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APPROACH TO UNCERTAINTY IN RISK ANALYSIS*

ABSTRACT

In the Fall of 1985 EPA’s Office of Radiation Programs (ORP)
initiated a project to develop a formal approach to dealing with
uncertainties encountered when estimating and evaluating risks to human
health and the enviromnment. Based on a literature review of modeling
uncertainty, interviews with ORP technical and management staff, and
input from experts on uncertainty analysis, a comprehensive approach was
developed. This approach recognizes by design the constraints on
budget, time, manpower, expertise, and availability of information often
encountered in "real world" modeling. It is based on the observation
that in practice risk modeling is usually done to support a decision
process. As such, the approach focuses on how to frame a given risk
modeling problem, how to wuse that framing to select an appropriate
mixture of uncertainty analyses techniques, and how to integrate the
techniques into an uncertainty assessment that effectively communicates

important information and insight to decision-makers.

The approach is presented in this report. Practical guidance on
characterizing and analyzing wuncertainties about model form and
quantities and on effectively communicating uncertainty analysis results

is included. Examples from actual applications are presented.

*Research sponsored by the Office of Radiation Programs, Analysis and
Support Division, U.S. Environmental Protection Agency, under Interagency
Agreement DOE 40-1365-83.
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1. INTRODUCTION

The Environmental Protection Agency’s Office of Radiation Programs
(ORP) is responsible for regulating on a national level the risks
associated with technological sources of ionizing radiation in the
environment. A critical activity at the ORP as part of developing
regulatory policy is analyzing and evaluating risk. Those involved in
the analysis of risk are often confronted with a formidable obstacle to
producing reliable risk estimates -- uncertainties about the data,

parameters, phenomena, models and methods involved.

The ORP believes that the analysis of uncertainty should be an
integral part of any risk analysis. Accordingly, in the fall of 1985
the ORP initiated a project to develop a formal approach to uncertainty
in risk analysis. In order to establish a basis for the approach, three

activities were undertaken:
1. A literature review of studies related to uncertainty in risk
analysis was prepared [Rish, 1988]. The following areas of study

were included in this review:

~ philosophical discussions of uncertainty and its relationship

to risk,
— frameworks for the treatment of uncertainty in risk analysis,
-~ methodologies for uncertainty analysis,
— software available to facilitate uncertainty analysis, and
- applications of uncertainty analysis methodologies.

2. A glossary of risk and wuncertainty related terminology was

prepared. (see Glossary)



3. Structured discussions on uncertainty and risk analysis were held
with ORP staff members having a diversity of backgrounds and
responsibilities. This was done to obtain inputs needed to make
the approach to wuncertainty realistic with respect to ORP
activities, needs, and mode of operation. It was also the first
step toward achieving internal ORP consensus on an acceptable

approach.

This report presents a draft ORP approach to uncertainty in risk
analysis based on results from the three activities above and the
insight gained from experience. The purpose of this report is to begin
the development of a consistent, organized, and well-reasoned approach
to uncertainty that ORP can apply to any of its risk assessment

problems. The goals of the approach are:

1. to make the reasoning and judgments made about how to handle
uncertainties encountered in a risk analysis explicit, so that they

can be determined to be reasonable, and

2. to identify where uncertainties matter by assessing the sensitivity
of risk management decisions to uncertainties, assessing the level
of confidence in decision outcomes and identifying steps that can

be taken to reduce or eliminate uncertainties.

With little exception, discussion of the details of available
techniques for analyzing uncertainty has mnot been included in this
report. Such techniques are summarized in an organized manner in the
companion literature review.* Instead this approach focuses on how to
frame a given risk problem, how to select an appropriate mixture of
uncertainty analysis techniques, and how to integrate the techniques
into an wuncertainty assessment that effectively communicates important

information and insight to decision-makers.

* See Review of Studies Related to Uncertainty in Risk Analysis [Rish,
1988].




APPROACH TO UNCERTAINTY IN RISK ANALYSIS

The explicit consideration of uncertainties and their implications

an important part of risk analysis activities for the following

reasons:

~ The EPA has a responsibility to provide--through its regulations,

guidelines, practices, and rulings--a reasonable level of assurance
that protection of human health and the enviromment are maintained.
In order to have confidence that this goal is achieved, the
‘implications of uncertainties on regulatory decisions must be

carefully assessed.

-~ There can be considerable costs associated with a decision based

upon analysis with a high level of inherent uncertainty. These
potential costs come from adopting a course of action which results
in unexpected negative consequences, misplaced or practically
irreversible commitments of resources, or policies which are
difficult to alter at a later date when new information becomes
available. Analysis of uncertainties can help té identify a risk
management strategy which is most flexible to uncertain or changing
conditions, and can provide a higher degree of confidence that risk

management goals will be achieved.

~ Environmental risk analysis results can be highly sensitive to

uncertainties in inputs or modél formulations. Once the sources of
uncertainties in the assessment are identified, their relative
contribution to the overall uncertainty in risk estimates can be
examined. This is useful information for planning measurement and

modeling activities.

- When there is disagreement among sources of information a good

decision requires knowing the extent to which the disagreement

would affect risk analysis vresults. An  example would be
disagreement among health experts about  dose-response
relationships.

v



- "There is considerable empirical evidence to suggest that due to a
variety of heuristics employed in human thought processes cognitive
biases may result in "best estimates® that are mnot actually very
good, Even if all that is needed is a "best estimate® answer, the
quality of that answer may be improved by an analysis that requires
people to incorporate and deal with the full uncertainty." [Morgan
et al., 1982)

— Many technological risk management problems involve  complex
mixtures of  technical fact and wvalue judgments. Explicit
characterization of uncertainties can help to distinguish
disagreements over technical uncertainties from those which are due

to divergent values.

— The act itself of examining uncertainties in a quantitative manner
results in a broader understanding of the processes being modelled,
and the sources and nature of the controversial issues involved.
It forces a careful review and characterization of the present
state of knowledge, and it provides a structure for wupdating the

risk assessment as information and understanding evolve,

These reasons underlie the approach to wuncertainty in risk analysis
described in this section. The overall approach includes an
institutional approach applied at the program level and a technical
approach applied at the analysis and evaluation level. The
institutional approach consists of a set of policies and procedures
adopted by the ORP to ensure adequate consideration of uncertainty in
risk analyses. The technical approach consists of guidance for (a)
framing a vrisk problem with respect to some specific policy, risk
analysis, and uncertainty considerations, (b) developing an appropriate
uncertainty assessment strategy for the risk problem, and (c) evaluating

and effectively communicating the results of the uncertainty assessment.



2.1 INSTITUTIONAL APPROACH

The policies and practices that together constitute an

institutional approach to handling wuncertainties in risk analysis

include:

- Initiating a task to develop a program-wide approach to uncertainty

in risk analysis, of which this report and its accompanying
literature review are a part. The goal is a consistent, organized,
and well-reasoned approach that reflects an awareness of the
state-of-the-art in uncertainty treatment and is compatible with

the ORP's mode of operation.

Establishing lines of communication between ORP technical staff and
expert practitioners of uncertainty analysis in order to keep
abreast of the state-of-the-art and have a source of consultation,
In addition, continuing collaboration exists between ORP experts
and other leading experts on the scientific basis for radiation-

related processes and effects.

Training of the staff in current wuncertainty analysis techniques
and software. The EPA computer code MOUSE [Klee, 1985] and the
Carnegie-Mellon University code DEMOS [Henrion and Morgan, 1985]

are being evaluated for possible use.

Encouraging through guidelines and criteria, the selection of
facility designs and sites that can be reliably characterized and

evaluated.

Developing in-house analytical methodologies  for  uncertainty
analysis. A discrete probability distribution methodology for
analyzing input parameter uncertainties in pgeosphere transport
modeling for low-level waste disposal sites has been developed

[Hung, 1985]. In addition, a probabilistic wversion has been



developed of the river release pathways model used to derive the
radionuclide release limits specified in 40CFR191, subpart B, [Rish
et al., 1985]. This version employs Latin Hypercube Sampling (LHS)

to propagate parameter uncertainties through model calculations.

- Obtaining independent peer review of risk analyses done in support

of rulemakings.
— Establishing research, field and test programs aimed at reducing
uncertainties about the processes and parameters associated with

assessing the risks of radiation in the environment.

2.2 TECHNICAL APPROACH

In addition to the institutional steps described above to deal with
uncertainty in 1its risk analysis activities, the ORP has developed

technical guidance for the treatment of uncertainty.

The technical guidance, presented in the remainder of this report,
addresses the following three basic elements of the proposed technical

approach to uncertainty:

1. framing the risk problem from policy, risk analysis, and

uncertainty perspectives,

2. developing an uncertainty assessment strategy, and

3. communicating the results of the uncertainty assessment,




2.2.1 FRAMING THE PROBLEM

In order to design an appropriate strategy for assessing the
uncertainties in a given risk problem, it is first necessary to frame
the problem with respect to some specific policy, risk analysis, and
uncertainty considerations. This is because the choice of appropriate
uncertainty characterizations and analysis techniques depends upon these
considerations. A framework for organizing these considerations is

presented below.

2.2.1.1 Policy Considerations

The following policy considerations important to designing an

appropriate uncertainty assessment strategy should be addressed.

(1) The type of decision that the risk analysis will support

should be characterized. There are at least four basic types of risk

""""" management decisions that risk analyses can be used to support.
a. site and facility design selection or approval,
b. compliance and variance determinations for licensing,

c. Mact versus study" decisions about whether or not to implement
risk control actions or wait until further data collection and
analysis reduce uncertainties about decision outcomes (In
other words, when is "enough" information known to justify

taking action or not taking actioh?), and

d. "level of control" decisions about the proper levels for

standards, criteria, thresholds, and compensation.

For the last type of decision, determining appropriate 1levels of
control, the control strategy alternatives that are under consideration

should be identified. These include:



- establishing design specifications, siting criteria or licensing

conditions for the technology being considered for regulations.

- setting limits on radionuclide source inventory or release rate,

~ setting radionuclide concentration limits in various media,

- setting limits on exposure or dose,

- setting limits or goals for acceptable level of risk,

—~ creating incentives to control risks, and

- specifying compensation mechanisms.

(2) Decision eriteria to be used should be identified. These can

be generally categorized as either "rights-based" or "utility-based"

*
criteria. Rights-based criteria include:

zervo risk,

!

a specified bound on risk (i.e., de minimus, consistent level,

acceptable or reasonable level, risk/safety goal),

— protecting the most-sensitive individual (this can also be a

response to uncertainty),
— Best Available Control Technology (BACT) or the like, and

— approval, compensation, and other legal determinations.

* The concepts in this paragraph were developed from conversations
with M. Granger Morgan with his kind permission.



Utility-based criteria include:

cost-effectiveness,

cost-benefit,

value-impact,

As Low As Reasonably Achievable (ALARA), and

other such economic preference tradeoffs.

(3) Policy strategies being considered with respect to time and

space factors should be identified. Alternative strategies include:

- a one-time solution (e.g., limit on cumulative releases during next
1000 years) versus an adaptive "look-ahead" sclution (e.g., control
imminent hazard now and determine long-term control later when

better information is available, or adopt a time-phased policy),
- a generic solution versus a site-specific solution, and

— population versus individual protection.

(4) The key value parameters and decision wvariables should be
*
identified. Value parameters measure the preferences of the decision-

makers. Key value parameters include:

~ the appropriate investment rate to reduce health risk (e.g., "value
of life"),

— the discount rate for combining benefits and costs accruing at

different times, and

~ the 1level of confidence desired by the policy-maker in the

estimated outcomes of alternative decisions.

* Based on Henrion and Morgan [1984]
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Examples of this last value parameter, the confidence 1level criterion,

include:

~ based on "best-estimates,"”

~ based on conservative estimates, of which worst-case is an extreme

example, and

- based on a subjectively-determined reasonable level of assurance.

Key decision variables should be identified. These are quantities
over whose values the decision-maker exercises direct control. An
example of a decision variable is the permitted maximum emission rate
from the technology being evaluated. In some cases, the decision
variable is specified as input to the risk analysis, and the sensitivity
of outcomes to alternative levels of the variable is analyzed. In other
cases, it is desired to use the analysis to determine an "optimal" level

for a decision variable as an output.

An important measure of the significance of an uncertainty is the
effect it can have on the key decision variables involved. Accordingly,
in framing the risk problem it is useful to identify "breakpoints” where
changes to risk analysis results would lead to an alternative decision.
The criteria that the decision-maker will wuse to determine such

breakpoints should be identified, to the extent possible.

2,.2.1.2 Risk Analysis Considerations

The risk analysis considerations that are important to designing an
appropriate uncertainty assessment strategy can be organized around the
generic risk analysis framework depicted in Figure 2-1. Each of the
processes 1in the boxes and outputs on the arrows on the framework must
be understood and analyzed as part of an integrated risk analysis.

These processes and outputs include:



SPATIAL AND TEM-
PORAL DISTRIBU-

RELEASE | FATE AND IN MEDIA " EXPOSURE | EXPOSURE | DOSIMETRY | DOSE | DOSE - RESPONSE | EFFECTS

SOURCE —~ TRANSPORT - >} PROCESSES —~ PROCESSES == PROCESSES —~
! PROCESSES ] | H H

;F H ] 7. 3 t N ] A ]
§ 1 i H ¥ t ] H H
! ! H } ! H ! i |
i ) 1 i 1 i ] ] [}
' 1 { 13 ] ] 1 H f
t 1 H 1 [} L 1] i 1]
§ ] 1 1] i t ] t ]
] 1 ] 1 ] t ] [1 t
1 % i ] ] 1§ f t t
t ] ] t ¥ t § ] 1
t i ] f ] t t ] ]
] ] i t 1 ] t [] ]
] 1 ] § § 3 } 1 i

Fig. 2-1.

Risk analysis framework.

VALUATION
AND
TRADE-OFF
PROCESSES

7 3

st ———

CONTROL
STRATEGY
ALTERNATIVES

RISK
DECISION

Lt



12

Source: the technology, activity, or conditions resulting in a

release of radioactivity to the environment.

Release: the types, amounts, timing, and probabilities of
releases.
Fate and transport: physical and chemical transport, transfor-

mation and loss processes occurring to releases in the geosphere,

hydrosphere and atmosphere.

Spatial and temporal distribution in media: the concentration as a

function of time and space in soil, air and water.

Exposure processes: population characteristics, migration patterns

(time and motion), biosphere pathways, and micro enviromments

(e.g., indoor levels).
Exposure: the amounts and timing of vradioactivity ingested,
inhaled, absorbed, and directly exposed to by persons (or animals,

plants, or objects).

Dosimetry: processes involved in going from exposure to organ-

specific and equivalent whole-body dose (rads to rems).

Dose

Dose-response: biological (or other) effects of radiation.

Control strategy alternatives: the performance, effectiveness, and

costs of alternative control strategies under consideration.

Valuations and tradeoffs: the processes of weighing and/or placing

an economic value on risks, comparing impacts, costs, and benefits
of alternative control strategies, and determining the optimal

decisions indicated by the analysis based on preference structures.
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Using the generic risk analysis framework described above, the
following risk analysis considerations should be addressed when

developing an uncertainty assessment strategy for a particular problem:

(1) The models, data, and judgments that will be used to assess

each of the processes and outputs in the risk analysis framework
depicted in Figure 2-1, and how they will be combined to form an

integrated risk analysis, should be outlined.

(2) The types of models to be used in the risk analysis should be

identified. These include:

conceptual models

natural analogue, microcosm, or prototype models

H

mathematical or logical expressions, and

§

computer codes.

(3) ‘The eritical dimension of the models should be established.

These include (from Henrion and Morgan [19841):

—~ Predictive versus optimizing: Is the model simply intended to
describe or predict a situation, or is it intended to find an
optimal decision? In the latter case, an explicit objective

function is required to rank possible outcomes.

~ Analytic versus implicit: Can the vector of outputs, vy, be

computed directly as a function of the input values, x
y = f(p, ®)

or is the model specified implicitly,

£(x, y) =07
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In the latter case, if the function is non-linear, an iterative solution

algorithm may be required.

- Static versus dynamic: Does it model changes over time?

- Level of spatial and temporal aggregation: Does it model

variations over space and time? If so, in how many dimensions, and

what is the level of aggregation?

Deterministic versus stochastic: Does it represent phenomena as
deterministic or probabilistic? Note that this is distinect from
whether uncertainty is represented. For example, a fault tree for
a nuclear reactor may compute probabilities of failures, but not

necessarily the uncertainties in those probabilities.
Size: How many input values, state wvariables, equations, and
outputs does it contain? 1Is it small (tens), moderate (hundreds),

or large (thousands)?

(4) The types of quantities should be established for key model

parameters. Types of quantities include those 1listed and described in
Table 2-1.

(5) The types of data to be used in the risk analysis should be

identified. Types of data include:

direct empirical data (i.e., laboratory and field data),

indirect empirical data (i.e., observations from analogues,

microcosms, prototypes, surrogate measures),

calculated or inferred data, and

constants or specified parameters.



Table 2-1. Types of quantities used in risk analysis models¥
Recommended
Quantity type Examples Description uncertainty Rationale
characterization

Empirical
parameters

Defined

constants

Value
parameters

Decision
variables

Qutcome
variables

Thermal efficiency
oxidation rate,
price, toxicity.

Atonic wéight of 0,
Joules per kwh,

Investment rate to
prevent mortality,
discount rate,
risk aversion.

Air quality standard
(for EPA), plant size

and type (for utility).

Estimated excess
deaths per year,
expected net
present value,

Input parameters that
measure aspects of
processes being
modeled.

Quantities that are
exact and certain
by definition.

Parameters used to
model preferences
or utilities of the
decision-makers or
those that they
represent,

Quantities over whose
values the decision-
maker exercises
direct control.

Output variables
computed by the
models used.

Treat parametrically
establish ranges, or
develop probabilistic
measures, Depends on
a number of factors.

Treat as certain.

Establish a set of
alternative parametric
levels over value
systems of interest.

Establish a set of
alternative parametric
levels of interest to
the decision-maker.

Describe qualitatively,
present parametrically,
present ranges, or
present probabilistic
measures. Depends on
a number of factors.

There exists a "correct
value" which {8 not
precisely known and
must be estimated.

The value i{s fixed by
definition and is not
empirical.

If one {s uncertain about
what one’s values are,

the ilmpact of alternative
value assumptions should
be systematically explored.

The decision-maker controls
the value of this variable.
As with value parameter, if
he is uncertain he should
systematically explore the
implications of alternative
choices. '

Depends on: the type
of decision that the
risk analysis supports,
the confidence level
criteria used, and how
input uncertainties are
treated.

*Adapted from a more comprehensive table prepared by M. Granger Morgan and Max Henrion of Carnegie-Mellon University,
with their permission.
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(6) The types of judgments to be used in the risk analysis should be

identified. Types of judgments include:

assumptions (e.g., that a process 1is 1insignificant, that future
conditions will be similar to past conditions, that processes and

events are independent)

— choice of wvalid or appropriate model (including approximation

methods) .

— inferences

- "weight of evidence" judgments, and

— opinions on wuncertain parameter +values, ranges or probability

distributions.

