to 

these features, In particular, note that no explicit 

reference is made to the dimension of the hypercube, and 



14 

that data parallelism (the distribution of IMAGE over the 

cube) is implicit. 

4 .  Decomposition and communications 

There are two popular strategies far mapping 2 

dimensional images onto the nodes of a hypercube. In the 

first [a, 113, the image is decomposed into a set of square 

or rectangular subimages. Each subimage is assigned to a 

node in a graycode grid. In the second, the image is 

decomposed into a set of strips, each strip composed of 

several complete rasters. Each strip is assigned to a node 

in a graycode ring. In both strategies elements which are 

adjacent in the original image are mapped onto adjacent 

nodes. 

Grid mapping attempts to minimize communication time 

during image processing, To justify grid mapping [ll], note 

that it is the perimeter of the sub-image which must be 

communicated. To minimize communication delays, decompose 

the image into rectangular subimages of minimum perimeter. 

Since a square has the minimum perimeter sf any rectangular 

region of a given area, decompose the image into subimages 

which are as square as possible. 

This argument rests upon two incorrect assumptions. 

First, it is assumed that the t i m e  consumed by camunication 

is dominated by message length. Benchmarks [2] indicate 

that a fixed startup cost consumes most of the time in 

passing a message. Therefore, it is more desirable to 
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minimize the number of messages which must be passed, rather 

than their length. Second, it is assumed that the majority 

of communications will be nearest-neighbor, as in 

convolution. Many computer vision operations, such as 

histogramming or component labeling, require global 

communications, and many image oriented 1/0 devices 

structure the data in a specific, fixed format which is 

incompatible with grid mapping. 

Therefore, we chose sing mapping. Ring mapping requires 

only two messages to exchange data between adjacent sub- 

images. Grid mapping requires four. Ring mapping requires no 

rearrangement of data on image input or output to standard 

raster scan digitizers or display devices. Direct memory 

access devices can be exploited to acquire images from 

cameras and display images on monitors. To support grid 

mapped images, CPU time must be consumed somewhere to 

arrange the data f o r  I / O .  

Regardless of the decomposition chosen, it is desirable 

to endow a concurrent data structure with certain 

properties. In the present system, the concurrent data 

structure IMAGE has the following properties: 

(1) The run-time maintenance in the distributed memory 

environment is transparent. Loosely synchronous applications 

allocate storage f o r  image data based on the s i z e  of the 

whole image. The assignment of data to specific nodes in the 

hypercube is transparent, as is communication between nodes 
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to resolve such internal conflicts in the data structure as 

arise. 

(2) Image buffers can be of arbitrary size. IMAGES are 

actively allocated at run-time. Applications programs can 

specify the number of pixels in the vertical and horizontal 

directions. 

( 3 )  Pixels can have arbitrary storage class. The specific 

storage classes supported are those found in rrCgl [71.  
( 4 )  Storage allocation supports conventional array indexing 

into the distributed multidimensional array. Thus, row and 

column addresses can be specified using expressions similar 

ta pic[y][x], rather than pic[y*wide+x]. This feature 

assists program development by making dynamic storage 

allocation transparent. ~t also improves run time efficiency 

by eliminating multiplication for pixel accesses. 

(5) Routines exist f o r  the low-level manipulation of image 

buffers which are s i z e  and storage-class indepenbent. Among 

the most useful are buffer-to-buffer copy with implicit type 

conversion, normalization, and allocation reproduction. 

The present system is not yet developed well enough to 

completely protect applications programmers from errors. For 

instance, the image buffer-to-buffer copy routine casts 

types in the same way as r8CBs casts scalar types across 

assignments [7], so an unnormalized casting copy (e.g. from 

float to unsigned character) may not give the desired 

result. Nevertheless, endowing the distributed data 
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structure IMAGE with the above properties has permitted 

enough flexibility for most applications, and has allowed 

the construction of derived distributed data structures, 

such as distributed resolution pyramids [18]. 

Two principal communications algorithms are employed in 

the system, mostly in conjunction with IMAGES, although 

additional communications algorithms are invoked where 

necessary for expediency or efficiency. The first simply 

exploits the ring mapping of the image onto the hypercube. 

Data are exchanged between adjacent processors in the ring, 

e.g. in the exchange of rasters prior to neighborhood 

operations, or successively passed around the ring, e,g. in 

the case where each node must perform relatively many 

computations on every strip in the image. 

The second algorithm, "butterfly accumulator", is 

employed for global calculations and conflict resolution, as 

in image histogramming, component labeling, and certain load 

balancing contexts. In this algorithm each node computes 

some (possibly vector valued) function of its local sub- 

image. Nodes then communicate along successive axes of the 

hypercube in D iterations, exchanging information with their 

neighbor along those axes, and performing (redundant) 

calculations to resolve the local conflict along that 

dimension. The communications complexity is O(log a ) .  

In many cases it is easy to show that this algorithm 

efficiently resolves global conflicts. In this algorithm, 
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each node can be thought of as a general purpose accumulator 

for scalars, vectors, or other data structures, where the 

process of accumulation implements an arbitrary functional 

combination of the data arising from two nodes. This 

represents a generalization of the pseudo-binary tree or 

minimal spanning tree algorithm in the sense that all nodes 

serve as root nodes of the accumulation tree simultaneously. 

The canonical example [I43 of global conflict 

resolution on hypercube multiprocessors is the calculation 

of the sum of a list of P numbers (see Fig. 3 ) .  In the 

pseudo-binary tree algorithm communication takes place along 

successive axes o f  the hypercube ( e . g .  from most to least 

significant), and the ~ ~ O C ~ S S Q P  on the most significant side 

o f  the current hemicube sends a partial result to its 

neighbor along that axis, Appropriate communications links 

in each axis are dropped in successive iterations. In this 

way a single node eventually computes the global sum ( e . g .  

node 0). In the butterfly accumulator algorithm 

communication takes place in both directions, exploiting the 

full duplex communications between nodes, and nodes on both 

sides of the current axis compute partial sums. 

