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ABS'IMCT 

This paper is a partial collection of the literature on fractals and how it applies w phase change processes, 
specifically solidification. Fractals can be used to model the dendrites that are formed at the interfacc 
between a liquid and a solid with restrictions because either dendrites or non-dendritic fractals may be 
formed by diffusion limited solidification, depending on the presence of crystalline anisotropy. This 
anisotropy causes the tips of the structure being formed to remain stable, leading to the formation of a 
dendrite, rzther than splitting to form a non-dendntic fractal. An additional type of structure is found when 
electrodeposition is used to model solidification. The formation of this dense radial structure depends on 
the level of the voltage and the electrolyte concentration. These structures are formed at intermediate 
values where the crossover from non-dendritic fractals to dendrites occurs. Non-dendritic fractals are 
formed at the lower values and dendrites are formed at the higher values. A comprehensive bibliography 1s 

included with this paper. 

1NTRODUCTION 

This paper summarizes reports of some research and experiments that have been done on dendrites, 
fractals and dense radial structures, in particular, the applicalion of fractals to phase change processes. The 
first section deals only with dendrites and discusses dendritic growth and some of the factors affecting that 
growth. Dendrites are tree-like smctures fonned at the interface between a solid and B liquid by 
diffusion-limited solidification. Their growth depends on anisotropy. The presence of crystalline 
anisotropy causes a dendrite to grow with stable tips. The shape of the dendrite formed depends on the 
level of anisotropy. 

The second section begins with definitions of fractal and fractal dimension. Fractals can grow in nature 
by diffusion-limited aggregation. When a crystalline structure is isotropic, non-dendritic fractals 
(characterized by split tips), rather than dendrites are formed. Two methods for calculating the fractal 
dimension of an object are given. Then how fractals are grown in nature and several models for simulating 
h c t a l  growth are discussed. 

The third section includes information about dense radial structures and electrodeposition models. 
Electrodeposition is sometimes used to model solidification. These models show the formation of all three 
structures: dendrites, non-dendritic fracrah, and dense radkdl siructures. Dense radial smctures occur in a 
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transition region between DLA formations and dendrites. The type of pattern formed depends on the 
values of the voltage and the electrolyte concentration. DEA patterns are formed when one or Both of 
these values are low. Dendrites are formed when both values are high. TRis section also explains how the 
three growth slructures are related. 

SECTION 1 - DENDRITES 

Dendrjtes are formed at the interface between a solid and a liquid when a crystalline material freezes 
from its supercosled melt. These structures arc pine tree shaped with amps (or branches) that ape parallel to 
specific crystallographic directions. Dendrites are formed as a result of diffusion limited solidification. As 
a dendrite grows the latent heat of fusion is given off and this adds to the energy of nearby atoms. Th is  
extra heat decreases the tendency for these nearby atoms to auach to the interface, resulting in the 
temporary halt of growth at that part of the dendrite. Once the heat dissipates, growth will begin there 
again, Meanwhile, growth takes place on another part of the dendrite in a direction perpendicular to 
the prior grow?h. This phenomenon continues so that the final dendrite consists of a primary stalk from 
which smaUer secondary stalks have grown peqxndicular to the primary stalk. Sometimes, tertiary stalks 
grow perpendicularly off the secondary stalk. These secondary and tertiary stalks are added as the primary 
stalk becomes larger and larger which leads to the pine tree pattern. These stalks have regular branch 
spacing and this spacing decreases for each successive order of branching. The arms of the dendrite grow 
in crystallographically preferred directions. These directions are the axes of a pyramid whose sides are 
formed by the closest possible packed planes that can form a pyramid. This describes different directions 
depending on the stnicture of the crystal. [12,78,79,82] 

Most crystal structures are anisotropic, which means that the properties of most crystals are not 
independent of direction. It is anisotropy, specifically the anisotropy of the growth rate and its relationship 
to the kinetic driving force. that causes a dendrite to fonn. Without this anisotropy, the dendrite’s direction 
of growth would depend entirely on h e m a l  conditions. /[12,25,64] 

Given the Stefan problem (excluding surface tension and anisotropy), there exists a continuous set of 
parabolic shalpcs for the inkrface that are solutions to this problem. The addition of surface tension and 
anisotropy causes a singularity that in turn changes the problem to a nonlinear eigenvalue problem, 
resulting in a discrete set of needle solutions. 