The framework shown in Figure 2-1 is generic to all risk analysis
problems; however, it is useful in approaching a specific problem to use
the framework to create a more detailed version, herein called a risk
analysis flow diagram. An example of such a diagram is shown in Figure
2-2 for the problem of estimating the population mortality effects from
possible releases of radionuclides from a high-level radicactive waste
repository. As can be seen in the figure, the risk analysis flow
diagram shows in a modular fashion each of the processes which must be
analyzed and the interrelationships between the process inputs and
outputs. It is useful to relate the risk analysis flow diagram for the
specific example shown in Figure 2-2 to the generic risk analysis

framework in Figure 2-1, as follows:
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GENERIC FRAMEWORK
(Figure 2-1)

HIGH-LEVEL WASTE RISK ANALYSIS FLOW DIAGRAM
(Figure 2-2)

TECHNOLOGICAL ACTIVITY

RELEASE

TRANSPORT,
TRANSFORMATION,
AND LOSS PROCESSES

EXPOSURE PROCESSES

EXPOSURE

EFFECTS PROCESSES

EFFECTS

High-level waste geologic repository

Releases can occur by several mechanisms
(normal groundwater, faulting, breccia
piping, drilling, volcano, meteorite) to
four release modes (river, ocean, land, air).
One curie is assumed to be released. Flow

paths are shown.

Transport processes depend on release mode.
No transformation is assumed. Loss is
assumed to be from sedimentation in river
or ocean. Half-lives are too long to be

a significant loss mechanism.

Each mode has some subset of nine possible
exposure pathways. For example, the ocean
mode has two associated pathways: fish and

shellfish ingestion.

The exposure from all pathways for the four
modes are summed to yield total population

dose.
The population dose is multiplied by a risk
coefficient (linear/no threshold) with units

of fatalities per dose.

Effects are fatalities per curie released.
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2.2.1.3 Uncertainty Considerations

After a risk problem has been framed from a policy and risk
analysis perspective by the considerations above, it should be framed
with respect to the sources and nature of the uncertainties associated
with assessing the risk. The generic risk analysis framework in Figure
2-1 can be used to structure the uncertainty considerations necessary to

complete the framing of the risk problem, as follows:

(1) The extent and quality of information and understanding

available to analyze the processes in each box and to estimate the

outputs on each arrow of Figure 2-1 should be summarized.

(2) The sources of uncertainty in these models and data should be

summarized. Sources of uncertainty include:

- uncertainty about model form or validity,

— uncertainty introduced by assumptions and approximations made in

model implementation,

- inherent randomness,

— random error in direct measurements,

- incomplete or inconsistent data,

— variability mnot included in the analysis due to level of

aggregation used,

— uncertainty about inferences, extrapolations, and analogies wused,

and

- basic disagreements about theory, phenomenology, conceptual models,

or interpretations of available scientific evidence.
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(3) Preliminary bounds or ranges on uncertainties should be

estimated. Conditions and assumptions leading to credible upper and
lower bounds should be summarized (e.g., different conceptual models

associated with upper versus lower bound).

Detailed risk analysis flow diagrams can also be used to identify
important quantity uncertainties in the analysis and how they propagate
through the problem. Let us examine, for example, the river mode
exposure pathways portion of Figure 2-2. Just as Figure 2-2 is a more
detailed version of the generic framework in Figure 2-1, Figure 2-3 is a
detail of the river mode portion of Figure 2-2 showing key uncertain
quantities which must be addressed in estimating population mortality

effects from a radionuclide release to a river.
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2.2.2 DEVELOPING AN UNCERTAINTY ASSESSMENT STRATEGY

Once the policy, risk analysis, and uncertainty consideration are
addressed, the risk problem 1s framed 1in a manner that facilitates
developing a logical and  appropriate strategy for uncertainty
assessment. Uncertainty assessment involves two basic activities:
characterizing uncertainties and analyzing uncertainties. Numerous
different approaches and techniques are available to accomplish each of
these activities. The framework developed in the previous section
provides a basis for selecting an appropriate combination of techniques
that will result in the insights needed about uncertainties to support a

particular risk management decision.

Selecting  appropriate  ways to characterize  and analyze
uncertainties should be done in parallel since these activities depend
on each other., For example, limitations on available time, resources,
and information affecting the extent to which uncertainties can be
characterized will also 1limit the choice of analytical strategies.
Conversely, the choice of an appropriate analytical strategy for the
decision being supported carries with it requirements on the type of
uncertainty  characterizations to be wused. In fact, uncertainty

assessment involves a series of tiered decisions about the levels of

uncertainty  characterization and analysis needed. The assessment
process begins with simpler measures of uncertainty (i.e., ranges) and
simpler  analytical techniques (i.e., sensitivity analysis) and

progresses, to the extent mneeded to support the decision, to more

complex measures and techniques.

The development and implementation of an appropriate uncertainty
assessment strategy can be viewed as a decision process by the risk
analyst. Decisions are made on ways to characterize uncertainties, ways
to analyze uncertainties, and whether to proceed to increasingly refined
(ahd complex) levels of uncertainty  assessment for particular

uncertainties involved.

23
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2.2.2.1 Characterizing Uncertainty

Generally speaking, uncertainty about a quantity, model, or other
aspect of a risk analysis can be characterized in any of the following

ways:

—~ describe the uncertainty in qualitative terms,

— specify a set of alternative "scenarios" or models to be analyzed,

— specify a range of values of uncertain quantities,

— use data analysis techniques to develop a frequency distribution,
standard error or confidence interval for uncertain quantities,

and/or

— use expert judgments to develop subjective probabilistic measures

for uncertain quantities.

Selecting the appropriate way to characterize an uncertainty
associated with a particular risk analysis problem depends on the type
of decision that the risk analysis supports, confidence level criteria
to be wused, type of model, type of quantity, extent and quality of
information and understanding available, and the method used to
propagate uncertainty in the risk analysis. All but the last of these
considerations are addressed by the guidance for framing the risk

problem described in the previous section.

Recommended ways to characterize wuncertainties about models and
model quantities based on these considerations are presented below;
however, before deciding on appropriate characterization it is necessary
for the analyst to decide on an appropriate level of aggregation to be
used in risk analysis models. The level of aggregation that "works" for
the analyst depends on, among other things, the type of information
available to him on processes being studied and the "comfortableness" of

the analyst with that information. For example, rem per curie estimates
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are derived from models of dose conversion processes. An analyst who
performs a risk analysis for radionuclide exposures is undoubtedly aware
that these mored detailed models exist and can include them as sub-
models in his pathways model in place of using dose conversion factors.
He might, however, choose the use of dose conversion factors as an
appropriate level of aggregation because he feels more able to make good
judgments about dose conversion factors than about the inputs to the
more detailed models from which dose factors are derived. Of course, he
will review the more detailed models in making his judgments about
appropriate dose factors. Standard environmental risk models often
involve  simple mathematical equations which are relatively
uncontroversial because they consolidate detailed complex dependencies
inside of several aggregate model parameters. These  parameters,
consequently, have very large inherent uncertainties because they become
surrogates for modeling complex processes across a variable population.
Thus, there is a tradeoff available to analysts between Structural

detail and degree of parameter uncertainty.
2.2.2.1.1 Characterizing Model Uncertainty

Guidance for characterizing model uncertainty 1is presented below
for the different types of models that enter into a risk analysis.
Uncertainty about the appropriateness of the models used in a risk
analysis 1is an important potential source of systematic error in the

analysis.

Conceptual models -- Uncertainty about conceptual models for events

and processes involved in the risk problem should be characterized by
qualitatively describing the nature of the uncertainty and identifying
alternative plausible conceptual models. Expert judgment should be used
to assess the relative likelihoods, in qualitative terms, of the

validity of alternative conceptual models identified.

Natural analogue, microcosm, and prototype models -- The extent to

which these models are or are not representative of the actual risk

processes being evaluated should be described. A qualitative, and in
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some cases quantitative, assessment of the extent to which these models
might over- or under-estimate the outcomes of actual risk processes

involved should be developed,

Mathematical or logical expressions -- A set of alternative

plausible solution techniques, analytic methods, and mathematical or
logical functions (e.g., order of the exponent in a power law function,
linearity, eularian or langrangian, static or dynamic, compartmental,
finite element, etc.) should be identified. The walidity of the
assumptions and approximations associlated with each plausible

alternative should be described,.

Computer codes -- The approximations used in the codes to represent

mathematical and logical  expressions should be described. The
reliability of the codes and the extent to which they have been verified
and validated should be described. Verification 1is the process of
showing that the code produces correct solutions of the encoded
mathematical model within defined 1limits for each parameter used.
Validation is the process of showing that the encoded mathematical model
produces a wvalid solution to the physical problem associated with the

particular application.
2.2.2.1.2 Characterizing Uncertainty About Quantities

Guidance is presented in this section on how to characterize
uncertainty about the different types of quantity in a risk analysis.
This guidance is organized according to the quantities identified in

Table 2-1, and is summarized in the last two columns of the table.

Empirical parameters -- At a minimum, a range of wvalues for each

uncertain parameter (lower-bound, "best-estimate," upper-bound) should
be established. The range should be justified by available data and/or

expert judgments, and this justification should be documented.
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The way to characterize uncertainties about empirical parameters
depends on, among other things, the confidence level criteria to be used
by the policy-maker in the decision(s) that the risk analysis supports

as follows:

(a) Based on "best-estimates" -- There is considerable evidence in
the literature of a wvariety of heuristics employed by experts in
processing information that can result in significant biases in single-
valued ‘"best-estimates" for empirical parameters. It is theorized that
the quality of *"best-estimates” can be improved by  explicit
consideration by the experts of the full range of uncertainty about
empirical parameters and the conditions associated with different values
within the range, especially the upper and lower bounds. This practice
is recommended where the results of sensitivity analyses indicate that
the risk analysis results or choice of decision alternatives are
significantly affected by variations within the parameter range. The
information, assumptions, and conditions associated with the "best-
estimate" should be documented. In addition, the meaning of "best-
estimate” should be specified and consistently applied (e.g., Is it the

mean, mode, or median of the range?)

(b) Based on conservative estimates -- The same guidance provided
above for the ‘"best-estimate" confidence level criterion applies to
characterizing empirical parameter uncertainty when basing decisions on
conservative estimates of risk. Conservative estimates can also be
improved by consideration of the full range of uncertainty about a
parameter. The meaning of “conservative" should be specified and
consistently applied. A special case of a conservative estimate is the
"worst-case" or "upper-bound"” estimate. The extent to which the worst-
case estimate differs from the best estimate should be indicated, and
the conditions and aésumptions associated with each estimate should be

provided (i.e., the reasons for the difference).

(¢) Based on a reasonable level of confidence -- Risk management
decisions can be based on a subjectively determined confidence level

criterion corresponding to a "reasonable level of confidence" 1in the
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risks associated with decision alternatives, This reasonable level is
usually a relatively high degree of confidence; however, the marginal
cost of being more certain of a decision outcome is taken into account.
For example, adopting a lower release limit will increase the degree of
confidence that dose criteria will be met, but an 85 per cent confidence
level might be "reasonable" if lowering the 1limit to achieve higher
confidence means a quantum leap in control technology costs or the use

of a more efficient but less reliable technology.

In order to determine what level of protection provides a
reasonable level of confidence, the decision-maker needs to have an
assessment of the relative levels of confidence associated with basing
actions on different risk estimates across the range of uncertainty in
risk analysis results. He then can factor confidence 1levels into his
decision. This is especially important since parameter uncertainties in
environmental models usually  have skewed probability density
distributions with relatively 1low likelihoods associated with a
significant portion of the upper or lower half of the output uncertainty
range. Thus, there might be negligible increases in confidence level
associated with decisions based on these higher risk estimates. Using
single-valued "conservative" or upper-bound estimates for uncertain risk
analysis parameters, especially when their uncertainty tends to be log-
normally distributed, can result in risk estimates that are orders of
magnitude above estimates having what one would consider a reasonable
level of associated confidence. As North notes, "a plausible upper-
bound or worst-case projection may not be helpful when there is a
potential for large impacts but a high likelihood that the large impacts

will not occur" [North and Balson, 1985].

Uncertainty about the parameters of risk analyses employing a
"reasonable level of assurance" criteria should be characterized using
probability distributions. The method used to establish the probability
distribution depends on the extent and quality of data available on the
parameter. If the results of sensitivity analyses (see Section 2.2.2.3)
indicate that the risk analysis results or choice of decision

alternatives are significantly affected by wvariations within the
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parameter range, then a probabilistic measure should be developed to
represent uncertainty about the ‘parameter sé that 1likelihoods of
alternative outcomes can be assessed. If enough data are available to
develop a statistically meaningful representation of the wuncertainty,
then standard statistical methods can be wused to establish a
probabilistic measure. If available data are inadequate, then expert
judgments should be used to encode a subjective probabilistic measure of
uncertainty about the parameter. The particularvtype of probabilistic
measure depends on the method used to propagate uncertainties through
the risk analysis, as discussed below. The probabilistic measure used
should adequately characterize significant features of the distribution
of probability across the quantity uncertainty range. Expert judgments
about probabilities should be obtained in a consistent, well-documented
manner reflecting current professional practices. A proposed draft

procedure for elicitation of expert judgment is presented in Appendix A.

The way to characterize uncertainties about empirical parameters
used will also depend on the technique selected to propagate
uncertainties through the risk analysis which, in turn, depends on a
number of considerations (see Section 2.2.2.2.2). If uncertainties are
to be propagated by scenario or parametric analysis, then a range of
values for the parameter will be used and the conditions associated with
the range will be identified. If a method of moments is to: be wused,
then the ' range will be further specified by associating confidence
levels with the lower and upper bounds of the range. If the discrete
probability distribution (DPD) method is used, then probabilities will
be associated with a number of values within the range of the parameter.
If analytical solutions to output uncertainty or a stochastic simulation
approach to uncertainty propagation is to be used, then a probability
distribution representing uncertainty about the empirical parameter will

be developed.

Finally, important guidance regarding the selection of an
appropriate probability distribution to represent uncertainty about a

quantity is provided by Seiler [1983], as follows:
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"In a discussion of errors and of error propagation, the assumption
of a probability distribution for a stochastic variable is a decisive
step, since it determines all properties of the probabilistic behavior
of this quantity. However, the choice is usually made without much
further thought and results mostly in the adoption of either a normal or
a log-normal distribution. The criteria for this selection are
sometimes based on experimental or theoretical evidence, most often,
however, on aspects of convenience and ease of use. Since normal and
therefore log-normal distributions are the basis of some of the more
common statistical tests, and since they also offer attractive

mathematical properties, they are by far the most favored choice.”

"Normal and 1log-normal distributions are frequently found in
nature. In many cases, however, the evidence for their applicability is
not very good. It is sometimes based on a theoretical model, as in the
case of radioactive decay where the normal distribution is theoretically
indicated for a large number of decays. Whether the distribution of the
actual counts registered by the electronic devices is of that type or

not, is a question which can only be resolved by experiment."

"As a consequence, it 1is much safer to perform mathematical
operations 1in the high probability areas than in the tails of the
distribution. Means and standard deviations can be determined to a good
approximation, whereas calculations of 95% confidence levels or other
operations involving the tails are questionable. 1In the evaluation of
experimental data and a possible discussion of confidence limits, this

aspect should be borne in mind."

Defined Constants -- These will be treated as certain.

Value Parameters -- Uncertainty about wvalue parameters will be

characterized by establishing a set of alternative parametric levels for
these parameters. Uncertainty about value parameters 1is fundamentally
different than  uncertainty  about  technical parameters. It is
uncertainty about the appropriate level of a measure of one’'s value
system, not uncertainty about a measure that has a "correct" level,

which must be represented. By treating value parameter uncertainties
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parametrically in the risk analysis, the analyst makes it possible for
the decision-maker to examine the implications  of alternative value

judgments on risk analysis and evaluation results.

Decision Variables -- As with the value parameters, 1if there 1is

uncertainty about the appropriate level of a decision variable (e.g.,
the decision-maker is uncertain about which emission rate 1limit to
specify), then alternative parametric levels should be specified.
Usually what is desired is to evaluate the effect of alternative levels

of decision variables on risk analysis outcomes.

Qutcome Variable -- The characterization of uncertainty about the

outcome variables of a risk analysis depends on the type of decision
that the analysis 1is supporting (see Section 2.2.1.1 - Policy
Considerations), the confidence-level criterion to be wused, and

limitations on how model input uncertainties can be characterized.

Risk analyses being used to support site and facility design
selection decisions should characterize output uncertainty by presenting
the range between upper and lower bound estimates. Sites and designs
having associated upper-bound risks that are at or below risk goals can
be identified, and the relative magnitudes of overall uncertainty about

risks from alternatives can be compared.

Characterizing risk analysis outcome uncertainty for compliance
determinations depends on the confidence or assurance level criterion
specified in the pertinent regulation, or otherwise indicated by the
implementing agency. Similarly, characterizing risk analysis outcomes
in support of "level of control" decisions depends on the confidence
level criterion that applies. The same guidance provided earlier for
characterizing empirical parameter wuncertainties based on confidence
level criterion generally applies to characterizing outcome variable
uncertainty. Additional consideration must be given, however, to
guantities in the analysis that were treated parametrically (i.e., value
parameters and decision variables) and to outcome uncertainty associated
with plausible alternative conceptual and/or mathematical models qf

risk-related processes. Results of analyzing bounding “scenarios”
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constructed by forming credible combinations of assumed alternative
conceptual and mathematical models (including alternative assumptions)
should be presented. Characterizations of output uncertainties should
be presented parametrically over the ranges of wvalue parameters and
decision wvariables being considered. Care and creativity must be used
to avoid parametric presentations that are confusing because they
require the decision-maker to evaluate too many combinations of assumed
parameter levels. It is better to present a simplified parametric
characterization that illustrates the salient implications on the risk

analysis results of assuming different parametric levels.

"Act versus study” decisions address whether or not to implement
risk control actions or wait until further studies reduce uncertainties
about decision outcomes. For this type of decision uncertainty about
risk analysis, outcomes should at first be characterized by providing
"best-estimates” and plausible upper-bound estimates of risks. If the
analysis indicates that plausible upper-bound risk estimates are
relatively low, then this builds confidence in a decision to not
regulate. Where plausible upper-bound risk estimates are significant,
the best-estimates can be helpful in deciding whether to gather more
information before basing decisions on the upper-bound estimates. If
changes to the risk analysis outcome magnitude within the range between
the best-estimate and upper-bound estimate result in indicated changes
to risk management alternatives, then more information about the
likelihood of outcomes within this range is needed to support the

decision.

In this case the analyst can use "probability trees,” as described
in the discussion of probabilistic uncertainty analysis in Section
2.2.2.2, to perform a value-of-information analysis. In this type of
treatment, alternative wuncertain aspects of the risk analysis are
represented by branches on a tree diagram, and each branch is assigned a
probability. An example is shown in Figure 2-4 in a later section. The
choice of whether to take action to control possible undesirable risks
that are represented by particular paths through the tree can then be
viewed as a decision on whether to buy insurance against the

probabilities and outcomes associated with those paths. A good
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discussion and example of the application of probability trees and
value-of-information analysis to the "act versus study" decision is

provided in North and Balson [1985].

2.2.2.2 Analyzing Uncertainty

Along with selecting appropriate ways to characterize uncertainties
in a risk analysis it is necessary to select appropriate ways to analyze
uncertainties. As explained previously, these two activities should be
done in parallel since they depend on each other, and are done
iteratively to reachk appropriate 1levels of detail in uncertainty

treatment for particular uncertainties involved.

