oml

OAK RIDGE
NATIONAL
LABORATORY

MARTIN MARIETTA

OPERATED BY

MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES

DEPARTMENT OF ENERGY

QT

ORNL/TM-10770

An Expeditious Technique for
Keyboard Input of Information
to FORTRAN Computer Programs

H. Smith
E.

D.
D. E. Goeringer

OAK-RIDGE NATIONAL LABORATORY

" CENTRAL RESEARCH LIBRARY
CIRCULATION SECTION

4500N ROOM 175

' LIBRARY LOAN COPY |

DO NOT TRANSFER TO ANOTHER PERSON
I you wish someone else to see this
report, send in name with report and
the library will arrange a loan.

969 3 977"

Printed in the United States of America. Available from
Nationat Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A03; Microfiche AO1

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or impiied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or impiy its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

ORNL/TM-10770

Analytical Chemistry Division

AN EXPEDITIOUS TECHNIQUE FOR KEYBOARD INFUT OF
INFORMATION TO FORTRAN COMPUTER PROGRAMS

by

D. H. Smith and D. E. Goeringer

Date Published: May 1988

NOTICE This document contains information of a preliminary nature.
it is subject to revision or correction and therefore does not represent
finai report.

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INGC.
for the
DEPARTMENT OF ENERGY
Under Contract No. DE-AC05-840R21400 MARTIN MARISTTA ENERGY Sys1iws Lsnapucs

AR oy

3 H4SL D275LL7 4

ABSTRACT .
INTRODUCTION .
DESCRIPTION
General Program
Subroutines
CONCLUSIONS
REFERENCES .

APPENDIX .

TABLE OF CONTENTS

iidi

13

15

17

Table No,
1 Hypothetical Prompt Screen .
2 Hypothetical Screen
3 Hypothetical Screen
4 Simple Cursor Control Subroutines
5 Compound Cursor Subroutines
6 Summary of VIDEO Function
7 Summary of ERSLIN and ERSDIS Functions .

LIST OF TABLES

10

11

12

12

An Expeditious Technique for Keyboard Input of
Information to FORTRAN Computer Programs

D. H. Smith and D. E. Goeringer

ABSTRACT

A technique for rapid and accurate input of information via a video
display terminal to FORTRAN computer programs has been developed. The
overall approach is described; it is applicable to any programming
environment based on a similar system with only the most rudimentary

control of graphics functions. The specific application in our
laboratory, using DEC VT-100-compatible terminals, is also described
and illustrated with examples. Listings of the graphics subroutines

for use with a DEC RT-1l1l system are provided.

INTRODUCTION

One of the more challenging jobs for the programmer is to make the
final product as ergonomic, as "user-friendly", as possible. The input
of the information necessary for the program to execute properly is
probably the area most difficult to address. Instructions and prompts
that are crystal clear to the programmer tend to be cryptic and
misleading to the people who will be using the program. This user
interface is a crucial ingredient to any commercially successful data-
base or spread-sheet program, and it repays the efforts of even the
non-professional programmer many times over to make his product as easy
to use as possible.

The Analytical Spectroscopy Section of the Analytical Chemistry
Division has had software to process mass spectrometric data in
operation for over a decade.l-4 These programs operate the mass
spectrometers, acquire and process isotopic data, and write reports
tabulating the results, most frequently in the form of the isotopic
composition of the analyte element. The programs have, naturally,
evolved with time; indeed, ‘they are still doing so. Thousands of
samples are analyzed every year with our five isotope ratio mass
spectrometers. Many ORNL programs are supported by thesefinstruments,
including those related to reactor research and maintenance, environ-
mental concerns, and isotope enrichment. Virtually any element can be
a sample; some samples are analyzed via isotope dilution to give the
concentration of the element; and some samples have Interferences from
isotopes of other elements that must be corrected. In other words, the
programs are quite complex and, to retain their flexibility and
generality, need a fair amount of information to execute as desired.