A recent analysis of needle solutions by Kessler and Levine [29], shows that the fastest-moving 
solution is stable in a moving frame of reference and i s  a m e  dendeitc. For a fixed anisotropy, the growth 
rate is proportional to the square of the Pkclet number. The Ptclet number is the ratio of a length scale 
(which is the radius of curvature of the leading tip of a steady-state dendrite) to the diffusion length, where 
the diffusion length is two limes the mtio of the thermal diffusivity to the dendrite’s growth velocity. [65] 

Several experiments have been done using succinonitrile to predict the steady-state and free growth of 
dendrites. These experiments were aimed at predicting the growth velocity and geometry (the geometry as 
it relates to tip radius and the orientation and spacing af the side branches) of a free dendrite given the 
supercooling of a melt [40]. For these experiments, a solid phase grew in the direction of an axis of 
symmetry into a uniformly supercooled liquid. 

Glicksman, et al. 1211 recorded their results for both dendrite growth in a long tube and free dendrite 
growth. For small supercoolings of the melt in the long tube, the dendrites were individual with well- 
defined stems and branches that grew straight up the walls of the tube. With large supercoalings, the 
dendrites grew up the walls as a continuous sheath of crystals with no leading tips. At the intermediate 
supercoolings, ;he growth began with the individual dendrites as in the small supercooling experiments and 
later changed to the spiral morphology characteristic of large supercoolings. For all three levels of 
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supercooling, higher growth rates were associated with a higher purity of the succinonitrile. 

The results for free dendritic growth, obtained by Glicksman, et al., op tit,, were another matter 
entirely. For small supercoolings, the growth of the dendrites depended greatly on their inclination from 
vertical. Dendrites that pointed downward grew faster than dendrites that pointed upward. This was 
thought U, be caused by the transfer of heat through the motion of the particles driven by the dendrites' 
tempemture field. The number of dendrite anns growing into the melt increased rapidly as thc degree of 
supercooling was incrmsed. This increase was not because of h e  division of arms &at were frcely 
growing. but rather because of crystallite multiplication. As time passed, the tips of individual primary 
dendrites diverged radially from one another. Continual branching and rebranching of the dendrites filled 
the volume behind the leading tips with a fine mesh of secondary and higher order arms that grew as if they 
were isolated dendrites. With an increase in supercooling, the fraction of the volume of liquid changed to 
solid increased. This increase continued. as Iong as some of the remaining liquid was below the equilibrium 
lreezing temperature. 

Another experiment for describing dendntic growth, done by Weinberg et ai. [781, concentrated on the 
growlh of dendrites in lead. Crystalline lead has a face-centered cubic structure consisting of "dendrite 
rows." The primary stalk is in a horizontal plane at the bottom of the crystal, the seamdary stalks are in the 
vertical plane, and the tertiary stalks are again in the horizontal plane. The expected pattcrn that the stalks 
would follow is that the secondary stalks Ciecrcase in length and thickness as one moves outward on the 
primary stalk, and the tmiary stalks are larger and thicker neaf the bottom of the secondary stalk. 
However, this was not the case. This experiment showed that the secondary stalks do not necessarily grow 
at equal intervals or heights, and the larger tertiary stalks are not necessarily those closest to the bottom. 
The secondary and tertiary stalks did follow the primary's growth progressively increasing in size. As the 
dendrites grew, the interface moved along covering the rows that were initially formed. At earlier Limes in 
the growlh process, the dendrites were shorter and thinner and the spacing between rows was smaller than 
at later times. The development of the branches was related directly to the degree of supercooling; the 
branches did not develop fully with less supercooliiig (0.5" and below). Weinberg et d. concluded that the 
direction of a dendrite's growth is defined by the crystallographic orientation of the dendrite and is 
independent of the heat flow. In this experiment, the direction of growth came within 2" of the 
crystallographic direction. During the solidification of metal, strhtims appear on the top surface of the 
crystal. These striations are a series of bands that are parallel to the longitudinal axis of the crystal. An 
inchease in the growth rate causes some of  the striations to widen. This widening takes over some of the 
neighboring striations and the boundaries between stridtioars become jagged. These jagged boundaries xre 
parallel to and run between the dendrite rows. In this experiment, no dendrite row ever crossed a 
boundary. The degree oE irregularity of the crystal is grater in the sections that solidify last, where the rate 
of growth is the greatest. 

