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ABSTRACT

This paper is a partial collection of the literature on fractals and how it applies to phase change processes,
specifically solidification. Fractals can be used to model the dendrites that are formed at the interface
between a liquid and a solid with restrictions because either dendrites or non-dendritic fractals may be
formed by diffusion limited solidification, depending on the presence of crystalline anisotropy. This
anisotropy causes the tips of the structure being formed to remain stable, leading to the formation of a
dendrite, rather than splitting to form a non-dendritic fractal. An additional type of structure is found when
electrodeposition is used to model solidification. The formation of this dense radial structure depends on
the level of the voltage and the electrolyte concentration. These structures are formed at intermediate
valuegs where the crossover from non-dendritic fractals to dendrites: occurs. Non-dendritic fractals are
formed at the lower values and dendrites are formed at the higher values. A comprehensive bibliography is
icluded with this paper.

INTRODUCTION

This paper summarizes reports of some rescarch and experiments that have been done on dendrites,
fractals and dense radial structures, in particular, the application of fractals to phase change processes. The
first section deals only with dendrites and discusses dendritic growth and some of the factors affecting that
growth. Dendrites are tree-like structures formed at the interface between a solid and a liquid by
diffusion-limited solidification., Their growth depends on anisotropy. The presence of crystalline
anisotropy causes a dendrite to grow with stable tips. The shape of the dendrite formed depends on the
level of anisotropy.

The second section begins with definitions of fractal and fractal dimension. Fractals can grow in nature
by diffusion-limited aggregation. When a crystalline strycture is isotropic, non-dendritic fractals
(characterized by split tips), rather than dendrites are formed. Two methods for calculating the fractal
dimension of an object are given. Then how fractals are grown in nature and several models for simulating
fractal growth are discussed.

The third section includes :information about ‘dense radial structures and electrodeposition models.
Electrodeposition is sometimes used to model solidification. These models show the formation of all three
structures: dendrites, non-dendritic fracials, and dense radial structures. Dense radial structures occur ina
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transition region between DLA formations and dendrites. The type of pattern formed depends on the
values of the voltage and the electrolyte concentration. DLA patterns are formed when one or both of
these values are low. Dendrites are formed when both values are high. This section also explains how the
three growth structures are related.

SECTION I - DENDRITES

Dendrites are formed at the interface between a solid and a liquid when a crystalline material freezes
from its supercooled melt. These structures are pine tree shaped with arms (or branches) that are parallel to
specific crystallographic directions. Dendrites are formed as a result of diffusion limited solidification. As
a dendrite grows the latent heat of fusion is given off and this adds to the energy of nearby atoms. This
extra heat decreases the tendency for these nearby atoms to attach to the interface, resulting in the
temporary halt of growth at that part of the dendrite. Once the heat dissipates, growth will begin there
again. Mecanwhile, growth takes place on another part of the dendrite in a direction perpendicular io that of
the prior growth. This phenomenon continues so that the final dendrite consists of a primary stalk from
which smaller secondary stalks have grown perpendicular to the primary stalk. Sometimes, tertiary stalks
grow perpendicularly off the secondary stalk. These secondary and tertiary stalks are added as the primary
stalk becomes larger and larger which leads to the pine tree patiern. These stalks have regular branch
spacing and this spacing decreases for each successive order of branching. The arms of the dendrite grow
in crystallographically preferred directions. These directions are the axes of a pyramid whose sides are
formed by the closest possible packed planes that can form a pyramid. This describes different directions
depending on the structure of the crystal. [12,78,79,82]

Most crystal structures are anisotropic, which means that the propertics of most crystals are not
independent of direction. It is anisotropy, specifically the anisotropy of the growth rate and its rclationship
to the kinetic driving force, that causes a dendrite to form, Without this anisotropy, the dendrite’s direction
of growth would depend entirely on thermal conditions. [12,25,64]

Given the Stefan problem (excluding surface tension and anisotropy), there exists a continuous set of
parabolic shapes for the interface that are solutions to this problem. The addition of surface tension and
anisotropy causes a singularity that in turn changes the problem to a nonlinear eigenvalue problem,
resulting in a discrete set of needle solutions.

A recent analysis of needle solutions by Kessler and Levine [29], shows that the fastest-moving
solution is stable in a moving frame of reference and is a true dendrite. For a fixed anisotropy, the growth
rate is proportional to the squarc of the Péclet number. The Péclet number is the ratio of a length scale
(which is the radius of curvature of the leading tip of a steady-state dendrite) to the diffusion length, where
the diffusion length is two times the ratio of the thermal diffusivity to the dendrite’s growth velocity. [65]

Several experiments have been done using succinonitrile to predict the steady-state and frec growth of
dendrites. These experiments were aimed at predicting the growth velocity and geometry (the geomeiry as
it relates to tip radius and the orientation and spacing of the side branches) of a free dendrite given the
supercooling of a melt [40]. For these experiments, a solid phase grew in the direction of an axis of
symmetry into a uniformly supercooled liquid.

Glicksman, et al. {21] recorded their results for both dendrite growth in a long tube and free dendrite
growth. For small supercoolings of the melt in the long tube, the dendrites were individual with well-
defined stems and branches that grew straight up the walls of the tube. With large supercoolings, the
dendrites grew up the walls as a continuous sheath of crystals with no leading tips. At the intermediate
supercoolings, the growth began with the individual dendrites as in the small supercooling experiments and
later changed to the spiral morphology characteristic of large supercoolings. For all three levels of
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supercooling, higher growth rates were associated with a higher purity of the succinonitrile.

The results for free dendritic growth, obtained by Glicksman, et al., op cit, were another matter
entirely. For small supercoolings, the growth of the dendrites depended greatly on their inclination from
vertical. Dendrites that pointed downward grew faster than dendrites that pointed upward. This was
thought to be caused by the transfer of heat through the motion of the particles driven by the dendrites’
temperature field. The number of dendrite arms growing into the melt increased rapidly as the degree of
supercooling was increased. This increase was not because of the division of arms that were freely
growing, but rather because of crystallite multiplication. As time passed, the tips of individual primary
dendrites diverged radially from: one another. Continual branching and rebranching of the dendrites filled
the volume behind the leading tips with a fine mesh of secondary and higher order arms that grew as if they
were isolated dendrites. With an increase in supercooling, the fraction of the volume of liquid changed to
solid increased. This increase continued as long as some of the remaining liquid was below the equilibriom
freezing temperature.