Technicians operate the instruments and enter the information
necessary for program execution. While these people are talented
individuals, they are not computer literate: they are unfamiliar with
the internal operation of the computers and with the programs them-
selves. It is thus necessary to provide prompt messages that are
meaningful to them as operators of mass spectrometers rather than the
terser ones that woﬁld be satisfactory for the programmer. In addi-

tion, mistakes are occasionally made in entry of data. It is

3

essential that recovery from any conceivable error (and even some
inconceivable ones) be as painless as possible. Editing programs have
been written to allow correction of errors after the fact, but it is
far more efficient if they can be corrected during the entry process;
most erroxs are detected at that time.

We have developed a programmatic approach that in our opinion is
exceptionally convenient and simple for the user. Instructions can be
made as clear as desired, and error correction is simple, straight-
forward, and certain. Although our code was developed for a DEC RT-11-
based system, the general approach is applicable to any computer system
with keybeard-monitor input of data in any enviromment for any applica-
tion. (It was actually first developed in BASIC by one of us at home
on his personal computer for a program to catalog his record collec-
tiomn.) Only the wmost rudimentary functions are necessary; our
subroutines only control cursor position and erase selected portions of

the screen.

DESCRIPTION
Geperal Propram

The overall approach uses one screen of data as its basic input
unit; by this we mean that, although there may be several screens of
data to be input, only one at a time is entered, examined, corrected,
and approved. It would be possible to have a final check of all input
before proceeding to the main program, but we have not implemented it
here.

Editing of input is predicated on the assumption that, with the
appropriate graphics commands, onme can move the cursor at will to any
point on the monitor screen. This report is thus not applicable to
systems lacking this ability or for those based on printing terminals,

After clearing the screen, the first display lists prompt messages
vertically down its left side; we have found tenm to fifteem to be a
convenient number of variables with which to work for one screen of
input. The messages can be of any length, but it is desirable to

restrict them to the first 30 or 40 columns of an 80-column screen.

For messages longer than this offset, if is better to use two lines for
the prompt than to extend it ’into the input region. Each prompt
message is accompanied by an index code that is associated with it. We
use numbers as index codes, but other schemes could be implemented 1if

desired. Table 1 is an example of a hypothetical screen.

TABLE 1
Hypothetical Prompt Screen
PERSONAL INFORMATION

Social security number

1. Name

2. Street address
3. City

4, State

5. Zip code

6.

7

. Date of birth

Seven different parameters are called for under the general heading of
"PERSONAL INFORMATION®. It is highly desirable to have the entry for
all parameters start in the séme column. ’The mind and eye of the
operator come to anticipate theylocation of the cursor, thus improving
efficiency and accuracy of data input. By the same token, it is
desirable for all modules of a large program to use a consistent format
for input, maintaining, as closely as possible, the same starting
columns, layouts, etc. between input screens. With the graphics
subroutines described below, it is perfectly possible to have more than
one entry per line, but it 1is visually confusing to do so. We often
use column 30 as our initial entry column. This allows space for 25 or
so characters for prompting messages and up to 50 characters for

variables on one line.

During input, the program directs the cursor sequentially through
all the variables displayed; in our example, this would be seven.
Hitting the "Return" key signals the end of input for any given
variable, at which the program jumps the cursor to the correct line and
column for input of the next parameter. A pumber of underline
characters, corresponding to the width of the entry field for that
variable, is displayed beginning in the initial input column. For
example, if a number between 0 and 999 is wanted, three underline
characters are displayed beginning at the entry column. This 1is
particularly helpful for long alphanumeric variables; without visual
assistance, it is difficult to keep track of one’'s location in the
input field if more than six or seven characters are called for. When
values have been entered for all variables, a prowmpt appears at the
bottom of the screen, telling the operator to enter a "Q0" (zero) or,
for DEC computers, "Return" if all entries are correct. The index
number corresponding to the incorrectly entered variable is entered
otherwise. The operator can now verify his entries at his leisure.
Upon entry of a non-zero value, the cursor is shifted to the place on
the screen determined by the value of the index just entered. A new
value for the parameter in question is entered. Upon entry of the next
"Return"” (the program can be written so that the value of the parameter
need not be changed), the prompt appears again at the bottom of the
screen asking for an index value for a correction. These steps are
repeated until the operator signals all is correct, whereupon execution
of the next section of the program commences. Qur previous example is
given in Table 2 with values entered for the various parameters and

with the prompt message listed below.

