
,’ d
OAK RIDGE
NATIONAL
LA8ORATORY

3 4456 0275667 6

ORNL/TM-10770

An Expeditious Technique for
Keyboard Input of Information

to FORTRAN Computer Programs

D. H. Smith
D. E. Goeringer

Printed in the United States of America. Available from
National Technical Information Service

U .S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161

NTlS price codes-Printed Copy: A03; Microfiche A01

This report was prepared as an account of work sponsored by an agency of the
UnitedStatesGovernment Neither theUnitedStatesGovernment nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responslbility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed. or
represents that its use would not infringe privately owned rights Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise. does not necessarily constitute or imply its
endorsement, recommendation. or favoring by the United States Government or
any agency thereof The views and opinions of authors expressed herein do not
necessarily state or reflect thoseof theUnitedStatesGovernment or any agency
thereof

ORNL/TM - 10 7 7 0

Analytical Chemistry Division

by

D. H. S m i t h and D. E. Goerlnger

D a t e Published: May 1988

NOTICE This document contains information of a preliminary nature.
It is subjea to revision or correction and tharrfore does not repasrant a
final report.

OAK RIDGE NATIONAL LABORATORY
Oak R i d g e , Tennessee 37831

operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the
DEPARTMENT OF ENERGY

3 41.856 0275bb7 b

TABLE OF CONTENTS

Pag

ABSTRACT . 1

INTRODUCTION . 3

DESCRIPTION . 4

CeneralProgram . 4

Subroutines . 9

CONCLUSIONS . 13

REFERENCES . 15

APPENDIX . 17

LIST OF TABLES

Table No. Ihf22

5

7

1 Hypothetical Prompt Screen
2 Hypothetical Screen
3 Hypothetical Screen a

4 Simple Cursor Control Subroutines '10

5 Compound Cursor Subroutines 11

6 Summary of VIDEO Function 12

7 Summary of EXSLIN and ERSDIS Functions 12

V

An Expeditious Technique for Keyboard Input of
Information to FORTRAN Computer Programs

D. H. Smith and D. E. Goeringer

ABSTRACT

A technique for rapid and accurate input of information via a video
display terminal to FORTRAN computer programs has been developed. The
overall approach is described; it is applicable to any programming
environment based on a similar system w i t h only the most rudimentary
control of graphics functions. The specific application in our
laboratory, using DEC VT-100-compatible terminals, is also described
and illustrated with examples. Listings of the graphics subroutines
for use with a DEC RT-11 system are provided.

1

INTRODUCTION
One of the more challenging jobs for the programmer is to make the

final product as ergonomic, as ”user-friendly”, as possible. The input

of the information necessary for the program to execute properly is

probably the area most difficult to address. Instructions and prompts

that are crystal clear to the programmer tend ta be cryptic and

misleading to the people who will be using the program. This user

interface is a crucial ingredient to any commercially successful data-

base or spread-sheet program, and it repays the efforts of even the

non-professional programmer many times over to make his product as easy

to use as possible.

The Analytical Spectroscopy Section of the Analytical Chemistry

Division has had software to process mass spectrometric data in

operation for over a decade.1’4 These programs operate the mass

spectrometers, acquire and process isotopic data, and write reports

tabulating the results, most frequently in the form of the isotopic

composition of the analyte element. The programs have, naturally,

evolved with time; indeed, they are still doing so. Thousands of

samples are analyzed every year with our five isotope ratio mass

Spectrometers. Many ORNL programs are supported by these instruments,

including those related to reactor research and maintenance, environ-

mental concerns, and isotope enrichment. Virtually any element can be

a sample; some samples are analyzed via isotope dilution to give the

concentration of the element; and some samples have interferences from

isotopes of other elements that must be corrected. In other words, the

programs are quite complex and, to retain their flexibility and

generality, need a fair amount of information to execute as desired.

Technicians operate the instruments and enter the information

necessary for program execution. While these people are talented

individuals, they are not computer literate: they are unfamiliar with

the internal operation of the computers and with the programs them-

selves. It is thus necessary to provide prompt messages that are

meaningful to them as operators of mass spectrometers rather than the

terser ones that would be satisfactory for the programmer. In addi-

tion, mistakes are occasionally made fn entry of data. It is

3

4

essential that recovery from any conceivable error (and even some

inconceivable ones) be as painless as possible. Editing programs have

been written to allow correction of errors after the fact, but it is

far more efffcientr P f they can be corrected during the entry process;

most errors are detected at that the.