Another experiment for describing dendritic growth, done by Weinberg et al. [78], concentrated on the
growth of dendrites in lead. Crystalline lead has a face-centered cubic structure consisting of “dendrite
rows." The primary stalk is in a horizontal planc at the bottom of the crystal, the secondary stalks are in the
vertical plane, and the tertiary stalks are again in the horizontal plane. The expected pattern that the stalks
would follow is that the secondary stalks decrcase in length and thickness as one moves outward on the
primary stalk, and the fertiary statks are larger and thicker near the bottom of the secondary stalk.
However, this was not the case. This experiment showed that the secondary stalks do not necessarily grow
at equal intervals or heights, and the larger tertiary stalks are not necessarily those closest to the bottom.
The secondary and tertiary stalks did follow the primary’s growth progressively increasing in size. As the
dendrites grew, the interface moved along covering the rows that were initially formed. At earlier imes in
the growth process, the dendrites were shorter and thinner and the spacing between rows was smaller than
at later times. The development of the branches was related directly to the degree of supercooling; the
branches did not develop fully with less supercooling (0.5° and below). Weinberg et al. concluded that the
direction of a dendrite’s growth is defined by the crystallographic orientation of the dendrite and is
independent of the heat flow. In this experiment, the direction of growth came within 2° of the
crystallographic direction. During the solidification of metal, striations appear on the top surface of the
crystal. These stnations are a series of bands that are parallel to the longitudinal axis of the crystal. An
increase in the growth rate causes some of the striations to widen. This widening takes over some of the
neighboring striations and the boundaries between striations become jagged. These jagged boundaries are
parallel to and run between the dendrite rows. In this experiment, no dendrite row ever crossed a
boundary. The degree of wrregularity of the crystal is greater in the sections that solidify last, where the rate
of growth is the greatest.

SECTION II - FRACTALS

The word "fractal” is derived from the Latin word "fractus", meaning irregular and fragmented. [45]
Most fractal sets have the characteristic of being self-similar; that is, each part of the shape is
geometrically similar to the whole. Inherent in the definition of self-similar is the property of scaling
invariance which means that it is impossible to tell what length scale was used to obtain any particular view
of the shape. These two propertics do not continue into infinity in the natural world as they do in
mathematical fractals. The maximum size range in which natural fractals have this self-similar property is
usually reached at magnifications of about four orders of magnitude. [37,62]

A fractal is sometimes defined or explained by its self-similarity property, but this is oot a good
definition because recently non-self-similar fractals have been discovered. [36] The definition proposed by
Benoit Mandelbrot [45] is as follows: a fractal is a sct for which the Hausdorff Besicovitch dimension



-4.

strictly exceeds the topological dimension. We will use the standard notation of D for the Hausdorff
dimension and d, for the topological dimension. So the definition states that for a fractal set d, < D.
(The topological dimension of an object is at least zero and at most equal to the Euclidean dimension of the
space in which it is cmbedded. It is always an integer. The topological dimension for a point is zero, for a
line it is one, and for a surface it is two. [35])

Every fractal has a fractal dimension. This is the same as the Hausdorff dimension used in the
definition of a fractal stated above. The fractal dimension is usually not an integer. The fractal dimension
quantifies the degrec to which the shape fills the Fuclidean space in which the object is embedded and
illusirates the shape’s roughness. The more compact a fractal set is, the greater the fractal dimension it has,
and as the fractal dimension increascs, so does the object’s roughness. However, the fractal dimension of
an object is never greater than the Euclidean dimension of the space in which it is contained. Therefore the
fractal dimension is always greater than (by the above definition) the topological dimension and always
less than ot equal to the Euclidean dimension of the space. It is possible for the fractal dimension of an
object to equal its Euclidean dimension, but if this occurs, then the object is not considered o be a fractal;
it is considered a Euclidean set. [36,37.45]

There are at least two methods for determining the fractal dimension of an object. One method is
explained by Len Sander. [68] This method determines the fractal dimension of an object by determining
the average number, N, of fundamental units of repetition found within a sphere centered somewhere on
the object as a function of the radius, r, of the sphere. By Euclidean geometry, the number, N, is equal to a
constant, C, times the radius raised to the value of the dimension, D ( N=Cr" ). For a line segment (see
figure 1a), increasing the radius of a spherc by three triples the number of units enclosed in the sphere.
This gives a dimension of one (D = log 3/log 3). For a two-dimensional figure (sce figure 1b), tripling the
radius increases the number of units contained within the sphere by nine (D = log 9/log 3). Given the
fractal of figure Ic, tripling the radius of the sphere used increases the number of units by five and thus D =
log 5/log 3 = 1.46.

Another method is explained by Richard Voss. [76] A line segment can be divided into M smaller
picces. Each of these picces is a copy of the original line segment and each part is scaled down by a ratio
of r = 1/ M from the whole. For a two-dimensional object, the ratio would become r= 1/M" The pattern
would continue with the M on the right side of the equation raised to the reciprocal of the dimension of
space. Thercfore, a D-dimensional self-similar object can be divided into M smaller copies of itself with
each copy scaled down by a factor of r where M = 1/t°. This implics that an object’s fractal dimension is
D = (log M)/(log 1/r). An example of this method, using the Koch snowflake curve is shown in figure 2.
This curve begins with an equilateral triangle and is generated by placing another smaller equilateral
triangle on the center third of each edge of the original triangle. This process is continued on to infinity.
Here, the ratio by which each copy is scaled down is 1/3. The perimeter of the object is muliiplied by 4 at
each stage of the construction. This gives the dimension of the snowflake to be D = log 4/log 3 = 1.26.

Fractals are thought to grow in nature by diffusion-limited aggregation (DL.A). The fundamental model
of this growth, proposed by Len Sander [68], is as follows. Aggregation is the adding of one particle at a
time 10 a cluster. This particle will stick at its first contact with the growing object. Because the particle
stays in the first place it contacts, the object grows in non-equilibrium. DLA starts with a smooth surface
that develops bumps because of noise. The particles are then more likely to come to rest on the bumps,
causing the bumps to grow faster than the holes. This effect, called screening, leads 1o an open structure
because each particle has a higher probability of sticking near the tip than near the side. This leads o a
greater instability in the system, and the growth and splitting of the tips cause a non-dendritic fractal. In
the natural world, however, it is possible that particles will bounce off the first time they hit, rather than
sticking right away. This will cause thicker branches, but the fractal dimension will remain the same. The
random DLA model of Witten and Sander [80,81] gives a fractal dimension of 1.66 for a two-dimensional
structure and a fracial dimension of 2.5 for a struciure embedded in three dimensions. For two dimensions,



Figure 1a:

A line segment has a dimension of 1.0,
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Figure 1b:

This figure has a dimension of 2.0.
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This fractal has a fractal dimension of 1.46.