The difference between the minimal spanning tree and 

the butterfly accumulator is that in the former a single 

node holds the final answer, whereas in the latter all nodes 

hold the answer, This property is useful in a wide variety 

of applications, since it eliminates the necessity of 
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A 

B 

F i g u r e  3 .  Two a l t e r n a t i v e s  f o r  g l o b a l  c o n f l i c t  r e s o l u t i o n  i n  hypercube 
t o p o l o g y  m u l t i p r o c e s s o r  ne tworks .  (a )  I n  t h e  pseudo-binary  t ree  o r  
minimal  s p a n n i n g  tree a l g o r i t h m  u n i d i r e c t i o n a l  communication t a k e s  
place between log (N)  hemicubes of d e c r e a s i n g  d imens ion  s u c h  t h a t  a 
s i n g l e  r e s u l t  is computed on one node ( t o p  r o w ) .  T h i s  r e s u l t  i s  t h e n  
broadcast t o  the  remainder  of t h e  nodes i n  the  hypercube,  a g a i n  i n  
log(N) s teps ,  by f o l l o w i n g  t h e  same p a t h  i n  reverse. (b) I n  t h e  
b u t t e r f l y  accumula tor ,  b i d i r e c t i o n a l  communication t a k e s  p l a c e :  nodes 
on e i t h e r  side of t h e  l i n k s  forming a n  a x i s  exchange p a r t i a l  r e s u l t s ,  
a n d  redundant  c a l c u l a t i o n s  are  per formed on e a c h  node t o  compute t h e  
n e x t  p a r t i a l  r e s u l t .  I n  (a) t h e r e  is no o p p o r t u n i t y  t o  e x p l o i t  f u l l -  
duplex ,  b i d i r e c t i o n a l  communication, whereas  i n  (b) communication 
c h a n n e l s  a r e  u sed  c o n c u r r e n t l y .  
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broadcasting the final result. In both algorithms 

communications complexity is O(log a ) .  

To illustrate the utility of this algorithm, consider 

the following routine for image histogramming, 

#define GRAY - RES 256 

main ( 
{ 

int hist[GRAU RES],temp[GRAY I RES],node,proc,host,dim; 
int neighbor,&is,*s,*d; 

unsigned char **pic; 

/ *  allocate image buffer and input image */ 
src = imalloc(256,256,0); pic=src->p; 
imayein(src) ; 

/*  compute local histogram */ 
pic = src->p; 
for( y=S; y<src->high; y++) 
for( X=O; x<src->wide; x++) 

hist[ p[y][x] I++; 

/* accumulate global histogram */ 
msglen = GRAY - RES*sizeof(int); 
for( axis=0; axis<dim; axis++){ 

neighbor = nodeA (l<<axis) ; 
nwrite(neigh$or,hist,msglen,type,flag); 
mead (neighbor,temp,&msgl9n,&type,&typ@,~flay); 
for(i=O;i<GRAY -. RES;i++) hist[i] f =  temp[i]; 

1 

In this example the Ivpossibly vector valued function9' 

computed by each of the nodes is a local histogram, based on 

only those pixels assigned to the node. The communication 

occurs in the loop labeled "accumulate global histogram". 

The loop iterates g a d i m u t  t h e s ,  where aedim'' is the dimension 

of the hypercube. The line following Irforr8 calculates the 
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neighbor along the current axis, and the following two lines 

exchange partially accumulated histograms. These two 

histograms are combined (redundantly) on each node simply by 

point-by-point addition. Following this communication loop, 

all nodes contain the same histogram. 

It is interesting to note the equivalence of the 

butterfly accumulator to communications networks for 

computing generalized translation invariant representations. 

The most familiar example of a such a representation is the 

amplitude spectrum of a discrete Fourier transform with 

periodic boundary conditions, which may be computed with the 

aid of the fast Fourier transform algorithm. The pattern of 

communications in the fast Fourier transform algorithm is 

identical to that in the butterfly accumulator. 

5. DiScUS5iQn 

We have developed an integrated system f o r  image 

processing and analysis based on a hypercube architecture 

concurrent multiprocessor system. The system is easily 

programmable, provides rich support f o r  applications 

development, and an environment for research in concurrent 

algorithms f o r  computer vision. This system is based on 

principles which permit the applications programmer to view 

the machine as an SIMD machine with a very course grained 

instruction set. Input/Output and concurrency are hidden 

from applications programs in the the image processing and 

analysis functions. 
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To demonstrate these concepts, the system has been 

parted to the mobile robot WEF?MIES [l]. Using the I / O  

facilities, morphological operators, adaptive thresholding, 

connected components, component analysis, and the Hsugh 

transform from this system, as well a5 robot motion 

primitives, it was possible to construct a system which 

executed known 

geometry, and to read an analog meter. The strict 

segregation of input/output and computation permitted 

transportation of the software developed in the environment 

illustrated in Figure 2 to an environment with radically 

different I / O  devices with minimal change to the I / O  

interface, and no change to the concurrent environment. 

The system we described is evolving. Further 

development will of course include enhancements to the basic 

set of tools, specific higher level developments, e.g. 

model-based scene analysis and stereo vision, as well as 

support for additional I / O  devices and effectors, as need 

and opportunity arise. 

a docking maneuver to an object of a priori 

The hypercube concurrent architecture has proved to be 

both sufficiently flexible and powerful for applications in 

image processing and analysis to consider its use as a basic 

system to support R&D, and as a sensory processor in the 

next generation of intelligent autonomous robots. However, 

some of the very low-level, convolution class operations in 

such a system should probably be executed by special purpose 
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hardware, since these operations currently consume, for a 

period of time, the resources of a much more powerful 

computer. Special architectures for these kinds of 

operations are commercially available, and continue to 

evolve. 

Perhaps the greatest attractiveness of these machines 

lies in their general purpose nature. These machines are not 

specialized for image processing and analysis, and in fact 

find use in a wide variety of applications in science and 

engineering [3, 5, 61. Thus, as a tool f o r  research and 

development, and as a computational resource in a system 

requiring great flexibility along with large computational 

power, hypercube architecture concurrent multiprocessors are 

indeed a reasonable choice. 
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A. APPENDIX 

A.l: CONCURRENT UTILITIES 

A.l.l REQUIREMENTS 

Image processing and analysis routines written in this 

system have few required components. The program must 

include the header file implib.b, and prior to any call to 

the processing and analysis functions, the program must call 

iminit(). This function sets up some internal variables and 

receives initialization data from the invoking host program. 

The minimal program eansists of four lines: 

#include "/usr/image/c~e/implib, hs8 /* 1 "/ 
int ctrl[NCTRL]; / *  2 */ 
iminit (ctrl) ; /* 3 */ 
terminate ( ) : /" 4 */ 

main ( )  { 

Line 1 includes the requisite header. Line 2 declares an 

array for incoming initialization data. Line 3 acquires 

these data and initializes some global variables. Line 4 

sends a message to the host processor informing it that the 

routine is finished. 