We have developed a programmatic approach that in OUK opinion is

exceptionably convenient and simple for the user. Instructions can be

made as clear as desired, and error correction is simple, straight-

forward, and certain. Although our code was developed for a DEC RT-11-

based system, the g e w ~ ~ a l approach is applicable to any computer system

with keyboard-monitor input of data in any environment for any applica-

tion. (It was acitualbly first developed in BASIC by one of us at home

on his personal computer for a program to catalog his record collec-

tion.) Only the mose rudimentary functions are necessary; our

subroutines only control cursor position and erase selected portions of

the screen.

DESCRIPTION
General Prsnrm

The overall approach uses one screen of data as its basic input

unit; by this we mean that, although there may be several screens of

data to be input, only one at a time is entered, examined, corrected,

and approved. I$ would be possible to have a final check of all input

before prseeedfmg to the main program, but we have not implemented it

here.

Editing of input is predicated on the assumption that, with the

appropriate graphics comaads, one can move the cursor at will to any

point on the monitor screen.. This report is thus not applicable to

system lacking this ability or for those based on printing terminals.

After clearing the screen, the first display lists prompt messages

vertfcally down its left side; we have found ten to fifteen to be a

convenient number o f variables with which to work for one screen of

input. The messages can be of any length, but it is desirable to

restrict them to the first 30 or 40 columns of an 80-column screen.

5

For messages longer than t h i s o f f se t , i f is b e t t e r t o use two l ines for

the prompt than to extend it into the input region. Each prompt

message is accompanied by an index code tha t i s associated with it. W e

use numbers as index codes, but other schemes could be implemented i f

desired. Table 1 is an example of a hypothetical screen.

TABLE 1

Hypothetical Prompt Screen

PERSONAL INFORMATION
1. Name

2. Stree t address

3. c i ty

4. State

5 . Zip code

6 . Social securi ty number

7. Date of b i r t h

Seven d i f fe ren t parameters are cal led fo r under the general heading of

"PERSONAL INFORMATION". It is highly desirable to have the entry fo r

a l l parameters start i n the same column. The mind and eye of the

operator come to ant ic ipate the location of the cursor, thus improving

efficiency and accuracy of data input. By the same token, it is

desirable fo r a l l modules of a large program to use a consistent format

fo r input, maintaining, as closely as possible, the same s t a r t i ng

columns, layouts , etc. between input screens. With the graphics

subroutines described below, it is perfectly possible t o have more than

one entry per l i ne , but it is visual ly confusing t o do so. W e often

use column 30 as our i n i t i a l entry colunm. This allows space fo r 25 or

so characters fo r prompting messages and up to 50 characters fo r

variables on one l i ne .

6

During input, the program directs the cursor sequentially through

all the variables displayed; in our example, this would be seven.

Hittimg the "Return" key signals the end o f input for any given

variable, at which the program jumps the cursor to the correct line and

colmw for inpue of the next parasneten. A number of underline

characters, corresponding to the width of the entry field for that

variable, is displayed beginning in the initial input column. For

example, if a number between 0 and 999 is wanted, three underline

characters are displayed beginning at the entry column. This is

particularly helpful far long alphanumertc variables; without visual

assistance, it is difficult to keep track of one's location in the

input field if more than six OK seven characters are called for. When

values have bean entered for all variables, a prompt appears at the

bottom of the screen, telling the operator to enter a "0" (aero) or,

for DEC computers, "Return" if all entries are correct. The index

number corresponding to the incorrectly entered variable is entered

otherwise. The operator can now verify his entries at his leisure.

Upon entry of a non-zero value, the cursor is shifted to the place on

the screen determined by the value of the index just entered. A new

value for the parameter in question is entered. Upon entry of the next

"Return" (the program can be written so that the value of the parameter

need not be changed), the pxompt appears again at the bottom oE the

screen asking for an index value far a correction. These steps are

repeated until the operator signals all is correct, whereupon execution

of the next section of the program commences. Our previous example is

given in Table 2 with values entered for the various parameters and
with the prompt message listed below.