Figure 2: The Koch snowflake has a fractal dimension of 1.26.
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the fractal dimension of Witten and Sander’s DLA model is differcnt from that of other random structures.
Some examples of other random structures are percolation clusters and self-avoiding random walks. The
fractal dimension of percolation clusters is about 1.9 and the fractal dimension of self-avoiding random
walks is about 1,33, {50]

For a scale-invariant fractal, N ~ R, where N is the number of particles or subunits in a radius R of a
point on the object and D is the fractal dimension of the object. If we take R to be the radius of gyration
then this equation relates mass 1o size during the object’s growth. If a fractal is scale-invariant, then all the
characterization sizes are proportional. [66]

The Witten and Sander model of random particles that walk one at a time is used to represent DLA. If
an object in this case is to be a fractal, it must have holes that are proportional to the size of the object
itself. These holes arise because of the screening effect; particles cannot enter the interior because the
arms that are alrcady extended block the way. {66] For a two-dimensional simulaton, the Witten and
Sander model of DLA [80,81] has a density-density correlation function C(r) = N‘IZp(r’)p(r +1’) where p
is the density and r is the position of a particle. From this comes C(r) ~ ™ for r a distance greater than a
fow lattice spacings but less than the size of the cluster. This is consistent with a fractal dimensionality, D,
of dr — o where dg is the cluster’s Euclidean dimension. The fractal dimension can also be found using

the radius of gyration, R,. We have R, ~ NP, for sufficiently large N, where N is the number of particles in
the cluster. (R hasa power -law dependence on N.) The fractal dimension of the cluster is Dg = 1/8.

Meakin {50] has proposed a model in which clusters are picked randomly and then moved by one
iattice spacing. Each cluster is moved by a probability that is proportional to its mobility. When a cluster
encounters another cluster, they stick together. As the clusiers merge, they become larger and larger unil
only one cluster remains. Here, the lower cutoff length is a few lattice units and the upper length is
determined by the average particle density (p). In Meakin’s modified version of Witten and Sander’s DLA
model, a crossover from a fractal structure to a structure with uniform density occurs. This has a crossover
iength | given by Co 7%= (p) or I = [(p)/Cyl™* where Cy= 1.0 and o is dy ~ D (e, a is the Hausdorff
codimension). Whereas if {(p) — 0 and I — oo, the structures formed are fractal on all length scales.

Kolb et al. {33] showed that the structures formed by cluster aggregation, as well as those formed by
particle aggregation, are fractal. In their particle aggregation model, Ny particles are placed in a volume
Yo The concentration p, = NV is chosen so that the avemage distance between particles is larger than
their radius. The particles move independently and randomly and a strong attraction causes pecmancni
sticking. This process continues until one structure is formed. The stractures were found 10 become less
dense as they increased in size. The structures were fractal if Ry(m) ~ m' ag m —» vo where D is the
fractal dimensionality of the structure, R, is the radius of gyration and m is the number of partcles. The
object could also be fractal if the density-density correlation function C() ~
6 for 1« 1 R, with D< dg. D is determined by the slope of a log R, vs. log m plot, and in two
dimensions is 1.43 + 0.03. In the cluster aggregation mode! of Kalb et al., there exisis an upper critical

dimension, above which the clusLem freely mierpenetmtc and the fractal dimension becomes independent
of the spatial dimension d; . :

SECTION III - DENDRITES, FRACTALS AND DENSE RADIAL STRUCTURES

In recent years, much interest has been given to diffusion-limited processes because DLA leads o the
formation of structures that have some of the characieristics of fractals. The patterns that sometimes occur
are open, random, chainlike structures that have no natural length scale, and therefore are scale mvariant.
[47] This observation led researchers to believe that perhaps these new patterns were fractals, and that
somehow fractals and dendrites might be closely related. Many experiments have been and are being done,
all with similar results; diffusion-limited aggregation leads to the formation of three different patterns of
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growth: non-dendritic fractals, dendritic crysials, and dense radial structures. (See figure 3, reproduced
from [67] with permission of the author.) If the system is always near equilibriom, then the intemal
structure and the external shape can be described with ordinary equilibrium considerations as a single
crystal. As the sysiem is moved away from equilibrium, dendritic shapes appear. These patterns result
from the new length scales associated with steady-state growth. As the system moves even farther from
equilibrium, discrderly growth occurs with no length scales at all. This growth is amorphous as well as
scale-invariant. The most recent research is concentrating on determining the factors that affect the
selection of the growth pattern. [66]

The conclusion of the experiments done using clectrodeposition to model growth is that the growth
paitein depends directly on the anisotropy of the surface tension [2,3,4,22,59,63,70,75]. This crystalline
anisotropy is necessary for dendrite formation, As the anisotropy decrcases, the system becomes unstable.
This instability caunses the stable tips of the dendritic growth to split, causing the formation of a non-
dendritic fractal. Dendrites are characterized by their complex, time-dependent side-branches and their
stable tips, whereas non-dendritic fractals are characterized by tip-splitting. It is thought that crystalline
anisotropy could be the mechanism that channels the growth of instabilities in certain preferred
crystallographic directions. Or it could be that the anisotcopy is the triggering mechanism for the needed
instabilitics. Without the anisotropy, the dendrite’s growth would follow a crooked path rather than iis
nermal straight path, leading to structures similar to non-dendritic {ractals. [4]

The geometric model (GM) of Ben-Jacob et al. [2] shows that there is a critical level of anisotropy for a
given driving force. Below this critical level, the interfacial dynamics of the dendrite is dominated by tip
sphitting. This is because the dendrite (ip is unstable with respect to tip bifurcation. As the system is driven
further from equilibrium (with anisotropy abscnt), the minimum length scale decreases and likewise the
period between tip splittings decreases leading to the formation of 2 DLA structure.