SECTION II - FRACTALS 

The word "fractal" i s  dcrivcd from the Latin word ';fTuctus'', meaning irregular and fragniented. [45] 
Most fractal sets have the charxteristic of being self-similar; that is, each part of the shape is 
geometrically similar to the whole. Inberent in the definition of self-similar is the property of scaling 
invariance which means that it is impossible to tell what length scale was used to obtain any particular view 
of the shape. These two properties do not continue into infinity in the natural world as they do in 
mathematical fraclals. The maximum si7s range in which natural fractals have this self-similar property Is 
usually reached at magnifimtions of about four ordcrs of magnitude. (37,621 

A fractal is sometimes defined. or explained by its self-similarity property, but this is not a good 
definition becausc recently non-self-similar fractals have been discovered. [36] The definition proposed by 
Benoit Mandelbrot [45J is as follows: a fractal is a set for which the Hausdorff Bcsicovitch dimension 
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su-ictly exceeds the topological dimension. We will use the standard notation of D for the HausdtPrff 
dimension and d, for the t o p l o g i d  dimension. SO the definition smtes ahat for a h c m l  set d, < D. 
(The topological dimelision of an object is at least zero and at most equal to the Euclidean dimension of the 
space in which it is embedded. It is always an integer, The topological dimension for a point i s  zero, for a 
line it is one, and for a surface it is two. [35J) 

Every fractal has a fractal dimension. This i s  the same as the Hausdorff dimension used in the 
definition of a fractal staled above. ?%e fractal dimension is usually not an integer. The fractal dimension 
quantifies the degree to which the shape fills the Euclidean space in which the object i s  embedded and 
illustrates the shape’s roughness. The more compact a fractal set is, the greater the fractal dimension it has, 
and as the fractal dimension increases, so does the object’s roughness. However, the fractal dimension of 
an object is never greater than the Euclidean dimension of h e  spce in which it  is  consaind. Therefore zhe 
fractal dimension is  always greater than (by the above definition) the logical dimension and always 
less than or equal to the Euclidean dimension of the space. It is possible for the fractal. dimension of an 
object to equal its Euclidean dimension, but if this occurs, Lien the object is not considered to k a fractal; 
it is considered a Euclidean set. [36,37,45] 

‘There are at least two methods for detcrmining the fractal. dimension of an object. One method is 
explained by Len Sander. [68] This method determines the fractal dimension of an object by determining 
the average number, N, of fundamcntal units of repetition found within a sphere centered somewhere on 
the object as a function of the radius, r. of the sphere. By Euclidean geometry, the number, N, is equal to a 
constant, C, times the radius raised to the value of the dimension. D ( N = C P  ). For a line segment (see 
figure la), increasing the radius of a sphen: by three triples the number of units enclosed in the spherc. 
This gives a dimension of one (D = log 3bog 3). For a two-dimensional f igm (sce figure 1 b), t.r@ling the 
radius increases the number of units contained within the sphere by nine (D = log 9Aog 3). Given the 
fractal of figure IC, tripling the radius of the sphere used increases the number of units by five and thus D = 
log Sflog 3 = 1.46. 