The remainder of this section is subdivided into seven 

sections covering initializations and concurrent data 

structure allocation, e/o utilities, very law bevel 

utilities f o r  various image buffer manipulations, graphics, 

and low level, intermediate level, and high level computer 

vision utilities. 
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A.1.2 Initializations and concurrent data structures 

ALLOCOPY --- replicate image buffer allocation 
IMAGE allocopy(src) 

allocopy replicates the allocation of the image buffer src 
and returns a pointer to the new structure. Both the image 
size and its storage class are replicated. This function is 
principally used inside the system for  the creation of 
temporary image buffers. 

IMINIT --- imitialize image processing environment 
iminit ( ctrl) 

int ctrl[100]; 

iminit must be called prior to invoking any of the other 
facilities in the library. iminit initializes internal 
variables and reads a list of 100 integer and floating point 
numbers form the host program. The first 50 numbers 
(ctrl[O]-ctrl[49]) are integers, the second 50 (ctr1[50]- 
ctr1[99]) are floating point. A popular mechanism for 
accessing these number is by declaring the array ctrl as 
struct { int i[50]; float f[50]; } ctrl; and referring to 
the Kth element of each block as ctrl.i[K] and ctsl,f[K]. 
These numbers are useful for parameterizing individual runs 
of a code. Although not as general as the argc, argv 
mechanism in UNIX, it is much simpler, since there is no 
need to parse arguments. 

I r n U O C  --- allocate unsigned character imaga buffer 
IMAGE imal loc (nx , ny , nr 1 

int nx,ny,nr; 

imalloc reserves space f o r  an unsigned character image 
buffer. The arguments nx and ny specify the total width 
(number of pixels in each raster) and height (number of 
rasters) desired. These rasters are distributed over the 
hypercube in the standard graycode ring. The argument nr 
specifies the number of edge rasters to reserve on each side 
of the image strip in each node. For details on the 
distributed data structure IMAGE, see the discussion of 
imallocc below. 
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IMALLQCC --- allocate image buffer, arbitrary storage class 
IMAGE imallocc(nx,ny,nr,string) 

in% nx,ny,nr; 
char *string; 

imallocc reserves space for an image buffer with pixels of 
arbitrary storage class. The arguments nx and ny specify the 
total width (number of pixels in each raster) and height 
(number of rasters) desired. These rasters are distributed 
over the hypercube in the standard graycode ring. The 
argument nr specifies the number of edge rasters to reserve 
on each side of the image strip in each node. String 
specifies the storage class of pixels, and is one of the 
following: Vmsignedl charP1, *tunsigned short8' , 'Uxsigned 
int" , B"unsigned long", I1 int81 l9short1*, g'long9@, 
"f loate', or s8double18. In detail , the structure IMAGE 
contains the following: 

StKuCt IMAGE { 
char **p; /* pointer to raster pointers */ 
int high, / *  number of rasters in image "/ 

wide , /*  number of pixels per raster */ 
nrows I /* number of rasters per node */ 
psize, /* number of bytes per pixel */ 
class; /* storage class code */ 

rast I /* number of edge rasters per node */ 

1 

The image is allocated as black of memory of size 

* nx * sizeof( storage class 1 dimension + 21snr 
( ny/2 

bytes, The image pointer p points to the nr'th element of an 
array of pcaimters to this block of memory. The m e m o r y  
locatian specified in successive array elements is the 
address af the first pixel an successive. rasters. Thus, 
p [ O ] [ O ]  is the upper leftmost pixel of the subimage for 
which a node is responsible, and p[-l][OJ is the pixel 
immediately above it. This indirect method of allocating 
memory promotes programming efficiency by permitting 
constructions such as 

IMAGE src; char **pic=src->p; 
val = pic[5] [15]; 

This allows conventional addressing of the two-dimensional 
image buffer, avoiding explicit calculation of the address 
for each pixel. The method is independent of storage class. 
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IMFREE --- free image buffer 
imfree (image) 

IMAGE image; 

imfree deallocates an image buffer previously allocated by 
imalloc, irnallocc, or allocopy. 

A.1.3 110 Utilities 

GIMAGEOUT --- general image output 
gimageout (src) 

IMAGE src; 

girnageout scales the image src into the range 0-255 and 
sends it to the output device(s). The image src can be of 
arbitrary storage class. Contents of the original buffer are 
preserved. 

INPUT I Q --- input host queued image 
input-q(dst) 

IMAGE dst; 

input q instructs t h e  host to distribute the image in its 
input-buffer over the hypercube. T h i s  function is used after 
calls to image - q. 
IMAGEIN --- input image 
irnagein(dst) 

IMAGE d s t ;  

imagein instructs the host to acquire an image from the 
currently active input device and distribute it over the 
hypercube. For time cr i t ical  dynamic input sequences, these 
two operations can be overlayed in time using image - q and 
input-q. 



IMAGEOUT --- output image 
imageout (src) 

INAGE src; 

imageout send the contents of the image buffer src to the 
host, which in turn forwards it to the currently active 
output device ( s )  . 
IMAGEIN16 --- input 128x128 image from W E  system 

imagein16 (dst) 

IMAGE dst; 

instructs the host to acquire a 16 Kbyte (128x128) image 
from the W E  system and distribute it over the hypercube. 
This function is principally used in time critical 
applications, such as time-varying image processing, where 
high resolution can be exchanged f o r  speed. 

IMAGEOUT16 --- output 128x128 image to W E  system 

imageoutlS(src) 

IMAGE src; 

imageout instructs the host to send the 16 Kbyte (128x128) 
image to the VME system f o r  display. This function is used 
primarily to minimize communication time, 

IRSMOVR --- camera position relative move 
irsmovr (stage I rel) 

int stage,rel; 

irsmovr instructs the Newport rotation stage controller to 
move the rotation stage numbered t1stage88 to relative 
position loc, where loc is given in integer millidegrees. 

IRSMOVA --- camera position absolute move 
irsmava (stage lo~) 

int stage, lac; 

irsmsva instructs the Newport rotation stage controller to 
move the rotation stage numbered ivstage81 to absolute 
position lac, where loc is given in integer millidegrees. 
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IMAGE-Q --- queue image for  susequent input 

image-¶ ( 

image-q instructs the host program to acquire an image from 
the currently active input device, without sending the image 
to the hypercube. This capability is principally used in 
dynamic image processing. 

LEFT-CAMERA --- select left camera in stereo imaging system 
left-camera ( )  

left camera instructs the host to issue a command to the W E  
subsystem to take further image input from the left camera. 