An experiment performed by Sawada et al. [70] resulted in the realization of four growth regimes. The
patterns were forined through the electrodeposition of zinc from & zinc sulfate solution, The growth
rcgimes were defined by the electrolyte concentration, C, and the applied voltage, AV. At the lowest value
of C (below 0.01 M) and low AV, (below about 8 V) the patterns were homogeneous, branching structures
with a circularly symmetric outer boundary. As the concentration was reduced, the patterns became more
and more like a non-dendritic fractal. At high C (about 0.1 M - 1 M) and low AV, the paiierns were
roughly fractal, but too thick for quantitative analysis. Thesc deposits were open, branching and slow
giowing. At a high AV (above 8 V) and for a wide range of C values, the growth occurred quickly
resuiiing in thin, stringy structures that were nonoriented. At interimediate values of C (about 0.03 - 0.1 M),
dendrites were formed with well-defined "backbones” and single branches from the main siem at regular
intervals. Even secondary and tertiary branches were observed. The boundary between these regimes is
not definitc. Sawada ct al. [70] examined the importance of the velocity of growth in each of these
regimes. When the electrolytic concentration was low, the velocity was independeni of the applied
voltage. At high concentrations, the velocity was strongly nonkinear with AV. In the latter case, the growth
was slow and deposits that are roughly fractal were formed when AV was low. If AV was high, then fast
growing, stringy patterns were formed. The growth velocity was linear in the voltage for the dendrite case,
The transition from a disordered structure to a dendrite involved an increase in the growih speed. The
ficmogencous, tip-splitting structures became dendrites by two mechanisms, directly by an increase in the
concentration and indirectly by an increase in growth velocity. Sawada et al. [70] calculated the fractal
dimension for the homogeneous patterns formed. They found D = 1.8 & 0.2 at scales larger than a
concentration dependent length &. The fractal dimension for scales smaller than & was 14 + 0.2. The
patterns were homogencous above § and fractal on scales below 8.

Another experiment with zinc leaves grown by electrodeposition, done by Matsushita et al. [47],
examined the relationship between the fractal dimension of the growth patterns and the applied voltage.
Their results showed that as the voltage was increased, while the conceniration was kept constant, the
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Figure 3: a) Fractal growth of Zinc
clectrodeposits

b) Dendritic growth
¢) Dense Radial Growth
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fractal dimensicon increased. The experiment showed the existence of a threshold value of the voltage,
which was about 8 V. Below this value, the fractal dimension is constant at around 1.66; above ii, the
fractal dimension increases linearly with the voltage. An experiment with zinc leaves done by Grier et al.
[22], reaffirmed the findings of Matsushita ¢t al., that there exists a threshold value of the voltage, above
which, the fractal dimension increases. However, they mcasured a fractal dimension of 1.75 + 0.03 for the
highly branched fractal regime. Grier et al. also observed that the fractal dimension of the dendritic regime
approached 1.0.

Another experiment done with electrodeposition by Sander [67] showed the existence of the third type
of growth, the dense radial structure. The dense radial structures in the experiment of Grier et al. [23] are
two-dimensional with rough branches that are contained in a circular envelope. These structures are not
considered fractal because they fill the space uniformly, i.c. they are equally dense in every place. They
are not considered dendrites because their tips are unstable. Dense radial structures are thought to form as
a result of the combined effects of surface tension and a kinetic term in the boundary condition. These
structures only develop when the diffusion length in a system is smaller than the radius of the cell that the
structure is formed in [23]. Sander [67] observed that as the voltage and the concentration were increased,
the structures changed from non-dendritic fractal to dense radial to dendritic. (See figure 4, reproduced
from [67] with permission of the author.)

Nittrnan et al. [59] experimented to determine how the physical mechanisms that cause changes in
anisotropy and the occurrence of tip splitting work. They used the Dielectric Breakdown Model (DBM) of
Niemeyer et al. [S7] on a iriangular lattice. A seed is placed at the origin of a large circle of radius R. This
sced represents the source of fluid with an infinitesimally small viscosity that is being forced, under
pressure, to replace a fluid with higher viscosity. This interface moves according to Darcy’s law:
v, = —n - V P where v, is the velocity component normal to the interface, a is the normal unit vector and P
is the pressure field. P is constant in a less viscous fluid and in a more viscous fluid satisfies V2P =0
because V- v =0, The boundary conditions that accompany this equation are: 1.) P(r,8) = 1 anywhere in
the body with low viscosity and 2.) P(R,8) = 0 along the circle of radius R.

In a perfect medium, one that has radial symmetry and no pressure fluctuations, the inierface would
grow in concentric circles. When noise is added, instabilities occur causing irregularities in the interface.
In the model of Nitiman et al. [59], noise is introduced into the system by the random selection of the next
perimeter site 1o be occupied, where the probability of going to each site depends on V P. The noise can be
conirolled by allowing the cluster to overtake a new perimeter site after it has been chosen s times, where s
is a tunable parameter. As s — oo, the growth of the interface approaches the Darcy-law growth and each
point grows according to the true local pressure gradient. When s = 2, the structure formed resembles the
DBM structure both qualitatively and quantitatively, but with thicker branches. Its fractal dimension is 1.7.

When s = 20, the structure is still qualitatively different, but appears to cross to a new universality class
with even thicker branches. However, the fractal dimension remains the same, 1.7. The fractal dimension
is independent of the noise reduction and is always 1.7. The cluster grows smoothly, with no tip-splitting.
As the radius of curvature increases, the interface becomes rough with positive (ouiward) and negative
(inward) fluctuations. The positive fluctuations are insignificant, whereas, the negative fluctuations are
important. The electric ficld in a single notch is small, which means that the notch is not filled in as
quickly. (This is also because of the lack of interfacial tension.) The protrusions on each side of the notch
have a larger electric ficld so they atiract mass. This leads 1o the development of a fjord that is never filled
in owing to the effect of screening.

If s > 50, the negative fluctuations decay more efficicntly and the system is less susceptible to these
fluctuations. As a result, a fjord is only formed at a large radius of curvature. The fractal dimension is
independent of s, but W (the finger thickness) increases with s. Therefore, the larger s is, the smaller the
amount of noise is, and the thicker the finger is. (W =4.5log s + 2). W is independent of the magnitude of
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the pressure field, In this model, interfacial tension does not exist and the finger thickness is related solely
to the amount of noise. Therefore, the tip-splitting is triggered by noise. The noise results in positive and
negative fluctuations. Zero noise ( § = o) leads to the formation of compact (non-fractal) circular objects.
At a low noise level (large s), the noise bas litile effect when the cluster is small, but the effect is more
pronounced as the cluster grows larger.