Another method is explained by Richard Voss. [76] A line segment can be divided into M smaller 
picces. Each of these picces is a copy of the original line segment and each part is scaled down by a ratio 
of r = 1/ M from the whole. For a two-dimensional object, the ratio would become r = 1/M” The pattern 
would continue with the M on the right side of the equation raised to the reciprocal of the dimension of 
space. Tbercfore, a D-dimensional self-similar object can Ibe divided into M smaller copies of itself with 
each COPY scaled down by a factor of r where M = I,@. This hplics that an object’s fractal dimension i s  
D = (log M)/(log l/r). An example of this method, using the Koch snowflake curve is shown in figure 2. 
This curve begins with an equilateral triangle and i s  generated by placing another smaller equilateral 
triangle on the center third of each edge of h e  original triangle. T h i s  process is continued on to infinity. 
Hcre, the ratio by which each copy is scaled down is In. The perimeter of the object is mul~plkd by 4 at 
rach stage of the construction. This gives the dimension of h e  snowflake to be D = log 4/log 3 = 1.26. 

Fractals are thought to grow in nature by diffusion-limited aggregation (DLA). The fundamental model 
of this growth, proposed by Len Sander [68], is as follows. Aggregation is the adding of one particle at a 
tiiric to a cluster. This particle will stick at its first contact with the growing object. Because the particle 
stays in the first placc it contacts, the object grows in non-equilibrium. DLA smrts with a smooth surface 
that develops bumps because of noise. The particles are then more likely to come to rest on the bumps, 
causing the bumps to grow faster than the holes. This effect, called screening, leads to an open structure 
because each particle has a higher probability of sticking near the tip than n e !  the side, This leads to a 
greater instability in the system, and the growth and splitting of the ups caue a non-dendritic frac 
the natural world, however, it i s  possible that puticles will bounce off the first time they hit, rather &an 
sticking right away. This will cause thicker branches, but the fractal dimension will remain the same. The 
raradorn DLA mdel  of Witten and Sander [80,81] gives a fraceal dimension of 1.66 for a two-dimensional 
structure and a fiactal dimension of 2.5 for a structure embedded in three dimeiisions. For two dimensions, 
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Figure la: A line segment has a dimension ol1.0. 
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Figure lb: This figure has a dimension of 2.0. 
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Figure IC: This fracbl has a fractal dimension of 1.46. 
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Figure 2: ‘l’he Koch snowflake has a faactid dimension of 1.2.6. 
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the fractal dimension of Witten and Sander’s DLA model is different from that of other random structures. 
Some examples of other random structures are percolation ctustcrs and self-avoiding random walks. The 
fractal dimension of percolation clusters is about 1.9 and the fractal dimension of self-avoiding random 
walks is about 1.33. [SO]  

For a scale-invariant kactal, N - K”, where N is the number of particles or subunits in a radius R of‘ a 
int on the object and D is the fraclal dimension of tbc object. If we wke R to bt: the radius of gyration 

then this equation relates inass to size during the object’s growth. If a fractal is scale-invariant, then all the 
characterization sizes are proportional. [SS] 

The Witten and Sander model of random particles that walk one at a time is used to represen1 DLA. If 
an object in this case is to be a fractal, it must have holes lRat are proportional to the size of the object 
itself. These holes arise because of the screening effect; particles cannot enter the interior bccause the 
arms that are already extended bIock the way. [661 For a two-dimensional simulation, the Mfitten and 
Sander model of DLA [80,81] has a density-density correlation function C(r) = N-’D(r’)p(r + r? where p 
is the density and r is the position of a particle. From this comes C(r) - r* for r a distance greater than a 
fcw lattice spacings but less than the size of the cluster. This is consislent with a fractal dimensionality, D, 
of‘ d,y - a where d, is the cluster’s Euclidean dimension. The fmtal dimension can also be found using 
:hc Tadius of gyration, R,. We have R, - NB, for sufficiently large N, where N is the numbw of particles in 
?hc cluster. (Kg has a power-law dependence on N.) The fractal dimension of the cluster is Dp = I @. 