2.2.2.2.1 Analyzing Model Uncertainty

Three approaches to analyzing model uncertainty should be used:

- validation of models,
— verification of models, and

— analysis of credible alternative models.

Guidance on each of these approaches is presented below.

(a) Validation of models

Validation is the process of obtaining assurance that a model,
usually as embodied in a computer code, is a correct representation of
the physical process or system associated with its particular

application. Validation of models can be aécomplished in three ways:

— calibration and confirmation of models by measurements taken over

the range of conditions for which the model is being used,

~ comparisons of predicted behavior to the behavior of available

analogues of the process being modeled, and

- expert judgments of validity obtained through peer review.
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A standard approach to validation is to use empirical measurements
to calibrate and confirm model predictions. This should be done over
the full range of conditions of the system being modeled in order to
adequately address uncertainty about model validity. Also, the temporal
and spatial frames of the model should be addressed by measurements

taken over similar frames.

Often, only partial validations with measurements are possible.
For example, if a model predicts concentrations of a radionuclide at all
locations and times downstream in a river, then wvalidation wusing
measurements taken at one location during one season of the year will
only be partial. As another example, this approach is of 1limited wuse
for validating models that predict effects occurring over very long time
frames. Only partial validation of model predictions of the early
development of these effects is possible. Similarly, validation using
comparisons of predicted behavior to the behavior of available analogues
can usually only be partial wvalidation. Analogues are usually only
available for some of the processes being modeled and/or conditions that

are not fully consistent with those being modeled.

Theoretical arguments can be used in some cases as the basis for
asserting that partial wvalidations imply overall wvalidity. Such

arguments and their bases should be carefully documented.

In most cases, risk analysis models will be wvalidated using a
combination of partial wvalidation by comparisons to measurements and
analogues, and by expert judgments of validity obtained through peer
review, The logic and rationale behind judgments of validity should be
clearly documented, and should include a statement by the peer reviewers
of the assumptions and physical, spatial, and temporal conditions for

which their judgments hold true.
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*
(b) Verification of models

Verification is the process of obtaining assurance that a computer
code correctly performs the operations specified in the mathematical and
logical models that it represents. Verification may be accomplished in

four ways:

- by comparing code results to hand calculations,

~ by comparison with an alternate calculational scheme,

by comparison with verified computer codes (benchmarking), and

by performing a detailed independent review of the code.

These four methods may be used singly or in combination to verify all or

parts of a computer code.

The most straightforward means for verifying a computer code is to
duplicate the code calculations by hand, performing the same
calculations that the code performs. This methéd has the advantage of
providing the most direct assurance that the calculational scheme works.
Although straightforward, this method becomes excessively cumbersome
when the calculations become very complex, such as for a finite element
grid, or when a large number of run options need to be checked. Often a

simplified problem can be set up to minimize the effort required.

Sometimes an alternate calculational scheme can be constructed to
check the results of a computer code. For example,  an exact or
approximate analytical solution may be available for a problem which the
computer code solves by numerical methods. Alternatively, two numerical
methods may be used to solve the same >prob1em. Where a different
calculational scheme can be constructed, a comparison of the code
results with the result of this alternate method can provide assurance

that the code is calculating correctly.

* The discussion in this section is based on discussions with Dr. John
Kircher of Battelle Memorial Institute.
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In addition to providing a check that the numerical model is coded
properly, analytical solutions assist in checking the ability of the
code to simulate a simple problem and provide a means for doing
sensitivity analyses of grid size and time-step size. For numerical
solutions, the grid size and time-step size used have important effects
on round-off errors. Modelers usually adjust the grid size and time-
step size in a computer run to get a stable "best" match to the

analytical solution.

Site-specific problems generally need more than idealized
analytical solution capabilities. Another effective verification
activity is comparison of code results to the results of a verified
computer code designed to perform the same type of analysis. Such

code-to-code comparison is called benchmarking.

Sometimes a code or parts of a code are mnot involved in
straightforward calculations. A graphics package is one example. A
simulation model may also fall into this category. In such cases the
code may be verified by having one or more independent reviewers walk
through the code and assure themselves that it is operating correctly.
This type of wverification 1is only suitable when other verification

options cannot reasonably be applied.

(c¢) Analysis of credible alternative models

Consideration of uncertainty about appropriate models for the
events and processes involved in a risk analysis can result in the
identification of a set of credible alternative conceptual or
mathematical wmodels. A systematic search for possible alternative
models should be performed, and expert judgments should be wused to
assess the credibility of each alternative for the system and conditions
being modeled. If possible, weighting factors representing the
likelihood of each model being the "correct" one should be obtained from

the experts.
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The sensitivity of risk amalysis results to credible alternative
models should be bounded. If weighting factors for alternative models
are available, results obtained from each alternative can be combined
according to the weighting factors as a way to incorporate model
uncertainties into overall risk analysis results. Where alternative
mathematical functional forms have been identified, in some cases "it is
possible to reformulate them as a single form with an extra parameter
that can make the model equivalent to each of the (alternmative) forms
according to the value chosen. For example, it is possible to define a
dose-response function with a threshold parameter and dose exponent
parameter, which will also reproduce mnon-threshold models (if the
threshold parameter is zero) and linear models (if the exponent is one).
Thus, uncertainty about the model form can be converted into uncertainty
about parameter values. This often simplifies the analysis, especially
if one wants to compare the impact of uncertainty about the model form
with other uncertainties" [Henrion and Morgan, 1984].

2.2.2.2.2. Analyzing Uncertainty About Quantities

The approach to analyzing wuncertainty about quantities is a
"tiered" approach wherein the risk analyst makes decisions along the way
about whether to proceed to the next level of detail and complexity in
the wuncertainty analysis. The approach consists of three basic levels
of analysis, to be done progressively wuntil an "~ appropriate 1level of

detail in quantity uncertainty treatment is reached. These levels are:

Level 1: deterministic sensitivity analysis,
Level 2: analytical treatment of uncertainty propagation, and

Level 3: probabilistic uncertainty analysis.

Note that even within these levels, the analyst is required to make
judgments about appropriate uncertainty treatment. The logic behind

these judgments should always be made explicit.

Two primary considerations in deciding on an appropriate level of
detail in quantity uncertainty treatment are (1) the type of decision

that the risk analysis supports and (2) the confidence level criterion
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involved. Table 2-2 summarizes guidance on the appropriate level of
quantity uncertainty treatment for each type of decision that risk
analyses support. Appropriate ways to characterize input parameter and
outcome variable uncertainties based on these considerations are
discussed in Section 2.2.2.1.2, and are summarized in Table 2-1. The
uncertainty analysis must be done to a level of detail that, at a

minimum, produces these required uncertainty characterizations,.

Level 1: Deterministic sensitivity analysis

The analysis of wuncertainties about the quantities in a risk
analysis begins with a deterministic sensitivity analysis. The purposes
of this analysis are (1) to assess the potential effect of uncertainties
on risk analysis results and (2) to identify important uncertainties
that might merit more detailed treatment. The sensitivity analysis
should be carefully planned so that it addresses in an integrated manner
questions about alternative models and alternative quantity values. In
addition, risk analyses often involve combining the results of several
sub-models for various processes to get concentration, dose, ot risk
estimates. The sensitivity analysis must be able to address questions
about model output variables of interest and, thus, must allow for sub-

model linkages.

The deterministic sensitivity analysis can be done to various

levels of detail. Five types of sensitivity analysis are recommended:

1. sensitivity to alternative *"scenarios" consisting of credible

combinations of alternative models and quantities,

2. sensitivity to credible alternative models,

3. sensitivity to range changes in uncertain quantities,

4. sensitivity to alternative assumptions about possible correlatiens

among model quantities, and

5., response surface methods (in some cases).
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Summary of Guidance on Appropriate Level of
Quantity Uncertainty Treatment in Risk Analysis

Type of decision

Guidancex*

Site and facility design
selection or approval

Develop an uncertainty range for outcome
(credible lower and upper bounds); establish
a "best-estimate" outcome; provide ratiomnale.

Compliance and variance
determinations

"Level of control”
decisions about the
proper levels for
standard criteria,
thresholds, and
compensation

(1) Parametric treatment of selected value
parameters, decision variables and
alternative models.

(2) Treatment of other uncertain quantities

depends on confidence level criterion
involved, as follows:

(a)

(b)

(c)

decision to be based on "best-estimates"
deterministic "best-estimates" analysis
with careful consideration of credible
lower and upper bounds for each quantity
to improve quality of "best-estimate.”

decision to be based on “conservative”
estimates -- deterministic "best-
estimate" analysis, and credible upper
bound based on scenario analyss

decision to be based on reasonable level
of confidence--propagate probability
distributions for uncertain quantities.

"Act versus study"

Deterministic scenario analysis to establish

decisions "best-estimate and credible upper bound
(first-order analysis); perform value-of-
information evaluation on probability trees
(higher-order analysis).
*NOTE: Deterministic sensitivity analysis is recommended for

of decisions.

all types
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These are described below:

(1) Scenario analysis

The sensitivity analysis begins with a macro-level analysis aimed
at bounding the potential total effect of combined model and quantity
uncertainties on risk analysis vresults. This 1is accomplished by
constructing "scenarios” consisting of credible combinations of
alternative models and model quantity wvalues within their ranges of
uncertainty corresponding to worst-case, best-case, and most likely case
assumptions. These scenarios should be developed by obtaining consensus
judgments on them from a group of experts on the processes, models, and
parameters involved in the risk analysis. The rationale behind each

scenario should be documented.

The primary question to be addressed by the "scenario" analysis is:
Do the differences 1in the risk analysis results across the scenarios
indicate possible changes to risk management decision alternatives? In
addition, a credible bound on overall wuncertainty about the risk
analysis results is obtained. Lave and Epple [1985] have suggested
that, for problems that involve many uncertain variables, the point of
doing scenario analysis 1is primarily to provide an opportunity to
stretch the analyst's thinking by providing various combinations of

possible events and outccomes for consideration.

If the scenario analysis shows that uncertainties could make a
difference to the decision being supported, then a more detailed level
of analysis should be done to assess the relative contributions of the
individual sources of uncertainty. This allbws the analyst to focus on
important uncertainties for even more detailed uncertainty treatment or

planning steps to reduce or eliminate them.

The scenario analysis can be organized around a ‘"scenario tree,"
such as the one shown in Figure 2-4. Furthermore, probability estimates
can be developed for the branches in the scenario tree to extend it for
a probabilistic uncertainty analysis (see pages 59 to 63). As an aid to

risk management decision-making, the tree can be further extended by
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including decisions on it, as is illustrated in Figure 2-5 (reproduced
from North and Balson [1985]). 1In this tree the current decision is
whether or not to adopt immediate additional controls on air emissions
of compounds linked to acid deposition. Uncertainty about long-range
transport processes in the atmosphere and long-term ecosystem impacts
are represented by branches for low and high cases. Future decisions
about additional controls, to be based on the uncertain outcome of the
current decision, can also be included in the tree, as shown.
Probabilities, costs of alternative decisions, and scenario outcomes can

also be included.

(2) Sensitivity to credible alternative models

The first step of the more detailed level of sensitivity analysis
was already performed as part of the analysis of model uncertainty
described in Section 2.2.2.2.1. 1In this analysis, model quantities are
fixed at "best-estimate" values and used in runs of credible alternative
models. The range of results across alternative models can be compared
to the range of overall uncertainty obtained from the scenarios analysis
to assess the relative contributions of model wuncertainty to overall
uncertainty in risk analysis results. This step is a critical, but
often overlooked, part of uncertainty assessment. The usefulness of any
level of treatment of quantity uncertainties is limited if uncertainty
due to credible altermative models has not been addressed. Note that in
regulatory applications a common approach to model uncertainty is to use
the alternative model that produces the most conservative results. This
approach is valid when any one credible alternative model is not clearly
and convincingly "correct” by consensus. 1f this approach is adopted,
the rationale for the model chosen and an assessment of the effect of
using that model (versus alternative models) on the level of confidence

in risk analysis results should be provided.

The remainder of the more detailed level of sensitivity analysis is
aimed at identifying and prioritizing those quantity uncertainties which
have a significant impact on the output wvariables of interest. This

helps to keep any more detailed uncertainty analysis that might be
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Fig. 2-5. Example of a "scenario tree" for an acid deposition control
problem. The tree is extended to include current and future
decisions, outcome uncertainties and branch probabilities.
Adapted from a figure in North and Balson, 1985. Reproduced

with authors' permission.
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indicated down to a reasonable level of effort and cost by allowing it

to focus on important uncertainties.

(3) Sensitivity to quantity range changes

Since a given model quantity cannot be characterized as any more
uncertain than by merely specifying its lower and upper bounds,
calculating the change in risk analysis model output for a total range
change in the input parameter provides an indication of how important it
is to further upgrade the parameter’s uncertainty treatment. The
greater the change in output produced by the quantity range change, the
more important it is to determine how 1likely it is that the “true"
quantity value is at different magnitudes within its bounds. If a total
range change in the value of a quantity results in a large change in
model output values (and a subsequent change in decision alternatives),
it would then be appropriate to make the efforts required to refine the

characterization and treatment of uncertainty about the gquantity.

The refinement might reveal, for example, that there 1is high
probability assigned to a small interval with the total range and low
probability assigned to the majority of the range. Thus, while large
differences in risk estimates could result from alternative opinions
about the parameter’s magnitude within its total range, the probability
of such differences would be assessed as low. On the other hand, if a
total range change in a model quantity results in only a small change in
the model output values (and no subsequent change in decision
alternative), then spending further resources to develop a refined
uncertainty characterization for this parameter might be considered

unnecessary.
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The procedure for the quantity range sensitivity analysis 1is as
follows:

a. fix each uncertain model quantity, one at a time, at its credible

lower bound (holding all others at their medians),
b. compute the output measure,

¢. fix each uncertain quantity, one at a time, at its credible upper

bound,
d. compute the output measure, and
e. divide the high output by the low output.

An example of the results from such a quantity range sensitivity

analysis is shown in Table 2-3.

These results are useful for identifying the quantities which merit
closest attention with respect to their uncertainty characterization.
Note that these results do not provide any information about the
probability of a quantity’'s value being at any level within the range.
As such, these results should be used as a means to focus and prioritize

where more attention should be paid to model parameter uncertainties.

(4) Sensitivity to correlation assumptions

The sensitivity analyses described. above are based on  the
assumption that the parameters of the model are independent of each
other. There is sometimes evidence that to some extent correlation
exists between some of the model input quantities. Depending on the
extent of correlation and the model structure, correlation effects can
either increase or decrease output uncertainty. It is often the case
that insufficient information exists to estimate the level of
correlation between variables; however, by comparing results assuming no

correlation to those assuming fully correlated quantities (where



Table 2-3. Example of Quantity Range Sensitivity Analysis Results
[Rish et al., 1983]

Factor change in median dose over quantity uncertainty range
(Fixing all other quantities at their medians)

Quantity AM-241  CS-135 NP-237 PU-239 RA-226 TC-999
Dnop - ingestion 764.0 5.0 982.0 4240.0 1504.0 10,545.0
Pnop - inhalation - - - 193.0 - -
Dnop - external ground - - - - 1.5 -

Dnop - external air - - - - - .

- 56.0 8.3 4510.0 8.5 3.0
nv
F (milk) - 1.3 - - - 1.5
mn
an {beef) - 1.4 - - - 1.1
Bioaccumulation factor 1.5 7.0 4.9 1.7 1.1 2.8
den 2.9 1.4 A 2.3 1.9 2.9
Asn _ - 151.0 25.7 44 . Q 5.3 3.9
Resuspension factor - - 3.0 - - -
Irrigation fraction 5.8 6.0 7.0 9.1 9.3 8.2
Sedimentation factor 100.0 10.0 10.0 100.0 - -
Water treatment factor 1.6 - 1.1 1.4 1.3 1.4

(-) = Negligible

Note: The entries above were derived by (1) fixing each quantity in first column at
its lower bound (holding all other quantities at their medians, (2) computing
the dose, (3) fixing each at its upper bound, (4) computing the dose, and
(5) dividing high dose by low dose.

o9t
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correlations are suspected) it is possible to assess the sensitivity of
model results to such correlations, if they did exist. It is extremely
important to treat possible correlation effects in deterministic
sensitivity and probabilistic uncertainty analyses. To not do so can
seriously flaw an otherwise insightful uncertainty assessment. Several
available software systems for uncertainty and sensitivity analysis

include capabilities to handle correlations.

A first order sensitivity analysis to possible correlations can be
done by first grouping possibly correlated uncertain model input
quantities and assuming them to be fully correlated. The change in
median model output from a range change in the group of correlated input
parameters, varied together, is determined. An example of the results
of such an analyses is presented in Table 2-4 for a model estimating
doses of the isotopes AM-241 and PU-239 released to a river. The
results are expressed as the change in the range of the results when
different quantities are treated as correlated. For example, for PU-
239, when the 1inhalation and ingestion dose conversion factors are
treated as independent, the dose results vary by a factor of about 4000
when the Ingestion dose conversion factor is varied over its range.
However, if the inhalation and ingestion dose conversion factors are
treated as fully directly correlated and varied together over their
ranges, the change in dose results increases to a factor of about

300,000.

The sensitivity analysis to correlation assumptions can be quite
useful for providing improved confidence in the analyst’s understanding
of the structural relationships in the risk model being used. To
illustrate this point, it isg helpful to examine the example in Table 2-4
in more detail. Correlations were assumed in the example for dosimetry
and pathway factors. The dose conversion factors for ingestion and
inhalation were directly correlated because the physical and biological
processes that affect both absorption into the blood and biological half
life should be similar for each route of uptake. an, an, an,
biocaccumulation factor, and Asn were assumed to be directly correlated

with each other and inversely correlated with sedimentation removal.

, F. , and bioaccumulation factor was

Direct correlation among B, F
nv fn

mn
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Table 2-4. Example of Results from Correlated Range
Sensitivity Analysis [Rish et al., 1983]

Factor change in median dose

Quantities
AM-241 PU-239
Dnop - ingestion 764.0 4240.0
Dnop - inhalation - 193.0
Fully correlated dose 778.3 3308,548.0
conversion factors
B - 4510.0
nv
F - -
mn
an ) )
Bioaccumulation factor 1.5 1.7
A - 44 .0
sn
Sedimentation factor 100.0 100.0
Fully correlated B, F F_ , 1.5 4552.0
nv mn  fn
and bioaccumulation factor
Fully correlated B, F |, F_ , N/A 450,000.0
nv mn fn
bioaccumulation factor, and
sedimentation factor
Fully correlated B._, F , F_. , 148.2 631.6
nv wn fn

biocaccumulation factor,
sedimentation factor, and

A
sn




49

assumed because biological mobility is the factor which each parameter
has in common. Asn’ which is an expression of mobility in soil, was
treated as directly correlated with an because the greater a
radionuclide’s mobility in soil, the greater its availability for uptake
by plants. Inverse correlation with sediment removal was assumed
because a radionuclide which tends to remain associated with
particulates and not be dissolved in water might be less likely
available for biological uptake. A higher Kd, therefore, leads to a
lower value for an and bioaccumulation factor. Particle binding also
affects the radionuclide removal rate from the soil root zone. Thus,
increases in K, wmight also lead to decreases in Asn' Note that

d

increases in an, F an, and bioaccumulation will increase dose while

fn’
increases in Asn will decrease dose. Sediment removal processes are
also affected by particle binding. This factor was considered,
therefore, to be inversely correlated to the other pathway parameters,

because higher K, will decrease those parameters but increase sediment

d
removal.