TABLE 2
Hypothetical Screen
PERSONAL INFORMATION

1. Name Malcolm Wellbeloved
2. Street address 3333 N. Insipid Drive
3. Cicy Unterwaltersdorf

4, State NO

5. Zip code 45678

6. Social security number 314 15 9265

7. Date of birth 5-5-1787

0 if OK, index number otherwise

There are two places on the screen where the cursor may logically
be positioned to await corrected input. The first is at the initial
entry line and column for that wvariable. If this alternative is
chosen, the original value must be erased from the screen béfore input
of a new value is started. The second location is on the same line as
the original entry but offset to the right from it, This allows the
original value to remain displayed on the screen while a new one is
entered. The disadvantage of this second method is that one is
restricted as to the length of the variables that can be conveniently
handled. If, for example, one wants an alphanumeric variable 30
characters in length (not overly generous), one would not be able to
keep everything on one line (25 characters for a prompt message and 30
each for the original and new values for the parameter; 80 is the
maximum number of characters per line). We have, therefore, usually
chosen the first of the alternatives just described. For the sake of
visual clarity, however, we have chosen to use the second alternative

in our examples below.

To illustrate the positioning of the cursor preparatory to input of
a corrected value, consider the data in Table 2. If Mr. Wellbeloved
lived in Nebraska rather than Niederoesterreich, a 4 would be entered.
The cursor would be moved to a position between the end of the original
input field and the right side of the screen--there must be enough room
on the line to hold the entire input field for the corrected entry. In
this case, it would be positioned at the end of the line labelled "4.
State", and a new value for this wvariable would be entered. Upon
receiving the "Return" keystroke, the original and corrected values are
both erased, and the corrcted value inserted into the position of the
original input field.

TABLE 3
Hypothetical Screen
PERSONAL INFORMATION

1. Name Malcolm Wellbeloved

2. Street address 3333 N. Insipid Drive

3. City Unterwaltersdorf

4. State NO .
5. Zip code 45678

6. Social security number 314 15 9265

7. Date of birth 5-5-1787

o

if OK, index number otherwise 4

In Table 3, a new entry for the state is being called for. Two
underline characters indicate that the two-character postal service
abbreviation is wanted rather than the full name. After entering the
correct value in the field shown, the operator reviews all input, makes
any needed corrections, and, when all is correct, enters "0" (or, on
DEC equipment, enters "Return" directly) to proceed to the next section

of the program.

The ability to review a block of input and correct any erroneous
entries at will is one the most attractive features of our method. It
has resulted in far fewer input errors being transmitted to the final
calculational programs than had been the case for our previous methods
of data entry.

outines

Movement of the cursor is controlled by a number of subroutines.
These were developed in DEC FORTRAN 1IV. They would execute more
rapidly if they had been written in assembly language, but in practice
the movement of the cursor is fast enough to be <completely
insignificant on a human time scale; the cursor moves between any two
locations on the screen In less time than it takes to enter a single
character at the keyboard, giving the subjective impression of
instantaneous movement. There thus seems to be no reason to go to the
trouble to develop assembly code for the routines. The FORTRAN code
was Implemented by executing the appropriate escape codes to achieve
the desired result; they apply to DEC VI-100-compatible terminals.