Mcakin [Sol has proposed a model in which clusters are picked randomly and then movcd by onc 
iatttjce spacing. Each clustcr is moved by a probability that is proportronal to its mobility. When a cluster 
encounters anolhcr cluster, they stick together. As the clusters merge, they bccome larger and larger until 
only one cluster remains. Here, the lower cutoff length is a few lattice units and the upper length i s  
determined by the average particle dcnsity (p). In Mekin’s modified version of Witten and Sander’s DLA 
model, a crossover from a fractal structure to a structu~ with uniform density occurs. 33:s has a crossover 
kagth 1 given by Co Z4 = (p) or I = [(p)/C&’a where C,, = 1.0 mid Q is d,, - D (ie., CL is &e Hausdorfi 
codimension). Whereas if (p) -+ 0 and I + 00, the structures forrried are fractal on all length scales. 

Kolb et al. e331 showed that the smctures formed by cluster aggregation, as wrcll. as those f ~ r m c d  by 
p,;rGcle aggregation, are fractal. In their particle aggregation model, Nu particles are placcd in a volurne 

cancerrtration po := NWY, is chosen so that th :  average dismcc. between ;,~rtic?es ?P hrger ~ b e n  
heir radius. TIie particles move independently and randomly and a strong atlractinrn CPUSCS peennanenl 
$~ckang. T h i s  process continues until one structure is fomed. The structures were found to ilxcorne less 
aIcnse ips they increased in size. The structures werc fractal if R&m) - r n I m  as ra - 3  ~2 & k r c  D i s  the 
fractal dimensionality of the structure, R, is the radius of gyration and m i s  thc niimb~r of particles. ‘The 
object could also be fractal if the density-density correlation function G(r) - 

for Ia rQ: R, with D< dE. D is determined hy the slope of a log R, vs. log m plot, arid in two 
slirnensions is 1.43 -t 0.03. In the cluster aggregation inodei of Kolb er al., there cxisrs an upper critical 
dimension, above which the clusters freely interpenetrate and the fractal dimension becomes indcpendent 
of he spatial dimension dE . 

r<d@l 

SECTION rIx - DENDRITES, FRACTALS ANI DENSE RADIAL ~ ~ ~ ~ ~ ~ ~ ~ J ~ ~ s  
Tn recent years, much intercst has been given to diffusion-limited processes h a u s e  DLA dads La rhe 

formation of smctures hat have sonae of the characteriStkS of fractals. The patterns that somctimes occur 
are open, random, chainlike structures that have no natural length scale, and therefare are scale anvariant. 
[47] This observation led researchers to believe that perhaps these new patterns were fractals, and that 
somehow fractals and dendrites might be closely related. Many experiments have been and are k i n g  done, 
id1 with similar results; diffusion-limited aggregation leads to the fomaLEon of three different patterns of 
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growth: non-dendritic fractals, dendritic crystals, and dense mdial slrvctgarcs (See figure 3, reproduced 
from E671 with pemission of the author.) If rhe systen-r i s  always near wpilikkriu , &cn the internal 
structure and the external shape can Ibe d s c r i W  with ordinary equilibrium considerations as a single 
crystal. As the system is moved away fmm equilibrium, deradrilic shapes appear. T h m  patterns result 
from the new length scales associated with steady-share growth. As she system moves even farther from 
equilibrium, discrderly growth occiirs with no length xa'ies at aU. This growth is  morphoas as wcll as 
scale-invariant. The most rxent research i s  concenimting on determining the facMrs that affect bhe 
s r , l ~ t i ~ n  of the growah pateem. [66] 