NPRINTF --- send text to cube monitor and/or disk file 
nprint f(string,[argl, arg2 argN 3 )  

char *string; 
[arbitrary argl,...argN] 

nprintf is similar to the UNIX printf function, The string 
is a format control string having the same syntax as printf, 
and the arguments are arbitrary in number and kind. The 
output string is formatted in memory and sent to the host 
1/0 program, where it is forwarded to the terminal, a disk 
file, or both. 

RIGHT - CAMERA --- select right camera in stereo system 
right-camera ( 1 

right camera instructs the host to issue a command to the 
VME subsystem to take further image input from the right 
camera. 

TERMINATE --- graceful exit 
terminate ( )  ; 

terminate sends a messgage to the host program instructing 
it to close all files and communications channels and exit. 
The cube in which the calling node resides is deallocated, 
so the only appropriate positions for a call to terminate is 
immediately prior to program termination or following a 
fatal error. 
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TTYIN --- get a keystroke from the console 
char ttyin ( )  ; 

ttyin returns an ASCII character from the console input 
device, (Keystrokes are broadcast by the host to all nodes 
simultaneously.) Processing is suspended until a character 
is received. 

TTYFLY --- get a keystroke on the fly 
char ttyfly ( ) ; 

ttyfly returns an ASCII character from the console input 
device if one is available, otherwise it returns 0. 
(Keystrokes are broadcast by the host to all nodes 
simultaneously.) This facility is useful for asynchronous 
keyboard interaction with a running program. 

A.1.4 Very low level utilities 

Unless otherwise noted, these utilities operate only on 
IMAGES of storage class unsigned character. 

CAST - COPY --- copy one image to another. 
cast-copy(src,dst) 

IMAGE src 8 d s t  ; 

cast copy copies the contents of one image buffer to another 
with-type conversion. Any storage class image allocated by 
imalloc or imallocc can serve as either the source (src) or 
the destination (dst) image. Type conversion is performed on 
pixels according to the established conventions. 

CUBE - SYNC --- synchronize hypercube 
cube - sync ( )  

cube sync perforans an approximate synchronization of all 
nodes in the hypercube, using blocking reads along ordered 
cube axes. It is used primarily for benchmarking, where it 
is called immediately before the routine being benchmarked. 
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DELAY --- delay for a time 
delay (ms) 

int ms; 

delay waits for ms milliseconds before returning. It is 
principally used for debugging. 

EXCHANGE --- ring raster exchange 
exchange(src,nex) 

IMAGE src; 
int nex; 

exchange performs an explicit exchange of %ext1 edge rasters 
in the image "srctl between neighboring nodes in the standard 
graycode ring. This function is principally used in the 
prelude of neighborhood operations, e.g. the morphological 
operations, and is usually invisible to the user. exchange 
works only on image buffers of type unsigned character or 
character, and supports only nearest neighbor 
communications. 

GENEX --- a more general ring raster exchange 
genex (src, nex) 

IMAGE src; 
int nex; 

genex performs an explicit exchange af ttnext8 edge rasters in 
the image Itsrcsv between nodes in the standard graycode ring. 
This function is principally used in the same contexts as 
exchange. The function of this routine is identical to 
11exchange18, with two exceptions. First, arbitrary storage 
class image buffers are accepted as the argument, and 
communications between remote (non-nearest-neighbor) nodes 
is executed if neccessary. 

IADD --- add constant to image 
iadd(src,konst) 

IMAGE sarc; 
int konst ; 

iadd adds a constant to each pixel in the specified buffer. 
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ICOPY --- buffer to buffer image copy 
icopy (src, dst) 

IMAGE src,dst; 

icopy copies the contents of one image buffer (src) to 
another (dst) . 
IKONST --- fill image buffer with a constant 

ikonst(src,konst) 

IMAGE src; 
i n t  konst; 

ikonst fills each pixel in the specified image buffer with a 
constant e 

IMUL --- multiply all p i x e l s  by a constant 

imul (src, konst) 

IMAGE src; 
int konst; 

imul multiplies each pix4 

INVERT --- invert image 
invert (src) 

IMAGE src; 

1 in the image src b! a constant. 

invert replaces each pixel P in the image src w i t h  the 
quantity 255-P. 

IZERO --- zero image buffer 
izero (src) 

IMAGE src; 

izero fills the specified image buffer with zeros.  
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NGRAY --- standard graycode 
int ngray (arg) 

int arg; 

ngray returns the graycode i.d. of its argument. For 
example, the nth strip of the image is mapped onto the node 
ngray(n) 

NORMALIZE --- normalize image buffer to a specified range. 
normalize(src,lo,hi) 

IMAGE src; 
int lo,hi; 

normalize computes the global maximum and minimum in the 
image src, and rescales the image such that t h e  minimum 
value becomes lo, and the maximum, hi. The image buffer src 
can be of arbitrary storage class. This function is 
principally used for scaling floating point images into an 
8-bit range prior to display. 

NPHYS --- inverse of standard graycode 
int nphys (gray) 

int gray; 

nphys returns the inverse graycode of its argument. For 
example, the strip of the image mapped onto node n is 
nphys(n) - 
NRING --- embedded ring mapping 
nring (node, ndim, nuP I ndown) 

int node,ndirn,*nup,*ndown; 

nring returns the numbers of the nodes immediately "upwardstt 
and '*downwards" of the calling node ("node") in the standard 
graycode ring. 
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TABLE --- initialize trig lookup table 
table(trig - table) 

int trig_table[320]; 

table sets up an integer sine/cosine lookup table (LUT) for 
use in later integer trigonometric LUT operations. Values in 
the table are computed as 256 times the value of the sine 
function, uniformly sampled in 320 places over the interval 
0 to 5*pi/2. Thus, the sine LUT begins at entry 0, and the 
cosine LUT at entry 6 4 ,  

ZCOL --- zero range of columns 
zcol(lo,hi,src) 

int lo,hi; 
IMAGE src: 

zrow replaces the data in the column& of the image src with 
zero in the specified ramp, lo to hi inclusive. 

ZROW --- zero range of image rows 
zrow(lo,hi,src) 

int lophi; 
IMAGE src; 

zrow replaces the data in the r o w s  (rasters) of the image 
src with zero in the specified range, lo to hi inclusive. 

A.1.5 Graphics 

The system supports an extremely primitive set of functions 
useful f o r  creating graphic overlays on images. Graphics are 
drawn using an implied cursor which can be moved to an 
absolute position in the image, or relative to its current 
position. 