7

TABLE 2
Hypothetical Screen

PERSONAL INFORMATION

1. Name Malcolm Wellbeloved

2. Street address 3333 N. Insipid Drive
3. city Unterwaltersdorf

4. State NO

5. Zip code 45678
6. Social security number 314 15 9265

7, Date of birth 5-5-1787

0 if OK, index number otherwise -

There are two places on the screen where the cursor may logically

be positioned to await corrected input. The first is at the initial

entry line and column for that variable. If this alternative is

chosen, the original value must be erased from the screen before input

of a new value is started. The second location is on the same line as

the original entry but offset to the right from it. This allows the

original value to remain displayed on the screen while a new one is

entered. The disadvantage of this second method is that one is

restricted as to the length of the variables that can be conveniently

handled. If, for example, one wants an alphanumeric variable 30

characters in length (not overly generous), one would not he able to

keep everything on one line (25 characters for a prompt message and 30

each for the original and new values for the parameter; 80 is the

maximum number of characters per line). We have, therefore, usually

chosen the first of the alternatives just described. For the sake of

visual clarity, however, we have chosen to use the second alternative

in our examples below.

a

To illustrate the positioning of the cursor preparatory to input of

a corrected value, consider the data in Table 2. If Pir. Wellbeloved

lived in Nebraska rather than Niederoesterregch, a 4 would be entered.

The cursor would be moved to a position between %he end of the original

input field and the right side of the screen--there must be enough room

on the line to hold the entire input field for the corrected entry. In

this case, it would be positioned at the end of the line labelled " 4 .

State", and a new value for this variable would be entered. Upon

receiving the "Return" keystroke, the original and corrected values are

both erased, and the corrcted value inserted into the position of the

original input field.

TmLE 3

Hypothetical Screen

PERSONAL INFORMATION

1. Name Malcolm Wellbeloved

2 . Street address 3333 N. Insipid Drive

3 . city Umterwaltersdorf

4 . State NO

5 . Zip code 45678

6 . Social security number 314 15 9265

-

7. Date of birth 5 -5-1787

0 if OK, index number otherwise 4

In Table 3 , a new entry for the state is being called for. Two

underline characters indicate that the two-character postal service

abbreviation is wanted rather than the full name. After entering the

correct value in the field shown, the operator reviews all input, makes

any needed corrections, and, when all is correct, enters "0" (or, on

DEC equipment, enters "Return" directly) to proceed to the next section

of the program.

9

The ability to review a block of input and correct any erroneous

entries at will is one the most attractive features of our method. It

has resulted in far fewer input errors being transmitted to the final

calculational programs than had been the case for our previous methods

of data entry.

Subroutines

Movement of the cursor is controlled by a number of subroutines.

These were developed in DEC FORTRAN IV. They would execute more

rapidly if they had been written in assembly language, but in practice

the movement of the cursor is fast enough to be completely

insignificant on a human time scale; the cursor moves between any two

locations on the screen in less time than it takes to enter a single

character at the keyboard, giving the subjective impression of

instantaneous movement. There thus seems to be no reason to go to the

trouble to develop assembly code for the routines. The FORTRAN code

was implemented by executing the appropriate escape codes to achieve

the desired result; they apply to DEC VT-100-compatible terminals.

It should be pointed out that some care must be exercised by the

programmer to keep track of the current curfior position. Techniques

that work perfectly under other conditions cause loss of cursor

calibration in this graphics mode. For example, PUTSTR, the FORTRAN
routine to output a string, automatically includes a line feed at the

end, causing the cursor to be positioned one line too low. We have not

found a way to circumvent this behavior using PUTSTR. One could, of

course, go to the trouble of taking this into account, but: it seems

more straightforward to use the WRITE statement and output the string

using A fields. It is easy, however, to cause the cursor to be one

line too low using WRITE statements as well. For example, if one wants

to output a two-character string, one must use the following format

statement to retain cursor calibration:

FORHAT(lH+,A2,$)

10

Both the 1H+ and the $ are necessary to prevent errors in cursor

location. If 3A2, for example, is substituted for A2, the cursor will

again stubbornly position itself one line too low. It is not clear to

us why this should be. The graphics commands refer to a specific

screen location, but the operating system seems to lose track of just

where the cursor is.

Table 4 lists the names of the routines and short descriptions of
their functions.

Name

CLRSCN

HQMCUR

MOVCUR

CURPQS

CURFND

SETSCL

VIDEO

ERSLIN

ERSDIS

P R O W

TBBU 4

Simple Cursor Control Subroutines

Description

Clears entire screen.