The results for Am-241 demonstrate the obvious point that
correlation 1is only important if the uncertainties about two or more of
the correlated parameters are important. Referring to Table 2-4,
assuming full correlation between the ingestion and inhalation dose
conversion factors, and thus varying them together over their ranges,
resulted in approximately the same factor change in the median dose
estimate as from varying the ingestion dose factor alone. Also,
assuming fully correlated an, an, an, biocaccumulation factor, and Asn
parameters resulted in the same range change sensitivity as = for the

uncorrelated biocaccumulation factor alone.

In contrast to the correlation sensitivity results for Am-241, the
results for PU-239 demonstrate that if two or more parameters which
might be correlated have significant 1levels of uncertainty, then
correlation assumptions can greatly affect uncertainty analysis results.
Referring to the PU-239 results in Table 2-4, both the ingestion and
inhalation dose conversion factor wuncertainties are important with
respect to the model’s dose output. Assuming they are fully correlated,

and varying them together over their uncertainty ranges, results in a



50

change in the range of dose output which is much larger than when the
parameters are treated as uncorrelated (i.e., 300,000 vs 4000). The
effect that the assumed model structure and type of correlation can
produce is indicated by the decrease in parameter range sensitivity
(from a factor of 4552 to a factor of 631) which occurred when Asn and
the sedimentation factor were added to the correlated group of
parameters for PU-239. Adding the inversely correlated sedimentation
removal to the an, an, an, and bioaccumulation factor grouping
increases the change in dose for a range change in these parameters.
However, adding Asn to the grouping more than offsets the sedimentation

factor correlation effect. The result is a net decrease in output

sensitivity over that produced by a range change in an alone.

In the example, assessing the magnitude and direction of possible
model quantity correlations was shown to be important for determining
their net effect on the results of the uncertainty analysis; however,
due to a lack of sufficient understanding of the processes behind these
quantities, any detailed correlation assumptions would be mostly
conjecture. Research on the mechanisms behind the model quantities and
the factors upon which these mechanisms depend would serve to improve
the dose estimates for those radionuclides having importaht uncertain
quantities which are correlated. Thus, the correlation sensitivity
analysis can help show where research efforts might effectively reduce

risk analysis uncertainty.

Note that it 1is possible, wusing a factorial design for the
deterministic sensitivity analysis, to accomplish both the quantity
range sensitivity and the first-order correlation analysis described
above at the same time. The approach is to select two or more values
from each uncertain quantity range and combine them into a set of all
possible combinations of all quantities at all selected values.
According to Rod [1984]: "Such a complete set 1is called a full
factorial design. Three factors at two values ("low" and "high") each

would be combined as follows:
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Combination # Factor 1 Factor 2 Factor
1 low low low
2 low low high
3 low high low
4 low high high
5 high low low
6 high low high
7 high high low
8 high high high

"One advantage that full factorial designs have over one-at-a-time

sampling is that the interactions among all combinations of factors are

estimable from the basic¢ set of runs. From the preceding example

effects of factors 1, 2, 3, 1+2, 1+3, 243, and 14+2+3 on outputs can all

be estimated."

"The main disadvantage of full factorial designs is that the number

of runs required is given by:

(# full factorial samples) = (k)n
where k = # levels per factor

and n = # factors."

"Two approaches to reducing the required number of samples are

restriction to two levels per input (and so a restriction to the linear

assumption) and the use of partial factorial designs.”

(5) Response surface methods (in some cases)

Response surface methods can be used to screen important model

uncertainties and to construct simplified versions of models; however,

these methods require a significant effort and therefore should only be

used to offset the cost of planned probabilistic uncertainty analyses by

simplifying them, or when the models involved are frequently wused

other applications for which the response surface results would be

valid.
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If the model involved in a risk analysis is relatively simple
(e.g., dose from a few biosphere pathways), then it can be insightful to
develop a "feel"™ for the model response surface by calculating
"elasticities" for uncertain input quantities at various points in their
ranges. "Elasticity" is the percent change in model output per percent
change in model input quantity value. Elasticity depends upon the
specific point about which it is calculated within the uncertainty range
of the input quantity. This is because a model might be more or less
sensitive to small changes in the quantity depending on the magnitude of
the quantity. Elasticity can be thought of as the slope of the model
response curve for the given quantity at a specific 1location on the
curve. This concept 1is illustrated in Figure 2-6. The figure shows
increasing elasticity at values of input quantity X below X%, and
decreasing elasticity above X*. Note that on this figure the quantity

range sensitivity is defined as Y, divided by Yl'

2

By calculating elasticities across uncertain model quantity ranges,
provided the model 1is simple enough for the analyst to conceptualize,
the analyst can improve his or her understanding of the structure of the
model and can identify portions of the uncertain quantity ranges where
the model output is especially sensitive or insensitive to changes in
the quantity. For example, in the hypothetical example in Figure 2-6
the elasticity increases for values of X below X*¥ and decreases for
values above X*. Thus, the model is more sensitive to small differences
in the assumed input parameter value in the lower portion of its

uncertainty range than in the upper portion.

As an example of how a quantity range sensitivity analysis combined
with elasticity analysis can provide insight as to where uncertainties
about model quantities matter and how they interact, consider the
results shown in Table 2-5. These results are from analyses performed
on the river release models used by the ORP to derive the release limits
in 40 CFR 191 [Rish et al., 1983]. The analysis assumes one curie of
PU-239 released to a river, and calculates the fatalities from human
doses from eight exposure pathways. Table 2-5 (top) shows the

allocation of dose by the model to the eight pathways.
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Table 2-5 (top). Median dose per curie

released to river -- by pathway
River mode pathway Median dose
Drink Dose 1.7600
Fish Dose 0.0427
Cxop Dose 3.4464
Milk Dose n*
Beef Dose n
Inhale Dose 1.1088
Ground Dose 0.0073
Air Dose n
TOTAL DOSE 6.3652

*n = Negligible

Table 2.5 (bottom). Range Change Sensitivities and Elasticities

Elasticities
Factor change in % Adose per % Aquantity at
Quantity dose for quantity
range change lower bound median  upper bound
Dnop - ingestion 424 .0 ) 0.825 0.999
Dnop - inhalation 193.0 (-) 0.174 0.994
Dnop - external ground (-) () () (-)
Dnop - external air (-) (-) (- (-)
B 4510.0 (-) 0.114 1.0
nv
Fon (milk) (-) ) ) )
F._ (beeb) -) ) (-) (-)
Bioaccumulation factor 1.7 (-) 0.007 0.398
p 2.3 -0.66 -0.429 -0.221
en
A 44.0 (-) -0.284 -0.004
sn
Resuspension factor 3.0 (-) 0.174 0.68
Irrigation fraction 9.1 0.34 0.717 0.93
Sedimentation factor 100.0 1.0 1.0 1.0
Water treatment factor 1.4 0.122 0.277 0.385

(-) = Negligible
Source: [Rish et al, 1983}
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Table 2-5 (bottom) shows the results of a range sensitivity and
elasticity analysis on model quantities that were judged to have
possibly significant uncertainty levels. Referring to the  table, the
dose estimate from the model is significantly sensitive to range changes
of several parameters: Dnop-ingestion, Dnop-inhalation, an, Asn’ and
sedimentation. Plutonium 1is the only radionuclide specified in 40 CFR
191 where the results are sensitive to the inhalation dose conversion
factor. This 1is due in part to the relatively high inhalation dose
conversion factor for PU-239. Because of this fact the inhalation
pathway plays a significant role in the total dose (see Table 2-5
(top)), which explains the variable elasticities of both ingestion and
inhalation dose factors (see Table 2-5 (bottom)). When the ingestion
Dnop is at its lower bound, the inhalation exposures dominate and
changes in the ingestion dose conversion factor do not affect the dose
at this level. When the inhalation Dnop is at its lower bound the total
dose 1is due to the Ingestion routes, and changes in inhalation Dnop do
not affect the model results. The elasticities also indicate that only
difference  between the higher wvalues of Dnop  inhalation produce

significant changes in the total dose.

The range and 1local sensitivities for the parameter an are
noteworthy. It can be seen that the range change for this parameter
affects the dose more than any other factor, yet the dose 1is elastic
only to changes near the upper bound of the an distribution. This is
exemplified in Table 2-5 (bottom) where the elasticity of the median is
only about 10% of that of the uppef bound for Bﬁv. Thus, differences of
opinion about the appropriate value for an are more important at the

high end of its uncertainty range.

As a final point, Table 2-5 (bottom) reveals that the dose is
sensitive to changes in the soil removal rate constant Asn only between
the 0.25 and 0.50 fractiles. This occurs because, at low wvalues for
Asn’ radiological decay becomes the controlling mechanism for removal.
For high removal rates no activity 1is retained in soil so other
pathways, such as drinking water, fish ingestion, and inhalation,
predominate. This is an interesting finding because resolution of Asn

at its extremes is not as important as uncertainty around its mean.
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For many risk analysis problems the models involved are complex and
have many input quantities. For these models a simplistic elasticity
analysis would probably not yield much insight since the complexity of
the algorithms involved and the model logical structure, and the large
possibilities for interaction effects would make the significance of the
results obscure. A more sophisticated 1level of response surface

analysis is required, if warranted. Such an analysis is warranted if:

1. probabilistic analyses of uncertainty are planned (see Table 2-2),
and it is desirable to reduce their cost by more refined screening
of important uncertain quantities and/or develeping a simpler
version of the model, or the development of a response surface is a
necessary step in the probabilistic analysis (i.e., calculation of
first-order derivatives for method-of-moments or Taylor series

approximation techniques (see "Level 2" discussion below), or

2. the models involved are planmed for frequent use in  other
applications for which it is expected that the response surface

results will be valid.

Response surface methods can begin with a preliminary statistical
analysis used to screen the model input quantities to identify those few
quantities that have a significant effect on the output. This screening
step begins with those quantities identified as being "important" by the
previous sensitivity analyses. To these, the analyst applies stagé-wise
correlation  analysis (see [Vaurio, 1982]) followed by step-wise

regression analysis (see [Vaurio, 1982] and [Iman, et al., 1980]).

A response surface model is developed using the important model
quantities as identified by the screening step. This response surface
model is, in effect, a simplified version of the original model. The
response surface model can be developed in several different ways,

including:

1. surface fitting, and

2. use of differential sensitivity theory (perturbation calculus).
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Software is available to facilitate the surface-fitting approach
{(see [Vaurio, 1981}]). The use of differential sensitivity theory to
calculate a response surface model involves deriving a set of "adjoint"
equations for important wuncertain quantities. These are partial
differential equations representing changes to model output  from

perturbations to input quantities.

According to Rod [1984]: “"Once the set of forward equations, with
initial and boundary conditions, and the set of adjoint equations are
established, all system responses to all input changes can be found with

just two calculations per desired response."”

"One limitation of the method is that computed sensitivities are
strictly 1linear apptoximations at one point on the system response
curve. Sensitivities at points away from that point (far enough for an
assumption  of linearity to break down) require separate point
calculations. The points can be linked by interpolating between the

tangential planes generated by the differential sensitivity model."

"The advantage of the differential sensitivity method in
calculation time and cost savings is had at the expense of a greatly
increased theoretical development effort. The complete sets of forward
and adjoint equations must be derived to match the specific computer
model wunder study, effectively requiring creation of a unique

sensitivity model for each new physical model.®

"In practice, the development of a differential sensitivity model
has taken months of effort by experts in the theory of the particular
field for which the original physical model was created. This
requirement both boosts the cost of implementing the method and
discourages its use by anyone other than the original code’s developers.
Independent review, by regulatory authorities, for example, is more

difficult.”

"Recent innovations may help to relieve the development cost
disadvantage [Oblow, 1983]. A group at the Oak Ridge National
Laboratory created a FORTRAN "pre-compiler" GRESS, which generates the

necessary differential equations directly from the original source code
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and incorporates them into a new source code. This automatic procedure
is still being refined, and the breadth of its applicability has not

been assessed."

Note that the results of GRESS can, in some cases, be used with
analytical solutions (or approximations) for statistical error in the
moedel to obtain estimates of model output uncertainty. This approach is

discussed in the next section.

Level 2: Analytical treatment of uncertainty propagation

In some cases, when the risk analysis involves the use of models
consisting of explicit mathematical expressions, algebraic formulae are
available to obtain analytical solutions (or good approximations) for

uncertainty in the results of the calculations.

Seiler has developed a set of analytical solutions, or sufficiently
close approximations, for the propagation of input parameter
uncertainties through "some simple algebraic structures that occur often

in risk assessments"™ [Seiler, 1986]. These structures are:

— linear combinations,

— positive powers of one variable,

- negative powers of one variable,

~ non-integer powers of one variable,

- products linear in each normally distributed variable,

- products of powers of log-normally distributed variables,
— non-linear dose-effects relations,

- cumulative incidence functions,

— survival functions, and

-~ more complex composite forms.

There are important limitations to the applicability of these
formulae. They only allow estimation of the mean and standard error of
the output variable. They assume independence among the uncertain
parameters (quantities), though Seiler has developed formulae for error

propagation where large correlated errors are present [Seiler, 1983].
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Sums and differences of log-normally distributed quantities cannot be
performed. It 1is mnecessary to numerically evaluate the  partial
derivatives with respect to the model output for each uncertain

quantity.

Note that this last requirement can be accomplished two ways: (L
by an adjoint sensitivity analysis of the model, or (2) by perturbing
the input quantities one at a time while holding all others at their
nominal values. For the first approach, the code GRESS [Oblow, 1983]
can be used to generate the necessary differential equations by adjoint
sensitivity analysis of the risk analysis model. These can then be used

in the formulae for analytical treatment of output uncertainty.

A paper [Seiler, 1986] presenting Seiler’s formulae and his
treatment of the algebraic structures occurring in risk assessments is

reproduced in Appendix B.

Depending on the type of decision that the risk analysis supports
and the confidence-level criterion involved in the decision, greater
specification of the model output uncertainty than is possible by
Seiler’s formulae (mean and standard error) may be desired. 1In these
cases, an assumption must be made about the shape of the output

distribution.

Level 3: Probabilistic uncertainty analysis

The deterministic sensitivity analysis identified those model
quantity uncertainties that are "important" in that changes to them
within their ranges of uncertainty produce changes to risk analysis
outcomes, and possibly to the risk management alternative chosen.
Depending on the type of decision being supported by the risk analysis
and the particular confidence level criteria involved (see Table 2-2),
the analyst must decide whether it is appropriate to proceed to the next
level of quantity uncertainty treatment -- a probabilistic uncertainty
analysis. 1In general, a probabilistic uncertainty analysis is called
for when it 1is necessary for the decision-maker to know the relative

likelihoods of alternative risk analysis results (and thus alternative
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risk management decision outcomes) across their full range of

uncertainty, and analytical solutions are mot practical or sufficient.

(1) Probability trees

"The simplest and probably most common approach to uncertainty
propagation is to explore the range of possible outcomes without
attempting to quantify their relative likelihoods" [Henrion and Morgan,
1984]. This is the "scenario" approach previously described as part of
the deterministic sensitivity analysis. A simple level of probabilistic
analysis involves extending the scenario, analysis by assigning discrete
probabilities to the high, medium, and low values of each important
uncertain quantity in each scenario. In order to account for
conditional dependencies, the quantities should be ordered conceptually
in a ‘"probability tree” such that each quantity is subsequent to any
quantities it depends on. An example of a "probability tree” is shown
in Figure 2-7. Each node represents a key uncertain factor with
branches to each of its possible levels. Each branch 1is assigned a
probability conditional on the outcoﬁes of the previous branches. Each
of the endpoints on the right of the tree represents a potential
scenario whose probability is the product of the probabilities of the
branches leading up to it. Risk analysis outcomes are combined with the
scenario’s associated probability from the “"probability tree." The
scenario outcomes are ordered and cumulated to obtain a cumulative
probability distribution representing uncertainty about the risk

analysis.

This approach to obtaining a probabilistic measure of risk analysis
uncertainty has, as advantages, that it is easy to follow and it
requires a relatively modest effort for simple models. A major
disadvantage 1is that since the number of separate scenarios to analyze
is MN for N uncertain quantities each with M possible wvalues, the
approach is impractical for analyses involving large M or more than five
to ten uncertain quantities (N). In these cases, an alternative
approach 1is available, called the method of Discrete Probability

Distributions (DPD) [Kaplan, 1981]. According to Henrion and Morgan



SOURCE
TERM

__LOW_RELEASE

TRANSPORT
AND
LOSS

NQ_SEDIMENTATION

EXPOSURE
PATHWAYS

LOW PLANT UPTAKY

T T
Lol ns 1

p P
NS| L

©

P,

WIGH RFLEASE

| SEDIMENTATION

¢

])

PHU!‘NS' L

LOW PLANT UPTAKE

DOSIMETRY

DOSE FACTOR

P
PLDF] PLU’ PNS’ L

HIGH DOSE FACTOR

PHDF’ PLU’ I)NS’ PL

Pror | Proe Pws® L
HIGH DOSE FACTOR

Pupr | P Tns” L

LOW _DOSE FACTOR

3 3]
ProtPs Fu

PS‘PL

NO SEDIMENTATION

HIGH PLANT UPTAKE

3 >
lHUF‘S"L

1.OW PLANT UPTAKE

H1GH DOSE FACTOR

HIGH DOSE FACTOR

PNSIPH

Py

?Lﬁ(pﬁs’ pH
v

HIGH PLANT UPTAKE

HIGH DOSE FACTOR

LOW _DOSLE FACTOR

>
PHUleS' Py

LOW PLANT UPTAKE

HIGH DOSE FACTOR

LOW DOSE FACTOR

Prut®s’ T

HIGH PLANT UPTAKE

HIGH DOSE FACTOR

LOW DOSE FACTOR

bl 3
Pau| s Pu

L FACTOR

DOSE

Fig. 2-7. Example of a probability tree, wherein the "scenario" analysis is extended to include
discrete probabilities of key uncertain factors.

{9



62

[1984]: "Suppose every uncertain parameter 1is discretised to five
values. Where two parameters must be multiplied, all 25 possible
combinations of the two are computed with their probabilities. These
are ordered and the resulting 25 point DPD is "condensed"; that 1is, it
is itself approximated by a 5-point DPD before it takes part in further

calculations."

"If factors can always be combined only two at a time, there Iis
never any mneed for more than 25 calculations at each point, and so the
combinatorial explosion is avoided. 1If the same parameter appears in
the calculation in more than one place, then this will not work, since

it will create dependent subexpressions to be combined. For example,

y = (x1 + x2)/x3 — x1%x2

Thus, the method requires the calculations to be reordered to put all
repetitions of the same term in the same subexpression. This can
require considerable ingenuity, and unfortunately is impossible for many
complex computations, which puts a severe limitation on the

applicability of the method.®

(2) Stochastic simulation techniques

An alternative to the analytical treatment and probability tree
approaches described above is to use stochastic simulation techniques
(also known as Monte Carlo techniques) to  propagate quantity

uncertainties through model calculations.