Real growth phenomena are never perfectly isoiropic, and anisotropy secms o dominate dendritic
crysial growth. Nittman et al. [59] modified their model 1o take into account anisotropy. Using the
example of a snowflake, they realized that there are microscopic irregularities in the landing surface for the
water molecules. So, they adjusted their model to take care of the fact that not all landing sites are created
equal. The Darcy Law equation is replaced by v, =—u- (kV P). The conservation of mass condition,
V.v =0, implics that V - (kV P) = 0 with the same boundary condition as for k = 1. k = k(x,y) is the
anisotropy parameter and represenis the permeability in the fluid problem.

With s = 50 on a triangular lattice, varying the value of k showed that the structure formed loocked more
and more like a snowflake as k was increased. The structure has a fractal dimension of 1.5 £ 0.1, The
individual branches on the object formed are disordered, with side branches of all sizes exiending from it.
The fractal dimension is greaier than onc becaunse these side branches have many different length scales.
These side branches look like a set of "trees” of varying height without branches. The height of the trees
varies because of the screening effect. A tiny degree of anisotropy changes the fractal dimension of the
object from the DLA value of 1.7 to 1.5 in the limit of infinitc cluster size. The first of the eqguations given
by Nittman et al. represents the growth law and relates the interfacial growth rate to the pressure ficld. The
second equation describes the spatial changes in the pressure field that drives the instability.

CONCLUSION

Diffusion-limited solidification can lead to the formation of either dendrites or non-dendritic fractals,
depending on the presence of crystalline anisotropy. The presence of anisotropy in a system causes the tips
of the structure to remain stable, forming a dendrite. Isotropy causes the tips of the structure to split,
forming a non-dendritic fractal. The future goal of rescarch in this area is to determine what other factors,
besides the presence of anisotropy, affect the selection of pattern growth.

Electrodeposition models of solidification lead to the formation of three types of growth patterns:
dendrites, non-dendritic fractals, and dense radial siructures. The question of which type is formed
depends on the levels of voltage and concentration. When one or both of these are at a low level, non-
dendritic fractals are formed. At intermediate levels, a crossover occurs and dense radial structures result.
At high levels of both, dendrites are formed. A threshold level exists, above which the fractal dimension at
a low conceniraiion is no longer constant, but increases linearly with the voltage. It is probable that fractal
geometry can be used to mode! dendritic growth because dendrites appear to be a special type of fractal. If
fractal geometry can indeed be used o model dendritic growth, it will be yet another of the many
applications of fractals to rcal phenomena.



(3]

(4]

(5]

[6]

(7]

i8]

[9]

(101

f11]

2]

{131

{141

[15]

L16)

(173

(18]

£19]

-15.

BIBLIOGRAPHY

Amar, M. Ben, Y. Pomeau, “Theory of Dendritic Growth in a Weakly Undercooled Melt,”
Europhysics Letters, 2 (No. 4), 307-314 (1986).

Ben-Jacob, E., R. Godbey, Nigel D. Goldenfeld, J. Koplik, H. Levine, T. Mueller; L. M. Sander,
“Experimental Demonstration of the Role of Anisotropy in Interfacial Pattern Formation,”
Physical Review Letters, 85 (No. 12), 1315-1318 (1985).

Ben-Jacob, E., Nigel Goldenfeld, B. G. Kotliar, J. 8. Langer, “‘Pattern Selection in Dendritic
Solidification,”” Physical Review Letters, §3 (No. 22), 2110-2113 (1584).

Ben-Jacob, E., Nigel Goldenfeld, J. S. Langer, Gerd Schon, “‘Dynamics of Interfacial Pattern
Formation,”” Physical Review Letters, 51 (No. 21), 1930-1932 (1983).

Ben-Jacob, E., Nigel Goldenfeld, J. S. Langer, Gerd Schon, ‘‘Boundary-Layer Model of Pattern
Formation in Solidification,”” Physicai Review A, 29 (No. 1), 330-340 (1984).

Bolling, G. F., W. A. Tiller, *‘Growth From the Melt: IIL Dendritic Growth,”” Journal of Applied
Physics, 32 (No. 12}, 2587-2605 (1561).

Brady; R. M., R. C. Ball, “‘Fractal Growth of Copper Electrodeposits,”” Nature, 309 (No. 17), 225-
229 (1984).

Brower, Richard C., David A. Kessler, Joel Koplik, Herbert Levine, **Geometrical Approach to
Moving-Interface Dynamics,”” Physical Review Letters, 51 (No. 13), 1111-1114 (1983).

Brower, Richard C., David A. Kessler, Joel Koplik, Herbert Levine, “‘Geometrical Models of
Interface Evolution,” Physical Review A, 29 (No. 3), 1335-1342 (1984).

Caroli, B., C. Caroli, B. Roulet, J. S. Langer, *‘Solvability Condition for Needle Crystals at Large
Undercooling in a2 Nonlocal Model of Solidification,”” Physical Review A, 33 (No. 1), 442-452
(1986).

Carslaw, H. 5., J. C, Jacger, Conduction of Heat in Solids, Oxford University Press, New York,
1984,

Chalmers, Bruce, Principles of Solidification, John Wiley & Sons, Inc., New York, pp. 94-95
(1964).

Dee, G., J. 8. Langer, “‘Propagating Pattern Selection,”” Physical Review Letters, 50 (No. 6), 383-
386 (1983).

Dewdney, A. K., ““Computer Recreations,”” Scientific American, 253 (No. 2), 16-24 (1985).

Elam, W. T., 5. A. Wolf, J. Sprague, D. U. Gubser, D. Van Vechten, G. L. Barz, Ir., Paul Meakin,

“‘Fractal Aggregates in Sputier-Deposited NbGe, Films,”” Physical Review Letters, 54 (No. 7),
701-703 (1985).

Feder, Jens, Torstein Jossang, A Reversible Reaction Limiting Step in  Trreversible
Immunoglobulin Aggregation,”” Scaling Phenomena in Disordered Systems, edited by Roger Pynn
and Ame Skjeltorp, NATO Advanced Study Institute Serics, Series B, Physics, 133, 99-131 (1985).