Homes cursor.

Moves cursor specified number of lines and

columns from the present location.

Positions cursor at speciffed line and

column.

Reports cursor location.

Sets a scrolling region.

Selects between normal/reverse, bold/nobold,

blink/noblink and underline/nounderline video

modes

Erase specified parts of the line containing

the cursor.

Erase specified parts of the display.

Prints specified number of underline

characters for the input field.

A number of handy routines has been developed that combine two or more

of the simple ones. Some of the more useful of these are listed in

Table 5.

11

TABLE 5

Compound Cursor Subroutines

Ji&?l!s
CLRHOM

CURCAL

pesc?&gGion

Clears screen and homes cursor (C W C N +
HOMCUR) .
Clears lines 20-24 (ERSLIN in a loop).

Positions cursor and displays a specified

number of underlines (CURPOS + PROMPT).
Recalibrates cursor position; sometimes

necessary when shifting screens.

Although many of the short descriptions in Tables 4 and 5 are

enough to define fully the associated functions, some require

amplification. MOVCUR has two arguments, NCOLS and LINES. Using the

current cursor location as a reference, it moves the cursor the

specified number of columns and lines. Positive numbers move the

cursor to the right and down; negative values move it left and up. Any

combination of positive and negative numbers within the ranges of lines
and columns of the display is allowed. CuRPoS also has two arguments,

MCOL and NLINE, which designate the screen coordinates to which the

cursor should move; the range for NLINE is 1-24 and for NCOL 1-80.

GURFND has the same two are;untents as CURPOS. It, however, reports the

present position of the cursor. It is especially useful when used in

conjunction with MOVCUR. SETSCL has two arguments, EINTOP and LINBOT.

These arguments specify the line numbers for the top and bottom,

respectively, of the scrolling area of tRe screen. This useful

function allows one to save a display in one area of the screen while
another scrolls as needed. This routine homes the cursor. VIDEO sets
the video mode and uses a single argwaent, MODE. MODE is a bitwise

variable that controls the display rpode. Table 6 defines the values

for MODE.

12

TABLE 6

Summary of VIDEO Function

Bit Decimal Clear (0) Set 41)
I_

0 1 normal video K&VBKSe video

1 2 Bold off bald on

2 4 blink off blink on

3 8 underline off underline on

The value for MODE is obtained by adding the decimal values that

correspond each bit that is "set". The programmer selects which

options are to be activated and finds the appropriate sum. Thus one

wsu$d use 9 as an argument to have reverse video with underline on.

ERSLIN has one argument that defines the direction and extent of

erasure on the line containing the cursor. It is defined in Table 7.
ERSDIS performs a function similar to ERSLIN, but for the whole screen

rather than for just one line. It, too, takes one argument whose

operation is described in Table 7.

Value

1

2

3

1

2

3

TABLE 7
Summary of ERSLIN and ERSDIS Functions

ERSLIN

Effect

Erases entire line containing cursor.

Erases from cursor to end of line, including

cursor position.

Erases from start of the line through

cursor position.

ERSDIS
Erases entire screen.

Erases from cursor to end of screen,

including cursor position.

Erases from start of screen through cursor

position.

13

PROMPT takes one argument that indicates the number of underline
characters to print to the screen. It is up to the programmer to have

the cursor correctly positioned before issuing the call to the

subroutine. This is, of course, true for many of these graphics

routines.

Of the compound functions, only CURCAL seems to require further

discussion. This routine calls CLRHOM (itself compounded of CLRSCN and

HOMCUR) and writes a do-nothing line to the screen. This line is

formatted as (lH+,$). It is not clear to the authors why this routine

is needed. Its function is to recalibrate the position of the cursor.

Its need arises when the computer loses track of the cursor position.

This usually occurs when one screen of data has been successfully

entered, the screen cleared, the cursor homed, and a new series of

prompts displayed. The computer will often position the cursor one

line too low, an aggravating condition that renders input of

information more challenging than it should be. CURCAL corrects this

situation.

CONCLUSIONS

The approach embodied in this report has been in operation for well

over a year. It has been well received by all who use the programs

into which it is integrated; operators range from daily users to

occasional. It seems easier for a person to remember how to make input

correctly when this method is used than it was for earlier methods.