Probability distributions should be developed for each important
model quantity identified by the sensitivity analyses. The guidance for
characterizing empirical parameter uncertainty provided in Section
2.2.2.1.2 should be used when developing the probability distributions.
Note that some uncertain quantities (e.g., decision wvariables, wvalue
parameters) will be treated parametrically, and some planning should be

done on how to best combine parametric and probabilistic analyses.
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The concept of stochastic simulation is simple. Values are sampled
from the ranges of each uncertain quantity according to the frequencies
represented by their probability distributions. At each iteration a set
of values are selected and the model is run. After many iterations a
histogram of the results provides an estimate of the probability
distribution of the model outcome. This probability distribution
represents uncertainty about the risk analysis model results due to

uncertainty about model input quantities.

Some excellent software is available to facilitate Monte Carlo-type
uncertainty propagation. Available software is summarized in the
companion literature review;* however, three systems are worthy of
mention here. MOUSE [Klee, 1985] and DEMOS ([Henrion, 1979]) are
interactive computer programs that allow  specifying probability
distributions for model input quantities and Monte Carlo-type
propagation through user-specified models. These systems are highly
recommended for risk analysis models consisting of combinations of
algebraic expressions, including matrix operations. They can be quite
cost-effective for these applications. LHS (Latin Hypercube Sampling)
is a computer program for the generation of Latin hypercube and random
samples for propagating uncertainties through computer codes [Iman and
Shortencarier, 1984]. The program is relatively portable, and can be
used as the mechanism to convert a deterministic model into one that
propagates input parameters probabilistically. Sampling can be done
from standard or wuser-defined distributions and from empirical data.
Correlation among input parameters can be treated. A companion program
is available for calculating partial correlation and standard regression

coefficients for a data set [Iman et al., 1985].

For a risk analysis model having a large number of uncertain
gquantities or a vrelatively complex algorithm, it might be more cost-
effective to develop a simplified version of the model on which to
perform the Monte Carlo-type analysis. This simplified version can be
developed by applying response surface techniques (e.g., adjoint

sensitivity analysis) to the model.

* See Review of Studies Related to Uncertainty in Risk Analysis [Rish,
1988].







2.2.3 EVALUATING AND COMMUNICATING THE RESULTS OF THE UNCERTAINTY
ASSESSMENT

Once an uncertainty assessment strategy has been developed and
implemented for a particular risk analysis, the significance of the
results of the uncertainty assessment must be evaluated. Based on the
type of decision that the risk analysis is supporting, the confidence
level criterion involved, and the intended "audience," the analyst must
devise an effective way to communicate the results of the uncertainty

assessment.

Generally speaking, the results of an uncertainty assessment as

part of a risk analysis are used to address two types of questions:

1. questions about levels of confidence in the possible outcomes of

alternative risk management decisions being considered, and
2. progfam planning-type questions about:
- risk control versus uncertainty reduction (act vs. study),
— effective research, measurement and analytical activities, and
- institutional responses to uncertainty issues.

A decision-maker should be able to use the uncertainty assessment

results to:
1. assess the levels of confidence in risk analysis results,

2. 1identify the important sources of uncertainty in the risk analysis

results,

3. understand the "resilience" of alternative risk management

decisions to uncertainties about their outcomes, and
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4., determine possible actions that may be taken to reduce wuncertainty

in decision outcomes.

In other words, the uncertainty assessment should answer the following

corresponding questions:
1. How confident can we be in the risk analysis results?
2. Why are we uncertain?

3. How wrong could we be, how likely is it, and what difference would

it make?
4. How might I increase confidence in my decision?

Before describing how to present uncertainty assessment results to
address these questions, an Iimportant "lesson-learned" from previous
applications of wuncertainty assessment is worth consideration.
Experience has shown that the process of systematically addressing
uncertainties in a risk analysis provides those directly involved in the
process with important insights for each of the questions listed above.
Many of these insights are difficult to reflect in the substantive
results of the uncertainty assessment, but they are just the same a
"product” of the assessment that contributes to better decision-making.
For this reason it is recommended that, in order to increase confidence
in decisions based on risk analyses, someone with a role in the risk
management decision process be involved in, or at least constantly
monitor, the risk analysis and its accompanying uncertainty assessment

as they evolve,

How confident can we be in the risk analysis results?

The way to address this question depends on the type of decision
that the risk analysis supports and the confidence level criterion

involved.
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(1) Risk analyses being used to support site and facility design
selection decisions should characterize output uncertainty by presenting
the range between credible upper and lower bound estimates for each
alternative site or design being considered. These ranges should be
presented comparatively in a figure also showing their relationship to
the particular selection criteria that the risk analysis addresses. For
example, Figure 2-8 shows hypothetical results from an wuncertainty
assessment done Iin support of a site selection decision where criteria
exist for radionuclide concentrations in ground water (C*) and maximum

individual dose (D¥).

Figure 2-8 (top) shows that while Site A has the potential to not
meet the ground water concentration criterion, the best-estimate is well
below the criterion. The discussion accompanying these results might
further indicate, for example, that low probability scenarios are
associated with the portion of the range for Site A that is in excess of
the criterion. The credible range of uncertainty sabout ground water
concentration for Site B is entirely within the criterion (C¥*); however,
the best-estimate 1is significantly higher than that for Site A. 1In
fact, the best-estimate concentration for Site A is 1less than the
credible lower bound concentration for Site B. The results for Site C
shows a relatively narrow range of uncertainty around a best-estimate

ground water concentration that barely meets the criterion.

Figure 2-8 (bottom) shows that Sites A and B have comparable best-
estimates for maximum individual dose; however, the range of uncertainty
in the dose estimate for Site B is less than that for Site A. Also, the
credible upper bound on the dose estimate uncertainty for Site B is
lower than that for Site A, allowing for a greater margin beneath the
dose criterion (D¥%). The dose estimate for Site C is less uncertain
than those for Sites A and B, but the best-estimate and range for Site C
are significantly higher than those for Sites A and B (and significantly

closer to the dose criterion).



GROUNDWATER CONCENTRATION

DOSE

i

1
1

MAXTMUM INDIVIDUA

C*

D*

68

—/Q'——«—-—_.———m———-—_——»—_—m_.—n%.___””__“
SITE C
O
best estimate
q SITE B
SITE A
e e e e e e — —— —— e — - —
SITE C
.
¢ )
SITt B
- .
SITE A ~ i
Fig. 2-8. Presentation of hypothetical results of an uncertainty assessment

done in support of a site selection decision where criteria exist
for ground-water concentration (C*) and maximum individual dose



69

In addition to presenting graphical results of the uncertainty
assessment, like those in Figure 2-8, the conceptual models,
assumptions, and conditions associated with the best-estimates and each

of the credible bounds should be explained clearly and concisely.

(2) "Act versus study" decisions address whether or mnot to
implement risk control actions or wait until further studies reduce
uncertainties about decision outcomes. For this type of decision
uncertainty about risk analysis outcomes should be characterized by
providing "best-estimates" and plausible upper-bound estimates of risks.
If the analysis indicates that plausible upper-bound risk estimates are
relatively low, then there is increased confidence in a decision to mnot
regulate. Where plausible upper bound risk estimates are significant,
the best-estimates can be helpful in deciding whether to gather more
information before basing decisions on the upper bound estimates. If
changes to the risk analysis outcome fall within the range between the
best-estimate and upper bound estimate, and result in indicated changes
to risk management alternative, then more information about  the
likelihood of outcomes within this range 1is mneeded to support the
decision. In this casé the analyst can use probabilistic uncertainty
analysis to perform a value-of-information assessment. An example is
shown in Figure 2-9. The choice of whether to take action to control
undesirable risks that are represented by particular paths through the
tree can then be viewed as a decision on whether to buy insurance
against the probabilities and outcomes associated with those paths. A
good discussion and example of the application of probability trees and
value-of-information analysis to the "act versus study" decision is

provided in North and Balson [1985].

Useful guidance regarding “act versus study" decisions is provided

in a recent editorial by Morgan as follows:

"Research can never demonstrate that a risk does not exist. It can
establish probabilistic bounds on possible risks, and if those bounds
are sufficiently low, we should then say "enough". For this to happen
two things are needed. First, government agencies need to explicitly

consider the question of “"stopping rules” before they embark on
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mission-oriented programs of risk research. As the research progresses
they need to continue to refine those rules in the 1light of what has
already been investigated and learned; what it is likely to cost to
learn more; what the risks might be; and what kinds of findings are
still needed before it makes sense to stop. Second, we need to evolve
some common understanding between society, risk regulators, and the
courts about how to establish acceptable probabilistic upper bounds on
possible risks. Without these two developments, well-meaning government
investments in risk-motivated applied research may sometimes do more

harm than good" [Morgan, 1986].

(3) Characterizing risk analysis  outcome  uncertainty  for
compliance determinations depends on the confidence or assurance level
criterion specified in the pertinent regulation, or otherwise indicated
by the implementing agency. Similarly, characterizing risk analysis
outcomes in support of "level of control" decisions depends on the

confidence level criterion that applies, as follows:

a. Based on "best-estimates™ -- there is considerable evidence in
the literature of a variety of heuristics employed by experts in
processing information that can result in significant biases in single-
valued "best-estimates" for empirical parameters. It is theorized that
the quality of "best-estimates" can be improved by explicit
consideration by the experts of the full range of uncertainty about
empirical parameters and the conditions associated with different values
within the range, especially the;upper and lower bounds. This practice
is recommended where the results of sensitivity analyses indicate that
the risk analysis results or choice of decision alternatives are
significantly affected by variations within the parameter range. The
information, assumptions, and conditions associated with the "best-

estimate" should be documented.

b. Based on conservative estimates -- the same guidance provided
above for the ‘"best-estimate" -~confidence level criterion applies to
characterizing empirical parameter uncertainty when basing decisions on
conservative estimates of risk analysis results. Conservative estimates

can also be improved by consideration of the full range of wuncertainty
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about a parameter, The meaning of "conservative® should be specified
and consistently applied. A special case of a conservative estimate is
the "worst-case" or "upper-bound" estimate. The extent to which the
worst-case estimate differs from the best estimate should be indicated,
and the conditions and assumptions associated with each estimate should

be provided (i.e., the reason for the difference).

c. Based on a reasonable level of confidence -- risk management
decisions can be based on a subjectively-determined confidence level
criterion corresponding to a "reasonable level of confidence™ in the
risks associated with decision alternatives. This reasonable level is
usually a relatively high degree of confidence; however, the marginal
cost of being more certain of a decision outcome is taken into account.
For example, adopting a lower release limit will increase the degree of
confidence that dose criteria will be met, but an 85 percent confidence
level might be "reasonable" if lowering the limit to achieve 95 percent
confidence means a quantum leap in control technology costs or the use

of a more efficient but less reliable technology.

Using single-valued "conservative" or wupper bound estimates for
uncertain risk analysis outcomes, especially when their uncertainty
tends to be log-normally distributed, can result in potentially costly
decisions based on risk estimates that have negligible likelihood of
being "correct” and are orders of magnitude above estimates having what
one would consider a reasonable level of associated confidence. As
North notes, "a plausible upper bound or worst-case projection may not

be helpful when there 1is a potential for large impacts but a high

likelihood that the large impacts will not occur" [North and Balson,
19857} .

In order to determine what 1level of protection provides a
reasonable level of confidence, the decision-maker needs to have an

assessment of the relative levels of confidence associated with basing
actions on different risk estimates across the range of uncertainty in
risk analysis results. He then can factor confidence levels into his
decision. This is especially important since parameter uncertainties in

environmental models usually  have skewed  probability density
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distributions with relatively 1low 1likelihoods associated with a
significant portion of the upper half of the output uncertainty range.
Thus, there are negligible increases in confidence level associated with

decisions based on these higher risk estimates.

The relative likelihoods associlated with risk analysis outcomes
across the range of uncertainty should be assessed for the decision-
maker. A sense should be communicated of the marginal change in
confidence about achieving risk goals that is associated with using
different risk analysis outcomes from the uncertain range as the basis

for risk management decisions.

Additional consideration must be given to quantities 1in the
analysis that were treated parametrically (i.e., value paramecers and
decision variables) and to outcome uncertainty associated with plausible
alternative conceptual and/or mathematical models of risk-related
processes. Results of analyzing bounding "scenarios" constructed by
forming <c¢redible combinations of assumed alternative conceptual and
mathematical models (including alternative assumptions) should be
presented. Characterizations of output uncertainties should be
presented parametrically over the ranges of wvalue parameters and
decision - variables being considered. Care and creativity must be used
to avoid parametric presentations that are confusing because they
require ‘the decision-maker to evaluate too many combinations of assumed
parameter levels. It is better to present a simplified parametric
characterization that illustrates the salient implications on the risk

analysis results of assuming different parametric levels.

Why are we uncertain?

A decision-maker using the results of a risk analysis having
significant wuncertainty in 1its outcomes needs to know why the results
are uncertain. The risk analyst should use the vresults of the
deterministic sensitivity analysis and uncertainty allocation analysis
to develop a summary of the important sources of uncertainty in the risk
analysis, including a characterization of their individual relative

contribution to the outcome uncertainty. In addition, scenario trees
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like that shown in Figure 2-4 can be useful for explaining sources of

uncertainty to the decision-maker.

How wrong could we be, how likely is it, and what difference would it

make?

It is useful for the risk management decision-maker to have an
assessment of the overall range of uncertainty in the risk analysis
results supporting her or his decision. The assumptions, models, and
conditions associated with the credible upper and lower bounds on the

risk analysis outcome should be described.

The likelihoods of scenarios associated with wvarious outcomes
within the uncertainty range should be assessed for the decision-maker.
These likelihoods can be presented as qualitative or comparative
statements (e.g., "unanticipated," "relatively low likelihood,” "most-
likely"). These qualitative statements can either be translations of
quantitative probabilistic results or qualitative judgments reflecting

expert consensus.

The effect of changes to the assumed risk analysis outcome (within
its range of uncertainty) on achieving risk control goals and criteria
should be assessed for the decision-maker. Critical points within the
range of wuncertainty for risk analysis outcomes, where changes to risk
management strategies would be indicated, should be identified. The
decision-maker can then combine these with the likelihood assessments to

better understand the "risks" of her or his decision.

How might I increase confidence in my decision?

By considering the important sources of uncertainty identified by
the wuncertainty assessment available, strategies should be identified
for reducing or eliminating the uncertainty in risk analysis results,
thus increasing confidence in the expected outcome of the risk

management decision that the risk analysis supports.
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These strategies can be "global,"” for example, establishing siting
criteria that encourages choosing a site where environmental transport
processes are better understood, adopting a "look-ahead" risk management
policy with progressive decisions about control strategies based on
future information, or obtaining additional expert opinions on key

uncertain aspects of the risk problem being addressed.

The possible strategies identified to reduce or eliminate
uncertainty in the risk analysis results can also be more specific. For
example, specific areas where basic research, model development, or
additional measurements would be most effective in reducing
uncertainties can be identified. A balance can then be struck by the
decision-maker between the expected reduction in uncertainty from these
activities and the cost, in both time and resources, of these
information gathering activities, Other relevant factors, such as the
expected reliability of the new information and the time frame for

obtaining the information, should be summarized for the decision-maker.
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GLOSSARY

The glossary was prepared by combining definitions presented in the
following documents, as referenced by the bracketed numbers at the end
of each definition.

{1] U.S. Environmmental Protection Agency, High-Level and Trénsuranic
Radiocactive Wastes: Background Information Docment for Final Rule,
Office of Radiation Programs, EPA 520/1-85-023 (August 1985).

[2] U.S. Department of Health and Human Services, Report of the National

Institutes of Health Ad Hoc Working Group teo Develop Radioepidemio-

logical Tables, NIH Publication No. 85-2748 (January 4, 1985).

[3] U.S. Energy Research and Development Administration, Risk Management

Guide, EG & G Idaho, Inc., ERDA 76-45/11, (June, 1977).

[4] INTERA Environmental Consultants, A Proposed Approach to Uncertainty

Analysis, ONWI-488 (July 1983).

[5] Gratt, L. B., et al., Risk Analysis Assessment Glossary, Rev. 1, IWG
Corp., IWG-FR-003-04 (July 18, 1984).

[6] U.S. Department of Energy, Environmental Assessment - Deaf Smith
County Site, Texas: Volume I1, Office of Civilian Radioactive Waste
Management, DOE/RW-0069 (May 1986).

[7] Gratt, L. B., et al., Risk Analysis/Assessment Glossary, Rev. 2, IWG
Corp. (June 18, 1986).

Abatement. - The reduction in degree or intensity of pollution. (7]

Absolute risk - An expression of excess risk based on the assumption
that the excess 7risk from radiation exposure adds to the underlying
(baseline) risk, by a constant increment dependent on dose; an absolute
risk time--response model distributes the radiogenic risk after exposure
independently of the underlying natural risk. [2]

Accident - An unwanted energy transfer (an accident) causing property
damage and/or human injury. [3]

Accident - That occurrence in a sequence of events which wusually

produces unintended injury, death, or property damage. [5]
Accuracy - The degree of agreement between a measured value and the true
value, usually expressed at +/- percent of full scale. [35]
Artificial variability - Variability induced by procedures used to

convert raw data into model 1inputs; sources include data selection,
processing, level of aggregation, ergodicity, and interpretation.
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Attributable risk - The rate of the disease in exposed individuals that
can be attributed to the exposure. This measure 1is derived by
subtracting the rate (usually incidence or mortality) of the disease
among nonexposed persons from the corresponding rate among exposed
individuals. [5]

Bayesian Framework (Subjectivist Framework) - A school of thought on the
meaning of probability which views probability as an expression of an
internal state of knowledge or confidence expressed subjectively. This
school of thought 1s associated with the statistician Bayes, and its
inherent logical reasoning is viewed as governed by Bayes’ Theorem.

Benefit - The degree to which effects are judged desirable. [5]

Best available control technology - An emission limitation (including a
visible emission standard) based on the maximum degree of reduction for
each pollutant subject to regulation under the act which would be
emitted from any proposed major stationary source or major modification
which the Administrator, on a case-by-case basis, taking into account
energy, environmental and economic impacts, and other costs, determines
is achievable for such source or modification through application of
production processes or available methods, systems, and techniques,
including fuel cleaning or treatment or innovative fuel combustion
techniques for control of such pollutant. [5]

Bias - Any difference between the true value and that actually obtained
due to all causes other than sampling variability. [5]

Case-fatality rate - A ratio of the number of deaths due to a disease to
the number of cases of that disease in a specified period of time. It
expresses the frequency with which affected individuals die of the
disease. [7]

Classical Framework (Frequentist Framework) - A school of thought on the
meaning of probability which views probability as something external
which is a measure of the results of repetitive experiments. From this
perspective, probability is a measurable quantity and the outcome of
experiments involving repeated trials and observations.

Code - A quantitative procedure to solve a particular mathematical
abstract of the physical problem. [4]

Code - A mathematical and logical model that has been translated to
computer language.

Commonn mode failures - Several errors 1in a technological system
occurring simultaneously. [7]

Comparative risk - An expression of the risks associated with two (or
more) actions leading to the same goal; may be expressed quantitatively
(a ratio of 1.5) or qualitatively (one risk greater than another risk).