It éhould be pointed out that some care must be exercised by the
programmer to keep track of the current cursor position. Techniques
that work perfectly under other conditions cause loss of cursor
calibration in this graphics mode. For example, PUTSTR, the FORTRAN
routine to output a string, automatically includes a line feed at the
end, causing the cursor to be positioned one line too low. We have not
found a way to circumvent this behavior using PUTSTR. One could, of
course, go to the trouble of taking this into account, but it seems
more stralightforward to use the WRITE statement and output the string
using A fields. It is easy, however, to cause the cursor to be one
line too low using WRITE statements as well. For example, if one wants
to output a two-character string, one must use the following format

statement to retain cursor calibration:

FORMAT (1H+,A2,8)

10

Both the 1H+ and the $ are necessary to prevent errors in cursor
location. 1If 3A2, for example, is substituted for A2, the cursor will
again stubbornly position itself one line too low. It 1s not clear to
us why this should be. The graphics commands refer to a specific
screen location, but the operating system seems to lose track of just
where the cursor is.

Table 4 lists the names of the routines and short descriptions of

their functions.

TABLE 4
Simple Cursor Control Subroutines
Name Description
CLRSCN Clears entire screen.
HOMCUR Homes cursor.
MOVCUR Moves cursor specified number of lines and

columns from the present location.

CURPOS Positions cursor at specified line and
column,

CURFND Reports cursor location.

SETSCL Sets a scrolling region.

VIDEO Selects between normal/reverse, bold/nobold,
blink/noblink and underline/mounderline video
modes.

ERSLIN - Erase specified parts of the line containing

the cursor.
ERSDIS Erase specified parts of the display.
PROMPT Prints specified number of underline
characters for the inputvfield.

A number of handy routines has been developed that combine two or more

of the simple omnes. Some of the more useful of these are listed in
Table 5.

11

TABLE 5
Compound Cursor Subroutines
Name Description |
CLRHOM Clears screen and homes cursor (CLRSCN +
HOMCUR) . _
CLR24 Clears lines 20-24 (ERSLIN in a loop).
CURLOC Positions cursor and displays a specified

number of underlines (CURPOS + PROMPT).
CURCAL Recalibrates cursor position; sometimes

necessary when shifting screens.

Although many of the short descriptions in Tables 4 and 5 are
enough to define fully the associated functions, some require
" amplification. MOVCUR has two arguments, NCOLS and LINES. Using the
current cursor location as a reference, it moves the cursor the
specified number of columns and lines. Positive numbers move the
cursor to the right and down; negative values move it left and up. Any
combination of positive and negative numbers within the ranges of lines
and columns of the display is allowed. CURPOS also has two arguments,
NCOL and NLINE, which designate the screen coordinates to which the
cursor should move; the range for NLINE is 1-24 and for NCOL 1-80.
CURFND has the same two arguments as CURPOS. 1It, however, reports the
present position of the cursor. It is especially useful when used in
conjunction with MOVCUR. SETSCL has two arguments, LINTOP and LINBOT.
These arguments specify the line numbers for the top and bottom,
respectively, of the scrolling area of the screen. This useful
function allows one to save a display in one area of the screen while
another scrolls as needed. This routine homes the cursor. VIDEO sets
the video mode and uses a single argument, MODE. MODE is a bitwise

variable that controls the display mode. Table 6 defines the values
for MODE.

12

TABLE 6
Summary of VIDEO Function
Bit Decimal ear (0 Set (1)
0 1 normal video reverse video
1 2 bold off bold on
2 4 blink off blink on
3 8 underline off underline on

The value for MODE is obtained by adding the decimal values that
correspond each bit that 1is "set”. The programmer selects which
options are to be activated and finds the appropriate sum. Thus one
would use 9 as an argument to have reverse video with underline on.
ERSLIN has one argument that defines the direction and extent of
erasure on the line containing the cursor. It is defined in Table 7.
ERSDIS performs a function similar to ERSLIN, but for the whole screen
rather than for just one line. It, too, takes omne argument whose

operation is described in Table 7.