GBUFFERON --- select active graphics buffer 
gbufferon(dst1 

IMAGE dst; 

gbufferon causes the results of all subsequent graphics 
calls to be drawn in the (unsigned character) image src. 
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GBUFFEROFF --- inactivate graphics buffer 
gbufferoff(dst) 

IMAGE dst; 

gbufferoff inactivates the image src as a graphics buffer. 

INTENSITY --- select drawing intensity 
intensity (Val) 

int Val; 

intensity causes all subsequent graphics instructions to be 
written using pixels of brightness Val. Val must be i.n the 
range -lto 255. if val is -1, pixels are complemeted rather 
than set to an absolute brightness. 

AMOVE --- absolute move 
amove (x , y) 

int x,y; 

amove moves the implicit cursor to absolute position x,y in 
the graphics buffer. 

RMOVE --- relative move 
move (dx, dy) 

int dx,dy; 

move moves the cursor dx,dy units relative to its current 
position. If the requested move is outside the limits of the 
current graphics buffer, it is clipped to the nearest point 
on the edge of the buffer. 

ALINE --- absolute line 
a1 ine (x, y) 

int x,y; 

aline draws a line using the current intensity value from 
the current position of the implied cursor to the ahsolute 
coordinates x,y in the graphics buffer. 
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RLINE --- relative line 
rline (dx , dy) 

int dx, dy : 

rline draws a line using the current intensity value from 
the current position of the implied cursor to the relative 
coordinates dx,dy in the graphics buffer. 

A . 1 . 6  Low level Utilities 

ABSDIFF - absolute difference of two images 
int absdiff(src1, src2, dst) 

IMAGE srci , src2 , dst: 
absdiff subtracts src2 from srcE pixel by pixel and returns 
the absolute value of the difference in dst. 

BINIMAGE --- grayscale to binary conversion 
binimage(src,dst,thres~~ 

IMAGE src, dst; 
int thresh; 

binimage performs an absolute threshold. src is a grayscale 
8-bit (0-255) image, dst is returned as a binary (0,255) 
image, according to whether each pixel in src is greater 
than or less than or equal to the integer threshold. 

C O W 3  --- specialized integer 3x3 convolution 

IMAGE src,dst; 
int i l I i 2 , i 3 , i 4 , i 5 , i 6 , i 7 , i 8 , i 9 ;  

conv3 performs an integer 3x3 convolution on the image src 
to produce the image dst, It is frequently used for quick 
implementation of small, fixed structure convolution masks. 
Arguments ilt...,i9 are the convolution mask elements 
ordered from upper left to lower right. 
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DILATE --- binary morphological dilation 
dilate( src , dst ) 

IMAGE src, dstr 

dilate performs a binary morphological dilation of the 
binary image src to produce the binary image dst. 
Specifically, if each clear pixel has any set pixel its 8- 
neighborhood, it is also set.  

D I U T E 4  --- binary morphological dilation 
dilate4( src I d s t  ) 

IMAGE src, dst: 

dilate performs a binary morphological dilation of the 
binary image src to produce the binary image dst. 
Specifically, if each clear pixel has any set pixel its 4-  
neighborhood, it is also set. 

EQUAL --- histogram equalization 
equal( src ) 

equal performs an in place histogram equalization based on 
the global image histogram. 

ERODE --- binary erosion 
erode(src,dst) 

IMAGE src, dst : 

erode performs a binary morphological erosion of the  binary 
image src t o  produce the binary image dst. Specifically, if 
each set pixel has any clear pixel its 8-neighborhoad, it is 
also cleared. 

ERODE4 --- binary erosion 
erode (src I d s t )  

IMAGE src, dst r 

erode performs a binary morphological erosion of the  binary 
image src to produce the binary image dst. Specifically, if 
each set pixel has any clear pixel its 4-neighborhood, it is 
also cleared. 
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GCLQSE --- grayscale morphological image closing 
gclose(src,dst,nsize) 

IMAGE src,dst; 
int nsize; 

gopen performs a grayscale morphological image closing on 
the image B1src8t to produce the image gPdstle. The structuring 
element is a square region of diameter 8 1 n s h e f g .  

GLOBAL-AVG --- global image statistics 
avg = global I avg(src,min,max) 

IMAGE src; 
int avg, *min, *max; 

global-avg computes simple global statistics on the image 
lvsrcR$. The average value of all pixels in the image is 
returned in avg, and the maximum and minimum values in the 
arguments *max and *min respectively. 

GLOBAL - COM --- global center of mass 
global - com(srcrcx,cy) 

IMAGE src ; 
ink +cx, *cy; 

global cam computes the global center of mass of all the set 
pixels-in the binary image llsrc'*. The image coordinates of 
the center of mass are returned in the arguments *cx and 
*cy. This routine is used only in very simple applications, 
where there is only one object. 

GMAX --- replace with local maximum 
gmax(src,dst,nsize) 

IMAGE src,dst; 
int i s i z e ;  

gmax performs replaces each pixel in the image Btsrcvv with 
the maximum of the pixels taken over the square neighborhood 
of diameter 'Pisize's, forming the output image ttdstmv. 
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GMIN --- grayscale replacement with local minimum 
gmin(src,dst, isize) 

IMAGE src,dst; 
int isize; 

w i n  performs replaces each pixel in the image 1vsrcg8 with 
the minimum of the pixels taken over the square neighborhood 
of diameter I1isizeR1, forming the output image ladstlt. 

GOPEN --- grayscale morphological image opening 
gopen(src,dst,nsize) 

IMAGE src., dst ; 
int nsize; 

gopen performs a grayscale morphological image opening on 
the image I'src" to produce the image vRdst". The structuring 
element is a square region of diameter 

HISTO --- global histogram 
histo (src, hist) 

IMAGE src; 
int hist12561 ; 

histo computes the global histogram of an image. The 
histogram is returned in the integer array hist, which must 
have 256 elements. The values returned in each element are 
the number of pixels in the image src having a gray value 
corresponding to the array index to hist. 

LNDIFF --- difference of logarithms 
lndiff(srcl,src2,dst) 

IMAGE srcl,src2,dst; 

lndiff subtracts the pixel-by-pixel natural logarithm of the 
image src2 from the pixel-by-pixel natural logarithm of the 
image srcl, and exponentiating the result to produce the 
output image dst. 
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LOCMAX --- find local maxima 
locmax(src,dst,nsizeb 

IMAGE src,dst; 
int nsize; 

locmax inspects the grayscale image src, producing the 
binary image dst. Pixels in dst are set if they are local 
maxima over a neighborhood of nsize by nsize, otherwide they 
are cleared, 

MCMIN --- find local minima 
locmin(src,dst,nsize) 

IMAGE src,dst; 
int nsize; 

locmin inspects the grayscale image src, producing the 
binary image dst. Pixels in dst are set if they are local 
minima over a neighborhood of nsize by nsize, otherwide they 
are cleared. 