[5]
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Confidence interval - An interval estimate of a statistlcal parameter,
obtained as a particular function of observed values of one or more
random variables whose joint distribution depends upon that parameter.
The interval-valued function 1is so defined that, in an infinitely
increasing number of independent replications of the experiment yielding
the observed wvalues of the random variables, the proportion of times
that the interval contains the (unknown) parameter value converges to a
number at least as large as some preset value, called the confidence
level of the interval. [2]

Confidence interval - A range of wvalues (al<a<a2) determined from a
sample of indefinite rules so chosen that, in repeated random samples
from the hypothesized population, an arbitrarily fixed proportion (1-€)
of that range will include the true value, x, of an estimated parameter.
The limits, a] and a2, are called confidence  1limits; the relative
frequency (l-€) with which these 1limits include a 1is called the
confidence level. As with significance levels, confidence levels are
commonly chosenr as 0.05 or 0.01, the corresponding confidence
coefficients being 0.95, 0.99. Counfidence intervals should not be
interpreted as implying that the parameter itself has a range of wvalues;
it has only one value. On the other hand, the (1Q) <confidence limits
(a1, a2) being derived from a sample either do or do not include the
true value, a, of the parameter. However, in rtrepeated samples, a
certain proportion (namely 1-€) ‘of these intervals will include a,
provided that the actual population satisfied the 1initial hypothesis.

[5]

Confounding factors - Variables that may introduce differences between
cases and controls which do not reflect differences in the variables of
primary interest. ([5]

Cost-benefit analysis - A formal quantitative procedure comparing costs
and benefits of a proposed project or act under a set of preestablished
rules. To determine a rank ordering of projects to maximize rate of
return when available funds are unlimited, the quotient of benefits
divided by costs is the appropriate form; to maximize absolute vreturn
given limited resources, benefits-costs is the appropriate form. [5]

Credibility interval - An analogue of confidence interval, in terms of
subjective probability. If one'’s information about the true value of an
unknown parameter can be summarized by a probability distribution for
that wvalue, a credibility interval of a given probability level for the
parameter 1is an interval such that the subjective probability
distribution, integrated over the interval, is not less than the given
probability level. [2]

Damage - Damage is the severity of injury or the physical, functional,
or monetary loss that could result if controel of a hazard is lost. [5]

Danger - Expresses a relative exposure to a hazard. A hazard may be
present, but there may be 1little danger because of the precautions
taken. [5]
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De minimus risk - From the legal maxim "de minimus non curat lex" or

"the law is not concerned with trifles." [5]
Diversity - Pertaining to the variety of species within a given

association of organisms. Areas with low diversity are characterized by
a few species; often relatively large numbers of individuals represent
each species. [7]

Dose - The amount or concentration of wundesired matter or energy
deposited at the site of effect. [5]

Dose-effect - The relationship between dose (usually an estimate of
dose) and the graduation of the effect 1in a population, that is a
biological change measured on a graded scale of severity; although at
other times one may only be able to describe a qualitative effect that
occurs within some range of exposure levels. [5]

Dose-effect (dose-response) model - A mathematical formulation of the
way in which the effect, or response, depends on dose. [2]

Dose-response - A correlation between a quantified exposure (dose) and
the proportion of a population that demonstrates a specific effect
(response). [5]

Dose-response assessment - The process of characterizing the relation
between the dose of an agent administered or received and the incidence
of an adverse health effect in exposed populations and estimating the
incidence of an adverse as a function of human exposure to the agent.

[5]

Effect - A biological change caused by an exposure. [5]

Efficacy - A measure of the probability and intensity of beneficial
effects. [5]

Environmental pathway - All routes of transport by which a toxicant can
travel from its release site to human populations including air, food
chain, and water. [7]

Excess deaths - The excess over statistically expected deaths in a
population within a given time interval. Attempts are made to relate
excess deaths to specific causes. Note that since every person can (and
must) die only once, there can be no excess deaths over all time. [5]

Expected - Assumed to be probable or certain on the basis of existing
evidence and in the absence of significant evidence to the contrary.

(6]

Expected deaths - The number of deaths statistically expected in a
population in a given time interval obtained by summing the product of
age-, sex, and race-specific mortality rates from a standard population
and person-years 1in each age, sex, and race category in the study
population. [5]
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Expected loss - The quantity obtained by multiplying the magnitude of
health or environmental effect loss by the probability (or risk) of that
loss and adding the products. The expected loss 1is the average loss
over a large number of trials; one must reflect on the appropriateness
of its use in cases for which there will be only one, or a few, trials.

[5]

Extrapolation - In risk assessment, this process entails postulating a
biologic reality based on observable responses and developing a
mathematical model to describe this reality. The model may then be used
to extrapolate to response levels which cannot be directly observed.

(5]

Failure modes and effects analysis - A tool to systematically analyze
all contributing component failure modes and identify the resulting
effects on the system. [5]

False negative results - Results which show no effect when one is there.

(5]

False positive results - Results which show an effect when one is not
there. [5]

Fault tree analysis - A technique by which many events that interact to
produce other events can be related using simple logical relationships
permitting a methodical building of a structure that represents the
system. [5]

Gaussian distribution model - Is expressed by the formula:

F(x) = —s— exp XX
ax\I 2n 20

where x is the mean, oy is the standard deviation. It is also called
the mnormal distribution. For example, a Gaussian air dispersion model
is one in which the pollutant is assumed to spread in air according to
such a distribution and described by the two parameters x and ox of the
normal distribution. [5]

Geometric mean - The geometric mean of a set of positive numbers is the
exponential of the arithmetic mean of their logarithms. The geometric
mean of a lognormal distribution is the exponential of the mean of the
associated normal distribution. [2]

Ceometric standard deviation (GSD) - The geometric standard deviation of
a lognormal distribution is the exponential of the standard deviation of
the associated normal distribution. The geometric standard deviation is
not standard for statistical terminology but is more commonly used by
physicists. [2]
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Hazard - A-condition or physical situation with a potential for an
undesirable consequence, such as harm to life or limb. [5]

Hazard - A source of risk, peril; the potential for an unwanted release
of energy to result in personal injury or property damage., [3]

Hazard assessment - An analysis and evaluation of the physical,
chemical, and biological properties of the hazard. [5]

Hazard identification - The process of determining whether exposure to
an agent can cause an increase in the incidence of a health condition.

[3]

Health effect - A deviation in the normal function of the human body.

(5]

Health effect assessment - The component of risk assessment which
determines the probability of a health effect pgiven a particular level
or range of exposure to a hazard. [5]

Health risk - Risk in which an adverse event affects human health. [5]

Hockey stick regression function - A dose-response curve as follows:

For some X ,
£(x) 2 for X

<
+ B1 X for X >

Bo Xo
= X

o 0
This means that for a suitable dose Xo’ f(X) remains constant for any X
less than X and increases linearly as X increases for any X more than

Xo. The doseoXo is considered as a physiological threshold value. [7]
Impact - The force of impression of one thing on another. [5]

{ncidence - The number of new cases of a disease in a population over a
period of time. [35]

Incidence or incidence rate - The rate of occurrence of a disease within
a specified period of time, often expressed as number of cases per
100,000 individuals per year. [2]

Individual risk - The risk to an individual rather than to a population.

(5]

Individual susceptibility - The marked wvariability in the manner in
which individuals will respond to a given exposure to a toxic agent.

[5]

Linear (L) model - Alsc, linear dose-affect relationship; expresses the
effect (e.g., mutation or cancer) as a direct (linear) function of dose.

[2]
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Linear-quadratic (1Q) model - Also, linear-quadratic dose-effect

relationship; expresses the effect (e.g., mutation or cancer) as partly
directly proportional to the dose (linear term) and partly proportional
to the square of the dose (quadratic term). The linear term will
predominate at lower doses, the quadratic term at higher doses. [2]

Logit model - A dose-response model which, like the probit model, leads
to an S-shaped dose-response curve, symmetrical about the 50% response
curve. The logit model leads to lower "“very safe doses" than the probit
model even' when both models are equally descriptive of the data in the
observable range. [7]

Lognormal distribution - A distribution of the frequency of a value
plotted on a linear scale versus the value plotted on a logarithmic
scale, which results in a bell-shaped curve. [1]

Lognormal distribution - If the logarithms of a set of wvalues are
distributed: according to a normal distribution they are said to have a
lognormal distribution, or be distributed "lognormally." [2]

Log-probit model - A dose-response model which assumes that each animal
has its own threshold dose, below which no response occurs and above
which a tumor is produced by exposure to a chemical. [7]

Maximally exposed individual - A hypothetical person who is exposed to a
release of radioactivity in such  a way that he receives the maximum
possible individual radiation dose or dose commitment. For instance, if
the release is a puff of contaminated air, the maximally exposed
individual is a person at the point of the largest ground-level
concentration and stays there during the whole time the contaminated-air
cloud remains above. This term is not meant to imply that there really
is such a person; it is used only to indicate the maximum exposure a
person could receive. [6]

Maximum permissible concentration - The average concentration of a
radionuclide in air or water to which a worker or member of the general
population may be continuously exposed without exceeding regulatory
limits on external or internal radiation doses. [6]

Mitigation - (1) Avoiding the impact altogether by not taking a certain
action or parts of an action. (2) Minimizing impacts by limiting the
degree or magnitude of the action and its implementation. (3)
Rectifying the 1impact by repairing, rehabilitating, or restoring the
affected environment. (4) Reducing or eliminating the impact over time
by preservation and maintenance operations during the life of the
action. (5) Compensating for the impact by replacing or providing
substitute resources or environments. [5]

Model - A conceptual description and the associated mathematical
representation of a system, component, or condition. It is used to
predict changes in the system, component, or condition 1in response to
internal or external stimuli as well as changes over time and space. An
example 1is a hydrologic model to predict ground-water travel or
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radionuclide transport from the waste-emplacement area to the accessible
environment. [6]

Model - A simplified representation of some aspect of reality; either
conceptual, visual, verbal, physical, mathematical, and/or logical.

Morbidity - A departure from a state of physical or mental well-being,
resulting from disease or injury. Frequently used only if the affected
individual is aware of the condition. Awareness 1tself connctes a
degree of measurable impact. Frequently, but not always, there is a
further restriection that some action has been taken such as restriction
of activity, loss of work, seeking of medical advice, etc. [7]

Mortality (rate) - The rate at which people die from a disease, e.g., a
specific type of cancer, often expressed as number of deaths per 100,000
per year. [2]

Mortality rate - The number of deaths that occur in a_ given population
during a given time interval; usually deaths per 103 or 10° people per
year. Can be age, sex, race, and cause specific. [7]

Normal distribution - A random variable X 1is said to be normally
distributed if, for some number uy and some positive number o, Y = (X-u/o
has a standard normal distribution with probability density function

s(y) = @20 Y2 exp (<Y2/2) [2]

One-hit model - The dose-response model based on the concept that a
tumor can be induced by a single receptor that has been exposed to a
single quantum or effective dose unit of a chemical. [7]

Population at risk - A limited population that may be unique for a
specific dose-effect relationship; the uniqueness may be with respect to
susceptibility to the effect orxr with respect to the dose or exposure
itself. [5]

Population dose (population exposure) - The summation of individual
doses received by all those exposed to the source or event being
considered. [7]

Precision - A measure of how exactly the result 1is determined without

reference to any "true" value. [5]

Precision - A measure of how consistently the result is determined by
repeated determinations without reference to any "true” value. [7]

Premature death - A death that occurs before statistical expectation,
usually attributable to a specific cause, and usually referring to
deaths statistically estimated in a population rather than to
individuals. [7]

Prevalence - The number of existing cases in a population who have the
disease at a given point (or during a given period of time). [7]
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Probability - A probability assignment is a numerical encoding of a
state of knowledge. [5] '

Probable error - The magnitude of error which is estimated to have been
made in determination of results. [5]

Probit analysis - A statistical transformation which will make the
cumulative normal distribution linear. In analysis of dose-response,
when the data on response rate as a function of dose are given as
probits, the 1linear regression line of these data yields the best
estimate of the dose-response curve. The probit unit Y=5+Z(p), where p
= prevalence of response at each dose level and Z(p) = corresponding
value of the standard cumulative normal distribution. [5]

Proportionate mortality ratio (PMR) - The fraction of all deaths from a
given cause in the study population divided by the same fraction from a
standard population. A tool for investigating cause-specific risks when
only data on deaths are available. If data on the population at risk
are also available, SMRs are preferred. (7]

Quality assurance - All the planned and systematic actions necessary to
provide adequate confidence that a structure, system, or component is
constructed to plans and specifications and will perform satisfactorily.

(6]

Quality control - Quality-assurance actions that provide a means to
control and measure the characteristics of an item, process, or facility
to established requirements. [6]

Random error - Indefiniteness of result due to finite precision of
experiment. Measure of fluctuation in  result after repeated
experimentation. [5]

Rate - 1In epidemiologic wusage, the frequency of a disease or
characteristic expressed per unit of size of the population or group in
which it is observed. The time at or during which the cases are
observed is a further specification. ' [7]

RAU - Risk analysis unit. [7]
Reasonably achievable - Mitigation measures or courses of action shown

to be reasonable considering the costs and benefits in accordance with
the National Environmental Policy Act of 1969. [6]

Relative risk - The ratio of the rate of the disease (usually incidence
or mortality) among those exposed to the rate among those not exposed.

(5]

Relative risk - An expression of excess risk relative to the underlying
(baseline) risk; 1f the excess equals the baseline risk the relative
risk is 2. [2]
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Release limit - A regulatory limit on the concentration or amount of
radioactive material released to the enviromment. [6]

Reliability - The probability a system performs a specified function or
mission under given conditions for a prescribed time.

Residual uncertainty - Those inherent uncertainties in data, modeling,
and assumed future conditions that cannot be eliminated. [6]

Response - The proportion or absolute size of a population that
demonstrates a specific effect. May also refer to the nature of the

effect. [7]

Risk - The potential for realization of unwanted, adverse consequences
to human life, health, property, or the environment; estimation of risk
is usually based on the expected value of the conditional probability of
the event occurring times the consequence of the event given that it has
occurred. [5]

Risk - Mathematically, expected loss; the probability of an accident
multiplied by the consequence (loss converted into dollars) of the
accident. [3]

Risk analysis - A detailed examination performed to understand the
nature of unwanted, negative consequences to human 1life, health,
property, or the environment; an analytical process to  provide
information regarding undesirable events; the process of quantification
of the probabilities and expected consequences for identified risks.

[5]

Risk analysis - The quantification of the degree of risk. [3]

Risk analysis - An analysis that combines or uses an uncertainty
analysis along with the probability that the state evaluated in the
analysis (geologic, biologic, etc.) exists. (4] Note that a risk
analysis wuses as an integral part an uncertainty analysis and an
uncertainty amnalysis similarly contains a sensitivity analysis. [4]
Risk assessment - The process, including risk analysis, risk
evaluation, and risk management  alternatives, of establishing
information regarding that risk and levels of risk for an individual,
group, society, or the environment. [5]

Risk assessment - The combined functions of risk analysis and
evaluation. [3]

Risk coefficient - A fitted constant in an equation that describes how
an effect depends on dose. ([2]

Risk estimation - The scientific determination of the characteristics of
risks, usually in as quantitative a way as possible. These include the
magnitude, spatial scale, duration and intensity of  adverse
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Risk estimate - Absolute - Risk estimate based on the assumption that
there 1is some absolute number of deaths in a population exposed at a
given age per unit of dose. [1] Relative - Risk estimate based on the
assumption that the annual rate of radiation-induced excess cancer
deaths is proportional to the ambient rate of occurrence of fatal
cancer. [1]

Risk evaluation - A component of risk assessment in which judgments are
made about the significance and acceptability of risk. [5]

Risk evaluation - The appraisal of the significance or consequences of a
given quantitative measure of risk. [3]

Risk identification - Recognizing that a hazard exists and trying to
define its characteristics. Often risks exist and are even measured for
some time before their adverse consequences are recognized. In other
cases, vrisk identification is a deliberate procedure to review and, it
is hoped, anticipate possible hazards. [5]

Risk management - The process, derived through system safety principles,
whereby  management  decisions are  made concerning control and

minimization of hazards and acceptance of residual risks. [3]
Rulemaking - Process of formulating specific regulations governing a

particular matter. [6]
Safety - Relative protection from adverse consequences. [5]

Scenario - A particular chain of hypothetical circumstances often ‘used
in performance analysis to model possible events. [6]

Scenario analysis - Analytical process that attempts to quantify the
probabilities and consequences of a postulated sequence of events. [6]

Sensitivity analysis - An analysis that defines quantitatively or semi-
quantitatively the dependence of a selected performance assessment
measure (or an intermediate wvariable) on a specific parameter or set of
parameters.. [4] :

Standard deviation - A measure of dispersion or variation, usually taken
as the square root of the variance. [5]

Standard geometric deviation - Measure of dispersion of values about a
geometric mean; the portion of the frequency distribution that is one
standard geometric deviation to either side of the geometric mean;
accounts for 68% of the total samples. [53]

Standardized mortality ratio (SMR) - The ratio of observed deaths in a
population to the expected number of deaths as derived from standard
population rates with adjustment of age and possibly other factors such
as sex or race. [7]
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Standard normal deviation - Measure of dispersion of values about a mean
value; the positive square root of the average of the squares of the
individual deviations from the mean. [5]

Statistical significance - The statistical significance determined by
using appropriate standard techniques of multivariate analysis with
results interpreted at the stated confidence level and based on data
relating species which are present 1in sufficient numbers at control
areas to permit a valid statistical comparison with the areas being
tested. [5]

Stochastic - A stochastic process is one in which the system
incorporates an element of vrandomness, as opposed to a deterministic
system. For example, in radiobiology stochastic effects are those in
which the probability of an effect occurring rather than its severity is
a function of dose, without threshold. [2]

Stochastic model - A model whose inputs are uncertain and whose outputs
are therefore also uncertain and must be described by probability
distributions. [6]

Surrogate - Something that serves as a substitute. In risk analysis,
surrogates are often used when data on the item of interest (a chemical,
an industry, an exposure, etc.) is lacking. As an example, underground
mining of coal and hardrock minerals can be used as a surrogate for
underground oil shale mining. [7]

Systematic error - A reproducible inaccuracy introduced by faulty
equipment, calibration, or technique. [5]

Threshold - A pollutant concentration below which no deleterious effect

occurs. [7]

Threshold dose - The minimum application of a given substance required
to produce an observable effect. [7]

To the extent practicable - The degree to which an intended course of
action is capable of being effected in a manmer that is reasonable and

feasible within a framework of constraints. [6]
Uncertainty - A lack of certainty about a quality, quantity, or model

due to inherent randomness, artifactual variability, and/or incomplete
knowledge.

Uncertainty analysis - A detailed examination of the systematic and
random errors of a measurement or estimate; an analytical process to
provide information regarding the uncertainty. [5]

Uncertainty analysis - The analysis that defines the dependence of a set
of selected performance assessment measures on the set of uncertain
input parameters. It includes the characterization of wuncertainty in
(1) the input parameters; (2) the evaluation methodology; and (3) the
output performance assessment measures. [4]
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Uncertainty assessment - The process of identifying, characterizing,
analyzing, and evaluating the implications of uncertainties that are
inherent to risk analysis.