TABLE 7
Summary of ERSLIN and ERSDIS Functions
ERSLIN
Value Effect
Erases entire line containing cursor.
. Erases from cursor to end of line, including
cursor position.
3 Erases from start of the line through
cursor position.
ERSDIS
Erases entire screen.
Erases from cursor to end of screen,
including cursor position.
3 Erases from start of screen through cursor

position.

13

PROMPT takes one argument that indicates the number of underline
characters to print to the screen. It is up to the programmer to have
the cursor correctly positioned before issuing the call to the
subroutine. This is, of course, true for many of these graphics
routines.

0f the compound functions, only CURCAL seems to require further
discussion. This routine calls CLRHOM (itself compounded of CLRSCN and
HOMCUR) and writes a do-nothing line to the screen. This 1line 1is
forma;tted as (1H+,8). It is not clear to the authors why this routine
is needed. 1Its function is to recalibrate the position of the cursor.
Its need arises when the computer loses track of the cursor position.
This wusually occurs when one screen of data has been successfully
entered, the screen cleared, the cursor homed, and a new series of
prompts displayed. The computer will often position the cursor omne
line too low, an aggravating condition that renders input of
information more challenging than it should be. CURCAL corrects this

situation.

CONCLUSIONS

The approach embodied in this report has been in operation for well
over a year. It has been well received by all who use the programs
into which it is integrated; operators range from daily users to
occasional. It seems easier for a person to remember how to make input
correctly when this method is used than it was for earlier methods.

Although this manual is intended primarily as a reference for the
authors and others in their section, it should be wuseful to any
programmer who wants to Incorporate an efficient, accurate method of
manual keyboard input to a computer program. The listings for the
subroutines, which are all a page or less long, are included in the
appendix. Any reader who wants'more information is invited to get in
touch with either of the authors.

[= 2 — B S L

g E P om o=

REFERENCES

Smith, Chem, Biomed, and Environ Instrum 10, 27 (1980).
Smith, H. S. McKown, W, H. Christie, R. L. Walker, and
Carter, USERDA Report ORNL/TM-5485, June 1976.

Smith, USDOE Report ORNL/TM-7002, September 1979.

Smith, USDOE Report ORNL/TM-8356, August 1982.

15

APPENDIX

LISTINGS OF GRAPHICS SUBROUTINES

OOOoOOOCOOOMOaoonNoOoOaOnOOOnO 00

PROGRAM

FURFOSE?

19

UTLIER

To onashle VYT100:YT220: znd VYT240 control
via FORTRAN subrnutine rcalls

SUBRROUTINES AVAILABLE!S

CLRSCN -
CURFMD -
CURFDS -
ERSDIS -
ERSLIN -
HOMCHUR -
MOVCUR -~
PROMFT -
SETSCL ~
VIDED

Clears entire scoroen

Rerarte cursor locotion

Pogsitinng curcor 3t sclected colsline

Erane selscted rarts of disrlaw _
Erase selectod rarts of line contoining nuranre
Homns cursor

Movee nursar selected # colselines

Underline desidnanted inrut fiold

Set scrolling rodion

Selents norazl/rovercas bold/nohnld: plink/noblink:
arnd underline/noundorline video modes

The following were sunthesized from the shove care modules?

CLRHOM -~

CLRO4 -~
curLOC -

Comhines CLRESCN znd HOMOUR {eclnare arreen 2nd hom2s
cyurscr).,

Combinme CURPOS(1:20) and ERSLINIZ2Y t0 pleozr lines 20-22,

Combinzs CURPOS znd FROMFT (mowves curcsor arnd wriboes
desired mumber of underlinpz),

nnn o0
GRG0

o000

o000

9944

20
SUBROUTINE: CLRSCM

FURFOSE! To clezr the coreen

subroutine clrsen
logical¥l vitclr(3)
data vtele/*33/L 2502 "200/

czll printi{vtcler)
return
end

SUERROQUTINE CLRHOM

PURFORE?: To clezr cercen and home CUrsor,

Subroutine Clrhom
€Call Clrsen

Cz1l Homcur
return

end

SUBRODUTINE: CLRO4

PURFOSE?! To clear lines 20-24 for mesaoadges,

Subroutine Clrd4
c2ll curroc(l20)
c3ll eredis()
return

end

SUBROUTINE: CURCAL

PURPOSE: To et curcor correctly located?

no arpsaront roacon on SsAmD ocoacionge
where the rrogram is reentered after one pagss

the calculations.