Gardner, Martin, ‘‘Mathematical Games,”” Scientific American, 235 (No. 6), 124-128,133 (1977).

Gefen, Yuval, Amnon Aharony, Benoit B. Mandelbrot, “‘Phase Transitions on Fractals: 1. Quasi-
linear Lattices,”” Journal Physics A, 16, 1267-1278 (1983).

Glicksman, M. E., R. J. Schaefer, “‘Investigation of Solid/Liquid Interface Temperatures Via
Isenthalpic Solidification,”” Journal of Crystal Growth, 1, 297-310 (1967).



[20]

(21]

(22]

(23]

(24)

[25]
(26]

[27]

(28]

(29]

(30

(31]

(32]

(33]

[34]

[35]

(36]
[37]
(38]

[39]

[40]

[41]

-16-

Glicksman, M. E., R. J. Schaefer, ‘‘Comments on Theoretical Analyses of Isenthalpic
Solidification,”’ Journal of Crysial Growth, 2, 239-242 (1968).

Glicksman, M. E., R. J. Schaefer, J. D. Ayers, ‘‘Dendritic Growth - A Test of Theory,”
Metallurgical Transactions A, TA, 1747-1759 (1976).

Gricr, D., E. Ben-Jacob, Roy Clarke, L. M. Sander, ‘‘Morphology and Microstructure in
Electrochemical Deposition of Zinc,”” Physical Review Letters, 86 (No. 12), 1264-1267 (1986).

Gricr, David G., David A. Kessler, L. M. Sander, ‘*Stability of the Dense Radial Morphology in
Diffusive Patiern Formation,” Physical Review Letters, 59 (No. 20), 2315-2318 (1987).

Hong, D. C., 1. S. Langer, “‘Analytic Theory of the Selection Mechanism in the Saffman-Taylor
Problem,’’ Physical Review Letters, 86 (No. 19), 2032-2035 (1986).

Hultgren, Ralph, Fundamentals of Physical Metallurgy, Prentice-Hall, Inc., New York, 1952.

Hutchinson, John E., *‘Fracials and Self Similarity,”” Indiana University Mathematics Journal, 30
(No. 5), 713-747 (1981).

Kessler, David A., Joel Koplik, Herbert Levine, ‘‘Geometrical Models of Interface Evolution. 1L
Numerical Simulation,”” Physical Review A, 30 (No. 6), 3161-3174 (1984).

Kessler, David A., Joel Koplik, Herbert Levine, “‘Dendritic Growth in a Channel,” Physical
Review A, 34 (No. 6), 4980-4987 (1986).

Kessler, David A., Herbert Levine, ‘“Stability of Dendritic Crystals,”” Physical Review Letters, 57
(No. 24), 3069-3072 (1986).

Kessler, David A., Herbert Levine, *“Theory of the Saffman-Taylor “‘Finger’” Pattern. 1,”’ Physical
Review A, 33 (No. 4), 2621-2633 (1986).

Kessler, David A., Herbert Levine, ““Theory of the Saffman-Taylor “‘Finger’” Patiern. II,”” Physical
Review A, 33 (No. 4), 2634-2639 (1986).

Kolb, M., R. Botet, R. Jullien, *‘Scaling of Kinetically Growing Clusters,”’ Physical Review Letters,
51 (No. 13), 1123-1126 (1983).

Kolb, M., R. Jullien, R. Botet, *‘Scaling Properties of Cluster and Particle Aggregation,”” Scaling
Phenomena in Disordered Systems, editcd by Roger Pynn and Arne Skjeltorp, NATO Advanced
Study Institute Series, Series B, Physics, 133, 71-78 (1985).

Kotiler, G. R., W. A. Tiller, “*Stability of the Needle Crystal,”” Journal of Crystal Growth, 2, 287-
307 (1968).

Kuratowski, Kazimierz, Chapter 19 in Iniroduction to Set Theory and Topology, Addison-Wesley
Publishing Co., Inc., Massachusetts, 1962.

La Breque, Mort, ‘‘Fractal Symmetry,”” Mosaic, 16 (No. 1), 14-23 (1985).
La Breque, Mort, “‘Fractal Applications,”” Mosaic, 17 (No. 4), 34-48 (1986).

Langer, J. S., ‘‘Instabilities and Paticrm Formation in Crystal Growth,”” Reviews of Modern Physics,
52 (No. 1), 1-28 (1980).

Langer, J. S., “‘Existence of Needle Crystals in Local Models of Solidification,”” Physical Review
A, 33 (No. 1), 435-441 (1986).

Langer, J. S., H. Miiller—-Krumbhaar, “‘Theory of Dendritic Growth - I. Elements of a Stability
Analysis,”” Acta Metallurgica, 26, 1681-1687 (1978).

Langer, J. S., H. Miller—Krumbhaar, *“Theory of Dendritic Growth - II. Instabilities in the Limit of
Vanishing Surface Tension,”” Acta Metallurgica, 26, 1689-1695 (1978).



[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[501

{51

[52]

[53]

[54]

(551

[56]

(57}

{58]

-17-

Lee, Eui In, *‘Fractals for the PC,”’ PC Tech Journal, Noveraber 1985, 165-178 (1985).

Lindenmeyer, C. S., Bruce Chalmers, “‘Growth Rate of Ice Dendrites in Aqueous Solutions,”” The
Journal of Chemical Physics, 45 (No. 8), 2807-2808 (1966).

Liu, S. H., “Fractals and Their Applications in Condensed Matter Physics,”” Solid State Physics,
39, 207-273 (1986). '

Mandelbrot, Benoit B., The Fractal Geometry of Nature, W. H. Freeman and Company, New York,
1983.

Matsushita, M., Y. Hayakawa, S. Sato, K. Honda, ‘‘Scaling Properties for the Unscreened Surfaces
of Fractal Patterns,”” Physical Review Letters, 59 (No. 1), 86-89 (1987).

Matsushita, M., M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada, ‘*Fractal Structures of Zinc Metal
Leaves Grown by Electrodeposition,”” Physical Review Letters, 53 (No. 3), 286-289 (1984).

Meakin, Paul, *‘Diffusion-Controlled Cluster Formation in 2-6-Dimensional Space,”” Physical
Review A, 27 (No. 3), 1495-1507 (1983).

Meakin, Paul, “‘Diffusion-Controlled Formation in Two, Three, and Four Dimensions,”" Physical
Review A, 27 (No. 1), 604-607 (1983).