'Ik conclusion of the experiments done using ekctrdcpsition to model growth i s  that the gmwih 
pattern depends directly on the anisotropy of the surface tension [2,3,4,22,59,63,70,'95]. This crystalline 
anisotropy is neceswy for dendrite formation. As the anisotropy daxas@s, the system becomes unstable. 
This instability causes the stable Sips of the dendritic growth to split, causing the formation of a non- 
dendritic f m C F d .  Dendrdtes are characterized by heir complex, time-dependent side-branches and their 
stable tips, whereas non-dendritic f rxtds  are characterized by tip-splitting. It is thought that crystalline 
anisotropy could be the mechanism that channels the growth of instabilities in cenain preferred 
c~stA.llogr;nphic directions. Or it could be that the anisokropy is tle triggering mechanism for the needed 
instabilities. Without the anisotropy, the dendnte's growth woiild follow a crooked path wther than its 
norn-ral staight path, leading to strucbms similar to non-dendritic fractals. [4] 

The geometric model (GM) of Ben-Jacob et al. [2] shows that there is a critical level of anisotropy for a 
given draving farce. Below this cridcd level, the interfacial dynamics of the dendrite i s  dominated by tip 
splitting. This is because the dendrite lip is unstable with respect to tip bifurcation. As the system is driven 
furt-her from equilibrium (wit! misotropy ahsent), the miniminrn length scale decreases and likewise the 
period between tip splittings decreases leading to the fa~srmation of a DLA stmcture. 

An experiment performcd by Sawada et al. [70] resulted in the redizatioaa of four growth regimes. 'fie 
patterns were formed through the electrodeposition of zinc from a zinc sulfate solutip~pii The growth 
rcgiines w e n  defined by the electrolyte conccnt-ra?-ion, C, and the applied voltage, AV. At the lowest v d u c  
of C (&low 0.01 M) and low AV, (bclow abut 8 V) hle patterns were hornogenenus, branching structures 
with a circularly symmetric Q U ~ ~ K  boundary. As h e  concentration \A" reduced, the patterns became more 
and more like n nondenclriajc frac;al. At high C (about (3.1 M - 1 M) and low AV> the patterns were 
roughly fractal, but too thick for quantitative analysis. These deposits were open, branching and slow 
growing. At a high AV (above 8 V) <and for a wide range of C values, the growth o c c w d  quickly 
resua!dng in thin, swingy s?,mcitures that we= nonorientd. At intermediate values of C (about 0.03 - 0.1 M), 
dendrites were formed with well-defined "backbones" and single branches from the m a h  stem at regular 
intervals. Evcn seconda~y and k d a y  branches were observed. The boundary between hlese regirnes is 
not definite. Sawada et al. [70] examined the importance of the vclociiy of growth in each of these 
regimes. W e n  the electrolytic concentration was low, the velocity was independent of the applied 
voltage. At high concentrations, thc velocity was strongly nonlinear with AV. In ?he latter case, the growth 
wm slow and deposits that are roughly fractal were formed when AV was low. If AV was high, then fast 
growing, svingy pallems wcrc formed. The growth velocity was linear in the voltage for the dendrite case, 
The transition from a disordered smctiu-e io a dendrite involved an incaeassh: in the growth sped. The 
hcmogenmus; tipsplitting smctures became dendrites by two rncchanisms, directly by an increase in the 
concentration and indirwtly by an increase in growth vclocity. Saw& et al. [70] calculated the fractal 
dimcnsion for the homogcneow patterns formed. They found D = 1.8 +. 0.2 at scales larger than a 
concenixaiioii dependent length 6. The f racd dimension for scales smaller than 6 was 1.4 -t 0.2. The 
patterns were homogeneous above 6 and fractal on scales MOW 6. 