LTHRESH --- local thresholding 
lthresh(src, Iti) 

IMAGE src,lti; 

lthresh performs a pixel-by-pixel threshold of the source 
image src according to the image of thresholds in the local 
threshold image lti. This routine is useful, for example, 
after determining the lti via grayscale morphology. 

NAVG --- neighborhood avgerages 
navg(src,dst,select) 

IMAGE sre , d s t  p' 

int select; 

navg perform selected averaging operations over the 4- or 8 -  
neighborhood, according to the operation specified by 
I* selectt1. 

select operation 
4 average over 4 neighborhood 
8 average over 8 neighborhood 
0 digital 3x3 LaPlacian 
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SHOWL --- illustrate a single labeled region 
showl(src,dst,label,fore,back) 

IMAGE src, dst t 
int label,fore,back; 

show1 extracts the pixels in the label image src (produced 
by connect) which are marked with the label "label", to 
produce the output image dst. fore and back specify the 
graylevel to use for marking label pixels and for marking 
non-label pixels in the destination image. This utility is 
primarily useful for inspecting the output of analysis of 
the labeled image, perhaps by fNshowling" an identified 
region. 

SOBEL --- sobel gradient magnitude estimator 

sobel (src, dst) 

IMAGE src, dst ; 

sobel computes the classic sobel gradient magnitude 
estimation of the input image src, producing the output 
image dst. 

THRESH --- hard threshold 
thresh (src, thr) 

IMAGE src; 
int thr; 

thresh performs, in place, a hard threshold on the image 
src. Each pixel in the grayscale input image is tested 
against the constant thr. If the pixel is greater than thr, 
a 255 is returned in place, otherwise a zero is returned. 

A.1.7 Intermediate level Utilities 

CONNECT --- connected component labelling 
int connect( src, dst ) 

IMAGE src, dst; 

connects performs connected components on the binary image 
src, returning the label image dst. Conflicting labels which 
arise from image distribution are resolved. Set pixels are 
connected with four-connectivity, reset pixels with eight- 
connectivity. Labels 1 through 127 are assigned to reset 
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regions, labels 129 through 255  to set regions. Labels 0 and 
128 are unused. connect returns the number af set regions in 
the high 8 bits, and the number of reset regions in the low 
8 bits. 

HQUGH --- hough transform 
hough(src,dst,trig I table) 

IMAGE src,dst; 
int *trig - table 

hough perfoms a hough transform an the binary image s!src88 
to produce the grayscale image "dst8'. Precomputed values 
fram an integer trigonometric lookup table are used in this 
calculation, so the routine I8tablel8 must be called first. 

MAXSTATE --- find largest region 

struct blob *maxstate(n,seglist) 

int n; 
struct blob seglist[]; 

maxstate searches the list of region features seglist for 
the most massive region, and returns the address of its 
structure. 

MAKE - BLOB-LIST --- region analysis 
make - blob I list(%rc,o_list,nblobs) 

IMAGE src; 
struct blob o-list[]; 
int nblobs; 

make blob list performs a primitive region analysis of the 
labeiled regions computed by connect. o list is an array of 
struct blob, which should be malloced prior to calling- this 
routine. The particular quantities returned €or each region 
are mass, center of mass, and limits of the bounding box. 
o list is indexed by the labels assigned by the routine 
connect. 



45 

WHOUGH --- windowed haugh transform 
whough(src,dst,trig-table,min,ymin,xmax,ymax) 

IMAGE src dst ; 
int *trig - table, Din, xmax, ymin,ymax; 

whough performs a hough transform on the image src, 
producing the image dst, using only those pixels in the 
window specified by the arguments =in, ynain, xmax, p a x .  
whough is useful primarily for determining the  pose of 
features in a segmented object, and secondarily for speeding 
up the global hough transform, since in general a smaller 
number of points w i l l  be transformed. This routine is 
globally balanced. 
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A.2: Host 1/0 server and utilities 

A . 2 - 1 :  The 1/0 server and its requirements 

Almost all image processing and analysis applications employ 
a single program on the host. This program essentially acts 
as while forever switch statement, awaiting 110 commands 
issued from the hypercube, executing the requested 1/0 and 
awaiting new commands Execution of the current 
implementation is outlined in the following flowchart. 

Read driver 
file 

I 
V 

Open requested 
devices 

I 
V 

Load program 
onto cube 

V 
I 

I ----- > Receive instruction 
I from hypercube 

I 
V 

1s it 
t eminate? 

/ \ 
I no / 
I / 

Execute 110 / 
request 

\ Yes 

Close all devices 
I 
V 
Exit 

\ 

Flowchart of Standard I/Q Process 
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The text driver file has the following format: 

I string I 
'in1 
' out ' 
'u1' 
'u2 1 

'U3 ' 
'u4 I 
'U5' 
4 
0 
0 
0 
0 
0 
0 
0 
u5 
u6 
u7 
138 
nint 
il 
i2 

nflt 
fl 
f2 

... 

... 

name of node program 
base input file name 
base output file name 

ul through u5 are unused string fields 

maximum cube dimension 
output display switch 
output disk write switch 
active input device 
active graphics device 
pause switch 
debug switch 
rotation stage switch 

u5 through u8 are unused integer fields 

number of integer parameters following 

number of floating point parameters following 

The name of node program is a string up to 20 
characters in length. Only the current directory is searched 
for this program. The input file name specifies a single 
file which can optionally be used as image data. This file 
is only read if the disc is the currently active input 
device. No provisions are made in the present system f o r  
disk based image sequence input. The base output file name 
specifies the filename portion of any images output to disc. 
Successive images are indexed by the extension part of the 
file name, beginning with IO1. Several string fields are 
reserved for future use. The first integer field specifies 
the maximum cube dimension which the program will allocate. 
If a cube of the maximum dimension is not available, cubes 
of successively smaller dimension will be requested. If no 
cube is available, the program terminates. The output 
display switch determines whether output images will be 
displayed (1) or not displayed ( 0 ) .  The output disk write 
switch determines whether output images will be written to 
disc (1) or not written to disc (0). The active graphics 
device switch specifies the the graphics device on which 
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output images will be graphed (0-NEC multisync, 1 = W E  
subsystem). The pause switch determines whether the program 
will pause (1) or not pause (0) after each output image. The 
debug switch specifies whether the debug duaghter process 
will be spawned (1) or not spawned ( 0 ) .  The rotation stage 
switch specifies whether communication to the Newport 
rotation stages is desired (1) or not desired ( 0 ) .  Several 
integer fields are reserved for future use. 