Subroutine Curcal
c2ll clrerhom
wrilae(7,99446)
rekurn

format(1H+:,%)
end

recuired for
ogrocially those
throusgh

oo OOon0 0

100

1000

21

SUBROUTINE: CURFND{NCOL:NLINE)

FURPOSE! To rerort location of cursor

ARGUMENTS
necol - current column #
nling -~ ecurront line %

suybroutine curfndincal:nline)

lodic2l¥%l vatrn(3)rhstrn{A)rraaros(3)rostrn(l0)y
scacon{(3)yscacof(3)

intoder sromod

data rearos/*33:/L/ s 4 :'n ' 200/ sorcmod/ 10000 s/ s
concnn/ "3, 787 "200/ r50a3cef/*35'T 2200/

Jdswald=ipecok(dcsw)
Jewsremjswold.or.srcucd

czll rrint{renros)
c3ll irokeol.dswriswarc)
21l rrint(scacon)

J=0

J=d+l

inchr=ittine ()
rostrn(id=inchr
if{rostrn{id).ne.’R’Vgnto 100
nend=J

J=4d+41

rostrn(id="0

call irokellswriswald)

czall srint(scecaf)

nsemi=indox(rostrn, 37 :3)

23l substri{rostrnsvetrn:3:ncsemi~3)

c2ll subpastrirnstenrhetrnrncenitlnend-nocami-1)

decode{nsemi~2:1000rvstrninline
decodo{rnend-nsent-1s1000rnstrndncol
format(i3)

return

end

oOOnoOogOOoOoO0

OO0 aO0

1000

50

100

22

SURROUTINE: CURLOC

PURPOSE! To locate cursor a2t desired rocition and underline

itndicated number of seaces faor ineut finld,

Reverse wvideo is activatedd thic meanes it <hould be

deantivated uron leaving this subrawutine.

ARGUMENTS?
ncol - column no.
nline ~ line no.
nbalnk - nos of blanks

Subroutine Curloci{ncol:nlinernblank)
Cz21) Curros(ncolrnline)

Call Frometinblani)

call Videal(l)

return

end

SUBROUTINE! CURFOS(NCOLsNLINE)
PURFOSE! To pocition curcor 3t selected column and line

ARGUMENTS !
ncol - column number (must He 1-8010
nline - line nomber (mucst be 1-25)

subroutine currosi{ncolsnline)
logical¥l csi(3)rcur()rcolastr (D)2 linstr () rcami ()
data 51 /*33 /L7 200/ :cun/'H »*200/scemi/ "8/ 2200/

erncode{3;1000:colstrincol
format(i2)

coletr{(3)="200
if(coletr(ld.ne."40)g0to 30
calatr(l)=colstr(2)
colstr(2)="200
encodef(3;1000linstrinline
linstr(I)=*200
if(linstr{1),ne,"40)z0tn 100
linstr{l)=lingstr(2)
linstr(2)="200

ca3ll rrint{ecsi)

ca3ll errint(lincstr)

cz2ll print(semi)

call print{colstr)

ca2ll srrinti{cur)

return
end

OGO OOOO0O 00N

OOoOOoOOQOOOoGO 00

23

SURRQOUTINE! ERSDIS(MODE)
PURFOSE! To ersse seleoted rparts of the dicrlay
ARGUMENT ¢

mode - ture of disrlav erase to rerform
= pntire scroen

[IS

= from bedinning of screen o cursaor
{incl cur<cor)

sybroutine ercdics{mode)

logdiczl¥*l erasiS)reacs(S9)rbos(3)

data eras/ 23 'L /2717 9%200/5s00a/ "3/ 0/ s /07 /07 "200/,
+bas/ "33 0 21732200/

if{mode.ea.1)call printi{craa)

if{mode,.ea.2)ea3ll print{gos)

if(mode.ea.3)c3ll rrinti{hoc)

raturn

end

SUBRROUTINE?: ERSLIN(MORE)