Meakin, Paul, “‘Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited
Aggregation,”” Physical Review Letters, 51 (No. 13), 1119-1122 (1683).

Miiller—Krumbhaar, H., J. §. Langer, ‘‘Theory of Dendritic Growth - IIl. Effects of Surface
Tension,”” Acta Metallurgica, 26, 1697-1708 (1978).

Miiller—Krumbhaar, H., J. 8. Langer, **Sidebranching Instabilities in a Two-Dimensional Model of
Dendritic Solidification,”” Acta Metallurgica, 29, 145-157 (1981).

Mullins, W. W., R. F. Sckerka, ‘“Morphological Stability of a Particle Growing by Diffusion or
Heat Flow,”” Journal of Applied Physics, 34 (No. 2), 323-329 (1963).

Nash, G. E., M. E. Glicksman, *‘Capillarity-Limited Steady-State Dendritic Growth - 1. Theoretical
Development,” Acta Metallurgica, 22, 1283-1290 (1974).

Nash, G. E., M. E. Glicksman, **Capillarity-Limited Steady-State Dendritic Growth - I1. Numerical
Results,” Acia Metallurgica, 22, 1291-1299 (1974).

Nauenberg, M., R. Richter, L. M. Sander, **Crossover in Diffusion-Limited Aggregation,” Physical
Review B, 28 (No. 3), 1649-1651 (1983).

Niemeyer, L., L. Pietronero, H. J. Wiesmann, *‘Fractal Dimension of Dielectric Breakdown,”
Physical Review Letters, 52 (No. 12), 1033-1036 (1984).

Nittman, Johann, Gerard Daccord, H. Eugene Stanley, “Fractal Growth of Viscous Fingers:
Quantitative Characterization of a Fluid Instability Phenomenon,”” Nature, 314 (No. 14), 141-144
(1984).

Nittmann, Johann, H. Eugene Stanley, “*Tip Splitting Without Interfacial Tension and Dendritic
Growth Patterns Arising From Molecular Anisotropy,”” Nature, 321 (No. 12), 663-668 (1986).

Ohta, Shonosuke, Haruo Honjo, " Growth Probability Distribution in Irregular Fractal-like Crystal
Growth of Ammonium Chloride,”” Physical Review Letters, 60 (No. 7), 611614 (1988).

Orbach, R., **Dynamics of Fractal Networks,”” Science, 231, 814-819 (1986).

Peitgen, H.-O., P. H. Richter, pp. 1-23 in The Beauty of Fractals, Springer-Verlag, New York,
1986.



{63}

(64])
(65]

(66}

[67]

(68]
(69]

(701

(71}
(72
(73]

[74]
[75]

(76}

(77]

(78]

(79]

(80]

(81]

(82]

-18-

Radunoczi, Gy., T. Vicsek, L. M. Sander, D. Grier, *‘Growth of Fractal Crystals in Amorphous
GeSe, Films,”” Physical Review A, 35 (No. 9), 4012-4015 (1987).

Reed-Hill, Roberi, Physical Metallurgy Principles, D. Van Nostrand Company, New York, 1973.

Saito, Y., G. Goldbeck-Wood, H. Miiller—Xrumbhaar, ‘‘Dendritic Crystallization: Numerical Study
of the One-Sided Model,”” Physical Review Letters, 58 (No. 15), 1541-1543 (1987).

Sander, Leonard M., ““Growih by Particle Aggregation,”” Scaling Phenomena in Disordered
Systems, edited by Roger Pynn and Ame Skjeltorp, NATO Advanced Study Institute Series, Series
B, Physics, 133, 31-47 (1985).

Sander, .. M., ‘“‘Electrodeposition: Pattern Formation and Fractal Growth,” The Physics of
Structure FFormation, 37, 257-266 (1587).

Sander, Leonard M., “‘Fracial Growth,”” Scientific American, 256 (No. 1), 94-100 (1987).

Sander, L. M., P. Ramanlal, E. Ben-Jacob, ‘‘Diffusion-Limited Aggregation as a Deterministic
Growth Process,”” Physical Review A, 32 (No. 5), 3160-3163 (1985).

Sawada, Yasuji, A. Dougherty, J. P. Gollub, ‘‘Dendritic and Fractal Patterns in Electrolytic Metal
Deposits,”’ Physical Review Letiers, 56 (No. 12), 1260-1263 (1986).

Schroeder, Peter B., *‘Plotting the Mandelbrot Set,”” Byte, 11 (No. 13), 207-210 (1986).
Sorensen, Peter R., “‘Fractals,”” Byte, 9 (No. 10), 157-172 (1984).

Stanley, H. E., G. Daccord, H. J. Herrmann, J. Nittman, ‘‘Applications of Scaling and Disorderly
Growth Phenomena to Oil Recovery,”” Scaling Phenomena in Disordered Systems, edited by Roger
Pynn and Ame Skjeltorp, NATO Advanced Study Institute Series, Series B, Physics, 133, 85-97
(1985).

Stewart, Ian, “‘Les Fractals,”” Mosaic, 16 (No. 1), 10-13 (1985).

Vicsek, Tamas, ‘‘Pattern Formation in Diffusion-Limiied Aggregation,”” Physical Review Letters,
53 (No. 24), 2281-2284 (1984).

Voss, Richard, ‘‘Random Fracial Forgerics: From Mountains to Music,”” Science and Uncertainty,
Science Reviews Limited, pp. 69-85 (1985).

Weitz, D. A., M. Y. Lin, J. S. Huang, T. A. Witien, S. K. Sinha, I. S. Gethner, R. C. Ball, *‘Scaling
in Colloid Aggregation,”” Scaling Phenomena in Disordered Systems, edited by Roger Pynn and
Arme Skjeltorp, NATO Advanced Study Institute Series, Series B, Physics, 133, 171-189 (1985).

Wienberg, F., Bruce Chalmers, ‘‘Dendritic Growth in Lead,” Canadian Journal of Physics, 29,
382-392 (1951).

Wienberg, F., Bruce Chalmers, *‘Further Observations on Dendritic Growth in Metals,”” Canadian
Journal of Physics, 303, 488-502 (1952).

Witten, T. A., L. M. Sander, ‘“‘Diffusion-Limited Aggregation, A Kinetic Critical Phenomenon,”’
Physical Review Letters, 47 (No. 19), 1400-1403 (1981).