Validation of computer codes and models - The process of obtaining
assurance that a model as embodied in a computer program is a correct
representation of the process or system for which it 1is intended.
Ideally, wvalidation 1is a comparison of predictions derived from the
model with empirical observation. However, as this 1is frequently
impractical or impossible owing to the large physical and time scales
involved in HLW disposal, short-term testing supported by other avenues
such as peer review are used to obtain this assurance. [4]

Verification of computer codes and models - Testing a code with
analytical solutions for idealized boundary-value problems. A computer
code will be considered verified when it has been shown to solve the
boundary-value problems with sufficient accuracy. [6]

Worst-case analysis - An analysis based on assumptions and input data
selected to yield a "worst impact" statement. [6]

Zero order analysis - The simplest approach to quantification of a risk
with a 1limited treatment of each risk component (e.g., source terms,
transport, health effects, etc.). [7]
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1.0 Introduction

As part of the ORP's approach to uncertainty analysis, those
factors of the risk analysis having sufficient levels of uncertainty to
warrant treatment as probability distributions in the analysis are
identified. As a first step to developing judgmental uncertainty
distributions for these parameters, expert judgements are obtained to
establish lower and upper bounds on the parameter values. This first
step can be viewed as the first-order a priori judgment on the current
state of certainty about these parameters. If the state of knowledge on
a parameter were such that all we knew about it were its bounds, then
the  appropriate uncertainty characterization would be a uniform
probability distribution between those bounds. (Thus, the primal
uncertainty distribution is uniform between negative and positive
infinity.) As more information and understanding about the parameter 1is
included in the uncertainty judgment process, the uniform distribution
may be upgraded to perhaps a 3-point subjective distribution, wherein
the median value is specified as well as the bounds. There may even be
enough knowledge to represent the parameter’s uncertainty by a specific
type of distribution, such as normal or lognormal. Ultimately, enough
information and understanding of the parameter might become available to
reduce the range of its distribution to the extent that it may be

treated as a point value (as known with 100% uncertainty).

It is important to assure high quality in the input parameter
uncertainty distributions used in an uncertainty analysis. The validity
of the results depends directly on the quality of the input uncertainty
characterizations and the vresults are quite sensitive to the type of
distributions assumed. Careful consideration must be given to the
implications of using a particular probability distribution to represent
a measure of the state of knowledge. Accordingly, one approach to
uncertainty  analysis utilizes formal  techniques for eliciting
guantitative judgments of uncertainty from  experts. There are
substantial psychological and practical problems encountered in
eliciting considered technical opinions from experts. These problems

with judgmental error have been well-documented [Kahneman et al., 1982],
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and methodologies for elicitation have been developed which attempt to
counter these biases produced by common heuristics [Morgan et al.,
1981). The formal elicitation procedure proposed below is based upon

consideration of these methodologies.

2.0 Elicitation Session Protocol

Elicitations are usually done in day long sessions with experts or
surrogate experts. The protocol of the elicitation session is as

follows:
1. introductory discussion of problem and objectives,

2. discussion of heuristics and biases involved in making subjective

judgments,
3. discussion of technical issues and structural uncertainties,
4. structuring of elicitation questions, and

5. elicitation of judgmental probability distributions for specified

uncertain parameters.

In order to provide a clearer understanding of each of these
phases, a brief description of each phase, as performed for a real
application, is given below. The problem was to elicit expert model
structures and key parameter uncertainties in estimating annual average
long-range sulfur budgets for the plumes of large coal-fired power

plants [Morgan et al., 1984].

PHASE 1: Introductory Discussion

Each elicitation session began with a discussion of the risk
problem being addressed. It was explained that the primary objective
was to obtain from the experts their best current professional judgments

about the average oxidation rate of sulfur dioxide and the average
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fraction of sulfur emitted as primary sulfate in the plumes of large
coal-fired power plants located in the Northeastern United States. It
was further explained that while the interviewers were ultimately
interested in using these judged parameters 1in a model to estimate

annual average impacts, they did not want to impose any structure upon

the expert; so that if he desired to discuss these parameters as a
function of time of day, season of year, or any other appropriate

variables he was encouraged to do so.

PHASE 2: Discussion of Heuristics and Biases

The second phase of the elicitation session involved describing to
the expert the types of heuristics and biases which are likely to be
involved in making subjective judgments in the face of unceftainty.
This discussion was organized around a briefing book which was‘prepargd
containing key concepts and evidence from experimental psychology
studies documenting the existence and nature of these heuristics and
biases. Informing the expert about the state of the elicitation field
contributes to the establishment of rapport between the expert and the
elicitor. While there are doubts that this briefing significantly
affects the expert’s answers, the expert better understands the approach
taken to the elicitation, and the elicitation session assumes a more

professional posture.

PHASE 3: Discussion of Technical Issues and Structural Uncertainties

The third phase of the session was an extended technical discussion
by the experts of how they viewed the history and current status of the
plume sulfur process field, their primary sources of information, what
factors they viewed as controlling plume sulfur processes, and the
physical and chemical mechanisms involved and their relative importance.
If the expert stated something which in some way conflicted with
evidence from the literature, reference would be made to the particular

study and the experts were asked to elaborate.



100

It was during this phase of the session that much qualitative
information was obtained from the experts reflecting their judgments
about the structural uncertainties involved in plume sulfur modeling. A
picture began to form of the expert'’s conceptual model of plume sulfur

processes.

PHASE 4: Structuring of Elicitation Questions

The objective of this phase of the session was to structure the
quantitative elicitation of judgmental probability distributions on the
sulfur dioxide oxidation rates and the fraction of primary sulfate
emission. This included determining which variables the experts’
answers would be conditional upon (time-of-day, season, temperature,
etc.), the wunits in which the parameter would be elicited (percent per
hour, concentration versus transport time, etc.), and how the answers

elicited should be combined to produce annual average results.

PHASE 5: Elicitation of Judgmental Probability Distribution

During the last phase of the session judgmental probability
distributions were elicited from the experts on average sulfur dioxide
oxidation rates under expert-specified conditions and of annual average
fraction of sulfur emitted as sulfate. Judgmental probability
distributions were elicited in the form of points on a cumulative
probability distribution for the wuncertain parameter in question.
Figure A-1 shows an example of a set of elicited distributions. The
experts were reminded that all questions pertained to average values of
the parameter, and not to values which could occur at a given instant

under certain conditions.

As an attempt to overcome an elicitation bias known as "anchoring,”
wherein the elicitee centers on his "best estimate,” the expert was
first asked for his absolute maximum and minimum limits on the value of
the parameter in question. The experts were then asked for

justification of these limits, and for convincing arguments as to their
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absoluteness, The expert was asked to imagine that he was separated
from the field entirely for ten years, and that upon returning he found
that it had been proven that the actual value of the parameter was
greater or less than his limits. Could he think of any explanation that

might justify such findings?

This done, the interviewers began to elicit actual points on the
cumulative probability distribution for the uncertain parameter. The
points were elicited in arbitrary order, and were kept hidden from the

expert.

In the beginning of the sessions it was attempted, as the decision
analysis literature suggests, to elicit points by having the expert make
choices between sets of the two lotteries shown in Figure A-2 for

different sets of odds (P's) given a value N of the parameter.

When the expert is presented with a set of odds where he is
indifferent between the two lotteries, then P is equal to his or her
judged probability that the wvalue of the parameter in question 1is less
than or equal to the given value, N. This combination of P and N

represents a point of the cumulative probability distribution.

In order to assist the expert in thinking about the questions asked
and as a motivation to think carefully about his or her answers, a
"probability wheel” was utilized. This is a circular background of two
colors, red and green, which has a spinner affixed to it. The portion
of the background which is red or green is adjustable, thus shown in

Figure A-3.

The lottery formulation of elicitation seemed to confuse the
experts. They preferred to simply adjust the size of the green portion
of the wheel so that it represented the probability that the parameter

is less than or equal to the given value, N.



LOSE ONE MONTH'S LOSE ONE MONTH's
SALARY SALARY

PARAMETER
18 N

OR

PARAMETER
IS >N

WIN ONE MONTH'S WIN ONE MONTH’S
SALARY SALARY

Fig. A-2. Lottery presented to experts to elicit points on their cumulative
probability distributions for an uncertain parameter, N.
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LOSE ONE MONTH'S
SALARY

SPINNER ON WHEEL
LANDS IN GREEN

SPINNER ON WHEEL
LANDS IN RED

WIN ONE MONTH'S
SALARY

Fig. A-3.

PARAMETER
1s SN

PARAMETER
IS >N

LOSE ONE MONTH'S
SALARY

%01

WIN ONE MONTH'S
SALARY

Alternative lottery presented to experts based upon the use of a probability wheel.
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The experts were asked to think about each question separately
without being concerned about consistency with previous answers by
keeping the elicited points hidden and randomizing the order in which he
was asked for points. After encoding the entire distribution, the
expert was confronted with any inconsistencies and he was asked to

explain them with respect to his original reasoning behind the points,
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Error Propagation for Large Errors

Fritz A. Seiler

Inhalation Toxicology Research Institute
Lovelace Biomedical and Environmental Research Institute
P. 0. Box 5890

Albuguerque, NM 87185

An essential facet of a risk assessment is the correct evaluation of
uncertainties inherent in the numerical results. Some uncertainties in the
final results arise from errors in the input, others from deficiencies in the
models used. If the calculation is based on an explicit algebraic expression,
an analytical treatment of error propagation is possible, usually as an
approximation valid for small errors. In many instances, however, the errors
are large and uncertain. It is the purpose of this paper to demonstrate that
despite large errors, an analytical treatment is possible in many instances.
These cases can be identified by an analysis of the algebraic structure and a
detailed examination of the errors in jnput parameters and mathematical
models. From a general formula, explicit formulae for some simple algebraic

structures that occur often in risk assessments are derived and applied to

practical problems.

KEY WORDS: Error Propagation, Analytical Treatment, Large Errors.
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1. INTRODUCTION

Estimating uncertainties inherent in measurements or theocretical
calculations is an integral part of scientific investigations. Depending on
the type of calculation leading to the final result, numerical or analytical
methods are indicated to determine the propagation of errors from input to
result. Whereas some numerical methods can accomodate errors of any size,
analytical methods are usually restricted to quantities with small relative
errors. In this paper it will be shown, that in a considerable number of
probiems in risk assessment, an analytical treatment can be used even if the
errors are relatively large.

The theory of error propagation by analytical methods is based on the
algebra of stochastic variables, an area which has received increasing
attention in the second half of this century (]'2). For the general case,
integral transform methods are used to calculate the distribution function for
the result of algebraic operations on random variables. Although this
approach is somewhat complex and often results in considerable numerical
computations, it has the advantage of providing the final probability
distribution as a data base for statistical tests and confidence limits.

In risk assessments, interest is often limited to an estimate of the
mean and its standard error. Then, a more direct method may be used, based on
the Taylor series expansion of the risk function invoelved. A necessary
condition for this approach is the existence of all the derivatives required
in the expansion. Normally, this condition is met, since the functions most
often used are well behaved and have derivatives which are either nonzerc up

to a certain order only, or converge rapidly to zero with increasing order.



111

To keep the formalism simple, symmetric probabi]ity distributions are
assumed for the input parameters. The consequences of this decision are not
as serious as might abpear at first, especially if the errors are large. A
large error implies not only that the sample mean is not well known, but also
that the character of the distribution is even less precisely determined by
the experimental data. In such a situation, the selection of eithe; a normal
or lognormal distribution is a reasonable approximation. Lognormal
distributions can either be treated directly or transformed into logarithmic
space and treated like normal distributions.

On the basis of these assumptions, it is the purpose of this paper to
apply general analytical formulae derived elsewhere (3) for mean and

standard error of the result of algebraic operations on random variables.

2. DISCUSSION OF ERRORS

Random and Systematic Errors

In discussing errors and their propagation through a calculation, one of
the most important distinctions is the one between random and systematic

errors (378

This characterization governs the methods by which errors are
treated and may affect the numerical values of the uncertainties.

Random or statistical errors of a measured quantity arise from many

possible causes, the size and sign of the deviation cannot be predicted, nor

can they be prevented. They can be decreased, however, by increasing the

number of measurements taken. Systematic errors, on the other hand, if they
are recognized at all, usually have one identifiable cause, affect every

measurement by the same mechanism, and, if properly investigated, can often be
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avoided or corrected for. They cannot, however, be decreased by increasing
the number of measurements taken.

A typical example for random or statistical errors are the fluctuations
in the count-rate of a radiation counter exposed to a constant particle flux.
Typical systematic errors are those caused by a defect in a scale, resulting
in the measurement of uniformly high masses, or by the use of a model that
does not take into account a pertinent effect and, therefore, yields
systematically distorted values. €Errors encountered in practice, however, are
often not as clearly random or systematic as those mentioned above. They
require considerable thought and special treatment, such as an attempt at
separating the systematic and ran&om components of an error. This is possible
only if the data are well documented.

It is of considerable importance to analyze the origin, magnitude, and
sign of systematic errors as thoroughly as possible, since the logical course
of action demands that, rather than quoting a systematic error, an appropriate
correction be applied to the result whenever enough information is available.
The uncertainty of that correction can then be treated mainly as a statistical
error.

Large systematic uncertainties often arise when the values of crucial
constants in a model are only poorly known. In trying to predict future
levels of toxicants in the atmosphere, for instance, the projected energy
consumption plays a critical role and influences the final result in a
systematic manner. It may then be advantageous to declare this gquantity a
model or decision parameter without error, and the calculation is performed
for different values of the parameter, covering the presumable raﬁge of

variation. In this manner, the uncertainty is transferred from the parameter
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~ftself to the decision of how to treat the result after the calculation has

been done. In many ways that decision may be easier to make than the decision

of which value and uncertainty to enter into the calculation.

Total Uncertainty

In risk assessments it is desirable to determine a value for the total
uncertainty of a quantity. There is, however, no accepted mathematical
procedure for combining random and systematic errors into a total
uncertainty. Indeed, one school of thought contends that two gquantities of
such different character should not be combined at all, whereas another school
disputes the dissimilarity and advocates the combination of the two quantities
as a matter of course (6'7).

In practice, there is yet another difference between statistical and
systematic errors. This arises from the fact that the magnitude of a
statistical error is a calculated value, however approximate, whereas the size
of a systematic error is usually no more than an educated guess. Despite the
differences between the two types of error, combinations can be made in a way
that yields an interpretable result. The lack of an accepted combination
procedure suggests the necessity of giving both errors separately as well as
in a clearly stated combination. A step in this direction was taken in the
last few years in the journal "Physical Review Letters," by giving estimates
for both statistical and systematic errors together with the results.

Among the many suggestions for ways to combine systematic and random

errors, two procedures stand out (6’7).

One is the separate propagation of
both errors through the calculation and subsequent quadratic combination

according to:
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2 2 2

Stot = Sstat * Ssyst -

(1)

The other one advocates first the combination of both systematic and
statistical errors according to Eq. (1) and then the simultaneous propagation
through the calculation. Either way, the quantity calculated has again the

character of a standard error.

3. PROPAGATION OF ERRORS

Selection of Appropriate Probability Distributions

In a discussion of errors and of error propagation, the assumption of a
probability distribution for a stochastic variable is a decisive step, since
jt determines all properties of the probabilistic behavior of this quantity.
However, the choice is usually made without much further thought and results
mostly in the adoption of either a normal or a lognormal distribution.

Distributions of experimental data, which could be used to decide which
distribution to apply, have generally one aspect in common: Evidence is
abundant in the regions of high probability where the differences between
distributions are small, but scant in the Jow probability areas, the tails,
where the various distributions have widely different numerical values. Even
experimental evidence is, therefore, often not conclusive.

As a consequence, it ¥s much safer to perform mathematical operations in
the high probability areas than in the tails of the distribution. Means and
standard deviations can be determined to a good approximation, whereas

calculations of 95% confidence levels or other operations involving the tails
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are often guestionable. 1In the evaluation of large uncertainties in
experimental data and a possible discussion of confidence limits, this aspect

should be borne in mind.

functions of Stochastic Variables

The use of a stochastic variable in a mathematical function leads to a
function value that is also a stochastic quantity. Its probability
distribution does not usually remain the same as that of the variable, but is
changed by the function. The values of most functions of normally distributed
variables, for example, are no longer normally distributed. In Fig. 1, this
relation is shown graphically for a simple function y = f(x). The stochastic
variable x is normally distributed and characterized by its mean X5 and its
standard error Ax. Here, the function y = x2 is used as an illustration.

The change in the distribution of the function value y is caused by the change
in the slope or, more precisely, the second derivative of the function. The
consequence s a non-normal distribution with a mean y* that is different

from the function value Vo = f(xo). Thus a correction dy = y* =Y,

has to be applied to the value Yo The same conclusion is reached in an
examination of most functions for one or several variables.

For functions of more than one variable, the aspect of independence has
to.be considered. In this paper, it will be assumed that all variables are
independent of each other, i.e. that the variations in one stochastic variable
do not prejudice the variations in any other variable. This is in agreement
with the situation for tﬁe major factors in a risk assessment. In a
particular factor, however, such as the health risk for a given exposure,

correlations between two or three of the parametérs are the norm, for instance
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if the values were obtained in a fit to the same data. This situation has

(4.8) and is discussed briefly

been dealt with extensively in the literature
in the next section. In the following, it will be assumed that such

correlations within a calculation have been taken into account.

The Gaussian Approximation For Small Errors

One algebraic approach to error propagation involves the expansion of

the function y = f(;) = f(x], Xor e xn) in the neighborhood of point ;0

(9)

in a muti-dimensional Taylor series Termination of the series after

the first order terms results in the Gaussian formula for the propagation of
errors. It is a good approximation as long as the relative errors are small,
j.e., as long as (Axi/xi) << 1. The standard error Ay of the mean

is then given by

2
0

(af X )

2
, Uax, (Axi) . (2)

LI s B

(ay)? =
i

The index o denotes the numerical value of the derivatives evaluated at
X = ;o’ In this approximation, the shift of the mean is zero, that is
SWEY -y, =0 (3)

The formulae for some simple algebraic structures which are encountered
relatively often such as sums, differences, products, quotients, and products
of power are given in Table I. The series used in their derivation terminates
with the first term for sums, differences or a linear mixture of the two. For
these cases the Gaussian approximation is exact, and therefore valid
independent of the size of the errors. The formulae for all the other
functions listed are applicable for small errors only.

The basic structure of all the formulae in Table I is similar. The

square of the absolute error &f for sums and differences is the sum of the
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squares of the errors over all the terms. The square of the relative error
ay/y of products and quotients is equal to the sum of the squares of the
relative errors, and in the case of power functions each term is multiplied by
the square of the exponent.

In practical situations, this “sums of squares" structure affords an
easy way of simplifying the expressions to be evaluated numerically. The.
typical terms in the sums on the right-hand side are essentially the squares
of the absolute or relative errors. If one of the errors is 3 times smaller
than the others, for example, its contribution to (Ay)2 is an order of
magnitude less than those of the others and its contribution to the standard
error Ay even smaller. This variable can therefore often be treated as a
constant without error. Ffor many variables the approximate range of errors is
known in advance and the error formulae can be simplified accordingly.