PURFOSE? To erase line or ceodments of line

ARGUMENT
mode - turc of erpsc to rerform
1 = entire line containing cuarsor
2 = from cursor to end of lime (inel curcor?
I = fram start of line +o curcor {(inc) ecursnr)

subroutine ercslin(modne)

logdical%)l erps{S)renl{(S),sh0l(S) /

data eras/*3I3y /L /27y K7 +"200/5001 /%2300 'K/ s "200/>
+bol /"33, L7271 s 'K 22200/

if{mode.ea,1ldcall eprinti{eras)
if{mode.ea,.2)call ~rint(eol)

if(mode.ea.3)czall rrinti(bol)

return

end

= fpom curcor to end of screenm (incl curcor)

OO0

24

SUBROUTINE: HOMCUR

FPURFPOSE! To thome the curgor

sybroutine homcur
logiczl¥*l home(7)
data home/ "33 /L /3¢ 871/ ’H’ %200/

eall printihome)
return
erd

OOoOOOoOOtOOo 0

1000

50

100

300

400

25

SUBRDUTINE: MOUVCUR(NCOLS:NLINES)
PURFOSE: To move cursor z varishle % columne and lines

ARGUMENTS
neols - number of columns to mowve
rositive = move ridght
negative = move left
nlines - numbor of lines to move
rogitive = move douwn
nedative = movs ue

subroutine mowvcuri{ncelecsrnlines)

logiczl¥l curur()rourdrn{2)rrurfud(2)srurbwd {2 roai(3)y
tecolstr{4):linctr(4) ‘

date curyr/ '8/ :"'200/rcurdn/ "R 200/ 0urfud//C/ 22007,
deurbwd/ D200/ r0si/ 33,0 2200/

if{ncols.eca,P¥spto 200

encade {(J3:1000r,c0o0lastrinrnls

format(i3)

i=1

do 50 .i=1,3

if(colctr(id.ocq."40 ,or, colstr{d).na.’ -’ Vdnto 50
colatr(i)=colctr{.})

i=i41

- continue

colstr(i)="200

ca2ll Frintl{csi)
if({necols.1t.,0)g0to 100
ezll rrint{colstr)
czll rrint{curfud)
gota 200

call rrint{colstr)
c2ll rrint{curhud)

ifinlines.en.0)do0to 499
encode (3:1000:1linmnstrdnlines
i=1

do 250 J=1»3
ifP(linstr(d).ea.*40 .or. linstr(id.oe.’-"ddoto 250
lingstr(id=linstr()

i=i4d

continue

linstr{i)="200

cz2ll errinticsi)
ifinlines.l1t.0)g0to 200

call primt(linster)

ce3ll rrint{curdn?

gotn 400 '

call rrint{linctr)

c3ll mrint{curuer)

return
end

26

SUBROUTINE! FROMPT(IRLANK)

PURFPDSE! To designate an inrul fiecld using underline
from FORTRAM.

ARGUMENT
iblank - # blanks to underscore,

[ar By B o I v B B o B B O B o

subroutine promprt(iblank)
loginal¥l seace(2)
data serace/"40,"200/

call video(d)
do 50 i=1lsiblank
cell print{serace)
50 cantinue
c23ll moveur{(=ibhlanks:Q)
call vidaa(0)

return
e

27

linkot - line % for last line in scrollicg rosgion

NOTE?: Thic subr 2lso homes the cursor

e .
c SUBROUTINE?! SETSCL(LINTOFSLIMEQT)

C

C FURFOSE! To define ceorolling reodion

C

C ARGUMENTS !