Witten, T, A., L. M. Sander, ‘‘Diffusion-Limited Aggregation,”’ Physical Review B, 27 (No. 9),
5686-5697 (1983).

Wulif, John, Howard F. Taylor, Amos J. Shaler, Metallurgy for Engincers, John Wiley & Sons,
Inc., New York, 1952.



56.

57.

38.

59.

61.

62.

63.

-19-

ORNL/TM-10778

INTERNAL DISTRIBUTION
1. V. Alexiades 22. J. M. Macdonald
2. B. R. Appleton 23-27.  F.C. Maienschein
3. L. C. Cain 28. M. D. Morris
4. C. S. Daw 29. . Ostrouchov
5. J. B. Drake 30. C. . Remenyik
6. Y. H. Etheridge 31-35. L. A Renker
7. R. E. Flanery 36-40. R.C.Ward
8. G. A. Geist 4145. D.G. Wilson
9. L.J. Gray 46. P. H. Worley
10-11.  R. F. Harbison 47, Central Research Library
12. M. T. Heath 48. K-25 Plant Library
13. T. L. Hebble 49, ORNL Patent Office
14. T. Kaplan 50. Y-12 Technical Library
15-19. 1. K. Ingersoll /Document Reference Station
20. S. M. Lenhart 51. Laboratory Records - RC
21. S.H.Liu 52-53. Laboratory Records Department

EXTERNAL DISTRIBUTION

Dr. Donald M. Austin, ER-7, Applied Mathematical Sciences, Scientific Computing Staff, Office of
Energy Research, Office (G-437, Germantown, Washington, DC 20545

Dr. George 1. Bell, T-7 Division, Los Alamos Naticnal Laboratory, P.O. Box 1663, Los Alamos, NM
87545

Dr. Bill L. Buzbee, C-3, Applications Support & Research, Los Alamos Scientific Laboratory, P. O.
Box 1663, Los Alamos, NM 87545

Professor Alfredo Bermidez de Castro, Universidad De Santiago, Dep. de Ecuaciones Funcionales,
Facultad de Matematicas, Santiago de Compostela, SPAIN

Dr. Sam Coriell, U. S. National Bureau of Standards, Mathematical Analysis Section, Washington,
DC 20234

Dr. James Corones, Ames Laboratory, Iowa State University, Ames, 1A 50011

Dr. John J. Dorning, Department of Nuclear Engineering and Engineering Physics, Thornton Hall,
University of Virginia, Charlottesville, VA 22901

Professor Antonio Fasano, Istituto Matemalico Ulisse Dini, V. Le Morgagni 67/A, 50134 Firenze,
ITALY

Professor Michael Fremond, Laboratoire Central des Pontes et Chaussees, Direction Scientific, 58
Boulevard Lefebvre, F-75732 Paris Cedex 15, FRANCE

Dr. Robert M. Haralick, Department of Electrical Engineering, University of Washington, Seattle,
WA 98195

Professor Dr. Karl-Heinz Hoffman, Angewandte Mathematic 1, Universitit Augsburg, Memminger
Strasse 6, D-8900 Augsburg, WEST GERMANY



68.

69.

70.

71.
72.

73.

74.

75.

7.

78.

79.

80.

81.

82,

83.

84.

85.

-20-

. Dr. Hans G. Kaper, Mathemaiics & Computer Science, Argonne National Laboratory, 9700 South

Cass Avenue, Argonne, IL 60439
Dr. Robert J. Kee, Applied Mathematics Division, 8331, Sandia Laboratories, Livermorc, CA 94550

. Dr. W. Kurz, Laboratoire de metallurgie physique, Ecole polytechnique federale de Lausanne, Ch. de

Bellerive 34-1007, Lausanne, SWITZERLAND

Dr. Alex Lehoczky, ES72 Space Science Laboratory, Marshall Space Flight Center, Huntsville, AL
35812

Dr. Richard A. Liitle, Mathematics and Computer Science Department, Baldwin-Wallace College,
Berea, OH 44017

Dr. Basil Nichols, T-7, Mathcmatical Modeling and Analysis, Los Alamos Scientific Laboratory, P. O.
Box 1663, Los Alamos, NM 87545

Professor Marek Niezgodka, Systerns Research Instituie, ul Newelska 6, 01-447 Warszawa, POLAND

Professor John R. Ockendon, Oxford University Computing Center, 24 St. Giles, Oxiord OX1 3LB,
UNITED KINGDOM

Dr. Ronald Peierls, Applied Mathematics Department, Brookhaven National Laboratory, Upton, NY
11973

Professor Mario Primiccerio, Inst. Matematico Ulisse Dini, Via Morgagni 67/A, 1-50134 Firenze,
ITALY

Dr. Timothy Riggle, Mathematics and Computer Science Department, Baldwin-Wallace College,
Berea, OH 44017

Dr. Raou!l Robert, Laboratoire I. M. A. G., B. P. No 68, 38402 Saint Martin d’ Heres Cedex,
FRANCE

Dr. Lawrence F. Shampine, Numerical Mathematics Division, 5642, Sandia Laboratories, P. O. Box
5800, Albuquerque, NM 87115

Professor Dr. Jiirgen Sprekels, Angewandte Mathematic I, Universitat Augsburg, Memminger Strasse
6, D-8900 Augsburg, WEST GERMANY

Dr. Don Steiner, Institute Professor, Department of Nuclear Engineering, Rensselaer Polytechnic
Institute, Troy, NY 12181

Dr. Frank Szofran, ES72 Space Science Laboratory, Marshall Space Flight Center, Huntsville, AL
35812

Dr. Karl Hermann Tacke, Sonnerbergstrasse 7, 8134 Adliswil, SWITZERLAND

Professor Domingo Alberto Tarzia, Programme de Mathematical Pura y Applicada, Instituto de
Matematica "Beppo Levi,” Universidad Nacional de Rosaric, Avernida Pelligrini 250, 2000 Rosario,
ARGENTINA

Professor Rohit Trivedi, Ames Laboratory, Iowa State University, Ames, IA 50011

Professor Burton Wendroff, Mathematics Division, Los Alamos Scientific Laboratory, Los Alamos,
NM 97544

Office of Assistant Manager for Energy Research and Development, U. S. Depariment of Energy, Oak
Ridge Operatiions Cffice, Oak Ridge, TN 37830

86-95. Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37830