For expressions more complex than those in Table I, the formulae can be
assembled by parts as long as the latter are independent. As an example, the
error of the function

X X," ~ X
FXys ooe X)) = ~l~§;;g~—§ (4)
can be calculated as that of a quotient between a difference and a product.
The error of the first term in the difference can be calculated separately
according to the last formula in Table I for the product of powers. Note that
this method is not app]1cable when any variable appears more than once, since
some of the parts are then no longer independent. In these cases the general
Gaussian formula (2) has to be applied.
Also, that formula is only applicable for independence of all variables

Xj- For correlated variables, a formula given in the literature must be



118

(4,8)

used for the standard error ay It can be written as the usual

Gaussian terms plus a set of correction terms for the correlations,

n -+ n ] > 2
2 _ af(x).2 .2 af(x) af(x) 2

Here, the parameters S?j are the elements of the covariance matrix;
the diagonal elements S?i are the variances of the parameters, the off-
diagonal elements SEj are the covariances, a measure of the correlations.
In practice this description is usually sufficient, since experimental
correlations between three variables (triple correlations) are either un]fke]y

or then rarely investigated well enough to be included in an error calculation.

4. ERROR PROPAGATION IN FORMULAE TYPICAL OF BIOLOGY AND HEALTH RISK

ASSESSMENT

Application of the General Formalism

(3)

In a report published elsewhere , general analytical formulae for

the propagation of large errors have been derived under the assumption of
normal distributions for the independent input parameters. The first terms of
the multi-dimensional Taylor series used for this purpose (9) are given in

Eq. (A.1) of the appendix and the corresponding shift &y of the mean is
presented in Eq. (A.2). In discussing these formulae from a practical point
of view, it 1s important to understand that the Taylor series is as much a
series in higher order differentials as a power series in the errors.

Convergence s thus as much a question of the decrease of the higher order

differentials as of the powers of the errors themselves.
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A good example are the functions occuring in risk assessment. They are
usually well behaved and the partial derivatives exist to any order of
differentiation needed. Indeed, many derjvatives go identically to zero at
relatively low orders. A notable exception are functions containing
exponentials which regenerate at every differentiation. However, in these
cases the numerical values uSua]ly converge rapidly to zero.

The‘equations in the appendix are, therefore, given only to fourth order
in the derivatives and to sixth order in the errors. If higher order terms
are neded, they can be obtained from ref. 3, but it should be borne in mind
that the complexity of the formula increases rapidly, making the analytical
approach and its convergence somewhat questionable.

In this section, the application of the general formulae in the appendix
to some typical algebraic structures will be discussed:

linear combinations,

i

- powers of one variable,

- products linear in the ndrma]]y distributed variables,

- products of powers of lognormally distributed variables,

- more complex composite forms.

For lognormally distributed variables, it is always possible to
transform the function into logarithmic space and perform the error
calculation for the normal distributions resulting there. For the final
result, a transformation back to normal space is needed. This procedure is
general, although sums and differences may lead to problems as they have to be
transformed as a whole. As a practical example, the treatment of a product of

powers of lognormally distributed Variab}es will be given here.
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Linear Combinations

Many operations such as the combination of intermediate results and the

calculation of weighted means lead to linear combinations of the kind
n
y = f(x) = I a;Ry . (6)

If the coefficients a; are known accurately and only the factors Ri have
appreciable errors, the Gaussian approximation (Table I) yields an exact

equation

n
(80)? = 3 (388" . (7)

If both the factors a; and Ri have large errors Aa1 and ARi'

respectively, formula (A.1) in the appendix gives the exact solution

=3

[ay)? = 12} (aiARi)z + (Rinai)z + (AaiARi)z . (8)

The first two terms are the Gaussian approximation; the third is the

correction term. It is always positive, thus increasing the final error.

Powers of Ope Variable

The error propagation formulae for one variable are given in Eqs. (A.3)
and (A.4) of the appendix. For positive, negative and fractional powers of
one variable specialized formulae have been published and discussed elsewhere
(3). The results will be summarized here briefly, because powers'of a
variable appear relatively often in risk assessments. They are usually
discussed within the framework of the function y = f(;) in which they appear.

In some cases, however, it is of interest to discuss the power of that

variable all by itself.
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Exact formulae can be derived for positive powers m. They are given in

Table IV-2 and their numerical consequences are discussed in Table IV-5 of
reference 3. It is shown that over a large range bf errors, the Gaussian
approximation is surprisingly accurate. This is not true for negative powers,
which result in an error propagation formula which is an infinite series. Due
to the proximity of the pole at x = 0, relative errors of 20-30% begin to
result in a series of doubtful convergence or outright divergente (Tables IV—3
and Iv-6 of ref. 3). This is an expression of the fact that for a large error
in the denominator, the distribution of the argument includes the value zero,

leading to an indeterminate result.

Products of Linear, Normally Distributed Factors

Products of linear factors are often encountered in practical problems.

The partial derivatives of the function

y o= F(X) =Xy Xy ae X (9)

terminate the series rapidly. A general formula is given in Eq. III-27 of
reference 3; for up to four factors, explicit formulae are given in Table II.
The expressions are exact and the shift of the means are found to be zero.
Because the complexity of the correction terms increases rapidly with
the number of factors, calculations using this formula should be Timited to as
few factors as possib]e.' This can be achieved readily due to the "sums of
squares® structure of the formulae. Al1 factors with smaller errors can be
contracted into a single factor whose error is then computed with an
appropriate approximation. If the error is considerably smaller than the

larger ones, its contribution can even be neglected.



Product of Factors with Lognormal Distributions

Factors with lognormal distributions are often used when large
uncertainties ranging over orders of magnitude have to be dealt with. For

this distribution, the logarithm of a product of powers

y=fX) =x. Vx, % ...x. ", (10)

n

log F(X) = I m; log x; , (11)
j=

and is, therefore, also normally distributed. In the Gaussian approximation

(Table I), which is exact in this case, the error in logarithmic space is

n
s = ¥ m." s.” , (12)

where S5 is the standard error of log Xy A transformation back to linear
coordinate space yields unequal standard error limits given by the product of

y and an exponential factor

2 5.2

1/2
mi i )

™3

¢, =y exp [ (
* §

1, (13)
]

where ¢, and ¢_ represent the upper and lower error limits,
respectively. The relative errors are given by

m, 2 5.2)]/2] -1} .

] 1 1 (14)

(), = £ fexp [x (

e B

i
It should be noted in this context, that other-basic operations such as
sums and differences of lognormally distributed quantities cannot be performed

(1

exactly in a simple analytical way The applicability of the equations

in this section for further calculations is therefore restricted.
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In addition, situations involving both normally and lognormally
distributed factors should be avoided if possible, since operations on
parameters with different distributions, some symmetric, some asymmetric,
introduce difficulties into an analytical treatment which lie beyond the scope
of this paper. 1In this case the algebra of random variables (1) or

(10)

numerical methods such as Monte Carlo techniques or Latin Hypercube

Sampling an) should be used.

More Complex Algebraic Structures

A typical example of a more complex algebraic structure that occurs in
risk assessments is the number H of health effects expected in a population
exposed to a toxic agent with a nonlinear dose-effect relationship. For these
cases, the elegant and convenient person-dose (e.g., person-rem) concept
appropriate for linear dose-effect relationships is not valid, and the number
of health effects has to be approximated by averaging over many
sub-populations with hearly the same dose. This results in a general

algebraic structure
N
H=F F_ ... F ¥ x, y1 cee 2. (15)

For a quadratic dose-effect relationship and a group with a dose Di

the risk for an individual r1 is

2
ry = 3 Di . (16)

As an example, the expected number H of health effects will be written as
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N
% FrFa 2 om0

=ay F) F, S, (17)

where n1 is the number of individuals in group i, and

(18)

w
i
[ e I 4
=
o

j=p 11

According to Eq. (A.2) in the appendix, the asymmetry of the distribution of H
*

results in a relative shift &H between the mean H of the distribution and

the calculated value Ho given by the exact expression

fo(50 (19)
1 i

where

- 1 i
f1 = 3 . (20)

The relative error AH/H0 is obtained from Eqg. (A.1). An elementary but

somewhat lengthy calculation yields

aH. 2 1 ) 0
G =1 () + (=) + (=) +
Ho F Fa 3
M 2 Ani Z M)i 2
3 P vagh 1
5=y ) ns Dy
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+ oo, . (21)
The first three terms and the first sum are the usual Gaussian

approximation, the next terms the higher order corrections. Due to the "sum
of squares" structure, this equation can be simplified considerably, once
numerical values are known. A Jot depends on the number n of dose groups
because the fractions fifare roughly proportional to 1/n and the second sum
to Eq. (21) is thus roughly equal to the average term in the sum. In the
third sum, however, fg appears, which gives a sum of roughly 1/n times the
average term. With a value for n that is usually ten or more, this series
expansion can thus be expected to have only a few sizeable terms of higher

order.
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The complete series in Eq. (21) also has nonzero terms of eighth and
tenth order 1h the errors and of up to sixth order in the derivatives. A
short fnspection shows that all the corresponding terms

Aﬁi 4 Axk 2 8x., 2?2
f (5D () ()

k 1

AD1 4 Axk 2 Ax] 2
o) () )

fy2 (Az‘)2 (A:“)z (A:‘)2 (A:‘")2 :
i i 1 m

AD, 4 Ax, 2 Ax, 2 Axm 2

2 i K 1
f." () (=) (—) (/) .
i Di xk x1 xm

2 ADi 2 sa, 2 AF] 2 AF2 2 (Ani)z
n

f:m () () () (&)
i Di a, F] F2 j

where the indices k, 1, and m stand for parameters other than Di' are very
small, even for relative errors of 0.5 or so.

Another important aspect of calculating the uncertainty of the number H
of health effects according to Eq. (17) is the fact that the uncertainties of
ni and 0i are connected, but not necessarily correlated. If the
population is subdivided into groups with a narrow dose range, the group
populations "i are going to have large errors; if the group doses have large
errors, the populations n, are less uncertain. An inspection of Eq. (21)
shows that it is preferable to have as many dose groups with narrowly defined
doses as possible, given the quality of the data bhase.

The uncertainty of the expected number of health effects can thus be
calculated for any reasonably large errors in the input data and the

sensitivity for each parameter is established directly in analytical form.
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5. DISCUSSION

Exéct formulae or sufficiently accurate approximations can be derived.
for the propagation of large errors in some simple algebraic forms which occur
frequently in risk assessment. For series that do not terminate analytically,
enough terms can be given to allow a sufficient approximation for most error
sizes. As shown in the last section, the number of terms given in the
appendix is usually sufficient. If more terms are needed, they can be derived
from the general formula (3). This decision involves a judgment of the
convergence of the series (A.1). Conventionally, convergence can be
established by estimating the remainder of the Taylor series (9) and
inserting it into the error propagation formula. This procedure would,
however, result in a highly complex form for the remainder of the error
series. In most risk assessments, this procedure is not necessary because the
functions are well behaved and their higher order derivatives quickly become
negligibly small, if not identically zero.

An example was given in the last section, where the last terms decrease
rapidly, not only because of the high powers of the relative errors
(Ax]/x]), but also because of the small values of the higher order
derivatives which contain the small factor fiz. If the series does not
converge promptly, the numerical situation should be investigated for an
extraordinary environment such as the neighborhood of the pole {i.e., f(x) is
infinite] at x = 0 in the function f(x) = 1/x. In this case, non-convergence
could mean that the upper error 1imit is indeterminate due to the proximity of
the pole.

The formulae presented can be simplified considerably by applying some a

priori knowledge about the relative size and nature of the errors and
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retaining only those terms that contribute noticeably to the final error.
Because of the "sums of squares® structure of the error formulae, relatively
small factors between errors can lead to the elimination of the smaller ones
without significant loss of accuracy.

An analytical formulation of error propagation offers essentially three
advantages and two disadvantages. Advantages are: One, the numerical
calculations are rather modest once the algebra has been done. Two, the
influence of various contributions to the final error can be discussed
explicitly. Three, the range of applicability for the Gaussian approximation
can also be judged explicitly. Numerical investigations show that over an
often surprising range of error sizes, it still yields sufficiently accurate

results (3).

Disadvantages are: One, a rapid increase in the algebraic
effort as the complexity of the function increases. Two, the standard errors
thus determined do not allow an accurate calculation of upper and lower limits
at 95% confidence level, because the distribution of the result is no longer
normal. These limits are, therefore, just approximations, although for large
errors that is a lesser problem of the uncertainty analysis.

Contrary to intuitive judgement, the analytical discussion of error
propagation can thus be used to advantage even for large errors, complementing
the more traditional numerical metheds. In all cases investigated explicitly,
the correction terms to the usual Gaussian approximation were positive, i.e.
the Gaussian approximation underestimated the error. Thus, as errors grow
larger, the method developed here becomes increasingly important in estimating

errors realistically.
The formulae given for that purpose are often exact or very good

approximations. In discussions involving the resulting errors and their
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meaning, however, it should be remembered that the assumption of a certain
probability distribution for a stochastic variable is in itself an
approximation, often only tenuously supported by experimental data. It will
thus be the uncertainties in the distributions and the standard errors of the
input parameters that 1imit the determinative power of the error analysis.

It is in this area that the most difficult problems of an error

calculation must be solved. Careful examination of the size and nature of the
error for each variable and the assignment of an appropriate probability
distribution are crucial to the success of the analysis. The propagation of
these characteristics through the numerical calculation and the estimation of
the final mean and its error are then accomplished readily, using the most

appropriate method.
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APPENDIX

Derivation of Error Formulae

The error propagation formulae used in this paper have been derived in a

report published elsewhere (3). They are based on the multidimensional Taylor
series (9) for the function y = f(;), where the vector X = (x], Xop <oy xn)
is associated with a statistical error vector A; = (Ax], sz. vees Axn).

Unless stated otherwise, the components of the error vector are assumed to be
jndependent of each other and distributed normally. The general formulae and
some tables for the construction of explicit formulae have been given in the

(3)

original report In this paper, the first terms of the series are given

for the case of one and several variables.

A.1. Functions of Several Variables

The series for the final error Ay of the function y = f(;) with terms
of up to sixth order in the errors Axivand using derivatives of up to

fourth order is

n n 2
2 = 1 A2 a2+l s E5% @)t
j=1 9Xj i 2 §=1 9X%j i
n n 2
af 2 2 2
+ ¥ I ( )T (Bx:)T (8xg)” +
i=1 j=ia % 500 J
n 3
af af 4
+ =) (=) (ax,) +
151 (ax13) (axi) ¢ 1)
n n 3
v 33 (=3 A5 (ax)? (ax )P 4
j=1 j=1 3x§° axj axj i J
J#i
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n 3

5 af .2 6
+ = — ax +
12 151 (ax13) (ax)
n n n 3
af 2 2
+ ) ) Y (00— ") (ax; A, A,) +
i=1 j=i+1 k=i+2 %5 %5 % Tk
n n 3
+3 11 (5% ax )t (ax )2+
4 §=1 j=1 9Xi¢ 3xj i J
J#i
n n n 3 3
+ 1 ) 32f 32f ) (Bx, Ax, &x )2 +
4 §=1 j=i+1 k=142 3X§¢ Xj  IXK‘ AXj i J k
n 4 2
1 f
1oy AL ALy )’ -
2 =1 axj axj i
n n n 4 2
+ 3 23 f M ) (Ax_ 8x_  Ax )2 +
i=1 j=i41 k=i+2 9X§¢ 3xj 3xk  3xj Xk i k
n N 4 2
f f 4 2
A G 21—y (ax )" (ax )¢ +
i=1 j=1 9X§7 3xj  3xX§ 9Xj 1 J
j#i
n n 4 2
vy oy (=2 A ) )+ (A.1)
2 j=1 j=i+1 9X§° 3Xj Xy i J

It should be kept in mind that in all of the formulae derivatives are
evaluated numerically at the point ;0.

The asymmetry in the distribution of the function y = f(;) leads to a
mean y* which is different from the function value Yo = f(}o) calculated

directly. The shift is given by

n 2
- % 1 af 2
sy =y - = = ==} (AX +
y=y yo 2 121 (axiz) ( i)
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n 4
f 2
I3 (=2 (ax ax )+ . (A.2)
=1 j=i+1 9X%§° 3Xj i3
Note that the formula for the shift of the mean is linear in the
derivatives.

A.2. Functions of One Variable

The formulae derived for an n-dimensional function simplify considerably

for one dimension. The standard error Ay of the function y = f(x) is then

given by
2
2 _ df.2 2 1 ,d°F.2 4
(ay)" = (dx) (ax)” + > (dxz) (ax) " +
d3f df 4 5 d3f 2 6
+ (E;g) (E;) (ax) " + 12 (5;5) (ax) " +
4 2 :
+ 1Lty (9~§) (ax)® + ... (A.3)
2 dx dx

An asymmetry in the distribution of the function value y = f(x) results in a
nonzero first moment of the quantity 8y

2 4
sy = i &y (a? + i AEy (a0t + ... (A.4)

dx2 dx

Again, all derivatives are evaluated at the point ;o-
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Table I. Gaussian Approximation for

Error Propagation in Simple Algebraic Structures?

y = f(}’)b Error Formula Level of Approximation
_ 2 _ 2 2 2
Y = X + Xo + + Xp {ay) = (Ax]) + (sz) + ...+ (Axn) exact
2 Ax, 2 Ax, 2 Ax 2
- Ay, _ 1 _2 _n
Y = Xy Xy Xg oo X ( y) = x]) + ( x2) + ...+ xn) valid for small (Axi/xi)
Xy Xo o X 2 ax, 2 ax, 2 Ax
y = x1 2 < k (91) = (—;l) + ...+ (—;5) + ...+ (—;ﬂ valid for small (Axi/xi)
k+1 ° n y ] K n
m m m 2 AX, 2 ax,. 2
_ 1 2 n Ay, " 2,771 2,.n .
y =X Xo . Xn { y) = m ( Xq) + +m { xn) valid for small (Axi/xi)

qNote: The symbols Xy do not denote

bmi = arbitrary

variables, but stand for their numerical values.

9¢1



Table I1. Exact Formulae for the Relative Error of a Product of Linear Factorsa’b'c

Gaussian
m Approximation . Correction Term for Exact Expression
2 Bax, 2 Ax, 2 Ax, 2
i ] 2
2 : (= (=) (=)
=1 X S B
3 Ax; 2 AX, 2 Ax, 2 Ax, 2 AX, 2 Ax, 2 Ax, 2 Ax, 2 ax, 2 Ax, 2
3 1 2
3 I (50 D D+ S DD G Sh S
i=1 i i 2 1 3 2 1 2 3
4 Ax; 2 AX, 2 A&X, 2 Ax., 2 Ax, 2 Ax, 2 Ax, 2 ax, 2 ax, 2 Ax., 2 AX
. 1 4
4 I (5h h SH o D G G D D F
El i 1 2 1 3 1 4 2 3 2

Ax3 2 Ax4 2 Ax} 2 sz 2 Ax3 2 Ax] 2 sz 2 Ax4 2 Ax]

) )+ (

1

) )

2

) (5D + )+ (

3 4

)

1 X

X X X

3 4 1

AX, 2 Ax3 2 Ax4 2 Ax., 2 AX

2 2 Ax3 2 Ax4 2

1 2

aNote: The symbols xi do not denote variables, but their numerical values.

bFor Tinear factors, no correction of the mean is necessary.

CFormulae for m=2:

the table yields:

ax. 2 Ax1 2 sz 2

(=) + (=hH =H
1% X9 Xa

(el
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Figure Caption

Fig. 1. Composite plot of the function y = xz. a normally distributed
variable x (x0 = 0.8, o = 0.2) and the distribution of the result

*
which is asymmetric and has a mean y 1larger than Yo = 0.64.
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