C lintor - Jine % for Pirst line in scerolling rogion
C

C

Cc

C

subroutine setcecl(lintarrlinbot)
lozical¥Xl ecoi(3l)rzomi(2)stnehnt(2)stnratri3) rhotatr (X)) rqeternm (2D
data cgi/*°33s L2200/ r50mi/ $ v 200/ sceterbm/ /s " 000/

encode(3,1000torctr)lintor
1000 format(i2)
torstr(3)=2200
if{torstr(id).ne."40)d0to S0
torstr(ld=torstr(2)
torstr(23=200
S0 encode{(3,1000sbotstr)linhot
botstr(X)=*200
iflbotatril).rne."40)40t0 100
hotstr(ll=hotetr(2)
botestr(2)="200
109 ca3ll rrint{csi)
eall srint(toratr)
call print{(semi)
call printlhntstr)
c2ll rrint(setebm)

return
end

OOoOOONOQOOOOoO0QoDnoOOO0oOnm

SUERROUTINE?

28

YIDEQ(MODE)

PURFOSE: To set outrut to roverse or normal video
ARGUMENT
mode - video outrut mode

hit 0 = 0 ¢ normal video

bit 0 = 1 ! roverse video

bit 1 = O ! bhold off

bit 1 = 1 } bold on

hit 2 = 0 ! blink off

it 2 = 1 ¢ hlink on

it 3 = 0 ¢ underline nff

pit 3 = 1 ¢ underline on

Notc! 2 nedative value for mode rescots

211 attributasz.

subroutine videoo(mode)
logicel%xl
tolmkan(I)plnkof{sYundlon(S) rurndlaf(s)

2lloff{(S):rrviden(S)rnvideonl(ddsholdon(S)sholdaf (4

data 2lloff/*"33y°L/:/0:'m’*200/>
tryidea/ 332/ 5327, m’ 2200/,
tnvidea/ "33y /L3772 s777:'m’:"200/>
tonldon/"332/ 0731/ 5'm’ 5200/,
+holdof/ "33+ /0/ 37242 :/'m 3°200/,
+hlrnkon/*33,/'L/ '8 :'m’,"200/,
+blnkof/'33;’[’y’°’ ‘Ss'm’ 2 "200/
tundlon/"33:/L' 2’4y m’ " 200/,
+undlof/'33:’t’:’°’ ‘A s ‘m’ s 200/

ifimode,1t,0)g0to
itest=mode.znd.*1
if(itest.2a,"1)eca2l)
if{itect.eq.*0)call
itest=made.,2nd,*2
if(itest.ea."2)enll
if{itest.ea."0)cz2ll
itest=mode.cnd.*4
if{itecst.eq.*4)call
if(itest.,ea."0)call
itest=mode,and,*10

500

rrinti{rvideo)
rrint{nvidea)

print{(boldon)
rrinti{bholdaf)

srint{inkon)
srint(blnkof)

ift(itect.ea."10)ecall srint{undlon)
if(itest.2eq."0)ca3ll rrinttundlof)

return

cz3ll print(alloff)
return

end

Y.

o
- O w0

12.
13.
14-18.
19.
20.
21.
22.
23.
24,
25.
26-27.
28.

29.

30-39.

0 W N =

:PWPU'UUZIFF‘QPUPGF:N
r*rnt-«m_o.m.z;zom:n_a»p

Asano
Carter
Christie
Goeringer
Grant
Keller
Klatt
McKown
Shults
Smith

. Todd

Valiga
Walker

. Zucker

Internal Distribution

Central Research Library
Document Reference Section
ORNL Patent Office

Laboratory Records Department
Laboratory Records-RC

External Distribution

ORNL/TM-10770

Assistant Manager for Energy Research and Development,
Department of Energy, Oak Ridge Operations, Oak Ridge, TN 37831
Office of Scientific and Technical Information, Oak Ridge, TN

37831

29