Although this manual is intended primarily as a reference for the

authors and others in their section, it. should be useful to any
programmer who wants to incorporate an efficient, accurate method of

manual keyboard input to a computer program. The listings for the

subroutines, which are all a page or less long, are included in the

appendix. Any reader who wants more information is invited to get in
touch with either of the authors.

REFERENCES

1. D . H . Smith, Chem, Biomed, and Environ Instrum 10, 27 (1980) .

2. D. H. Smith , H . S . McKown, W, H . Christie, R . L. Walker, and

J . A. Carter, USERDA Report ORNL/TM-5485, June 1976.

3 . D . H. Smith, USDOE Report: ORNL/TM-7002, September 1979.

4 . D . H. Smith, USDOE Report ORNL/TM-8356, A u g u s t 1982.

15

APPENDIX

LISTINGS OF GRAPHICS SUBROUTINES

19

G
C
C
c
c
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C

PROGRAM: UTLIB

SUBRQUTINES AVAILABLE:

CLRSCN
& U R F M L!
CURfOS
ERSDTS

HOMClJR
H 0 V C u R
PROMPT
SETSCL
UIDEO

msew

20
SUBROUT J M f : CI..F;SCN

PURPOSE: T o c lc .=r t h e s c reen

C SUBROUTINE CLRHOM

C PURPOSE: T Q c l e c r ~ c r c c n 2nd home curr ,or r
C

C

S u b r o u t i n e Clrhom
Call C l s s c n
Gal1 Hamcur
r etri rn
end

21

100

SUBROUTINE: CUEFNF iNCOL: N!. . INE 1

PURPOSE: T o r e p o r t l o c o t - i o n of f ~ r l ~ o r

r e t 1.1 rn

end

22

C
C
6
C
c
e
C
c
c
C
c
C

SUBROUTINE: CURLOC

Su 6 T' ou t i ne CIA F 1 CI) c < nc (J 1 Y n 1 .i ne I nh 1. i3n I: 1
Ca 1 1 CIA r Pori t ncrj 1 7 n R j. ne)
C a 1 1 P PO RIP t n t\ 1 s n Is 1
call. V i c f a o (1)
r e t u r n

C

end

C
C
c
C
C
C
C
c
C

SUBROUTINE: CURPOS(NCOLrN1.INEl

PURPOSE: T o Positinn cursor a t s o l c r t . e d ealumrr 2nd l i n ~

ARGUMENTS:
n c o l - column ni-imbcr (rn t l s t hi. 3-80)
nliric - line nrtober (n u ~ t %+P l-35)

23

C
C
C
c
C
C
C
C
c
C
c
C

C
C
C
C
C
C
c
c
c
C
C

SUERQUTINE: ERSrlISCM9DE)

end

SUBROUTINE: ERSLIN(MODE)

PURPOSE: To e r a s e line or sczfrnsnts of l i n e

24

SUBROUTINE: HCIMGUR

25

C
c
c
C
c
C
C
C
C
c
C
c
c

so

4 Q # r e t t~ rn
end

26

S U B H O U V I N E : PROMPT! IFL..ANK)

ARGUMENT
iblank - t b1snk.o to u n d e r c r o r c ,

27

C
C
c
C
C
C
C
C
C
C
C

NOTE: This s u b r a l s o homes t .hc curc,ur

r c t 1.1 r n
end

28

c
c
6
c
c
c
e
e
c
C
C
C
C
C
c
C
C
C
C

500

end

OEWL/TM- 10770

1.
2.
3.

4-8.
9 .
10.
11.
12.
13.

14-18.
19.
20.
21.
22.
23.
24.
25.

28.
26-27.

Internal Distribution

K . G . A s a n o
J . A . Carter
W . H . Christie
D. E. Goeringer
3. C . Grant
J. H. Reller
L. N. Klatt
H. S. HcKown
W. D. Shults
I). H. Smith
P. 3 . Todd
R. E. Valiga
R. L. Walker
A. Zucker
Central Research Library
Document Reference Section
OWL Patent Office
Laboratory Records Department
Laboratory Records-RC

External Distr lbution

29. Assistant Manager for Energy Research and Development,
Department of Energy, Oak Ridge Operations, Oak Ridge, TN 37831

30-39. Office of Scientific and Technical Information, Oak Ridge, TN
37831

29