The number of integer and floating point parameters to 
be passed to the hypercube on program initiation is 
specified using two integer entries in the driver file. 
Following each entry exactly the number of parameters 
specified must appear. Integer parameters are received by 
the node program in the first 5 0  variables of the array 
"crtl" (see iminit above); floating point parameters are 
recieved in the second 50 variables of the same array. This 
array can conveniently be accessed with a structure or 
union. No more than 50 parameters of each type are 
supported. 

A small set of utilities have been implemented for each 
I / O  device currently integrated into the system. In each 
case, the implementations support basic 1/0 functions, with 
occasional elaborations, Access to each device could 
arguably be greatly improved. The standard host process 
described in this section currently supports only some of 
the available utilities. 

A.2.2 W E  subsystem 

IDROPEN --- open communications channel to VME subsystem 

ichan = idropeno 

integer*4 khan 

idropen opens a communications chamnel to the VME subsystem 
(/dev/drllw). The I / O  channel number is returned. 

IDRCLOSE --- close communications channel to W E  subsystem 

null = idrclose() 

idrclose closes the communications channel to the W E  
subsystem. 
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PGET64 --- digitize image 
null = pget64(pic) 

integer*l pic(65536) 

pget64 instructs the VME subsystem to digitize a 64 kilobyte 
image and transmit the image to the NCUBE host processor, 
storing the image in the buffer "pic". The image is stored 
in a standard raster scan format, with the first byte 
corresponding to the pixel at the extreme upper left of the 
image, the last byte corresponding to the pixel at the 
extreme lower right. The image format is 256 rasters, 256 
pixels per raster, 8 bits per pixel. 

and 

PPUT64 --- display image 
nul1 = pput64(pic) 

integer*l pic(65536) 

pput64 transmits a 64 kilobyte image from the buffer ''pic" 
to the VME subsystem, and displays the image on the VME's 
monitor. 

Comments: f o r  simplicity, only 2 5 6 x 2 5 6 ~ 8  bit images are 
currently used. It is reasonably straightforward to 
generalize these routines, and the corresponding VME 
subsystem routines, to support arbitrarily dimensioned 
images, within certain limits established by the digitizer. 
An ideal mechanism would permit the definition and 
transmission of run-time defined image formats. 

FLTPUT --- specify analog filter prior to digitization 
null = fltput (nfilt) 

integer*4 nfilt 

fltput specifies analog prefiltering of the video signal. 
The digitizer supports four options for analog preprocessing 
of the video signal prior to digitization. These filters are 
principally useful f o r  eliminating high frequency noise. 
Legal values for filter selection are 0 to 3: 0=3 MHz 
lowpass; 1=2 MHz lowpass; 2=4.5 MHz lowpass; and 3 = no 
filter. The default setting is no filter. 
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NUXPUT --- select video source 
null = muxput(nmux) 

integer*4 nmux 

muxput selects the video source for image digitization. The 
digitizer supports up to 8 possible video sources. Currently 
there are two CCD cameras connected to multiplex channels 1 
and 2. By convention, mux channel 1 corresponds to the left 
camera, and mux channel 2 to the right camera. Calls to 
pget64 digitize images using the most recently selected 
video source. The default selection is left camera (nmux = 
1) 

GANGET --- read current input gain setting 
gain = ganget() 

integer*4 gain 

ganget returns the current setting of the analog 
preamplifier. 

GZLNPUT --- set digitizer input gain 
null = ganput(gain) 

integer*4 gain 

ganput sets the preamplifier. The digitizer features a 
programmable analog preamplifier which precedes 
digitization. Legal values for gain are 0-7, with 0 
specifying l o w  gain and 7 high gain. This facility is 
principally used far preconditioning the signal to make 
optimal use of the 8 bit dynamic range. 

DCOPWT --- set digitizer D.C. offset 

null = dcoput(dc) 

integer*4 dc 

The digitizer features a programmable analog D.C. offset 
which precedes digitization. Legal values for "dcta are 0- 
255, with 0 corresponding to blacker images, and 255 
corresponding to whiter images. This feature is used 
principally for preconditioning the signal to make optimal 
use of the 8 bit dynamic range. 
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SEQUENCE --- regular sampling 
sequence (snap - interval) 

integer*4 snap I interval 

sequence supports the automatic digitization of images at 
regular sampling intervals. Images are digitized at a 
sampling rate which is some integer multiple of 0.01 
seconds, specified by the argument snap interval. Images are 
internally circularly buffered in the-- subsystem to a 
depth of 16 images. 

A.2.3 SBX graphics device 

IGOPEN --- open communications channel to display device 
khan = igopen() 

integer*4 ichan 

igopen opens /dev/matrox and returns the channel number. 
igopen also initializes the Hitachi ACRTC chip for 640x480 
resolution. 

IGCLOSE --- close communications channel to display device 

null = iglcose() 

igclose closes /dev/matrox 

IDUMP --- display 64 Kbyte image on CRT 
call idump(image,xpos,ypos) 

integer*l image(65536) 
integer*4 xpos,ypos 

idump uses the DESA facilities of the Hitachi ACRTC to 
transfer a 64 kilobyte image from host memory to the display 
memory, with the upper left hand corner of the image located 
at position xpos, ypos. 
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JDUMIP --- display variable size image on CRT 

jdump uses the capability of the Hitachi ACRTC to 
transfer an image from host memory to display m e m o r y .  The 
image is placed with its upper left hand corner at abosolute 
position xpos, ypos. The image is assumed to conform to a 
raster scan format with ixwin bytes per raster and iywin 
rasters. No more than 6 4  Kbytes of data can be in the image 
buffer. 

GREYSCALE --- set up grayscale LUT 
call greyscale 

greyscale sets the bits in the color LUT of the ACRTC to 
contain a mapping from the integers 0-255 into a grayscale 
image. 0 corresponds to black, and 255 to white. 

PCOLOR --- set up pseudocolor LUT 
call pcolor 

pcolor sets the bits in the color LUT of the ACRTC to 
contain a simple pseudocolor mapping of the integers 0-255 
into an RGB image. 0 corresponds to black, low integers to 
blue, and high integers to red. 