Another experiment with zinc Imves grown by electrdeposition, done by Matsushita et al. [47], 
examined !Pie relationship b e t ~ w n  the fractal dimension of the  grow^!^ patierris and the applicxl voltage. 
'Ibeir results showed that as thc voltage was increasexi, while the concentration w a ~  kept constant, ttac 
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Figure 3: a) Fractal growth ut' Zinc 
electrodeposits 

6) Dendritic growth 

c) Dense Radial Growth 
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sion increased. The experiment showed the existence of a threshold value of the voltage, 
which was about 8 V. Below this value, the fractal dimension is constant at around 1.66; above it, the 
fractal dimension increases linearly with the voltage. .4.n experiment with zinc leaves done by Grier et al. 
[22], reaffirmed the findings of Matsushita et al., that .there exists a threshold value of the voltage, above 
which, the fractal dimension increases. However, they nn~~sured a fractal dimension of 1.75 f 0.03 for the 
highly branched fractal regime. Grier et al. also observed ahat the fractal dimension of the dendritic regime 
approached 1 .O. 

Another experiment done with electrodeposition by Sander 1671 showed the existence of the third typc 
of growth, the dense radial structure. The dense r add  smctures in the experiment of Griea et al. [23] are 
two-dimensional with rough branches that are contained in a circular envelope. These structures are not 
considered fractal because they fill the space unifmly,  i.e. they me equally dense in every place. 'I%ey 
are riot considered dendrites bwause their tips are unstable. Dense radial structures are thought to form as 
a resd: of she combined effects of surface tension and a ]kinetic term in the boundary condition, These 
structures only develop when the diffusion length in a system is smaller than the radius of the cell that the 
structure is formed in [23].  Sander [h7] observed ehat as the voltage and the concenrration were incrmascd, 
the structures changed from non-dendritic fractal to dense radial to dendritic. ( S e e  figure 4, reproduced 
from I671 with permission of the author.) 

Nittrnan et al. [59] experimented to determine how the physical mechanisms that cause changes in 
anisotropy and the Occurrence of tip splitting work. They used the Dielectric Breakdown Model (DBM) of 
Niemeyer et al. [57] OD a [Iiangular lattice. A seed is placed at the origin of a large circle of radius R. This 
seed represents the source of fluid with an infinitesimally small viscosity that is being forced, undcr 
pressure, to replace a fluid with higher viscosity. This interface moves according to Darcy's law: 
v, .= --n . V P where v, is the velwity component normal to the interface, n is the normal. unit vector and P 
is the pressure field. P is canstant in a less viscous fluid and in a more viscous fluid satisfies V 2 P = 0  
because V . Y - 0. The boundary conditions that accompany this equation are: 1.) P(r,Q) = 1 anywhere in 
the body with low viscosity and 2.) P@,0) = 0 along the circle of radius R. 

In a perfect medium, one that has radial symmcby and no pressure fluctuations, the interface would 
grow in concentric circles. When noise is added, instabilities occur causing irregularities in the interface. 
In the model of Nitman et al. [59], noise is introduced into the system by the random selection of the next 
pcrirnetcr site to be occupied, where the probability of going to each site depends on V P. The noise can be 
controlled by allowing the cluster to overtake a new pimeter  site after it has been chosen s times, where s 
i s  a tunable parameter. As s -+ 00, the growth of the interface approaches the Darcy-law growth arid each 
point grows according to the true local pressure gradient. When s = 2, the stn~ti11-e forned resembles the 
DBM structure both qualitarively and qlaantitatively, but with thicker brnaches. Its fractal dimension is 1.7. 

When s = 20, the structure is still qualitatively different, but a p p s  to cross to a new universality class 
with even thicker branches. However, the fractal dimension remains the m e ,  1.7. The fractal dimension 
is independent of the noise reduction and is always 1.7. The cluster grows smoothly, with no tip-splitting. 
As the radius of curvature increases, the interface becomes rough with positive (outward) and negative 
(inward) fluctuations. The positive fluctuations a e  insignificant, whertxs, the negative fluctuations are 
important. The electric field in a single notch is small, which means that the notch is not filled in as 
quickly. (This is also because of the lack of interfacial tension.) The protrusions on each side of the notch 
have a larger electric ficld so they attract m a ~ s .  This leads fn the development of a fjord that is never filled 
in owing to the effect of screening. 