A.2 .4  D i s k  Access 

IMREAD --- read image from disc 
call imread(name,buffes) 

character*40 name 
integerftl buffer ( 6 5 5 3 6) 

imread reads the 6 4  kilobyte image from disc file lgname's 
into a 6 4  Kbyte area of memory beginning at address 
"buff erg@. 

IMWRITE --- write image to disc file 
call irnwrite(name,buffer) 

character*40 name 
integer*l buffer ( 6 5 5 3 6 ) 

imwrite writes the 64Kbyte image found at address "buffert8 
to the d i s c  file "naxIle~$. 
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A.2.5 Hypercube image 1/0 

I m A D C  --- read an image from a hypercube 

call imreadc(ncube,ndim,buffer) 

integer*4 ncube,ndim 
integer*l buffer(65536) 

imreadc interacts with D'imageout" to collect a 6 4  Kbyte 
image from the hypercube {'ncube" having dimension 9andimg* to 
a contiguous area of m e m o r y  in the host address space, 
beginning with the address *'buff erg'. 

PMWRITEC --- write an image to a hypercube 
call imwritec(ncube,ndim,buffer) 

integer*4 ncube,ndim 
integer*l buffer(65536) 

imwritec interacts with 'aimagein" or '1input-qj8 to distribute 
a 64 Kbyte image from a contiguous area of the host address 
space onto the hypercube "nncube** having dimension 
The  image address is specified in '{buffer". 

A.2 .6  Newport rotation stages 

IRSOPEN --- open serial communication channel to controller 
ichan = irsopen() 

integers4 ichan 

irsopen opens a serial communications channel to the Newport 
rotation stage controller. The channel number is returned. 

IRSCLOSE --- close communications channel 
null = irsclose() 

irsclose closes the serial communications channel to the 
Newport ratation stage controller. 
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IRSVEL --- set stage velocity 
i = irsvel (stage, vel 1 

integer*4 stage,vel 

irsvel sets the stage velocity of the rotation stage *@stagegq 
to velocity B1vellB. Legal values for 8*stage'a in this and all 
other calls to rotation stage routines are 1,2,3, and 4 .  
Legal values for "velw are in the range 8-8000.  The physical 
units are millidegrees per second. 

IRSORG --- set stage origin 
i = irsorg(stage) 

integeri4 stage 

irsorg resets the coordinate system of stage "stage*'. The 
current position of the stage when irsorg is called is 
thereafter the origin of the coordinate system. 

IRSLIM --- set soft limits 
i =  irslim(stage,limup,limdown) 

integer*4 stage,lash 

irslim sets the limits of motion for stage P8stage*". The 
limits are expressed in millidegrees relative to the current 
origin. lirnup and limdown specify the limits in the 
clockwise and counterclockwise directions respectively as 
the stage is viewed from above. Legal values for both limits 
are in the range +/-999999. 

IRSLASH --- set stage backlash 
i = irslash(stage, lash) 

integer*4 stage,lash 

irsilash sets the backlash parameter on stage Bwstage88. This 
parameter controls overshoot on rotations in the 
counterclockwise direction so that the terminal position on 
all motions is approached from the clockwise direction. This 
feature minimizes hysteresis. 
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IRSVELQ --- interrogate current velocity 
vel = irsvelq(stage) 

integer*l stage,vel 

irsvelq returns the current rotation velocity setting on 
stage flstageol. 

IRSLOCQ --- interrogate current position 
lac = irslocq(stage) 

integer*4 loc,stage 

irslocq returns the current position of stage qlstaget* 

IRSLIMQ --- interrogate current limit settings 
null = irslimq(stage,up,down) 

integer*4 stage,up,down 

irslimq returns the current soft limit settings of stage 
"stagef1 in the variables up and down. 

IRSLASHQ --- interrogate current backlash 
lash = irslashq(stage) 

integer*4 stage,lash 

irslashq returns the current backlash setting of stage 
"stage". 

IRSHOME --- move to origin 
null = irshome(stage) 

integer*4 stage 

irshome moves stage t8stageit to its current origin. 



IRSMOVA --- absolute move 
null = irsmova(stage,loc) 

integer*4 stage,lsPc 

irsmova perfoms an absolute rotation of stage g8stages8 to 
location 1810c8g, where loc is given in millidegrees relative 
to the current origin. Legal values are in the range +/- 
999999. 

IRSMOVR --- relative move 
null = irsmovr(stage,rel) 

integer*4 stage,rel 

irsmovr performs a relative rotation of stage llstagev". The 
stage is rotated by the number of millidegrees given in 
lrrel" . 
A.2.7 Console 

ITTYFLY --- get a keystroke on the fly 
i = ittyfly(char) 

integer*4 i 
character*l char 

ittyfly inspects the character ready bit on the standard 
input serial communications channel, returning 0 in both i 
and char if no character is presently available, and 
returning the character code if a character is available. 

ITTYIN --- get a single keystroke 
i = ittyin(char) 

integer*4 i 
character*l char 

ittyin returns the next available character in both i and 
char. 
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CURSOR --- cursor on/of f 
call cursor(switch) 

integer*4 switch 

cursor emits the ANSI standard escape sequences for making 
the terminal cursor visible or invisible, according to the 
argument switch (1 or 0 respectively). 

CLRHOM --- clear screen and home cursor 
call clrhom 

clrhom emits the ANSI stsandard escape sequenses necessary 
for clearing the terminal screen and positioning the cursor 
at row 1 and column 1. 

CURPOS --- absolute cursor positioning 
curpos(row,col) 

intger*4 row,col 

curpos emits the ANSI standard escape sequences neccessary 
for  positioning the cursor at absolute position row and col.  

A . 2 . 8  Miscellaneous 

NGRAY --- compute standard graycode 
gray = ngray(arg) 

integer*4 gray, arg 

ngray returns the graycode of its argument. 

NPHYS --- invert standard graycode 
phys = nphys(arg) 

integer*4 phys, arg 

nphys returns the inverse graycode of its argument. 
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NRING --- standard graycode ring 
call nring(node,up,down) 

integer*4 node,up,down 

nring computes the physical node numbers of the upwards and 
downwards nearset neighbors of the node whose number is 
%odefg in the standard graycode ring. 

SEQNAME --- compute a name string in sequence 
call seqname(base - name,target - name,index) 

character*20 base name, target - name 
integer*4 index 

seqname computes a character string in a sequence of 
character strings. The index is converted into a t w o  
character digit string in the range 0 to 99 and appended to 
the base-name to form the target - name. For example, the 
sequence of names a.O, a.1, a.2, ... can the formed. This is 
principally used f o r  performing disc 1/0 to store the 
results of successive image processing steps. 
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