If s > 50, the negative fluctuations decay more efficiently and die system is less suscepeiblr: to these 
fluctuations. As a result, a fjord is only formed at a large radius of curvature. The fractal dimension is 
independent of s, but W (the finger thickness) increases winh s. Therefore, the larger s is, the smaller the 
amount of noise is,  and the thicker the finger is. (W = 4.5 log s + 2). W is indcpendent of the magnitude of 
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Figure 4: Observed regions of pattern formation in electrochemical deposition. 
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the pressure field. In %\is model, i n ~ ~ ~ i a l  tension does not exist and the finger thickness is related solely 
to ehe amount of noig. TRcref~re~ the tipsplitting is triggered by noise. The noise resalts in positive and 
negative fluctuations. Z ~ r o  noise ( s = -) leads to the fornation of co p x t  (non-fractal) circular objects. 
At ;a low noise level (large s), the noise has \ W e  effect when the cluster is small, but tlhc effect is more 
pronouncxxi as the cluster grows largea. 

Weal growdl phenomena xe never perfectly immpic, and misatropy seems 10 dominate dendritic 
c r y s d  growth. Nittman et A. [59] modified their made1 to aalke into account aiiimtropy. Using h e  
example of a snowflake, they realized that there are rnicros@opic impnlxi~es in the landing surface fix the 
water molecules. So, they adjusted thei  fact that not all landing sites are cr(;nted 
qad. The: Darcy Law equation is rep . The ~ ~ ~ . ~ ~ a ~ ~ o ~  of mass condition, 
v . v  =o, hat  V .  P )  = 0 ition as for k = 1. k = k(x,y) is the 
misotropy 

With s = 50 on a uianguhr lattice, varying the value of k showed that the smictnre formed looked more 
and more like a snowflake as k was incrarrsed. The structure has a f m c d  dimension of 1 5  -t 0.1. The 
individual branches on the object formed are disordered, with side branches of all sizes extending from it. 
The fractal dimension is greater than one because these side branches have many different length scales. 
These side branches Book like a set of "trees" of varying height without branches. Vie height of the trees 
va13es because of the screening effect. A tiny degree of misaeropy changes the fractal dimension of the 
object from the %)LA value of 1.7 to 1.5 in the limit of infinite. cluster size. The first of the equations given 
by Nittlnm et al. represcnts the growth law and relates the interfacial growth rate to the pressure field. The 
second equation describes ehe spatial changes in the pressure field that dnves the instability. 

CONCLUSION 

Diffusion-limited solidification can lead to the fonnatirsn of either dendrites or non-dendritic fractals, 
depending On the presence of crystalline anisotropy. The presence of anisotropy in a system causes the tips 
of the smctuee to remain stable, forming a dendrite. Isotropy causes the tips of the structure to split, 
forming a non-dendritic fracml. The future god of resczch in this area is ts determine what other factors, 
besides the presence of anisotaopy, affect the selection of pattern growth. 

Electrodeposition models of solidification lead ba the fomiation of three types of g r o ~ t h  pathems: 
dendrites, non-dendritic fractals, and dense radial smctwes. 'I%e question of which type is f o m d  
depends on the levels of voltage and concentration. When one or both of thest: are at a low level, non- 
dendritic fractals are fomd. At intermediate levels, a crossover occws and dense radial stnactures result. 
At high levels of bo>sth, dendrites we formed. A threshold level exists, above which the fractal dimension at 
a low conceiiaraljon is no longer constant, but increases linearly wi the voltage. It is probable that fractal 
geometry can he used to model dendritic growth because dcnd&es appear to be a s p h l  type of fr;acmI. If 
feactal geometry can indeed lx used m model. dcndeitic growth, it will be yet another of the mamy 
applications of fractals to ~d phcnomena. 
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